Statistics in Biosciences
https://doi.org/10.1007/512561-024-09472-3

ORIGINAL PAPER

®

Check for
updates

Functional Varying-Index Coefficients Model for Dynamic
Synergistic Gene-Environment Interactions

Jingyi Zhang' - Xu Liu® - Honglang Wang* - Yuehua Cui'

Received: 28 February 2024 / Revised: 5 October 2024 / Accepted: 15 December 2024
© The Author(s) under exclusive licence to International Chinese Statistical Association 2025

Abstract

Human complex diseases are affected by both genetic and environmental factors.
When multiple environmental risk factors are present, the interaction effect between
a gene and the environmental mixture can be larger than the addition of individual
interactions, resulting in the so-called synergistic gene—environment (GXE) inter-
actions. Existing literature has shown the power of synergistic gene-environment
interaction analysis with cross-sectional traits. In this work, we propose a functional
varying index coefficient model for longitudinal traits together with multiple longi-
tudinal environmental risk factors and assess how the genetic effects on a longitudi-
nal disease trait are nonlinearly modified by a mixture of environmental influences.
We derive an estimation procedure for the nonparametric functional varying index
coefficients under the quadratic inference function and penalized spline framework.
We evaluate some theoretical properties such as estimation consistency and asymp-
totic normality of the estimates. We further propose a hypothesis testing procedure
to assess the significance of the synergistic GXE effect. The performance of the esti-
mation and testing procedure is evaluated through Monte Carlo simulation studies.
Finally, the utility of the method is illustrated by a real dataset from a pain sensitiv-
ity study in which SNP effects are nonlinearly modulated by a mixture of drug dos-
ages and other environmental variables to affect patients’ blood pressure and heart
rate.

Keywords Genetic association - Longitudinal data - Mixture exposures - Nonlinear
GxE interaction - Quadratic inference function - Varying-index coefficients model

1 Introduction

It has been broadly recognized that gene—environment (GXE) interaction plays

important roles in human complex diseases. A growing number of scientific
researches have confirmed the role of GXE interaction in many human diseases,
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such as Parkinson’s disease [1] and type 2 diabetes [2]. GXE interaction is defined as
how genotypes influence phenotypes differently under different environmental con-
ditions [3]. It also refers to the genetic sensitivity to environmental changes. Usually,
GXxE has been investigated based on a single-environment exposure model. Evi-
dence from epidemiological studies has suggested that disease risk can be modified
by simultaneous exposures to multiple environmental factors. The effect of simul-
taneous exposure is larger than the simple addition of the effects of factors acting
alone (e.g., [4, 5]). Under the GXE context, this is the so-called synergistic GXE
interaction. This motivated us to assess the combined effect of environmental mix-
tures, and how they as a whole, interact with genes to affect a disease risk [6]. In our
previous models, we proposed a varying multi-index coefficient model (VMICM) to
capture the nonlinear interaction between a gene and environmental mixtures with a
cross-sectional trait [6, 7]. To our best knowledge, no study has been conducted to
assess synergistic GXE effects on a longitudinal trait, and further dissect the interac-
tion mechanism.

In biomedical studies, longitudinal traits are often observed, with repeated meas-
ures of the same subject over time. The increased power of a longitudinal design to
detect genetic associations over cross-sectional designs has been evaluated [8—10].
With longitudinal disease traits, one can study the dynamic gene effect over time.
Coupled with longitudinal measures of environmental exposures, one can study how
genes respond to the dynamic change of environmental factors to affect a disease
trait. Thus, the purpose of this study is to develop a new statistical model to evaluate
synergistic GXE effects on a longitudinal trait.

Some nonparametric and semi-parametric models such as varying coefficient
models have been proposed to explore time-dependent effects in longitudinal data
analysis, for example, [11-17]. However, these methods do not fit our purpose. In
order to capture the dynamic nonlinear GXE interaction with the combined effect of
environmental factors for longitudinal data, we propose a functional varying index
coefficient model (FVICM) for correlated response, i.e.,

Yy = my(BXy) +my (BXG; + e M

where Y; is the response variable which measures the phenotype of certain disease
on the ith subject at the jth time point, where i =1,---,N, j=1,-,n; Xii is a
p-dimensional vector of environmental variables, which can be either time depend-
ent or time invariant; G; denotes the genetic variable; € is an error term with mean
0 and some correlation structure; my(-) and m,(-) are unknown functions; and f, and
B, are p-dimensional vectors of index loading coefficients. For model identifiability,
we have the constraints || f,|| = || ;|| = 1 and restrict the first elements of f, and
be positive.

[18] proposed the quadratic inference function (QIF) for longitudinal data analysis,
as an improvement of the generalized estimation equation (GEE) approach introduced
by [19]. The QIF approach avoids estimating the nuisance correlation parameters by
assuming that the inverse of the correlation matrix can be approximated by a linear
combination of several basis matrices. [18] found that the QIF estimator could be
generally more efficient than the GEE estimator. [18] applied the QIF method to the
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varying coefficient model for longitudinal data. [20] developed an estimating procedure
for single-index models with longitudinal data based on the QIF method. Motivated by
that, in this paper, we extend the QIF method to the FVICM model for dynamic GXE
interactions.

Our goal in this work is to develop a set of statistical estimation and hypothesis test-
ing procedures for model (1). We first approximate the varying index coefficient func-
tion by penalized splines [21] and then extend the QIF approach to our model in order
to estimate the index loading coefficients and the penalized spline coefficients. Under
certain regularity conditions, we establish the consistency and asymptotic normality
of the resulting estimators. Another goal is to test the linearity of the GXE interaction
effect. This is of particular interest in our model setting since if the GXE interaction
is linear, a simple linear regression model should be fit, and fitting any higher-order
nonlinear functions would be unnecessary. With a mixed-effects model representation
of the penalized spline approximations [22, 23], we can transform the problem of test-
ing an unknown function into testing some fixed effects and a variance component in
a linear mixed-effects model setup with multiple variance components, which will be
evaluated in this study.

This work is organized as follows: in Sect. 2, we propose an estimation procedure
under the FVICM model and further establish the consistency and asymptotic normal-
ity of the proposed estimator in Sect. 2.1. In Sect. 3, we discuss some practical issues
to implement the proposed estimation procedures. In Sect. 4, a pseudo-likelihood ratio
test procedure with a linear mixed-effects model representation is illustrated. We assess
the finite sample performance of the proposed procedure with Monte Carlo simulations
in Sect. 5 and illustrate the proposed method by an analysis of a pain sensitivity dataset
in Sect. 6, followed by discussions in Sect. 7. Additional simulation and real data analy-
sis results and the proof of the theorems are rendered in the supplemental file.

2 Quadratic Inference Function for FVICM with Longitudinal Data

For longitudinal data, suppose the response y;;, p-dimensional covariate vector x;, and
SNP variable G, are observed from the ith observation at the jth time point. SNP vari-
able {G;,i =1, ..., N} does not change over time. Assume the model satisfies

E(y;lx;. G) = mo(ﬂg-xij) + ml(ﬁlTx,jj)Gi-

We can approximate the unknown coefficient functions m(u,) and m(u,) by a
g-degree truncated power spline basis, i.e.,

mO(“O) = mo(uo’ ﬁo) ~ B(“o)TJ’Q,

my(uy) = my(uy, fy) = B(”])T)’p

where B(u) = (1, u,u?, -+ ,ud, (u — k)1, -+ (u— )17 is a g-degree truncated
power spline basis with K knots «, -+, kx. ¥, and y, are (¢ + K + 1)-dimensional
vectors of spline coefficients. Let B = (8], B]) andy = (y,y")".
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For longitudinal data, the conditional variance-covariance matrix of the response
needs to be modeled. The method of generalized estimation equation (GEE) is often
applied to estimate the unknowns. The GEE is defined as

N
Z ﬂiTVi_l(y,' - u)=0
i=1

where V; is the covariance matrix of y; and y; = (y;;, -, ¥i, )7» #; = E(y;) is the mean
function, and j, is the first derivative of u; with respect to the parameters. Based on
the spline approximation, the mean function can be written as

H;i1(0) BT(ﬂgxil)Yo + BT(ﬁlTXil))’lG
M= p(0) = : = : ,
Hin,(0) BT(ﬂgXini)Yo + BT(ﬂlTXm,)YlGl

and the first derivative of y; is

{ccccBg(ﬂ;xil)yoxiTl B;(ﬂ{xil‘)ylGlxll BT(ggxil) BT(ﬁ{xil)Gi

i = : : : : s
B (Byx,,)v0x], By(Bx,)r,Gx], B'(Bx,,) BT (B]x;,)G,
where B,(u) = aB(") =(0,1,2u, -, qui~", q(u — Kl)i_l, e, q(u— KK)Z_I),
0="y"".

When V; is unknown, [19] suggested that V, can be simplified as V; = Al.l/ 2R(p)Al.1/ 2

with A, being a diagonal matrix of marginal variances and R(p) being a common work-
ing correlation matrix with a small number of nuisance parameters p. When p is con-
sistently estimated, the GEE estimators of the regression coefficients are consistent.
When such consistent estimators for the nuisance parameters do not exist, [18] sug-
gested that the inverse of R(p) can be represented by a linear combination of a class of
basis matrices, such as R™'(p) & a,M, + a,M, --- + a,M,,, where M, is the identity
matrix and M,, --- , M, are symmetric matrices. The advantage of this method is that
the estimation of nuisance parameters a4, -, a;, are not required. Following this idea,
we define the estimation function as follows:

L | P p.TA._l/zM A7y - )
WO =g 2e@=50 : @
=1 T WAL Mh )

Because the dimension of the estimation equation g, is greater than the number of
parameters, we cannot obtain the estimators by simply setting each element in g, to
be zero. [18] introduced the Quadratic Inference Function (QIF) based on the gener-
alized method of moments [24]. Thus, we can estimate the parameters by minimiz-
ing the QIF, which is defined as

QN(G) NgN N gN’ (3)
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where Cy = %Z, 1g,g is a consistent estimator for var(g;). By minimizing the
quadratic inference function, we can obtain the estimation of the parameters

0= arg mein On(0).

To overcome the well-known over-parameterization issue, [18] further proposed the
penalized quadratic inference function

N7'Q4(6) + 16" D0, )

where D is a diagonal matrix with element 1 if the corresponding param-
eters are spline coefﬁcients associated with the knots and O otherwise, i.e.,

T . . .
D= dlag(0(2p+q+l)><l’ Xx1° 0(q+l)><l’ Xl). Then, the estimator is given by

0 =arg mein(N_lQN(O) + 16'D0). (5)

2.1 Asymptotic Properties

In this section, we establish the asymptotic properties of the penalized quadratic
inference function estimators with fixed knots. Assume 6y, is the parameter satisfy-
ing Eg (g;) = 0. Theorem 1 provides the consistency of the resulting estimators. We
show the asymptotic normality of the estimators in Theorem 2. The theoretical
results are similar to those provided by [25]. The difference is that we have con-
straints for the index loading parameters in our model, i.e., ||B,|=l|B,|l=1, and
Bo; >0, p;; > 0. To handle the constraints, we do the reparameterization as
Bp=1/1- ”/31,—1”§ with g, | = (ﬂlz,...,ﬂ,p)T for I=1, 2 [17, 26, 27]. Then, the

parameter space of B =1,2, becomes
(/1= 1B 113 Bras ooes B)T Y 2 1By 113 < 1. Let
J[ aﬂl ( ﬂl 1/\/ “ﬁl 1“2>
‘)ﬁz 1

be the Jacobian matrix of dimension p X (p — 1). Denote f_; = (ﬂg_l,ﬁlT_l)T and
0" = (B_,,y)". From 0 to 6%, we have Jacobian matrix J = diag(J,, J;, Likir Lgsksr)

Theorem 1 Suppose the assumptions (A1)-(A6) in the supplemental file hold and the

smoothing parameter Ay = o(1), then the estimator 0, which is obtained by minimiz-
ing the penalized quadratic function in (4),exists and converges to the true param-
eters 0, in probability.

@ Springer



Statistics in Biosciences

Theorem 2 Suppose the assumptions (A1)-(A6) in the supplemental file hold and the
smoothing parameter Ay = o(N~'/?), then the estimator O obtained by minimizing
the penalized quadratic function in (4) is asymptotically normally distributed, i.e.,

VN® d T =1y 19T
N —0y)— N0,J(G,C; Gy)~ J"),
where G and C are given in the supplemental file.

The proofs can be found in the supplemental file.

3 Practical Implementation

In this section, we discuss some practical issues when we implement the proposed
method.

3.1 Algorithm for Estimation

A two-step iterative Newton—Raphson algorithm is applied when we estimate the
index loading parameters and the varying spline coefficients. The algorithm of the
estimation procedure can be summarized in the following steps.

(old) (old)'

Step 0 Choose initial values for § and y. Denote them by $'*“’ and y

Step 1  Estimate y*") by
y" = argmin(N"'Qy(r, B) + 4y " Dy.
The Newton—Raphson algorithm is used for the minimization.
Step 2 Estimate ") by
BV = argmin Oy(B, " ").
Also, use Newton—Raphson for minimization.

Step 3 Update ﬂEOZd) by ﬁg()ld) — Sign(ﬁl(]new))ﬁgnew)/”ﬂgnew)“2’ [ =1,2. Update }'(”ld)
by setting y(vld) — y(new).

Step4 Repeat Steps 1-3 until convergence.
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3.2 Model Selection

It is important to determine the order and number of knots in the spline approxima-
tion since too many knots in the model might overfit the data. Under the assump-
tion E(g) = 0 (g is the estimation function in (2) for a single observation) and the
number of estimating equations is larger than the number of parameters, we have
Q(a) - ;(f_k in distribution [24], where r is the dimension of g, (), k is the dimen-
sion of 0, 0 is the estimator by minimizing the QIF when certain order and number
of knots are chosen. This asymptotic property of the QIF provides a goodness-of-fit
test, which can be useful to determine the order and number of knots to be selected
in our model.

However, it is also possible that the goodness-of-fit tests fail to reject several dif-
ferent models which may not be nested. Since Q(@) is asymptotically chi-square dis-
tributed, we can use BIC to penalize Q(a) for the difference of the numbers of esti-
mating equations and parameters. In particular, the BIC criterion for a model with r
estimating equation and k parameters is defined as

0©) + (r —k)InN.

The model with minimum BIC would be considered better. If we choose / basis
matrices in (2), then r — k = hk — k = (h — 1)k. As will be discussed in Section 3.3,
we usually use A=2 in our setting. Thus, the BIC criterion is actually

0®) +kInN,

where k is the number of parameters in the model.

In our simulation and real data application, we search the optimal order and the
number of knots over a set of combinations of g and K using BIC. Knots are evenly
distributed in the range of u(= BTX).

3.3 Choice of the Basis for the Inverse of the Correlation Matrix

[25] offered several choices of basis matrixes. For exchangeable working correlation,
M, is an identity matrix and M, has O on the diagonal and 1 off-diagonal. If the work-
ing correlation is AR(1), we can set M, to have 1 on its two subdiagonals and O else-
where. Prior information on correlation can help us to determine the choice of appro-
priate basis matrices. The effect of choosing different basis matrices is discussed in
[25] through simulation studies. [28] also proposed an adaptive estimation method to
approximate the correlation empirically when there is no prior information available.

3.4 Choice of the Tuning Parameter

Since the penalized spline is used to approximate the unknown functions, we need
to determine the tuning parameter A involved in the method. As [25] suggested, we
can extend the generalized cross-validation [29] to the penalized QIF and define the
generalized cross-validation statistic as
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where df = tr[(Qy + 2NAD)~'Qy ] is the effective degree of freedom, Qy is defined
in (3), and Q is the second derivative of Qy. The desirable choice of tuning param-
eter A is

A= arg m}n GCV(A).

In the implementation of GCV, the golden search method can be applied to reduce
the computational time.

4 Hypothesis Test
4.1 Linear Mixed Model Representation for FVICM Model

In our proposed FVICM model (1), it is of interest to test the unspecified coefficient
function. In particular, we are interested in testing whether a linear function is good
enough to describe the GXE interaction. Given B, let u, = ,Bg X, u = ﬁlTX, with the
truncated power spline basis, the coefficient function can be modeled by

K

my(uy) =y + yiu + 7/12"{% +t+ qu“? + Z by (uy = K5
k=1

Note that under the current model setup, we cannot assess the zero effect of the non-
parametric function m(-) since under the null hypothesis of m;(-) = 0, the index
loading parameters B, are not identifiable, unless we impose the constraint that
B, = B, = . This constraint, however, is practically unrealistic. Thus, our goal is to
test the linearity of m, (1), which is equivalent to test

Hy i yp==r,=00b=-=by,x=0.

If the above H,, is rejected, we conclude there exists a nonlinear relationship. Other-
wise, we assume a linear relationship and fit m,(-) with a linear function and further

test the zero effect of the linear relationship. Let wg; = (1,ug;, -, ug ),
_ q o\~ _ T — T
Ly = <(“01;/ = Ky s (g — KK)+) s Yo =005 709) s bo = (b, -+ bog) ;
_ 4T _ q q
Wllj - (19M1U7 o ’ulij) 5 Zlij = ((l/llu —_ K11)+, eee ’(ullj - KIK)+)
by =y, by)" and 7y = (vy9, -+, 71,)" > then we have m(u;) = W&io + zgijbo

—wl 3 T
and m, (uy) = Wy, 71 +2,,b,.

— T _ T

We further define Y= i Vi) s Woi = (Woits == s Woin )

W, — T _ T _ T

i = Wi G, Wy, G, Loy = (2o, 5 20 ) and Zy; = (211G, -+, 2y, G

then a linear mixed model (LMM) representation [30] can be obtained as

Y, =1la,+Wu7,+W;¥, +Zyby+Z,b, +€;,, i=1,-,n, 6)
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where b, ~ N(0, aﬁ Ip), [=0,1, € ~ N(0,5°1), and the random intercept effects g
1

are assumed to be independent as N(0, 03).

With the LMM representation, testing the linearity of the varying index coeffi-
cients is equivalent to testing some fixed effects and a variance component in model
(6). To be specific, we want to test

Hy:yp=-- =y1q=0and aﬁl =0. (7)

4.2 Likelihood Ratio Test (LRT) and Pseudo-LRT in LMM
4.2.1 LRT for One Variance Component

[31] proposed the likelihood ratio test in linear mixed effect models with one vari-
ance component. Consider an LMM with one variance component

2
Y=XB+7Zb+e, E[b] = [OL], COV[b] = {Ccahz 0| ®)
€ 0, € )
0 o1,

where B is a p-dimensional vector of fixed effect coefficients, b is a L-dimensional
vector of random effects, 0, is a L-dimensional vector of zeros, X is a known L X L
symmetric positive definite matrix. Let A = o-ﬁ / 6€2 be the signal-to-noise ratio
and then the covariance matrix of Y can be written as Cov(Y) = 6€2V ,» Where

V, =1 + AZXZZ". Consider testing for the null hypothesis
H() . ﬂp+l—p’ :O’...’ﬁp:O’ UZZO (9)

for p’ > 0.
The LRT statistic is defined as

LRT, 2{ sup L(B, A, 62) — sup L(B, A, aj)}.
HA HO
If we substitute the parameters f and 03 with their profile estimators

B = XV XV Y,

(Y = XB)T V(Y - XB()

62(4) = p :
for fixed A, we obtain the LRT statistic
LRT, = sup{nlog(Y'S,Y) — nlog(Y'P'V;'P,Y) — log|V,]}, (10)

420
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where P, =1, — X(XTVEIX)‘IXTVEI, X, denotes the design matrix of fixed effects
under the null hypothesis, and S = I, — XO(XgXO)‘ng .

Theorem 1 in [31] provides the distribution of LRT statistic (10). Let u, be the
eigenvalues of ZI/ZZTPOZEI/2, &, be the eigenvalues of EI/ZZTZZI/Z, s=1,--,L,
then

P2

Zi v ) +supf, (4), (11)
hH 4 w2 120

where u, ¥ N(0,1)fors = 1, ,L, w, = N(0, 1) for s = 1, - ,n — p, and

L
£,(A) =nlog {1 + N,(4) } - z log(1 + Au,),
s=1

LRTnin<1+

D,(4)
with
L
Au,
N,(A) = ' w2,
L 2 n-p

+2wf.

Hs s=L+1

Dn(/l)=z l-rjl

s=1

The distribution in (11) only depends on the eigenvalues y, and &;. Based on the
spectral decomposition, simulation from this distribution can be done very rapidly.
A detailed algorithm for this simulation can be found in [31].

4.2.2 Pseudo-LRT for Multiple Variance Components

For an LMM with multiple variance components

Y=XB+Zb,+ - +Zb +¢€, (12)

b, ~N(0,6°%), s=1,-,S, € ~N(0,01,),

where b, s =1, ---,§ are random effects and S > 1. Suppose we are interested in
testing

HO . ﬁp+1_p/ = 0, e ,ﬁp = O, 0-3 = O.

[32] proposed to approximate the distribution of LRT for the model (12) based on
the pseudo-likelihood ratio test theory [33] using a pseudo-outcome. In the frame-
work of model (12), b,/ # s are the nuisance random parameters. We can define the
pseudo-outcome as
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Y=Y-) 1z,
l#s

where B, are the best linear unbiased predictors (BLUP) of nuisance random effects
b;, [ # s. Then, the model (12) can be reduced to

Y=XB+Zb, +e. (13)

Then, the method for testing one variance component introduced by [31] can be
applied to the model in (13).

4.3 Pseudo-LRT in FVICM Model

For the model in (6), we can use the idea of [32] and define the pseudo-outcome

Y. =Y, -Zyb,-Ud, i=1,.n,

[t &4

where BO and @, are BLUPs of b, and a;, respectively. The reduced model using
pseudo-outcome for model (6) can be written as

‘N(i =Woto+Wi¥1+Z,b, +€. i=1,-,n (14)

For the new model (14) using pseudo-response, we can apply the method for the
single variance component model introduced in Sect. 10 to test hypothesis (7). Sta-
tistical significance can be assessed through the resampling approach described in
section 4.2.1.

5 Simulation Study
5.1 Simulation

In this section, the finite sample performance of the proposed method is evaluated
through Monte Carlo simulation studies. We generate three covariates X, X, X;.
For each subject i, X,;, X,;, X5; are generated independently from uniform dis-
tribution U(0, 1). We set the minor allele frequency (MAF) as p,=(0.1, 0.3, 0.5)
and assume Hardy—Weinberg equilibrium. We use AA, Aa, and aa to denote three
different SNP genotypes, where allele A is the minor allele. These genotypes are
simulated from a multinomial distribution with frequencies pi, 2p,(1 —py,), and
(1 — p,)?, respectively. Variable G takes value in the set {0,1,2}, corresponding to
genotypes {aa, Aa, AA}, respectively. The error terms €; = (¢;;, -+ , €;, ) are indepen-
dently generated from the multivariate normal distribution N(0, 0.1R(p)). The true
correlation structure R(p) is assumed to be exchangeable with p = 0.5 and 0.8.

We set  my(uy) = cos(zuy) and m;(u)) = sin[z(u; —A)/(B—A)] with
A= \/5/2 - 1.645/\/5 and B = \/5/2 + 1.645/\/5. The true parameters are
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Bo = (V/5, V4, V/4)/V/13 and B, = (1,1,1)//3. To simplify the simulation and
save computational time, we consider the balanced case, which means each obser-
vation has the same number of time points. We draw 1000 datasets with sample
size N = 200,500 and time points n; = T = 10. Since the true correlation structure
is exchangeable, we set M, to be the identity matrix and M, to be 0 on the diagonal
and 1 off-diagonal. The order and number of knots of the splines are chosen using
the BIC method.

5.2 Performance of Estimation

Table 1 summarizes the results based on 1000 replications. In this table, the aver-
age bias (Bias), the standard deviation of the 1000 estimates (SD), the average of
the estimated standard error (SE) based on the theoretical results, and the estimated
coverage probability (CP) at the 95% confidence level are reported. Note that the
estimation of the loading parameter f, improves (smaller Bias, SD, and SE and CP
closer to 95%), as MAF p, increases, while the estimation of B, show an opposite
direction. This is because we have limited data information to estimate the marginal
effects mg(-) when p, increases. As the sample size increases, the performance of
the estimation improves by showing smaller Bias, SD, and SE.

The plots for the estimations of m(u,) and m,(«,) under different sample sizes
and MAFs are shown in Figs. 1 and 2. The estimated and true functions are denoted
by the solid and dashed lines, respectively. The 95% confidence band is denoted
by the dotted dash line. The estimated curves almost overlap with the correspond-
ing true curves as shown in the plots. The confidence bands are tight, especially
under a large sample size. Note that the estimation for the interaction effects m, (u,)
improves as MAF p, increases, while the estimation for the marginal effects m ()
shows an opposite direction, which coincides with the results for the parametric esti-
mation in Table 1.

Simulation results for the case with p = 0.8 are shown in the supplemental file
(See Table S1, Figures S1 and S2). It is seen that the SD and SE are smaller when p
is larger compared to the results when p = 0.5. The confidence bands are a little bit
wider, especially for m, when p,=0.5 and for m, when p,=0.1 for larger p. In sum-
mary, the simulation results show that the estimation method performs reasonably
well under different simulation settings in finite samples.

5.3 Performance of Hypothesis Tests

We evaluate the performance of the test for the nonparametric function under the
null hypothesis Hy : m,(-) = m%(-), where m®(u;) = 6, + 6,u; and &, and &, are
some constants, which corresponds to a linear GXE interaction. If we fail to reject
the null, then a linear model can be fit to further assess the linear GXE interac-
tion. Otherwise, we conclude nonlinear GXE interaction. Power is evaluated under
a sequence of alternative models with different values of z, which is denoted by

@ Springer



Statistics in Biosciences

9°66 9000 9000 YOIl 056 LO00 LOO0 S0-H0'9 96 Z100 Z10'0 PO-HI - LLSO ty

L6 9000 9000 YO-IE'S 196 LOO0 LOO0 SO-HS 1~ 9°¢6 T100 T10°0 $0-90'9- LLSO ty

156 9000 9000 PO-HE L 9°66 LOO0 LOO0 YO-dL'T- 8'¢6 z100 Z10°0 Y0-d'9 LLSO g

L'Y6 L000 LO00 €OAIT- I'v6 9000 900°0 YO-dL'S- 6°¢6 S00°0 S00°0 YO-HYE S55°0 £0g

56 LOO0 LOO0 $0-H8'8" 96 9000 900°0 €0-dI°1- v'16 S00°0 S00°0 YO-HL'S" $55°0 wg

866 LOO0 LO00 €091 1'S6 9000 900°0 €0-dLT $'S6 S00°0 S00°0 YO-HS'L 0290 109 00S
1'€6 6000 6000 YO-AIL 86 110°0 110°0 $0-98°C 016 0200 810°0 Y0-36'¢- LLSO tly

8'¢6 6000 6000 S0-H8°9- €16 110°0 110°0 $0-40°¢- €16 0200 810°0 $0-HE'9- LLSO ty

L6 6000 6000 $0-H9'8- L'€6 110°0 110°0 YO-dI°€E- 016 0200 810°0 S0-HET LLSO g

0°€6 110°0 T10°0 P0-HS'8" 6 0100 0100 €0-9C°1- v'16 8000 8000 $0-HT'9" $55°0 £0g

v'76 110°0 z10°0 €0-HT 1 $T6 0100 0100 €0-H0'1- €6 6000 8000 $0-H6'¢ S65°0 wg

056 1100 1100 €0-HS'T 796 0100 6000 €OHLT 966 8000 800°0 YO-dEL 029°0 g 002
dD as as serg dD as as serg dD a8 as serg anig, wereq N

go="d gco="d 1ro="d

G"(0=0 UONEB[A1I0d pue ()G ‘00T = N 9z1s d[duwes yim G0 ‘c’0 ‘1°0 = Vd 10y s)[nsa1 uonenWIS | dqeL

pringer

As



Statistics in Biosciences
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Fig. 1 The estimation of function m,(-) under different MAFs when N=200, 500, and p=0.5. The esti-
mated and true functions are denoted by the solid and dashed lines, respectively. The 95% confidence
band is denoted by the dotted dash line
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Fig.2 The estimation of function m,(-) under different MAFs when N=200, 500 and p=0.5. The esti-
mated and true functions are denoted by the solid and dashed lines, respectively. The 95% confidence
band is denoted by the dotted dash line

HE @ mi(-) =mi() + t{m;(-) — m)(-)}. When 7 = 0, the corresponding power is the
false-positive rate.

Figure 3 shows the size (when 7 = 0) and power (when 7 > 0) at the 0.05 signifi-
cance level. We obtain 1000 Monte Carlo simulations each with 5000 replications
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N=200, p=0.5 N=500, p=0.5

Fig.3 The empirical size and power of testing the linearity of the nonparametric function m, under dif-
ferent MAFs when N=200 and 500 and p=0.5

to access the null distribution of test statistic under sample sizes N = 200 and 500
with p = 0.5. The empirical type I error under three MAFs is very close to the nomi-
nal level of 0.05 and the power increases dramatically when MAF increases from
0.1 to 0.3. Results for p = 0.8 are presented in Figure S3 in the supplemental file.
Similarly, the empirical type I error is close to 0.05 and the power increases rapidly
when MAF increases from 0.1 to 0.3. Compared to the performance when p = 0.5
shown in Fig. 3, the power increases a little bit slower when p = 0.8. The numerical
empirical type I error rates across different MAFs, correlations, and sample sizes are
presented in Table S2 of the supplemental file. We also included the testing results
for the case with N = 150, which mimics the real data (see Figure S4 in the supple-
mental file), with the empirical type I error rates detailed in Table S2. We observed
a slight conservativeness for the type I error at P, = 0.1, with improvement as the
MATF increases to 0.3 and 0.5. The difference between P, = 0.3 and 0.5 is minimal.
The power pattern is quite similar to the case with N = 200. The results indicate that
our method can reasonably control the false-positive rates and has appropriate power
to detect genetic variation.

6 Real Data Application

We applied the proposed FVICM model to a real dataset from a pharmacogenetic
study of cardiovascular disease [34]. Cardiovascular disease, including heart disease
and stroke, is the top cause of death for men and women across all racial and ethnic
backgrounds. Dobutamine, a medication that stimulates the heart, is used to manage
congestive heart failure by enhancing heart rate and the strength of heart contrac-
tions via f-adrenergic receptors (JARs). A group of 163 men and women aged from
32 to 86 years participated in the study. Systolic blood pressure (SBP), diastolic
blood pressure (DBP), and heart rate (HR) were measured at 6 Dobutamine dosage
levels for each subject. Dobutamine was injected into these subjects to investigate
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their response in heart rate and blood pressure to this drug, at different dosage lev-
els: 0 (baseline), 5, 10, 20, 30, and 40 mcg/min. In this study, dosage levels were
treated as “time” and measurements at different dosage levels were considered as
longitudinal measurements. In addition to that age and body mass index (BMI) were
also recorded.

Five SNPs in genes f;AR and f,AR were genotyped, namely codonli6,
codon27, codon49, codon389, and codon492. We chose X,;= dosage level as the
“time-varying” variable, and X, = age and X;= BMI as the “time-invariant” vari-
ables. Our goal was to evaluate how the SNPs interact with age, BMI, and dose
level to affect SBP, DBP, and HR. With the proposed FVICM model, we can
model the dynamic gene effect on drug response under different dosage levels.

In this analysis, we tested whether any SNP was associated with the
drug response in a linear fashion based on the hypothesis test H, : m;(u;)
= 6y + 6,u; with p-value denoted by p,, in Tables 2 and S3-S4 in the supple-
mental file. We also reported the p-values for testing the significance of the
index loading coefficients fy;, fj,, and 3, which were labeled by pj; . pp .
and pg , based on the asymptotic normality of the estimates. We also com-
pared our proposed model to an additive varying coefficient model (AVCM)
E(Y[X,G) = By, (X)) + B Xa + Bz Xs + {5, (X)) + B, X5 + Bi5X31G, where S ()
and f7,(-) are the unknown functions of X;. To see the relative gain by integra-
tive analysis, we calculated the MSEs of both models. The p-values for testing
H, @ By,¢) = B}, = pj; = 0 for AVCM is also reported in the tables and denoted
by Pavem-

Table 2 summarizes the performance of our method for response SBP. In the
table, p,, for all 5 SNPs is smaller than the significance level 0.05, which implies
the nonlinear function of the SNPs on SBP in response to the dosage level, age,
and BMI as a whole. The MSEs in the last two columns show that FVICM fits
the data better than AVCM, indicating the benefit of integrative analysis. Besides,
the testing results for AVCM do not show significance of the coefficients, which
further implies that the genetic effects of SNPs are nonlinearly modified by the
mixture of these three variables. Figure 4 shows the fitted nonlinear functions for
each SNP, along with the 95% confidence bands.

The tables and figures for DBP and HR are presented in the supplemental file.
Table S3 presents similar results for response DBP. The values of p,, show that

Table2 List of SNPs with MAF, alleles, and p-values under different hypotheses and MSE for SBP
p-value MSE

SNPID  MAF  Alleles p,, P, Ps, Ps.  Paven FVICM AVCM

codonl6  0.3990 A/G <1.0E-04 0.0011 <1.0E-04 0.0917 0.5308 0.0403 0.0421
codon27  0.4160 G/C <1.0E-04 <I1.0E-04 0.0027 0.1675 0.6748 0.0388  0.0415
codon49  0.1387 G/A <1.0E-04 <I1.0E-04 0.3614 0.8668 0.2910 0.0398  0.0410
codon389 0.3045 G/C <1.0E-04 <1.0E-04 <I1.0E-04 0.7552 0.3927 0.0397 0.0431
codon492  0.4250 T/C <1.0E-04 0.4102 <1.0E-04 0.0182 0.2990 0.0392  0.0409
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Fig.4 Plot of the estimate (solid curve) of the nonparametric function m,(u;) for SNPs codonl6,
codon27, codon49, codon389, and codon492. The 95% confidence band is denoted by the dashed line.
The response is SBP

the test results for all 5 SNPs are significant, indicating nonlinear interactions
for all 5 SNPs, while no significance is shown for the AVCM model. MSEs fur-
ther support our method by showing a smaller value for FVICM compared with
AVCM. The estimated interaction curves with 95% confidence bands are shown
in Figure S5.

In Table S4, the performance of our method for trait HR also leads to a similar
conclusion except for SNP codonl6, which shows (marginal) significant test results
for both models. For all the other SNPs, FVICM outperforms AVCM in terms of
MSE. Figure S6 displays the corresponding estimated nonlinear interaction curves.

7 Discussion

In this paper, we proposed a functional varying index coefficient model to study
gene effects nonlinearly modified by a mixture of environmental variables in a lon-
gitudinal design. We implemented the quadratic inference function (QIF) method to
estimate the index loading parameters and the spline coefficients. Furthermore, we
applied the pseudo-likelihood ratio test in a linear mixed model representation to
test the linearity of the nonparametric coefficient function. Simulation studies were
conducted to illustrate the estimation and testing procedures and confirm the asymp-
totical property. Real analysis showed that our model outperforms the additive vary-
ing coefficient model, which considers the GXE effect for each single environmental
factor separately.
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Our FVICM model is different from the varying coefficient model for longitudi-
nal data. In fact, the varying coefficient model is a special case of our model when
the dimension of the X variable reduces to 1. FVICM can capture the effect of genes
nonlinearly modified by the joint effect of multiple environmental variables as a
whole. In addition, it can reduce multiple testing burdens by treating multiple envi-
ronmental variables as a single-index variable. The advantage of modeling multiple
variables as a single index and further assessing its effect via a nonparametric func-
tion has also been demonstrated by [6, 17] in a cross-sectional design. Our real data
analysis results further confirmed the advantage under a longitudinal design.

We applied the model to a pharmacogenetic study of cardiovascular disease [34].
Testing results indicated that all five SNPs have significant nonlinear interaction
effects with environmental factors, which makes practical sense since these SNPs
were genotyped from candidate genes. Our model was motivated by a practical need
in GXE study and offers additional insights that otherwise cannot be revealed by
models with cross-sectional data. By checking the nonlinear effect function together
with the confidence band, people can get a sense of how genes respond to the com-
bined change of the environmental factors over time to affect a response variable.
Although the method was demonstrated using a candidate gene study, it is capable
of analyzing a large number of SNPs, limited only by computational constraints.

As noted by [35], misspecifying environmental main effects can lead to false-
positive interaction findings, particularly when gene—environment correlations exist.
In our study, we assume gene—environment independence, so any significant inter-
actions identified in our analysis are likely to represent true functional interactions
rather than spurious associations driven by gene—environment correlations. Addi-
tionally, we model the intercept term of the joint effect of multiple environmen-
tal mixtures using a flexible nonparametric approach. This adaptability allows the
model to better capture the underlying data structure, reducing the risk of misspeci-
fication of the environmental main effect.

Our method can be applied to any longitudinal data in which the purpose is to
model nonlinear interaction effects. For example, we can consider gene expressions
in a pathway (denoted as X) and model how they regulate downstream genes (G) to
affect a disease trait. Both the trait and gene expressions can be measured over time.
Thus, one can understand the dynamic effect of genes nonlinearly regulated by a
pathway to affect a disease trait.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s12561-024-09472-3.
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