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Abstract
Human complex diseases are affected by both genetic and environmental factors. 
When multiple environmental risk factors are present, the interaction effect between 
a gene and the environmental mixture can be larger than the addition of individual 
interactions, resulting in the so-called synergistic gene–environment (G× E) inter-
actions. Existing literature has shown the power of synergistic gene-environment 
interaction analysis with cross-sectional traits. In this work, we propose a functional 
varying index coefficient model for longitudinal traits together with multiple longi-
tudinal environmental risk factors and assess how the genetic effects on a longitudi-
nal disease trait are nonlinearly modified by a mixture of environmental influences. 
We derive an estimation procedure for the nonparametric functional varying index 
coefficients under the quadratic inference function and penalized spline framework. 
We evaluate some theoretical properties such as estimation consistency and asymp-
totic normality of the estimates. We further propose a hypothesis testing procedure 
to assess the significance of the synergistic G × E effect. The performance of the esti-
mation and testing procedure is evaluated through Monte Carlo simulation studies. 
Finally, the utility of the method is illustrated by a real dataset from a pain sensitiv-
ity study in which SNP effects are nonlinearly modulated by a mixture of drug dos-
ages and other environmental variables to affect patients’ blood pressure and heart 
rate.

Keywords  Genetic association · Longitudinal data · Mixture exposures · Nonlinear 
G × E interaction · Quadratic inference function · Varying-index coefficients model

1  Introduction

It has been broadly recognized that gene–environment (G× E) interaction plays 
important roles in human complex diseases. A growing number of scientific 
researches have confirmed the role of G × E interaction in many human diseases, 
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such as Parkinson’s disease [1] and type 2 diabetes [2]. G × E interaction is defined as 
how genotypes influence phenotypes differently under different environmental con-
ditions [3]. It also refers to the genetic sensitivity to environmental changes. Usually, 
G × E has been investigated based on a single-environment exposure model. Evi-
dence from epidemiological studies has suggested that disease risk can be modified 
by simultaneous exposures to multiple environmental factors. The effect of simul-
taneous exposure is larger than the simple addition of the effects of factors acting 
alone (e.g., [4, 5]). Under the G × E context, this is the so-called synergistic G × E 
interaction. This motivated us to assess the combined effect of environmental mix-
tures, and how they as a whole, interact with genes to affect a disease risk [6]. In our 
previous models, we proposed a varying multi-index coefficient model (VMICM) to 
capture the nonlinear interaction between a gene and environmental mixtures with a 
cross-sectional trait [6, 7]. To our best knowledge, no study has been conducted to 
assess synergistic G × E effects on a longitudinal trait, and further dissect the interac-
tion mechanism.

In biomedical studies, longitudinal traits are often observed, with repeated meas-
ures of the same subject over time. The increased power of a longitudinal design to 
detect genetic associations over cross-sectional designs has been evaluated [8–10]. 
With longitudinal disease traits, one can study the dynamic gene effect over time. 
Coupled with longitudinal measures of environmental exposures, one can study how 
genes respond to the dynamic change of environmental factors to affect a disease 
trait. Thus, the purpose of this study is to develop a new statistical model to evaluate 
synergistic G × E effects on a longitudinal trait.

Some nonparametric and semi-parametric models such as varying coefficient 
models have been proposed to explore time-dependent effects in longitudinal data 
analysis, for example, [11–17]. However, these methods do not fit our purpose. In 
order to capture the dynamic nonlinear G × E interaction with the combined effect of 
environmental factors for longitudinal data, we propose a functional varying index 
coefficient model (FVICM) for correlated response, i.e.,

where Yij is the response variable which measures the phenotype of certain disease 
on the ith subject at the jth time point, where i = 1,⋯ ,N , j = 1,⋯ , ni ; Xij is a 
p-dimensional vector of environmental variables, which can be either time depend-
ent or time invariant; Gi denotes the genetic variable; �ij is an error term with mean 
0 and some correlation structure; m0(⋅) and m1(⋅) are unknown functions; and �0 and 
�1 are p-dimensional vectors of index loading coefficients. For model identifiability, 
we have the constraints ‖�0‖ = ‖�1‖ = 1 and restrict the first elements of �0 and �1 
be positive.

[18] proposed the quadratic inference function (QIF) for longitudinal data analysis, 
as an improvement of the generalized estimation equation (GEE) approach introduced 
by [19]. The QIF approach avoids estimating the nuisance correlation parameters by 
assuming that the inverse of the correlation matrix can be approximated by a linear 
combination of several basis matrices. [18] found that the QIF estimator could be 
generally more efficient than the GEE estimator. [18] applied the QIF method to the 

(1)Yij = m0(�
T
0
Xij) + m1(�

T
1
Xij)Gi + �ij,
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varying coefficient model for longitudinal data. [20] developed an estimating procedure 
for single-index models with longitudinal data based on the QIF method. Motivated by 
that, in this paper, we extend the QIF method to the FVICM model for dynamic G × E 
interactions.

Our goal in this work is to develop a set of statistical estimation and hypothesis test-
ing procedures for model (1). We first approximate the varying index coefficient func-
tion by penalized splines [21] and then extend the QIF approach to our model in order 
to estimate the index loading coefficients and the penalized spline coefficients. Under 
certain regularity conditions, we establish the consistency and asymptotic normality 
of the resulting estimators. Another goal is to test the linearity of the G × E interaction 
effect. This is of particular interest in our model setting since if the G × E interaction 
is linear, a simple linear regression model should be fit, and fitting any higher-order 
nonlinear functions would be unnecessary. With a mixed-effects model representation 
of the penalized spline approximations [22, 23], we can transform the problem of test-
ing an unknown function into testing some fixed effects and a variance component in 
a linear mixed-effects model setup with multiple variance components, which will be 
evaluated in this study.

This work is organized as follows: in Sect. 2, we propose an estimation procedure 
under the FVICM model and further establish the consistency and asymptotic normal-
ity of the proposed estimator in Sect. 2.1. In Sect. 3, we discuss some practical issues 
to implement the proposed estimation procedures. In Sect. 4, a pseudo-likelihood ratio 
test procedure with a linear mixed-effects model representation is illustrated. We assess 
the finite sample performance of the proposed procedure with Monte Carlo simulations 
in Sect. 5 and illustrate the proposed method by an analysis of a pain sensitivity dataset 
in Sect. 6, followed by discussions in Sect. 7. Additional simulation and real data analy-
sis results and the proof of the theorems are rendered in the supplemental file.

2 � Quadratic Inference Function for FVICM with Longitudinal Data

For longitudinal data, suppose the response yij , p-dimensional covariate vector xij , and 
SNP variable Gi are observed from the ith observation at the jth time point. SNP vari-
able {Gi, i = 1, ...,N} does not change over time. Assume the model satisfies

We can approximate the unknown coefficient functions m0(u0) and m1(u1) by a 
q-degree truncated power spline basis, i.e.,

where B(u) = (1, u, u2,⋯ , uq, (u − �1)
q

+
,⋯ , (u − �K)

q

+
)
T is a q-degree truncated 

power spline basis with K knots �1,⋯ , �K . �0 and �1 are (q + K + 1)-dimensional 
vectors of spline coefficients. Let � = (�T

0
, �T

1
)
T and � = (�T

0
, �T

1
)
T.

E(yij|xij,Gi) = m0(�
T
0
xij) + m1(�

T
1
xij)Gi.

m0(u0) = m0(u0, �0) ≈ B(u0)
T�0,

m1(u1) = m1(u1, �1) ≈ B(u1)
T�1,
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For longitudinal data, the conditional variance-covariance matrix of the response 
needs to be modeled. The method of generalized estimation equation (GEE) is often 
applied to estimate the unknowns. The GEE is defined as

where Vi is the covariance matrix of yi and yi = (yi1, ..., yini)
T , �i = E(yi) is the mean 

function, and �̇i is the first derivative of �i with respect to the parameters. Based on 
the spline approximation, the mean function can be written as

and the first derivative of �i is

where Bd(u) =
�B(u)

�u
= (0, 1, 2u,⋯ , quq−1, q(u − �1)

q−1

+
,⋯ , q(u − �K)

q−1

+
) , 

� = (�T , �T )T.
When Vi is unknown, [19] suggested that Vi can be simplified as Vi = A

1∕2

i
R(�)A

1∕2

i
 

with Ai being a diagonal matrix of marginal variances and R(�) being a common work-
ing correlation matrix with a small number of nuisance parameters � . When � is con-
sistently estimated, the GEE estimators of the regression coefficients are consistent. 
When such consistent estimators for the nuisance parameters do not exist, [18] sug-
gested that the inverse of R(�) can be represented by a linear combination of a class of 
basis matrices, such as R−1

(�) ≈ a1M1 + a2M2 ⋯ + ahMh , where M1 is the identity 
matrix and M2,⋯ ,Mh are symmetric matrices. The advantage of this method is that 
the estimation of nuisance parameters a1,⋯ , ah are not required. Following this idea, 
we define the estimation function as follows:

Because the dimension of the estimation equation ḡN is greater than the number of 
parameters, we cannot obtain the estimators by simply setting each element in ḡN to 
be zero. [18] introduced the Quadratic Inference Function (QIF) based on the gener-
alized method of moments [24]. Thus, we can estimate the parameters by minimiz-
ing the QIF, which is defined as

N∑
i=1

�̇T
i
V−1

i
(yi − �i) = 0,

�i = �i(�) =

⎡
⎢⎢⎣

�i1(�)

⋮

�ini
(�)

⎤
⎥⎥⎦
=

⎡
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(�T

0
xi1)�0 + BT

(�T
1
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(�T

0
xini)�0 + BT

(�T
1
xini )�1Gi

⎤
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(2)ḡN(�) =
1

N

N�
i=1

gi(�) =
1

N

⎡⎢⎢⎣
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(3)QN(�) = NḡT
N
C̄−1
N
ḡN ,
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where C̄N =
1

N

∑N

i=1
gig

T
i
 is a consistent estimator for var(gi) . By minimizing the 

quadratic inference function, we can obtain the estimation of the parameters

To overcome the well-known over-parameterization issue, [18] further proposed the 
penalized quadratic inference function

where D is a diagonal matrix with element 1 if the corresponding param-
eters are spline coefficients associated with the knots and 0 otherwise, i.e., 
D = diag(0T

(2p+q+1)×1
, 1T

K×1
, 0T

(q+1)×1
, 1T

K×1
) . Then, the estimator is given by

2.1 � Asymptotic Properties

In this section, we establish the asymptotic properties of the penalized quadratic 
inference function estimators with fixed knots. Assume �0 is the parameter satisfy-
ing E�0

(gi) = 0 . Theorem 1 provides the consistency of the resulting estimators. We 
show the asymptotic normality of the estimators in Theorem  2. The theoretical 
results are similar to those provided by [25]. The difference is that we have con-
straints for the index loading parameters in our model, i.e., ‖�0‖=‖�1‖=1, and 
𝛽01 > 0 , 𝛽11 > 0 . To handle the constraints, we do the reparameterization as 
�l1 =

�
1 − ‖� l,−1‖22 with � l,−1 = (�l2, ..., �lp)

T for l=1, 2 [17, 26, 27]. Then, the 
parameter space of � l , l=1,2, becomes 
[{(

�
1 − ‖� l,−1‖22, 𝛽l2, ..., 𝛽lp)T} ∶ ‖� l,−1‖22 < 1]. Let

be the Jacobian matrix of dimension p × (p − 1) . Denote �
−1 = (�T

0,−1
, �T

1,−1
)
T and 

�∗
= (�

−1, �)
T . From � to �∗ , we have Jacobian matrix J = diag(J0, J1, Iq+K+1, Iq+K+1)

.

Theorem 1  Suppose the assumptions (A1)-(A6) in the supplemental file hold and the 
smoothing parameter �N = o(1) , then the estimator �̂ , which is obtained by minimiz-
ing the penalized quadratic function in (4),exists and converges to the true param-
eters �0 in probability.

�̂ = argmin
�

QN(�).

(4)N−1QN(�) + ��TD�,

(5)�̂ = argmin
�
(N−1QN(�) + ��TD�).

Jl =
�� l

��T
l,−1

=

�
−�T

l,−1
∕

�
1 − ‖� l,−1‖22
Ip−1

�
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Theorem 2  Suppose the assumptions (A1)-(A6) in the supplemental file hold and the 
smoothing parameter �N = o(N−1∕2

) , then the estimator �̂ obtained by minimizing 
the penalized quadratic function in (4) is asymptotically normally distributed, i.e.,

where G0 and C0 are given in the supplemental file.

The proofs can be found in the supplemental file.

3 � Practical Implementation

In this section, we discuss some practical issues when we implement the proposed 
method.

3.1 � Algorithm for Estimation

A two-step iterative Newton–Raphson algorithm is applied when we estimate the 
index loading parameters and the varying spline coefficients. The algorithm of the 
estimation procedure can be summarized in the following steps. 

Step 0	� Choose initial values for � and � . Denote them by �(old) and �(old).

Step 1	� Estimate �(new) by 

 The Newton–Raphson algorithm is used for the minimization.

Step 2	� Estimate �(new) by 

 Also, use Newton–Raphson for minimization.

Step 3	� Update �(old)

l
 by �(old)

l
= sign(�

(new)

l1
)�

(new)

l
∕‖� (new)

l
‖2 , l = 1, 2 . Update �(old) 

by setting �(old) = �(new).

Step 4	� Repeat Steps 1-3 until convergence.

√
N(�̂ − �0)

d
�����→ N(0, J(GT

0
C−1

0
G0)

−1JT ),

�(new) = argmin
�
(N−1QN(�, �

(old)
) + ��TD�.

�(new)
= argmin

�
QN(�, �

(new)
).
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3.2 � Model Selection

It is important to determine the order and number of knots in the spline approxima-
tion since too many knots in the model might overfit the data. Under the assump-
tion E(g) = 0 (g is the estimation function in (2) for a single observation) and the 
number of estimating equations is larger than the number of parameters, we have 
Q(�̂) → �2

r−k
 in distribution [24], where r is the dimension of ḡN(�) , k is the dimen-

sion of � , �̂ is the estimator by minimizing the QIF when certain order and number 
of knots are chosen. This asymptotic property of the QIF provides a goodness-of-fit 
test, which can be useful to determine the order and number of knots to be selected 
in our model.

However, it is also possible that the goodness-of-fit tests fail to reject several dif-
ferent models which may not be nested. Since Q(�̂) is asymptotically chi-square dis-
tributed, we can use BIC to penalize Q(�̂) for the difference of the numbers of esti-
mating equations and parameters. In particular, the BIC criterion for a model with r 
estimating equation and k parameters is defined as

The model with minimum BIC would be considered better. If we choose h basis 
matrices in (2), then r − k = hk − k = (h − 1)k . As will be discussed in Section 3.3, 
we usually use h=2 in our setting. Thus, the BIC criterion is actually

where k is the number of parameters in the model.
In our simulation and real data application, we search the optimal order and the 

number of knots over a set of combinations of q and K using BIC. Knots are evenly 
distributed in the range of u(= �TX).

3.3 � Choice of the Basis for the Inverse of the Correlation Matrix

[25] offered several choices of basis matrixes. For exchangeable working correlation, 
M1 is an identity matrix and M2 has 0 on the diagonal and 1 off-diagonal. If the work-
ing correlation is AR(1), we can set M2 to have 1 on its two subdiagonals and 0 else-
where. Prior information on correlation can help us to determine the choice of appro-
priate basis matrices. The effect of choosing different basis matrices is discussed in 
[25] through simulation studies. [28] also proposed an adaptive estimation method to 
approximate the correlation empirically when there is no prior information available.

3.4 � Choice of the Tuning Parameter

Since the penalized spline is used to approximate the unknown functions, we need 
to determine the tuning parameter � involved in the method. As [25] suggested, we 
can extend the generalized cross-validation [29] to the penalized QIF and define the 
generalized cross-validation statistic as

Q(�̂) + (r − k) lnN.

Q(�̂) + k lnN,
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where df = tr[(Q̈N + 2N𝜆D)−1Q̈N] is the effective degree of freedom, QN is defined 
in (3), and Q̈N is the second derivative of QN . The desirable choice of tuning param-
eter � is

In the implementation of GCV, the golden search method can be applied to reduce 
the computational time.

4 � Hypothesis Test

4.1 � Linear Mixed Model Representation for FVICM Model

In our proposed FVICM model (1), it is of interest to test the unspecified coefficient 
function. In particular, we are interested in testing whether a linear function is good 
enough to describe the G × E interaction. Given � , let u0 = �T

0
X , u1 = �T

1
X , with the 

truncated power spline basis, the coefficient function can be modeled by

Note that under the current model setup, we cannot assess the zero effect of the non-
parametric function m1(⋅) since under the null hypothesis of m1(⋅) = 0 , the index 
loading parameters �1 are not identifiable, unless we impose the constraint that 
�1 = �0 = � . This constraint, however, is practically unrealistic. Thus, our goal is to 
test the linearity of m1(u1) , which is equivalent to test

If the above H0 is rejected, we conclude there exists a nonlinear relationship. Other-
wise, we assume a linear relationship and fit m1(⋅) with a linear function and further 
test the zero effect of the linear relationship. Let w0ij = (1, u0ij,⋯ , u

q

0ij
)
T , 

z0ij =
(
(u0ij − �1)

q

+
,⋯ , (u0ij − �K)

q

+

)T , 𝜸̃0 = (�00,⋯ , �0q)
T , b0 = (b01,⋯ , b0K)

T , 
w1ij = (1, u1ij,⋯ , u

q

1ij
)
T , z1ij =

(
(u1ij − �11)

q

+
,⋯ , (u1ij − �1K)

q

+

)T
,b1 = (b11,⋯ , b1K)

T , and 𝜸̃1 = (�10,⋯ , �1q)
T , then we have m0(u0ij) = wT

0ij
𝜸̃0 + zT

0ij
b0 

and m1(u1ij) = wT
1ij
𝜸̃1 + zT

1ij
b1.

We further define Yi = (yi1,⋯ , yini )
T , W0i = (w0i1,⋯ ,w0ini

)
T , 

W1i = (w1i1Gi,⋯ ,w1ini
Gi)

T , Z0i = (z0i1,⋯ , z0ini )
T , and Z1i = (z1i1Gi,⋯ , z1iniGi)

T , 
then a linear mixed model (LMM) representation [30] can be obtained as

GCV(�) =
N−1QN

(1 − N−1df)2
,

�̂ = argmin
�

GCV(�).

m1(u1) = �10 + �11u1 + �12u
2
1
+⋯ + �1qu

q

1
+

K∑
k=1

b1k(u1 − �k)
q

+
.

H0 ∶ �12 = ⋯ = �1q = 0, b11 = ⋯ = b1K = 0.

(6)Yi = 1iai +W0i𝜸̃0 +W1i𝜸̃1 + Z0ib0 + Z1ib1 + 𝝐i, i = 1,⋯ , n,
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where bl ∼ N(0, �2
bl
IK), l = 0, 1 , �i ∼ N(0, �2

�
I) , and the random intercept effects ai 

are assumed to be independent as N(0, �2
a
).

With the LMM representation, testing the linearity of the varying index coeffi-
cients is equivalent to testing some fixed effects and a variance component in model 
(6). To be specific, we want to test

4.2 � Likelihood Ratio Test (LRT) and Pseudo‑LRT in LMM

4.2.1 � LRT for One Variance Component

[31] proposed the likelihood ratio test in linear mixed effect models with one vari-
ance component. Consider an LMM with one variance component

where � is a p-dimensional vector of fixed effect coefficients, b is a L-dimensional 
vector of random effects, 0L is a L-dimensional vector of zeros, � is a known L × L 
symmetric positive definite matrix. Let � = �2

b
∕�2

�
 be the signal-to-noise ratio 

and then the covariance matrix of Y can be written as Cov(Y) = �2
�
V� , where 

V� = In + �Z�ZT . Consider testing for the null hypothesis

for p′ > 0.
The LRT statistic is defined as

If we substitute the parameters � and �2
�
 with their profile estimators

for fixed � , we obtain the LRT statistic

(7)H0 ∶ �12 = ⋯ = �1q = 0 and �2
b1

= 0.

(8)Y = X� + Zb + �, E

�
b

�

�
=

�
0
L

0
n

�
, Cov

�
b

�

�
=

⎡⎢⎢⎣

�
cc�2

b
� 0

0 �2

�
I
n

⎤⎥⎥⎦
,

(9)H0 ∶ �p+1−p� = 0,⋯ , �p = 0, �2
b
= 0

LRTn ∝ 2
{
sup
HA

L(�, �, �2
�
) − sup

H0

L(�, �, �2
�
)

}
.

�̂(�) = (XTV−1
�
X)−1XTV−1

�
Y,

�̂2
�
(�) =

{Y − X�̂(�)}TV−1
�
{Y − X�̂(�)}

n
,

(10)LRTn = sup
�≥0

{n log(YTS0Y) − n log(YTPT
�
V−1

�
P�Y) − log |V�|},
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where P� = In − X(XTV−1
�
X)−1XTV−1

�
 , X0 denotes the design matrix of fixed effects 

under the null hypothesis, and S0 = In − X0(X
T
0
X0)

−1XT
0
.

Theorem 1 in [31] provides the distribution of LRT statistic (10). Let �s be the 
eigenvalues of �1∕2ZTP0Z�

1∕2 , �s be the eigenvalues of �1∕2ZTZ�1∕2 , s = 1,⋯ , L , 
then

where us
iid
∼ N(0, 1) for s = 1,⋯ , L , ws

iid
∼ N(0, 1) for s = 1,⋯ , n − p , and

with

The distribution in (11) only depends on the eigenvalues �s and �s . Based on the 
spectral decomposition, simulation from this distribution can be done very rapidly. 
A detailed algorithm for this simulation can be found in [31].

4.2.2 � Pseudo‑LRT for Multiple Variance Components

For an LMM with multiple variance components

where bs , s = 1,⋯ , S are random effects and S > 1 . Suppose we are interested in 
testing

[32] proposed to approximate the distribution of LRT for the model (12) based on 
the pseudo-likelihood ratio test theory [33] using a pseudo-outcome. In the frame-
work of model (12), bl, l ≠ s are the nuisance random parameters. We can define the 
pseudo-outcome as

(11)LRTn
d
= n

�
1 +

∑p�

1
u2
s∑n−p

1
w2
s

�
+ sup

�≥0
fn(�),

fn(�) = n log

{
1 +

Nn(�)

Dn(�)

}
−

L∑
s=1

log(1 + ��s),

Nn(�) =

L∑
s=1

��s

1 + ��s

w2
s
,

Dn(�) =

L∑
s=1

w2
s

1 + ��s

+

n−p∑
s=L+1

w2
s
.

(12)Y = X� + Zbs +⋯ + ZbS + �,

bs ∼ N(0, �2
s
�s), s = 1,⋯ , S, � ∼ N(0, �2

�
In),

H0 ∶ �p+1−p� = 0,⋯ , �p = 0, �2
s
= 0.
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where b̂l are the best linear unbiased predictors (BLUP) of nuisance random effects 
bl, l ≠ s . Then, the model (12) can be reduced to

Then, the method for testing one variance component introduced by [31] can be 
applied to the model in (13).

4.3 � Pseudo‑LRT in FVICM Model

For the model in (6), we can use the idea of [32] and define the pseudo-outcome

where b̂0 and âi are BLUPs of b0 and ai , respectively. The reduced model using 
pseudo-outcome for model (6) can be written as

For the new model (14) using pseudo-response, we can apply the method for the 
single variance component model introduced in Sect. 10 to test hypothesis (7). Sta-
tistical significance can be assessed through the resampling approach described in 
section 4.2.1.

5 � Simulation Study

5.1 � Simulation

In this section, the finite sample performance of the proposed method is evaluated 
through Monte Carlo simulation studies. We generate three covariates X1,X2,X3 . 
For each subject i, X1ij,X2ij,X3ij are generated independently from uniform dis-
tribution U(0,  1). We set the minor allele frequency (MAF) as pA=(0.1, 0.3, 0.5) 
and assume Hardy–Weinberg equilibrium. We use AA, Aa, and aa to denote three 
different SNP genotypes, where allele A is the minor allele. These genotypes are 
simulated from a multinomial distribution with frequencies p2

A
 , 2pA(1 − pA) , and 

(1 − pA)
2 , respectively. Variable G takes value in the set {0,1,2}, corresponding to 

genotypes {aa,Aa,AA} , respectively. The error terms �i = (�i1,⋯ , �ini ) are indepen-
dently generated from the multivariate normal distribution N(0, 0.1R(�)) . The true 
correlation structure R(�) is assumed to be exchangeable with � = 0.5 and 0.8.

We set m0(u0) = cos(�u0) and m1(u1) = sin[�(u1 − A)∕(B − A)] with 
A =

√
3∕2 − 1.645∕

√
12 and B =

√
3∕2 + 1.645∕

√
12 . The true parameters are 

Ỹ = Y −

∑
l≠s

Zlb̂l,

(13)Ỹ = X� + Zsbs + �.

Ỹi = Yi − Z0ib̂0 − Uiâi, i = 1,⋯ , n,

(14)Ỹi = W0i𝜸̃0 +W1i𝜸̃1 + Z1ib1 + 𝝐i. i = 1,⋯ , n.
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�0 = (

√
5,
√
4,
√
4)∕

√
13 and �1 = (1, 1, 1)∕

√
3 . To simplify the simulation and 

save computational time, we consider the balanced case, which means each obser-
vation has the same number of time points. We draw 1000 datasets with sample 
size N = 200, 500 and time points ni = T = 10 . Since the true correlation structure 
is exchangeable, we set M1 to be the identity matrix and M2 to be 0 on the diagonal 
and 1 off-diagonal. The order and number of knots of the splines are chosen using 
the BIC method.

5.2 � Performance of Estimation

Table 1 summarizes the results based on 1000 replications. In this table, the aver-
age bias (Bias), the standard deviation of the 1000 estimates (SD), the average of 
the estimated standard error (SE) based on the theoretical results, and the estimated 
coverage probability (CP) at the 95% confidence level are reported. Note that the 
estimation of the loading parameter �1 improves (smaller Bias, SD, and SE and CP 
closer to 95%), as MAF pA increases, while the estimation of �0 show an opposite 
direction. This is because we have limited data information to estimate the marginal 
effects m0(⋅) when pA increases. As the sample size increases, the performance of 
the estimation improves by showing smaller Bias, SD, and SE.

The plots for the estimations of m0(u0) and m1(u1) under different sample sizes 
and MAFs are shown in Figs. 1 and 2. The estimated and true functions are denoted 
by the solid and dashed lines, respectively. The 95% confidence band is denoted 
by the dotted dash line. The estimated curves almost overlap with the correspond-
ing true curves as shown in the plots. The confidence bands are tight, especially 
under a large sample size. Note that the estimation for the interaction effects m1(u1) 
improves as MAF pA increases, while the estimation for the marginal effects m0(u0) 
shows an opposite direction, which coincides with the results for the parametric esti-
mation in Table 1.

Simulation results for the case with � = 0.8 are shown in the supplemental file 
(See Table S1, Figures S1 and S2). It is seen that the SD and SE are smaller when � 
is larger compared to the results when � = 0.5 . The confidence bands are a little bit 
wider, especially for m0 when pA=0.5 and for m1 when pA=0.1 for larger � . In sum-
mary, the simulation results show that the estimation method performs reasonably 
well under different simulation settings in finite samples.

5.3 � Performance of Hypothesis Tests

We evaluate the performance of the test for the nonparametric function under the 
null hypothesis H0 ∶ m1(⋅) = m0

1
(⋅) , where m0

1
(u1) = �0 + �1u1 and �0 and �1 are 

some constants, which corresponds to a linear G × E interaction. If we fail to reject 
the null, then a linear model can be fit to further assess the linear G × E interac-
tion. Otherwise, we conclude nonlinear G × E interaction. Power is evaluated under 
a sequence of alternative models with different values of � , which is denoted by 
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H�
1
∶ m�

1
(⋅) = m0

1
(⋅) + �{m1(⋅) − m0

1
(⋅)} . When � = 0, the corresponding power is the 

false-positive rate.
Figure 3 shows the size (when � = 0) and power (when 𝜏 > 0) at the 0.05 signifi-

cance level. We obtain 1000 Monte Carlo simulations each with 5000 replications 

Fig. 1   The estimation of function m
0
(⋅) under different MAFs when N=200, 500, and �=0.5. The esti-

mated and true functions are denoted by the solid and dashed lines, respectively. The 95% confidence 
band is denoted by the dotted dash line

Fig. 2   The estimation of function m
1
(⋅) under different MAFs when N=200, 500 and �=0.5. The esti-

mated and true functions are denoted by the solid and dashed lines, respectively. The 95% confidence 
band is denoted by the dotted dash line
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to access the null distribution of test statistic under sample sizes N = 200 and 500 
with � = 0.5. The empirical type I error under three MAFs is very close to the nomi-
nal level of 0.05 and the power increases dramatically when MAF increases from 
0.1 to 0.3. Results for � = 0.8 are presented in Figure S3 in the supplemental file. 
Similarly, the empirical type I error is close to 0.05 and the power increases rapidly 
when MAF increases from 0.1 to 0.3. Compared to the performance when � = 0.5 
shown in Fig. 3, the power increases a little bit slower when � = 0.8. The numerical 
empirical type I error rates across different MAFs, correlations, and sample sizes are 
presented in Table S2 of the supplemental file. We also included the testing results 
for the case with N = 150 , which mimics the real data (see Figure S4 in the supple-
mental file), with the empirical type I error rates detailed in Table S2. We observed 
a slight conservativeness for the type I error at PA = 0.1 , with improvement as the 
MAF increases to 0.3 and 0.5. The difference between PA = 0.3 and 0.5 is minimal. 
The power pattern is quite similar to the case with N = 200 . The results indicate that 
our method can reasonably control the false-positive rates and has appropriate power 
to detect genetic variation.

6 � Real Data Application

We applied the proposed FVICM model to a real dataset from a pharmacogenetic 
study of cardiovascular disease [34]. Cardiovascular disease, including heart disease 
and stroke, is the top cause of death for men and women across all racial and ethnic 
backgrounds. Dobutamine, a medication that stimulates the heart, is used to manage 
congestive heart failure by enhancing heart rate and the strength of heart contrac-
tions via �-adrenergic receptors ( �ARs). A group of 163 men and women aged from 
32 to 86 years participated in the study. Systolic blood pressure (SBP), diastolic 
blood pressure (DBP), and heart rate (HR) were measured at 6 Dobutamine dosage 
levels for each subject. Dobutamine was injected into these subjects to investigate 

Fig. 3   The empirical size and power of testing the linearity of the nonparametric function m
1
 under dif-

ferent MAFs when N=200 and 500 and �=0.5
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their response in heart rate and blood pressure to this drug, at different dosage lev-
els: 0 (baseline), 5, 10, 20, 30, and 40 mcg/min. In this study, dosage levels were 
treated as “time” and measurements at different dosage levels were considered as 
longitudinal measurements. In addition to that age and body mass index (BMI) were 
also recorded.

Five SNPs in genes �1 AR and �2 AR were genotyped, namely codon16 , 
codon27 , codon49 , codon389 , and codon492 . We chose X1 = dosage level as the 
“time-varying” variable, and X2 = age and X3 = BMI as the “time-invariant” vari-
ables. Our goal was to evaluate how the SNPs interact with age, BMI, and dose 
level to affect SBP, DBP, and HR. With the proposed FVICM model, we can 
model the dynamic gene effect on drug response under different dosage levels.

In this analysis, we tested whether any SNP was associated with the 
drug response in a linear fashion based on the hypothesis test H0 ∶ m1(u1) 
= �0 + �1u1 with p-value denoted by pm1

 in Tables  2 and S3-S4 in the supple-
mental file. We also reported the p-values for testing the significance of the 
index loading coefficients �11 , �12 , and �13 , which were labeled by p�11 , p�12 , 
and p�13 , based on the asymptotic normality of the estimates. We also com-
pared our proposed model to an additive varying coefficient model (AVCM) 
E(Y|X,G) = �∗

01
(X1) + �∗

02
X2 + �∗

03
X3 + {�∗

11
(X1) + �∗

12
X2 + �∗

13
X3}G , where �∗

01
(⋅) 

and �∗
11
(⋅) are the unknown functions of X1 . To see the relative gain by integra-

tive analysis, we calculated the MSEs of both models. The p-values for testing 
H0 ∶ �∗

11
(⋅) = �∗

12
= �∗

13
= 0 for AVCM is also reported in the tables and denoted 

by pAVCM.
Table 2 summarizes the performance of our method for response SBP. In the 

table, pm1
 for all 5 SNPs is smaller than the significance level 0.05, which implies 

the nonlinear function of the SNPs on SBP in response to the dosage level, age, 
and BMI as a whole. The MSEs in the last two columns show that FVICM fits 
the data better than AVCM, indicating the benefit of integrative analysis. Besides, 
the testing results for AVCM do not show significance of the coefficients, which 
further implies that the genetic effects of SNPs are nonlinearly modified by the 
mixture of these three variables. Figure 4 shows the fitted nonlinear functions for 
each SNP, along with the 95% confidence bands.

The tables and figures for DBP and HR are presented in the supplemental file. 
Table S3 presents similar results for response DBP. The values of pm1

 show that 

Table 2   List of SNPs with MAF, alleles, and p-values under different hypotheses and MSE for SBP

p-value MSE

SNP ID MAF Alleles p
m1

p�11
p�12

p�13
p
AVCM

FVICM AVCM

codon16 0.3990 A/G <1.0E-04 0.0011 <1.0E-04 0.0917 0.5308 0.0403 0.0421
codon27 0.4160 G/C <1.0E-04 <1.0E-04 0.0027 0.1675 0.6748 0.0388 0.0415
codon49 0.1387 G/A <1.0E-04 <1.0E-04 0.3614 0.8668 0.2910 0.0398 0.0410
codon389 0.3045 G/C <1.0E-04 <1.0E-04 <1.0E-04 0.7552 0.3927 0.0397 0.0431
codon492 0.4250 T/C <1.0E-04 0.4102 <1.0E-04 0.0182 0.2990 0.0392 0.0409
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the test results for all 5 SNPs are significant, indicating nonlinear interactions 
for all 5 SNPs, while no significance is shown for the AVCM model. MSEs fur-
ther support our method by showing a smaller value for FVICM compared with 
AVCM. The estimated interaction curves with 95% confidence bands are shown 
in Figure S5.

In Table S4, the performance of our method for trait HR also leads to a similar 
conclusion except for SNP codon16, which shows (marginal) significant test results 
for both models. For all the other SNPs, FVICM outperforms AVCM in terms of 
MSE. Figure S6 displays the corresponding estimated nonlinear interaction curves.

7 � Discussion

In this paper, we proposed a functional varying index coefficient model to study 
gene effects nonlinearly modified by a mixture of environmental variables in a lon-
gitudinal design. We implemented the quadratic inference function (QIF) method to 
estimate the index loading parameters and the spline coefficients. Furthermore, we 
applied the pseudo-likelihood ratio test in a linear mixed model representation to 
test the linearity of the nonparametric coefficient function. Simulation studies were 
conducted to illustrate the estimation and testing procedures and confirm the asymp-
totical property. Real analysis showed that our model outperforms the additive vary-
ing coefficient model, which considers the G × E effect for each single environmental 
factor separately.

Fig. 4   Plot of the estimate (solid curve) of the nonparametric function m
1
(u

1
) for SNPs codon16, 

codon27, codon49, codon389, and codon492. The 95% confidence band is denoted by the dashed line. 
The response is SBP
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Our FVICM model is different from the varying coefficient model for longitudi-
nal data. In fact, the varying coefficient model is a special case of our model when 
the dimension of the X variable reduces to 1. FVICM can capture the effect of genes 
nonlinearly modified by the joint effect of multiple environmental variables as a 
whole. In addition, it can reduce multiple testing burdens by treating multiple envi-
ronmental variables as a single-index variable. The advantage of modeling multiple 
variables as a single index and further assessing its effect via a nonparametric func-
tion has also been demonstrated by [6, 17] in a cross-sectional design. Our real data 
analysis results further confirmed the advantage under a longitudinal design.

We applied the model to a pharmacogenetic study of cardiovascular disease [34]. 
Testing results indicated that all five SNPs have significant nonlinear interaction 
effects with environmental factors, which makes practical sense since these SNPs 
were genotyped from candidate genes. Our model was motivated by a practical need 
in G × E study and offers additional insights that otherwise cannot be revealed by 
models with cross-sectional data. By checking the nonlinear effect function together 
with the confidence band, people can get a sense of how genes respond to the com-
bined change of the environmental factors over time to affect a response variable. 
Although the method was demonstrated using a candidate gene study, it is capable 
of analyzing a large number of SNPs, limited only by computational constraints.

As noted by [35], misspecifying environmental main effects can lead to false-
positive interaction findings, particularly when gene–environment correlations exist. 
In our study, we assume gene–environment independence, so any significant inter-
actions identified in our analysis are likely to represent true functional interactions 
rather than spurious associations driven by gene–environment correlations. Addi-
tionally, we model the intercept term of the joint effect of multiple environmen-
tal mixtures using a flexible nonparametric approach. This adaptability allows the 
model to better capture the underlying data structure, reducing the risk of misspeci-
fication of the environmental main effect.

Our method can be applied to any longitudinal data in which the purpose is to 
model nonlinear interaction effects. For example, we can consider gene expressions 
in a pathway (denoted as X ) and model how they regulate downstream genes (G) to 
affect a disease trait. Both the trait and gene expressions can be measured over time. 
Thus, one can understand the dynamic effect of genes nonlinearly regulated by a 
pathway to affect a disease trait.
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