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Understanding how human memory and
learning works, the differences between
beginners and experts, and practical steps
developers can take to improve their learning,
training, and recruitment.

BY NEIL C.C. BROWN, FELIENNE F.J. HERMANS,

AND LAUREN E. MARGULIEUX

10 Things
Software
Developers
Should Learn
about Learning

LEARNING IS NECESSARY for software developers.
Change is perpetual: New technologies are frequently
invented, and old technologies are repeatedly updated.
Thus, developers do not learn to program just once—
over the course of their careers they will learn many new
programming languages and frameworks.

Just because we learn does not mean we understand
how we learn. One survey in the U.S. found that the
majority of beliefs about memory were contrary to
those of scientific consensus: People do not intuitively
understand how memory and learning work.*
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As an example, consider learning
styles. Advocates of learning styles
claim that effective instruction match-
es learners’ preferred styles—visual
learners look, auditory learners listen,
and kinesthetic learners do. A 2020 re-
view found that 89% of people believe
that learners’ preferred styles should
dictate instruction, though research-
ers have known for several decades
that this is inaccurate.” While learners
have preferred styles, effective instruc-
tion matches the content, not learning
styles. A science class should use graphs
to present data rather than verbal de-
scriptions, regardless of visual or audi-
tory learning styles, just like cooking
classes should use hands-on practices
rather than reading, whether learners
prefer a kinesthetic style or not.

Decades of research into cogni-
tive psychology, education, and pro-
gramming education provide strong
insights into how we learn. The next
10 sections of this article provide re-
search-backed findings about learn-
ing that apply to software developers
and discuss their practical implica-
tions. This information can help with
learning for yourself, teaching junior
staff, and recruiting staff.

1. Human Memory Is

Not Made of Bits

Human memory is central to learn-
ing. As Kirschner and Hendrick put
it, “Learning means that there has
been a change made in one’s long-
term memory.”*° Software developers
are familiar with the incredible power
of computer memory, where we can

key insights

B Learning is vital for programmers, but the
human mind works quite differently than
a computer.

B Understanding how humans learn can
help you learn more effectively.

B The Internet and LLMs have not made
learning obsolete; learning is essential
and takes time.

m Expertise changes how you think, letting
you solve problems more easily but also
potentially hindering your ability to teach.
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store a series of bits and later retrieve
that exact series of bits. While human
memory is similar, it is neither as pre-
cise nor as reliable.

Due to the biological complex-
ity of human memory, reliability is a
complicated matter. With computer
memory, we use two fundamental
operations: read and write. Reading
computer memory does not modify
it, and it does not matter how much
time passes between writes and
reads. Human long-term memory is
not as sterile. Human memory seems
to have a “read-and-update” opera-
tion, wherein fetching a memory can
both strengthen and modify it—a
process known as reconsolidation.
This modification is more likely on
recently formed memories. Because
of this potential for modification, a
fact does not exist in a binary state
of either definitively known or un-
known; it can exist in intermediate
states. We can forget things we pre-
viously knew, and knowledge can be
unreliable, especially when recently
learned.

Another curious feature of human
memory is “spreading activation.”’
Our memories are stored in intercon-
nected neural pathways. When we
try to remember something, we acti-
vate a pathway of neurons to access
the targeted information. However,
activation is not contained within
one pathway. Some of the activation
energy spreads to other connected
pathways, like heat radiating from a
hot water pipe. This spreading activa-
tion leaves related pathways primed
for activation for hours.*

Spreading activation has a nega-
tive implication for memory' and a
positive implication for problem-
solving.’>  Spreading  activation
means that related, but imprecise,
information can become conflated
with the target information, meaning
our recall of information can be unre-
liable. However, spreading activation
is also associated with insight-based
problem solving, or “aha moments.”
Because pathways stay primed for
hours, sometimes stepping away
from a problem to work on a different
one with its own spreading activation
causes two unrelated areas to connect
in the middle. When two previously
unrelated areas connect, creative and
unique solutions to problems can
arise. This is why walks, showers, or
otherwise spending time away from a
problem can help you get unstuck in
problem solving.

In summary, human memory does
not work by simply storing and re-
trieving from a specific location like
computer memory. Human memory
is more fragile and more unreliable,
but it can also offer great benefits
in problem solving and deep under-
standing by connecting knowledge
together. We will elaborate further
on this in later sections, especially
onretrieving items from memory and
strengthening memories.

2. Human Memory Is

Composed of One Limited

and One Unlimited System

Human memory comprises two
main components that are relevant
to learning: long-term memory and

working memory. Long-term memory
is where information is permanently
stored and is functionally limitless;'
in that sense, it functions somewhat
like a computer’s disk storage. Work-
ing memory, however, is used to con-
sciously reason about information
to solve problems;? it functions like
a CPU’s registers, storing a limited
amount of information in real time to
allow access and manipulation.

Working memory is limited, and
its capacity is roughly fixed at birth.”
While higher working-memory ca-
pacity is related to higher general
intelligence, working-memory ca-
pacity is not the be-all and end-all
for performance.?”? Higher capacity
enables faster learning, but our un-
limited long-term memory removes
limitations on how much we could
ultimately learn in total.! Expert
programmers may have low or high
working memory capacity but it is the
contents of their long-term memory
that make them experts.

As people learn more about a topic,
they relate information together into
chunks.* Chunking allows the mul-
tiple pieces of information to act as
one piece of information in working
memory. For example, when learn-
ing an email address, a familiar do-
main, such as gmail.com, is treated
as one piece of information instead
of a random string of characters, like
xvjki.wmt. Thus, the more informa-
tion that is chunked, the larger work-
ing memory is functionally.’® Using

a Thisis notaninformal description: the techni-
cal term is actually “chunks.”

Figure 1. Two ways of presenting the same database schema description with differing extraneous cognitive load.

The dashed box on the left contains exactly the same information as the awkward textual
description in the dashed box on the right. But if a developer only received one of the two
to create an SQL database, they are likely to find the diagram easier than the text. We say
that the text here has a higher extraneous cognitive load.

! |
! |
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| =m Player |
‘ id number :
| id number
: name text(32)v\ name text : comtpared
0
|
: role ?text |
: plays_for  ?number :
! |
! |
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| |
: A team should have an id and a name. The name should be a text, :
: the id should be numeric. The name should have a maximum length, :
. which is 32. There are also players: a player should have an id I
: (which, like teams, should be numeric), a name (that is text, but :
: unlimited in length), and role (although the role can be missing), :
1 and a plays_for which has the numeric id of their team. !
: This link to the team can be missing. :
| |



our computer analogy, our working
memory/CPU registers may only let
us store five pointers to chunks in
long-term memory/disk, but there is
no limit on the size of the chunks, so
the optimal strategy is to increase the
size of the chunks by practicing using
information and solving problems.

When learning new tools or skills,
it is important to understand the
cognitive load, or amount of working
memory capacity, demanded by the
task. Cognitive load has two parts:
intrinsic load and extraneous load.
Intrinsic load is how many pieces
of information or chunks are inher-
ently necessary to achieve the task; it
cannot be changed except by chang-
ing the task. In contrast, extraneous
cognitive load is unnecessary infor-
mation that, nevertheless, is part of
performing the task. Presentation
format is an example of how extrane-
ous cognitive load can vary. If you are
implementing a database schema, it
is easier to use a diagram with tables
and attributes than a plain English
description—the latter has higher
extraneous load because you must
mentally transform the description
into a schema, whereas the diagram
can be mapped directly (see Figure 1).
Extraneous load is generally higher
for beginners because they cannot
distinguish between intrinsic and ex-
traneous information easily.

When faced with a task that seems
beyond a person’s abilities, it is im-
portant to recognize that this can be
changed by reorganizing the task. De-
composing the problem into smaller
pieces that can be processed and
chunked will ultimately allow the
person to solve complex problems.
This principle should be applied to
your own practice when facing prob-
lems at the edge of or beyond your
current skills, but it is especially rel-
evant when working with junior de-
velopers and recruits.

3. Experts Recognize,

Beginners Reason

One key difference between begin-
ners and experts is that experts have
seen it all before. Research into chess
experts has shown that their primary
advantage is their ability to remember
and recognize the state of the board.
This allows them to decide how to

Expert developers
canreasonata
higher level by
having memorized
common patterns
in program code,
which frees up their
cognition.
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respond more quickly and with less
effort.” Kahneman'*® describes cog-
nition as being split into “system 1”
and “system 2” (thus proving that not
only developers struggle with naming
things). System 1 is fast and driven
by recognition, relying upon pattern
recognition in long-term memory,
while system 2 is slower and focused
on reasoning, requiring more pro-
cessing in working memory. This is
part of a general idea known as dual-
process theories.*

Expert developers can reason at
a higher level by having memorized
(usually implicitly, from experience)
common patterns in program code,
which frees up their cognition.* One
such instance of this is “design pat-
terns” in programming, similar to
previously discussed chunks. An ex-
pert may immediately recognize that
a particular piece of code is carrying
out a sorting algorithm, while a be-
ginner might read line by line to try
to understand the workings of the
code without recognizing the bigger
picture.

A corollary to this is that beginners
can become experts by reading and
understanding a lot of code. Experts
build up a mental library of patterns
that let them read and write code
more easily in the future. Seeing pure-
ly imperative C code may only partial-
ly apply to functional Haskell code, so
seeing a variety of programming para-
digms will help further. Overall, this
pattern matching is the reason that
reading and working with more code,
and more types of code, will increase
proficiency at programming.

4. Understanding a Concept

Goes from Abstract to

Concrete and Back

Research shows that experts deal with
concepts in different ways than be-
ginners. Experts use generic and ab-
stract terms that look for underlying
concepts and do not focus on details,
whereas beginners focus on surface
details and have trouble connecting
these details to the bigger picture.
These differences affect how experts

b Parts of Kahneman’s book were undermined
by psychology’s “replication crisis,” which af-
fected some of its findings, but not the idea of
system 1 and 2.
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reason but also how they learn.

For example, when explaining a
variadic function in Python to some-
one new to the concept, experts
might say that it is a function that can
take a varying number of arguments.
A beginner may focus on details such
as the exact syntax for declaring and
calling the function and may think
that passing one argument is a spe-
cial case. An expert may more eas-
ily understand or predict the details
while having the concept explained
to them.

When you are learning a new con-
cept,you will benefit from both forms
of explanation: abstract features and
concrete details with examples. More
specifically, you will benefit from fol-
lowing the semantic wave, a concept
defined by Australian scientist Karl
Maton,* as illustrated by Figure 2.

Following the semantic wave, you
continuously switch between the ab-
stract definition and several diverse
examples of the concept. The more
diverse the examples are, the better.
Even wrong examples are beneficial
when compared to correct examples
to understand why they are wrong,*
such as seeing a mutable variable la-
beled as non-constant when trying to
learn what a constant is. This process
is called unpacking.

With these diverse examples, you
can then (re)visit the abstract defi-
nition and construct a deeper un-
derstanding of the concept. Deeper
understanding stems from recogniz-
ing how multiple details from the ex-
amples connect to the one abstract
concept in the definition, a process
called repacking.

Programming frequently involves
learning about abstract concepts.
Faced with an abstract concept to
learn, such as functions, people often
reach for concrete instantiations of
the concept to examine, for example,
the abs function that returns the ab-
solute value of a number.’” One chal-
lenge is that as concepts get more
abstract (from values to variables/
objects to functions/classes to high-
er-order functions/metaclasses and
eventually category theory), the dis-
tance to a concrete example increas-
es. The saving grace is that as we learn
abstract concepts, they become more
concrete to us. Initially, a function is

Problem-solving

is (incorrectly)
conceived as

a generic skill.
However, this is

not how problem-
solving works in the
brain.
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an abstract concept, but after much
practice, a function becomes a con-
crete item (or chunk) to us and we can
learn the next level of abstraction.

5. Spacing and Repetition Matter
How often have you heard that you
should not cram for an exam? Unless,
of course, you want to forget every-
thing by the next day. This advice is
based on one of the most predictable
and persistent effects in cognitive
psychology: the spacing effect.!® Ac-
cording to the spacing effect, humans
learn problem-solving concepts best
by spacing out their practice across
multiple sessions, multiple days, and
ideally, multiple weeks.

The reason spacing works is due to
the relationship between long-term
and working memory previously de-
scribed in this article. When learners
practice solving problems, they prac-
tice two skills. First, matching the
information in the problem to a con-
cept that can solve it (such as a filter-
ing loop), and second, applying the
concept to solve the problem (such
as writing the loop). The first skill re-
quires activating the correct neural
pathway to the concept in long-term
memory.® If learners repeatedly solve
the same kind of problem, such as
for-each loop problems, then that
pathway to long-term memory stays
active, and they miss practicing the
first skill. A common result of un-
spaced practice is that people can
solve problems, but only when they
are told which concept to use.®* While
interleaving different types of prob-
lems, such as loop and conditional
problems, can help, pathways take
time to return to baseline, making
spacing necessary to get the most
out of practice time." In addition,
the brain needs rest to consolidate
the new information that has been
processed so that it can be applied to
new problems.

Going against this time-tested
principle, intensive coding boot-
camps require learners to cram their
problem-solving practice into un-
spaced sessions. While this is not
ideal, researchers of the spacing ef-
fect have known from the beginning
that most learners still prefer to cram
their practice into as little time as
possible.'® For people whose only vi-



able option to learn programming is
intensive bootcamps, we can apply
the spacing research to maximize
their outcomes.

To structure a day of learning,
learners should limit learning bouts
to 90 minutes or less.”* The neuro-
chemical balance in the brain makes
concentration difficult after this
point.>* After each learning bout,
take at least 20 minutes to rest.?! Re-
ally rest by going for a walk or sitting
quietly—without working on other
tasks, idly browsing the Internet, or
chatting with others. Rest speeds up
the consolidation process, which also
happens during sleep.

Within a learning bout, there are
a couple of strategies to maximize ef-
ficiency. First, randomize the order
of the type of problem being solved
so that different concepts are being
activated in long-term memory.’ Be
forewarned, though, that randomiz-
ing the order improves learning out-
comes but requires more effort.® The
second strategy is to take short breaks
atrandom intervals to enhance mem-
ory consolidation. A 10-second break
every 2-5 minutes is recommended.®

6. The Internet Has Not

Made Learning Obsolete

The availability of programming
knowledge changed with the advent
of the Internet. Knowledge about syn-
tax or APIs went from being buried in
reference books to being a few key-
strokes away. Most recently, AI-pow-
ered tools such as ChatGPT, Codex,
and GitHub Copilot will even fill in
these details (mostly accurately) for
you. This raises an obvious question:
Why is it worth learning details—or
anything at all—if the knowledge is
available from the Internet within
seconds?

We learn by storing pieces of
knowledge in our long-term memory
and forming connections between
them.! If the knowledge is not pres-
ent in the brain, because you have
not yet learned it well, the brain can-
not form any connections between
it, so higher levels of understanding
and abstraction are not possible.* If
every time you need a piece of code
to do a database join you search on-
line for it, insert it, and move on, you
will be unlikely to learn much about

joins. The wisdom of relying on the
Internet or Al differs between begin-
ners and experts: There is a key dis-
tinction between a beginner who has
never learned the details and thus
lacks the memory connections, and
an expert who has learned the deeper
structure but searches for the forgot-
ten fine details.!

There is even some evidence to
suggest that searching the Internet
is less efficient for remembering in-
formation. One study found that in-
formation was remembered less well
if it was found via the Internet (com-
pared to a physical book).!* Another
found that immediately searching
the Internet led to worse recall of the
same information later, compared to
first trying to think of the answer be-
fore resorting to searching.'* It seems
that searching may rob the brain of
the benefits of the memory-strength-
ening effect of recalling information.

There is also the issue of cogni-
tive load discussed earlier. An Inter-
net search requires a form of context
switching for the brain; its limited at-
tention and working memory must be
switched from the task at hand (pro-
gramming) to a new cognitive task
(searching the Internet and selecting
aresult or evaluating an Al-generated
result). If the required knowledge is
instead memorized, then not only is
access much faster (like using a cache
versus fetching from a hard disk), but
it also avoids the cognitive drain of
context switching and filtering out
extraneous information from the
search. So there are multiple reasons
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to memorize information, despite it
being available on the Internet.

7. Problem-Solving Is

Not a Generic Skill

Problem-solving is a large part of pro-
gramming. One common (but incor-
rect) idea in software development is
to directly teach problem-solving as a
specific skill, which can then be ap-
plied to different aspects of develop-
ment (design, debugging, and so on).
Thus, problem-solving is (incorrect-
ly) conceived as a generic skill. How-
ever, this is not how problem-solving
works in the brain.

While humans do have some ge-
neric problem-solving skills, they are
much less efficient than domain-spe-
cific problem-solving skills, such as
being able to debug programs. While
we can learn to reason, we do not
learn how to solve problems in gener-
al. Instead, we learn how to solve pro-
gramming problems, or how to plan
the best chess move, or how to cre-
ate a knitting pattern. Each of these
skills is separate and does not influ-
ence the others. Research into chess
found little or no effect of learning
it on other academic and cognitive
skills, and the same is true for music
instruction and cognitive training.*®
This inability to transfer problem-
solving skills is why “brain training”
is ineffective for developing general
intelligence.*

The one exception to this rule ap-
pears to be spatial skills. Spatial skills
allow us to visualize objects in our
mind, like a Tetris shape, and mental-

Figure 2. The semantic wave for variadic functions.
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ly manipulate those objects, like ro-
tating a Tetris shape. Training these
generic skills can improve learning in
other disciplines. This phenomenon
is so unusual that it has caused much
consternation in cognitive and learn-
ing sciences.* Yet, spatial training
improves performance on a range of
non-verbal skills regardless of initial
ability, age, or type of training task.*
Recent work has even demonstrated
that spatial training can improve ef-
ficiency for professional software de-
velopers, likely because they are still
learning new concepts.’® Even with
this strange exception, the best way
to learn how to solve programming
problems is still to practice solving
programming problems rather than
looking for performance benefits
from learning chess or other cogni-
tive training.

There is a secondary implication
here for recruitment. One popular
idea for screening programming can-
didates was to give brain-teaser puz-
zles, such as how to weigh a jumbo
jet. As Google worked out by 2013,
this is a waste of time’—there is no
reliable correspondence between
problem-solving in the world of brain
teasers and problem-solving in the
world of programming. If you want
to judge programming ability, assess
programming ability.

8. Expertise Can Be Problematic
in Some Situations
We have discussed many ways in
which expertise benefits learning
and performance. However, being an
expert can also lead to problems.

Programmers use tools and aids
to be more effective, such as version
control systems or IDEs. Such tools
can have different effects on begin-
ners and experts. Beginners may get
overwhelmed by the amount of op-
tions available in professional tools
(due to increased cognitive load) and
may benefit from beginner-friendly
hints on how to use the tool. However,
experts find the same hints more dis-
tracting than useful because they al-
ready know what to do. This is known
as the expertise-reversal effect: Hints
and guides that help beginners can
get in the way of experts and make
them less productive.

Programmers usually learn multi-
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ple programming languages through-
out their careers. Knowing multiple
languages can be beneficial once
they have been mastered, but some-
times transferring knowledge from
one programming language to anoth-
er can lead to faulty knowledge. For
example, a programmer may learn
about inheritance in Java, where one
method overrides a parent method
as long as the signatures match, and
transfer this knowledge to C++, where
overriding a parent method addition-
ally requires that the parent method
is declared virtual. These kinds of dif-
ferences—where features are similar
in syntax but different in semantics
between languages—specifically hin-
der the transfer of knowledge.*

Experts often help to train begin-
ners, but experts without experience
in training others often do not real-
ize that beginners think differently.
Thus, they fail to tailor their expla-
nations for someone with a different
mental model. This is known as the
expert blind-spot problem: difficulty
in seeing things through the eyes of
a beginner once you have become an
expert. It can be overcome by listen-
ing carefully to beginners explain
their current understanding and tai-
loring explanations accordingly.

Sometimes, however, knowledge
becomes so automated that it is dif-
ficult for experts to verbalize it.! This
automated knowledge is why experts
have intuitions about how to solve
problems or explain their process as,
"I just know." In these cases of tacit
knowledge, beginners might better
learn from instructional materials
designed to support beginners, of-
ten called scaffolded instruction, or
from a peer rather than an expert. A
more knowledgeable (but still rela-
tively novice) peer is a highly valuable
resource to bridge the gap between
beginners and experts. They can help
the beginner develop new knowledge
and the expert to rediscover automat-
ed knowledge.

9. The Predictors of Programming
Ability Are Unclear

The success of learning program-
ming, like most activities, is built on
a mix of inherent aptitude and prac-
tice. Some people believe it is purely
about aptitude—the “you’re born
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with it” view—and some believe it is
almost entirely about practice—the
“10,000 hours” idea that only suffi-
cient practice is required for exper-
tise. Both extreme views are wrong,
and in this section, we will explore
the evidence for the differing effects
of aptitude and practice.

There has been much research to
try to predict programming aptitude
but few reliable results. Attempts
to produce a predictive test for pro-
gramming ability have generally
come to naught. Research has found
that all of the following fail to predict
programming ability: gender, age,
academic major, race, prior perfor-
mance in math, prior experience with
another programming language, per-
ceptions of CS, and preference for
humanities or sciences.”” There was
an industry of aptitude tests for pro-
gramming that began in the 1960s,
but as Robins** summarizes, the pre-
dictive accuracy was poor and the
tests fell out of use.

There is mixed evidence for the
importance of years of experience,
which relates to practice. There is a
correlation between the reputation of
programmers on Stack Overflow and
their age: Older people have a higher
reputation.”” However, a recent study
found only a weak link between years
of experience and success on a pro-
gramming task among programmers
who were relatively early in their ca-
reers,’' suggesting that aptitude may
have a stronger effect than experi-
ence, at least early in programmers’
careers.

As in most domains, two factors
that weakly predict success in early
programming are general intelli-
gence and working memory capac-
ity.* These factors roughly represent
reasoning skills and how much in-
formation a learner can process at
once. As such, they predict the rate of
learning rather than absolute ability.
A sub-measure of these two factors,
spatial reasoning, is a stronger pre-
dictor of success in programming,
though still quite moderate.*® Spa-
tial reasoning also predicts success
in other science and math fields,*
so this is not programming-specific.
Further, these weak-to-moderate
correlations largely disappear with
increased experience for various rea-



sons. Thus, intelligent people will
not always make good programmers,
and good programmers need not be
high in general intelligence.

In short, it is very hard to predict
who will be able to program, espe-
cially in the long term. Programmers
could come from any background or
demographic, and links to any other
factors (such as intelligence) are gen-
erally fleeting in the face of experi-
ence. Therefore, in recruiting new
programmers, there are no shortcuts
to identifying programming ability,
nor are there any reliable “candidate
profiles” to screen candidates for
programming ability.

10. Your Mindset Matters

There is a long-standing idea of a bi-
nary split in programming ability:
You either can program or you can-
not. There have been many compet-
ing theories behind this. One of the
more compelling theories is the idea
of learning edge momentum,* that
each topic is dependent on previous
topics, so once you fall behind you
will struggle to catch up. A less com-
pelling theory is the idea of a “geek
gene” (you are born with it or not),
which has little empirical evidence.?®
As discussed in the previous section,
we have recently come to understand
differences in programming ability
as differences in prior experience.®
Learners who might seem similar (for
example, in the same class, with the
same degree, completing the same
bootcamp) can have vastly different
knowledge and skills, putting them
ahead or behind in terms of learn-
ing edge momentum or, within a
snapshot of time, making them seem
“born with it” or not. A similar effect
is found in any highly technical field
that is optionally taught before uni-
versity (for example, CS, physics, and
engineering).’

The binary split view, and its ef-
fects on teaching and learning, have
been studied across academic disci-
plines in research about fixed versus
growth mindsets.'> A fixed mindset
aligns with an aptitude view that
people’s abilities are innate and un-
changing. Applied to learning, this
mindset says that if someone strug-
gles with a new task, then they are not
cut out for it. Alternatively, a growth

Attempts to
produce a
predictive test

for programming
ability have
generally come to
naught.
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mindset aligns with a practice view—
that people’s abilities are malleable.
Applied to learning, this mindset says
that if someone struggles with a new
task, they can master it with enough
practice.

As described in Cheryan et al.,’ nei-
therextremeviewis true. Forexample,
practically everyone can learn some
physics, even if they are not initially
good at it. However, practically no
one can earn the Nobel Prize in Phys-
ics, no matter how much they prac-
tice. Between these extremes, we are
often trying to figure out the bound-
aries of our abilities. When teachers
and learners approach new tasks with
a growth mindset, they tend to persist
through difficulties and overcome
failure more consistently.'?

While the evidence for this effect
is strong and intuitive, research sug-
gests it can be difficult to change
someone’s mindset to be more
growth-oriented.® In  particular,
there are two common misconcep-
tions about how to promote a growth
mindset that prove ineffective. The
first misconception is to reward ef-
fort rather than performance because
a growth mindset favors practice over
aptitude. But learners are not stu-
pid; they can tell when they are not
progressing, and teachers praising
unproductive effort is not helpful.
Instead, effort should be rewarded
only when the learner is using ef-
fective strategies and on the path to
success.'® The second misconception
is that when someone approaches a
task with a growth mindset, they will
maintain that mindset throughout
the task. In reality, as we face set-
backs and experience failure, people
skew toward a fixed mindset because
we are not sure where the boundar-
ies of our abilities lie. Thus, we must
practice overcoming setbacks and
failures to maintain a growth-mind-
set approach.*?

A related concept to fixed and
growth mindsets is goal orienta-
tion. This is split into two categories:
approach and avoidance. The “ap-
proach” goal orientation involves
wanting to do well, and this engen-
ders positive and effective learning
behaviors: working hard, seeking
help, and trying new and challenging
topics. In contrast, the “avoidance”
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goal orientation involves avoiding
failure. This leads to negative and
ineffective behaviors: disorganized
study, not seeking help, anxiety over
performance, and avoiding chal-
lenge. It is important that learners
can make mistakes without severe
penalties if they are to be directed to-
ward “approach” rather than “avoid-
ance.”

When learning a new skill or train-
ing someone in a new skill, remem-
ber that approaching tasks with a
growth mindset is effective but also
a skill to be developed. Unfortu-
nately, we cannot simply tell people
to have a growth mindset and reap
the benefits. Instead, nurture this
skill by seeking or providing honest
feedback about the process of learn-
ing and the efficacy of strategies. For
mentors, praise areas where a men-
tee is making progress and accept
that they will make mistakes without
chastising them. For learners, reflect
on how skills have improved in the
past weeks or months when you are
doubtful about your progress. Fur-
ther, expect that a growth mindset
will shift toward a fixed mindset in
the face of failure, but it can also be
redeveloped and made stronger with
practice. Feeling discouraged is nor-
mal, but it does not mean that you
will always feel discouraged. If you
feel like quitting, take a break, take
a walk, consider your strategies, and
then try again.

Summary
Software developers must continu-
ally learn in order to keep up with
the fast-paced changes in the field.
Learning anything, programming in-
cluded, involves committing items to
memory. Human memory is fascinat-
ingly complex. While it shares some
similarities with computer architec-
ture, there are key differences that
make it work quite differently. In this
article, we have explained the current
scientific understanding of how hu-
man memory works, how learning
works, the differences between be-
ginners and experts, and related it all
to practical steps that software devel-
opers can take to improve their learn-
ing, training, and recruitment.
Recommendations. We have split
up our recommendations into those

Intelligent people
will not always
make good
programmers, and
good programmers
need not be highin
general intelligence.
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for recruiting and those for training
and learning.

For recruiting, we make the follow-
ing recommendations:

» There are no good proxies for
programming ability. Stereotypes
based on gender, race, or other fac-
tors are not supported by evidence.
If you want to know how well candi-
dates program, look at their previ-
ous work or test them on authentic
programming tasks. To emphasize a
specific point: Do not test candidates
with brain-teaser puzzles.

» At least among young developers,
years of experience may not be a very
reliable measure of ability.

» A related recommendation from
Behroozi et al.? is to get candidates
to solve interview problems in a room
on their own before presenting the
solution, as the added pressure from
an interviewer observing or requiring
talking while solving it adds to cogni-
tive load and stress in a way that im-
pairs performance.

Forlearning and training, we make
the following recommendations:

» Reading a lot of code will help
someone become a more efficient
programmer.

» Experts are not always the best at
training beginners.

» Learning takes time, including
time between learning sessions. In-
tense cramming is not effective, but
spaced repetition is.

» Similarly, spending time away
from a problem can help to solve it.

» Just because you can find it
through an Internet search or genera-
tive AI tool does not mean learning
has become obsolete.

» Use examples to go between ab-
stract concepts and concrete learn-
able facts.

» Seeking to succeed (rather than
avoid failure) and believing that abil-
ity is changeable are important fac-
tors in resilience and learning.

Further reading. Many books on
learning center around formal educa-
tion; they are aimed at school teach-
ers and university lecturers. How-
ever, the principles are applicable
everywhere, including professional
development. We recommend three
books:

» Why Don’t Students Like School? by
Daniel T. Willingham provides a short



and readable explana-
tion of many of the prin-
ciples of memory and
how the brain works.

» The Programmer’s
Brain by Felienne Her-
mans et al.® relates
these concepts to programming and
describes how techniques for learn-
ing and revision that are used at
school can still apply to professional
development.

» How Learning Happens: Seminal
Works in Educational Psychology and
What They Mean in Practice by Paul
A. Kirschner and Carl Hendrick®
provides a tour through influential
papers, explaining them in plain lan-
guage and the implications and link-
ages between them.

The papers cited can also serve as
further reading. If you are a software
developer you may not have access to
all of them; ACM members with the
digital library option will have access
to the ACM papers, although many of
our references are from other disci-
plines. For more recent papers, many
authors supply free PDFs on their
websites; you may wish to try search-
ing the Web for the exact title to find
such PDFs. Many authors are also
happy to supply you with a copy if you
contact them directly.

more online
A list of full
references and
supplementary

information
is available
at https://bit.
ly/3G2NPNL.
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