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 key insights
	˽ Learning is vital for programmers, but the 

human mind works quite differently than 
a computer.

	˽ Understanding how humans learn can 
help you learn more effectively.

	˽ The Internet and LLMs have not made 
learning obsolete; learning is essential 
and takes time.

	˽ Expertise changes how you think, letting 
you solve problems more easily but also 
potentially hindering your ability to teach.

L E A R N I NG I S  N ECE S S A RY for software developers. 
Change is perpetual: New technologies are frequently 
invented, and old technologies are repeatedly updated. 
Thus, developers do not learn to program just once—
over the course of their careers they will learn many new 
programming languages and frameworks.

Just because we learn does not mean we understand 
how we learn. One survey in the U.S. found that the 
majority of beliefs about memory were contrary to 
those of scientific consensus: People do not intuitively 
understand how memory and learning work.37

As an example, consider learning 
styles. Advocates of learning styles 
claim that effective instruction match-
es learners’ preferred styles—visual 
learners look, auditory learners listen, 
and kinesthetic learners do. A 2020 re-
view found that 89% of people believe 
that learners’ preferred styles should 
dictate instruction, though research-
ers have known for several decades 
that this is inaccurate.28 While learners 
have preferred styles, effective instruc-
tion matches the content, not learning 
styles. A science class should use graphs 
to present data rather than verbal de-
scriptions, regardless of visual or audi-
tory learning styles, just like cooking 
classes should use hands-on practices 
rather than reading, whether learners 
prefer a kinesthetic style or not.

Decades of research into cogni-
tive psychology, education, and pro-
gramming education provide strong 
insights into how we learn. The next 
10 sections of this article provide re-
search-backed findings about learn-
ing that apply to software developers 
and discuss their practical implica-
tions. This information can help with 
learning for yourself, teaching junior 
staff, and recruiting staff.

1. Human Memory Is 
Not Made of Bits
Human memory is central to learn-
ing. As Kirschner and Hendrick  put 
it, “Learning means that there has 
been a change made in one’s long-
term memory.”20 Software developers 
are familiar with the incredible power 
of computer memory, where we can 
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store a series of bits and later retrieve 
that exact series of bits. While human 
memory is similar, it is neither as pre-
cise nor as reliable.

Due to the biological complex-
ity of human memory, reliability is a 
complicated matter. With computer 
memory, we use two fundamental 
operations: read and write. Reading 
computer memory does not modify 
it, and it does not matter how much 
time passes between writes and 
reads. Human long-term memory is 
not as sterile. Human memory seems 
to have a “read-and-update” opera-
tion, wherein fetching a memory can 
both strengthen and modify it—a 
process known as reconsolidation. 
This modification is more likely on 
recently formed memories. Because 
of this potential for modification, a 
fact does not exist in a binary state 
of either definitively known or un-
known; it can exist in intermediate 
states. We can forget things we pre-
viously knew, and knowledge can be 
unreliable, especially when recently 
learned.

Another curious feature of human 
memory is “spreading activation.”1 
Our memories are stored in intercon-
nected neural pathways. When we 
try to remember something, we acti-
vate a pathway of neurons to access 
the targeted information. However, 
activation is not contained within 
one pathway. Some of the activation 
energy spreads to other connected 
pathways, like heat radiating from a 
hot water pipe. This spreading activa-
tion leaves related pathways primed 
for activation for hours.1

working memory. Long-term memory 
is where information is permanently 
stored and is functionally limitless;1 
in that sense, it functions somewhat 
like a computer’s disk storage. Work-
ing memory, however, is used to con-
sciously reason about information 
to solve problems;2 it functions like 
a CPU’s registers, storing a limited 
amount of information in real time to 
allow access and manipulation.

Working memory is limited, and 
its capacity is roughly fixed at birth.2 
While higher working-memory ca-
pacity is related to higher general 
intelligence, working-memory ca-
pacity is not the be-all and end-all 
for performance.22 Higher capacity 
enables faster learning, but our un-
limited long-term memory removes 
limitations on how much we could 
ultimately learn in total.1 Expert 
programmers may have low or high 
working memory capacity but it is the 
contents of their long-term memory 
that make them experts.

As people learn more about a topic, 
they relate information together into 
chunks.a Chunking allows the mul-
tiple pieces of information to act as 
one piece of information in working 
memory. For example, when learn-
ing an email address, a familiar do-
main, such as gmail.com, is treated 
as one piece of information instead 
of a random string of characters, like 
xvjki.wmt. Thus, the more informa-
tion that is chunked, the larger work-
ing memory is functionally.38 Using 

a	 This is not an informal description: the techni-
cal term is actually “chunks.”

Figure 1. Two ways of presenting the same database schema description with differing extraneous cognitive load.

The dashed box on the left contains exactly the same information as the awkward textual 
description in the dashed box on the right. But if a developer only received one of the two 
to create an SQL database, they are likely to find the diagram easier than the text. We say 
that the text here has a higher extraneous cognitive load.

A team should have an id and a name. The name should be a text, 
the id should be numeric. The name should have a maximum length, 
which is 32. There are also players: a player should have an id 
(which, like teams, should be numeric), a name (that is text, but 
unlimited in length), and role (although the role can be missing), 
and a plays_for which has the numeric id of their team. 
This link to the team can be missing.

compared
to

Team
Player

 id number

 name text(32)
 id number

 name text

 role ?text

 plays_for ?number

Spreading activation has a nega-
tive implication for memory1 and a 
positive implication for problem-
solving.32 Spreading activation 
means that related, but imprecise, 
information can become conflated 
with the target information, meaning 
our recall of information can be unre-
liable. However, spreading activation 
is also associated with insight-based 
problem solving, or “aha moments.” 
Because pathways stay primed for 
hours, sometimes stepping away 
from a problem to work on a different 
one with its own spreading activation 
causes two unrelated areas to connect 
in the middle. When two previously 
unrelated areas connect, creative and 
unique solutions to problems can 
arise. This is why walks, showers, or 
otherwise spending time away from a 
problem can help you get unstuck in 
problem solving.

In summary, human memory does 
not work by simply storing and re-
trieving from a specific location like 
computer memory. Human memory 
is more fragile and more unreliable, 
but it can also offer great benefits 
in problem solving and deep under-
standing by connecting knowledge 
together. We will elaborate further 
on this in later sections, especially 
on retrieving items from memory and 
strengthening memories.

2. Human Memory Is 
Composed of One Limited 
and One Unlimited System
Human memory comprises two 
main components that are relevant 
to learning: long-term memory and 
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our computer analogy, our working 
memory/CPU registers may only let 
us store five pointers to chunks in 
long-term memory/disk, but there is 
no limit on the size of the chunks, so 
the optimal strategy is to increase the 
size of the chunks by practicing using 
information and solving problems.

When learning new tools or skills, 
it is important to understand the 
cognitive load, or amount of working 
memory capacity, demanded by the 
task. Cognitive load has two parts: 
intrinsic load and extraneous load. 
Intrinsic load is how many pieces 
of information or chunks are inher-
ently necessary to achieve the task; it 
cannot be changed except by chang-
ing the task. In contrast, extraneous 
cognitive load is unnecessary infor-
mation that, nevertheless, is part of 
performing the task. Presentation 
format is an example of how extrane-
ous cognitive load can vary. If you are 
implementing a database schema, it 
is easier to use a diagram with tables 
and attributes than a plain English 
description—the latter has higher 
extraneous load because you must 
mentally transform the description 
into a schema, whereas the diagram 
can be mapped directly (see Figure 1). 
Extraneous load is generally higher 
for beginners because they cannot 
distinguish between intrinsic and ex-
traneous information easily.

When faced with a task that seems 
beyond a person’s abilities, it is im-
portant to recognize that this can be 
changed by reorganizing the task. De-
composing the problem into smaller 
pieces that can be processed and 
chunked will ultimately allow the 
person to solve complex problems. 
This principle should be applied to 
your own practice when facing prob-
lems at the edge of or beyond your 
current skills, but it is especially rel-
evant when working with junior de-
velopers and recruits.

3. Experts Recognize, 
Beginners Reason
One key difference between begin-
ners and experts is that experts have 
seen it all before. Research into chess 
experts has shown that their primary 
advantage is their ability to remember 
and recognize the state of the board. 
This allows them to decide how to 

respond more quickly and with less 
effort.15 Kahneman19,b describes cog-
nition as being split into “system 1” 
and “system 2” (thus proving that not 
only developers struggle with naming 
things). System 1 is fast and driven 
by recognition, relying upon pattern 
recognition in long-term memory, 
while system 2 is slower and focused 
on reasoning, requiring more pro-
cessing in working memory. This is 
part of a general idea known as dual-
process theories.34

Expert developers can reason at 
a higher level by having memorized 
(usually implicitly, from experience) 
common patterns in program code, 
which frees up their cognition.4 One 
such instance of this is “design pat-
terns” in programming, similar to 
previously discussed chunks. An ex-
pert may immediately recognize that 
a particular piece of code is carrying 
out a sorting algorithm, while a be-
ginner might read line by line to try 
to understand the workings of the 
code without recognizing the bigger 
picture.

A corollary to this is that beginners 
can become experts by reading and 
understanding a lot of code. Experts 
build up a mental library of patterns 
that let them read and write code 
more easily in the future. Seeing pure-
ly imperative C code may only partial-
ly apply to functional Haskell code, so 
seeing a variety of programming para-
digms will help further. Overall, this 
pattern matching is the reason that 
reading and working with more code, 
and more types of code, will increase 
proficiency at programming.

4. Understanding a Concept 
Goes from Abstract to 
Concrete and Back
Research shows that experts deal with 
concepts in different ways than be-
ginners. Experts use generic and ab-
stract terms that look for underlying 
concepts and do not focus on details, 
whereas beginners focus on surface 
details and have trouble connecting 
these details to the bigger picture. 
These differences affect how experts 

b	 Parts of Kahneman’s book were undermined 
by psychology’s “replication crisis,” which af-
fected some of its findings, but not the idea of 
system 1 and 2.

Expert developers 
can reason at a 
higher level by 
having memorized 
common patterns 
in program code, 
which frees up their 
cognition.
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an abstract concept, but after much 
practice, a function becomes a con-
crete item (or chunk) to us and we can 
learn the next level of abstraction.

5. Spacing and Repetition Matter
How often have you heard that you 
should not cram for an exam? Unless, 
of course, you want to forget every-
thing by the next day. This advice is 
based on one of the most predictable 
and persistent effects in cognitive 
psychology: the spacing effect.10 Ac-
cording to the spacing effect, humans 
learn problem-solving concepts best 
by spacing out their practice across 
multiple sessions, multiple days, and 
ideally, multiple weeks.

The reason spacing works is due to 
the relationship between long-term 
and working memory previously de-
scribed in this article. When learners 
practice solving problems, they prac-
tice two skills. First, matching the 
information in the problem to a con-
cept that can solve it (such as a filter-
ing loop), and second, applying the 
concept to solve the problem (such 
as writing the loop). The first skill re-
quires activating the correct neural 
pathway to the concept in long-term 
memory.5 If learners repeatedly solve 
the same kind of problem, such as 
for-each loop problems, then that 
pathway to long-term memory stays 
active, and they miss practicing the 
first skill. A common result of un-
spaced practice is that people can 
solve problems, but only when they 
are told which concept to use.5 While 
interleaving different types of prob-
lems, such as loop and conditional 
problems, can help, pathways take 
time to return to baseline, making 
spacing necessary to get the most 
out of practice time.10 In addition, 
the brain needs rest to consolidate 
the new information that has been 
processed so that it can be applied to 
new problems.

Going against this time-tested 
principle, intensive coding boot-
camps require learners to cram their 
problem-solving practice into un-
spaced sessions. While this is not 
ideal, researchers of the spacing ef-
fect have known from the beginning 
that most learners still prefer to cram 
their practice into as little time as 
possible.10 For people whose only vi-

reason but also how they learn.
For example, when explaining a 

variadic function in Python to some-
one new to the concept, experts 
might say that it is a function that can 
take a varying number of arguments. 
A beginner may focus on details such 
as the exact syntax for declaring and 
calling the function and may think 
that passing one argument is a spe-
cial case. An expert may more eas-
ily understand or predict the details 
while having the concept explained 
to them.

When you are learning a new con-
cept, you will benefit from both forms 
of explanation: abstract features and 
concrete details with examples. More 
specifically, you will benefit from fol-
lowing the semantic wave, a concept 
defined by Australian scientist Karl 
Maton,25 as illustrated by Figure 2.

Following the semantic wave, you 
continuously switch between the ab-
stract definition and several diverse 
examples of the concept. The more 
diverse the examples are, the better. 
Even wrong examples are beneficial 
when compared to correct examples 
to understand why they are wrong,23 
such as seeing a mutable variable la-
beled as non-constant when trying to 
learn what a constant is. This process 
is called unpacking.

With these diverse examples, you 
can then (re)visit the abstract defi-
nition and construct a deeper un-
derstanding of the concept. Deeper 
understanding stems from recogniz-
ing how multiple details from the ex-
amples connect to the one abstract 
concept in the definition, a process 
called repacking.

Programming frequently involves 
learning about abstract concepts. 
Faced with an abstract concept to 
learn, such as functions, people often 
reach for concrete instantiations of 
the concept to examine, for example, 
the abs function that returns the ab-
solute value of a number.17 One chal-
lenge is that as concepts get more 
abstract (from values to variables/
objects to functions/classes to high-
er-order functions/metaclasses and 
eventually category theory), the dis-
tance to a concrete example increas-
es. The saving grace is that as we learn 
abstract concepts, they become more 
concrete to us. Initially, a function is 

Problem-solving 
is (incorrectly) 
conceived as 
a generic skill. 
However, this is 
not how problem-
solving works in the 
brain.
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to memorize information, despite it 
being available on the Internet.

7. Problem-Solving Is 
Not a Generic Skill
Problem-solving is a large part of pro-
gramming. One common (but incor-
rect) idea in software development is 
to directly teach problem-solving as a 
specific skill, which can then be ap-
plied to different aspects of develop-
ment (design, debugging, and so on). 
Thus, problem-solving is (incorrect-
ly) conceived as a generic skill. How-
ever, this is not how problem-solving 
works in the brain.

While humans do have some ge-
neric problem-solving skills, they are 
much less efficient than domain-spe-
cific problem-solving skills, such as 
being able to debug programs. While 
we can learn to reason, we do not 
learn how to solve problems in gener-
al. Instead, we learn how to solve pro-
gramming problems, or how to plan 
the best chess move, or how to cre-
ate a knitting pattern. Each of these 
skills is separate and does not influ-
ence the others. Research into chess 
found little or no effect of learning 
it on other academic and cognitive 
skills, and the same is true for music 
instruction and cognitive training.36 
This inability to transfer problem-
solving skills is why “brain training” 
is ineffective for developing general 
intelligence.29

The one exception to this rule ap-
pears to be spatial skills. Spatial skills 
allow us to visualize objects in our 
mind, like a Tetris shape, and mental-

able option to learn programming is 
intensive bootcamps, we can apply 
the spacing research to maximize 
their outcomes.

To structure a day of learning, 
learners should limit learning bouts 
to 90 minutes or less.21 The neuro-
chemical balance in the brain makes 
concentration difficult after this 
point.21 After each learning bout, 
take at least 20 minutes to rest.21 Re-
ally rest by going for a walk or sitting 
quietly—without working on other 
tasks, idly browsing the Internet, or 
chatting with others. Rest speeds up 
the consolidation process, which also 
happens during sleep.

Within a learning bout, there are 
a couple of strategies to maximize ef-
ficiency. First, randomize the order 
of the type of problem being solved 
so that different concepts are being 
activated in long-term memory.5 Be 
forewarned, though, that randomiz-
ing the order improves learning out-
comes but requires more effort.6 The 
second strategy is to take short breaks 
at random intervals to enhance mem-
ory consolidation. A 10-second break 
every 2-5 minutes is recommended.18

6. The Internet Has Not 
Made Learning Obsolete
The availability of programming 
knowledge changed with the advent 
of the Internet. Knowledge about syn-
tax or APIs went from being buried in 
reference books to being a few key-
strokes away. Most recently, AI-pow-
ered tools such as ChatGPT, Codex, 
and GitHub Copilot will even fill in 
these details (mostly accurately) for 
you. This raises an obvious question: 
Why is it worth learning details—or 
anything at all—if the knowledge is 
available from the Internet within 
seconds?

We learn by storing pieces of 
knowledge in our long-term memory 
and forming connections between 
them.1 If the knowledge is not pres-
ent in the brain, because you have 
not yet learned it well, the brain can-
not form any connections between 
it, so higher levels of understanding 
and abstraction are not possible.1 If 
every time you need a piece of code 
to do a database join you search on-
line for it, insert it, and move on, you 
will be unlikely to learn much about 

Figure 2. The semantic wave for variadic functions.

abstract understanding
across different contexts

and languages
variadic functions

have multiple arguments

use*

args are lists

repackingunpacking

abstract

level of
abstraction

concrete

time

joins. The wisdom of relying on the 
Internet or AI differs between begin-
ners and experts: There is a key dis-
tinction between a beginner who has 
never learned the details and thus 
lacks the memory connections, and 
an expert who has learned the deeper 
structure but searches for the forgot-
ten fine details.1

There is even some evidence to 
suggest that searching the Internet 
is less efficient for remembering in-
formation. One study found that in-
formation was remembered less well 
if it was found via the Internet (com-
pared to a physical book).11 Another 
found that immediately searching 
the Internet led to worse recall of the 
same information later, compared to 
first trying to think of the answer be-
fore resorting to searching.14 It seems 
that searching may rob the brain of 
the benefits of the memory-strength-
ening effect of recalling information.

There is also the issue of cogni-
tive load discussed earlier. An Inter-
net search requires a form of context 
switching for the brain; its limited at-
tention and working memory must be 
switched from the task at hand (pro-
gramming) to a new cognitive task 
(searching the Internet and selecting 
a result or evaluating an AI-generated 
result). If the required knowledge is 
instead memorized, then not only is 
access much faster (like using a cache 
versus fetching from a hard disk), but 
it also avoids the cognitive drain of 
context switching and filtering out 
extraneous information from the 
search. So there are multiple reasons 
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with it” view—and some believe it is 
almost entirely about practice—the 
“10,000 hours” idea that only suffi-
cient practice is required for exper-
tise. Both extreme views are wrong, 
and in this section, we will explore 
the evidence for the differing effects 
of aptitude and practice.

There has been much research to 
try to predict programming aptitude 
but few reliable results. Attempts 
to produce a predictive test for pro-
gramming ability have generally 
come to naught. Research has found 
that all of the following fail to predict 
programming ability: gender, age, 
academic major, race, prior perfor-
mance in math, prior experience with 
another programming language, per-
ceptions of CS, and preference for 
humanities or sciences.35 There was 
an industry of aptitude tests for pro-
gramming that began in the 1960s, 
but as Robins33 summarizes, the pre-
dictive accuracy was poor and the 
tests fell out of use.

There is mixed evidence for the 
importance of years of experience, 
which relates to practice. There is a 
correlation between the reputation of 
programmers on Stack Overflow and 
their age: Older people have a higher 
reputation.27 However, a recent study 
found only a weak link between years 
of experience and success on a pro-
gramming task among programmers 
who were relatively early in their ca-
reers,31 suggesting that aptitude may 
have a stronger effect than experi-
ence, at least early in programmers’ 
careers.

As in most domains, two factors 
that weakly predict success in early 
programming are general intelli-
gence and working memory capac-
ity.4  These factors roughly represent 
reasoning skills and how much in-
formation a learner can process at 
once. As such, they predict the rate of 
learning rather than absolute ability. 
A sub-measure of these two factors, 
spatial reasoning, is a stronger pre-
dictor of success in programming, 
though still quite moderate.30 Spa-
tial reasoning also predicts success 
in other science and math fields,24 
so this is not programming-specific. 
Further, these weak-to-moderate 
correlations largely disappear with 
increased experience for various rea-

ple programming languages through-
out their careers. Knowing multiple 
languages can be beneficial once 
they have been mastered, but some-
times transferring knowledge from 
one programming language to anoth-
er can lead to faulty knowledge. For 
example, a programmer may learn 
about inheritance in Java, where one 
method overrides a parent method 
as long as the signatures match, and 
transfer this knowledge to C++, where 
overriding a parent method addition-
ally requires that the parent method 
is declared virtual. These kinds of dif-
ferences—where features are similar 
in syntax but different in semantics 
between languages—specifically hin-
der the transfer of knowledge.39

Experts often help to train begin-
ners, but experts without experience 
in training others often do not real-
ize that beginners think differently. 
Thus, they fail to tailor their expla-
nations for someone with a different 
mental model. This is known as the 
expert blind-spot problem: difficulty 
in seeing things through the eyes of 
a beginner once you have become an 
expert. It can be overcome by listen-
ing carefully to beginners explain 
their current understanding and tai-
loring explanations accordingly.

Sometimes, however, knowledge 
becomes so automated that it is dif-
ficult for experts to verbalize it.1 This 
automated knowledge is why experts 
have intuitions about how to solve 
problems or explain their process as, 
"I just know." In these cases of tacit 
knowledge, beginners might better 
learn from instructional materials 
designed to support beginners, of-
ten called scaffolded instruction, or 
from a peer rather than an expert. A 
more knowledgeable (but still rela-
tively novice) peer is a highly valuable 
resource to bridge the gap between 
beginners and experts. They can help 
the beginner develop new knowledge 
and the expert to rediscover automat-
ed knowledge.

9. The Predictors of Programming 
Ability Are Unclear
The success of learning program-
ming, like most activities, is built on 
a mix of inherent aptitude and prac-
tice. Some people believe it is purely 
about aptitude—the “you’re born 

ly manipulate those objects, like ro-
tating a Tetris shape. Training these 
generic skills can improve learning in 
other disciplines. This phenomenon 
is so unusual that it has caused much 
consternation in cognitive and learn-
ing sciences.24 Yet, spatial training 
improves performance on a range of 
non-verbal skills regardless of initial 
ability, age, or type of training task.40 
Recent work has even demonstrated 
that spatial training can improve ef-
ficiency for professional software de-
velopers, likely because they are still 
learning new concepts.30 Even with 
this strange exception, the best way 
to learn how to solve programming 
problems is still to practice solving 
programming problems rather than 
looking for performance benefits 
from learning chess or other cogni-
tive training.

There is a secondary implication 
here for recruitment. One popular 
idea for screening programming can-
didates was to give brain-teaser puz-
zles, such as how to weigh a jumbo 
jet. As Google worked out by 2013, 
this is a waste of time7—there is no 
reliable correspondence between 
problem-solving in the world of brain 
teasers and problem-solving in the 
world of programming. If you want 
to judge programming ability, assess 
programming ability.

8. Expertise Can Be Problematic 
in Some Situations
We have discussed many ways in 
which expertise benefits learning 
and performance. However, being an 
expert can also lead to problems.

Programmers use tools and aids 
to be more effective, such as version 
control systems or IDEs. Such tools 
can have different effects on begin-
ners and experts. Beginners may get 
overwhelmed by the amount of op-
tions available in professional tools 
(due to increased cognitive load) and 
may benefit from beginner-friendly 
hints on how to use the tool. However, 
experts find the same hints more dis-
tracting than useful because they al-
ready know what to do. This is known 
as the expertise-reversal effect: Hints 
and guides that help beginners can 
get in the way of experts and make 
them less productive.

Programmers usually learn multi-
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mindset aligns with a practice view—
that people’s abilities are malleable. 
Applied to learning, this mindset says 
that if someone struggles with a new 
task, they can master it with enough 
practice.

As described in Cheryan et al.,9 nei-
ther extreme view is true. For example, 
practically everyone can learn some 
physics, even if they are not initially 
good at it. However, practically no 
one can earn the Nobel Prize in Phys-
ics, no matter how much they prac-
tice. Between these extremes, we are 
often trying to figure out the bound-
aries of our abilities. When teachers 
and learners approach new tasks with 
a growth mindset, they tend to persist 
through difficulties and overcome 
failure more consistently.12

While the evidence for this effect 
is strong and intuitive, research sug-
gests it can be difficult to change 
someone’s mindset to be more 
growth-oriented.8 In particular, 
there are two common misconcep-
tions about how to promote a growth 
mindset that prove ineffective. The 
first misconception is to reward ef-
fort rather than performance because 
a growth mindset favors practice over 
aptitude. But learners are not stu-
pid; they can tell when they are not 
progressing, and teachers praising 
unproductive effort is not helpful. 
Instead, effort should be rewarded 
only when the learner is using ef-
fective strategies and on the path to 
success.13 The second misconception 
is that when someone approaches a 
task with a growth mindset, they will 
maintain that mindset throughout 
the task. In reality, as we face set-
backs and experience failure, people 
skew toward a fixed mindset because 
we are not sure where the boundar-
ies of our abilities lie. Thus, we must 
practice overcoming setbacks and 
failures to maintain a growth-mind-
set approach.13

A related concept to fixed and 
growth mindsets is goal orienta-
tion. This is split into two categories: 
approach and avoidance. The “ap-
proach” goal orientation involves 
wanting to do well, and this engen-
ders positive and effective learning 
behaviors: working hard, seeking 
help, and trying new and challenging 
topics. In contrast, the “avoidance” 

sons. Thus, intelligent people will 
not always make good programmers, 
and good programmers need not be 
high in general intelligence.

In short, it is very hard to predict 
who will be able to program, espe-
cially in the long term. Programmers 
could come from any background or 
demographic, and links to any other 
factors (such as intelligence) are gen-
erally fleeting in the face of experi-
ence. Therefore, in recruiting new 
programmers, there are no shortcuts 
to identifying programming ability, 
nor are there any reliable “candidate 
profiles” to screen candidates for 
programming ability.

10. Your Mindset Matters
There is a long-standing idea of a bi-
nary split in programming ability: 
You either can program or you can-
not. There have been many compet-
ing theories behind this. One of the 
more compelling theories is the idea 
of learning edge momentum,33 that 
each topic is dependent on previous 
topics, so once you fall behind you 
will struggle to catch up. A less com-
pelling theory is the idea of a “geek 
gene” (you are born with it or not), 
which has little empirical evidence.26 
As discussed in the previous section, 
we have recently come to understand 
differences in programming ability 
as differences in prior experience.16 
Learners who might seem similar (for 
example, in the same class, with the 
same degree, completing the same 
bootcamp) can have vastly different 
knowledge and skills, putting them 
ahead or behind in terms of learn-
ing edge momentum or, within a 
snapshot of time, making them seem 
“born with it” or not. A similar effect 
is found in any highly technical field 
that is optionally taught before uni-
versity (for example, CS, physics, and 
engineering).9

The binary split view, and its ef-
fects on teaching and learning, have 
been studied across academic disci-
plines in research about fixed versus 
growth mindsets.12 A fixed mindset 
aligns with an aptitude view that 
people’s abilities are innate and un-
changing. Applied to learning, this 
mindset says that if someone strug-
gles with a new task, then they are not 
cut out for it. Alternatively, a growth 

Attempts to 
produce a 
predictive test 
for programming 
ability have 
generally come to 
naught.
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for recruiting and those for training 
and learning.

For recruiting, we make the follow-
ing recommendations:

	˲ There are no good proxies for 
programming ability. Stereotypes 
based on gender, race, or other fac-
tors are not supported by evidence. 
If you want to know how well candi-
dates program, look at their previ-
ous work or test them on authentic 
programming tasks.  To emphasize a 
specific point: Do not test candidates 
with brain-teaser puzzles.

	˲ At least among young developers, 
years of experience may not be a very 
reliable measure of ability.

	˲ A related recommendation from 
Behroozi et al.3 is to get candidates 
to solve interview problems in a room 
on their own before presenting the 
solution, as the added pressure from 
an interviewer observing or requiring 
talking while solving it adds to cogni-
tive load and stress in a way that im-
pairs performance.

For learning and training, we make 
the following recommendations:

	˲ Reading a lot of code will help 
someone become a more efficient 
programmer.

	˲ Experts are not always the best at 
training beginners.

	˲ Learning takes time, including 
time between learning sessions. In-
tense cramming is not effective, but 
spaced repetition is.

	˲ Similarly, spending time away 
from a problem can help to solve it.

	˲ Just because you can find it 
through an Internet search or genera-
tive AI tool does not mean learning 
has become obsolete.

	˲ Use examples to go between ab-
stract concepts and concrete learn-
able facts.

	˲ Seeking to succeed (rather than 
avoid failure) and believing that abil-
ity is changeable are important fac-
tors in resilience and learning.

Further reading. Many books on 
learning center around formal educa-
tion; they are aimed at school teach-
ers and university lecturers. How-
ever, the principles are applicable 
everywhere, including professional 
development. We recommend three 
books:

	˲ Why Don’t Students Like School? by 
Daniel T. Willingham provides a short 

goal orientation involves avoiding 
failure. This leads to negative and 
ineffective behaviors: disorganized 
study, not seeking help, anxiety over 
performance, and avoiding chal-
lenge. It is important that learners 
can make mistakes without severe 
penalties if they are to be directed to-
ward “approach” rather than “avoid-
ance.”

When learning a new skill or train-
ing someone in a new skill, remem-
ber that approaching tasks with a 
growth mindset is effective but also 
a skill to be developed. Unfortu-
nately, we cannot simply tell people 
to have a growth mindset and reap 
the benefits. Instead, nurture this 
skill by seeking or providing honest 
feedback about the process of learn-
ing and the efficacy of strategies. For 
mentors, praise areas where a men-
tee is making progress and accept 
that they will make mistakes without 
chastising them. For learners, reflect 
on how skills have improved in the 
past weeks or months when you are 
doubtful about your progress. Fur-
ther, expect that a growth mindset 
will shift toward a fixed mindset in 
the face of failure, but it can also be 
redeveloped and made stronger with 
practice. Feeling discouraged is nor-
mal, but it does not mean that you 
will always feel discouraged. If you 
feel like quitting, take a break, take 
a walk, consider your strategies, and 
then try again.

Summary
Software developers must continu-
ally learn in order to keep up with 
the fast-paced changes in the field. 
Learning anything, programming in-
cluded, involves committing items to 
memory. Human memory is fascinat-
ingly complex. While it shares some 
similarities with computer architec-
ture, there are key differences that 
make it work quite differently. In this 
article, we have explained the current 
scientific understanding of how hu-
man memory works, how learning 
works, the differences between be-
ginners and experts, and related it all 
to practical steps that software devel-
opers can take to improve their learn-
ing, training, and recruitment.

Recommendations. We have split 
up our recommendations into those 

Intelligent people 
will not always 
make good 
programmers, and 
good programmers 
need not be high in 
general intelligence.
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and readable explana-
tion of many of the prin-
ciples of memory and 
how the brain works.

	˲ The Programmer’s 
Brain by Felienne Her-
mans et al.c relates 

these concepts to programming and 
describes how techniques for learn-
ing and revision that are used at 
school can still apply to professional 
development.

	˲ How Learning Happens: Seminal 
Works in Educational Psychology and 
What They Mean in Practice by Paul 
A. Kirschner and Carl Hendrick20 
provides a tour through influential 
papers, explaining them in plain lan-
guage and the implications and link-
ages between them.

The papers cited can also serve as 
further reading. If you are a software 
developer you may not have access to 
all of them; ACM members with the 
digital library option will have access 
to the ACM papers, although many of 
our references are from other disci-
plines. For more recent papers, many 
authors supply free PDFs on their 
websites; you may wish to try search-
ing the Web for the exact title to find 
such PDFs. Many authors are also 
happy to supply you with a copy if you 
contact them directly.
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