g
e Self-Regulation, Self-Efficacy, and Fear of Failure Interactions

with How Novices Use LLMs to Solve Programming Problems

Brent N. Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

James Prather
Abilene Christian University
Abilene, Texas, USA
james.prather@acu.edu

Lauren E. Margulieux
Georgia State University
Atlanta, Georgia, USA
Imargulieux@gsu.edu

Brett A. Becker Gozde Cetin Uzun

University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Juho Leinonen
Aalto University
Espoo, Finland
juho.2.leinonen@aalto.fi

ABSTRACT

We explored how undergraduate introductory programming stu-
dents naturalistically used generative Al to solve programming
problems. We focused on the relationship between their use of Al
to their self-regulation strategies, self-efficacy, and fear of failure in
programming. In this repeated-measures, mixed-methods research,
we examined students’ patterns of using generative Al with qual-
itative student reflections and their self-regulation, self-efficacy,
and fear of failure with quantitative instruments at multiple times
throughout the semester. We also explored the relationships among
these variables to learner characteristics, perceived usefulness of Al,
and performance. Overall, our results suggest that student factors
affect their baseline use of Al In particular, students with higher
self-efficacy, lower fear of failure, or higher prior grades tended to
use Al less or later in the problem-solving process and rated it as less
useful than others. Interestingly, we found no relationship between
students’ self-regulation strategies and their use of Al Students
who used Al less or later in problem-solving also had higher grades
in the course, but this is most likely due to prior characteristics as
our data do not suggest that this is a causal relationship.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; CS1.

KEYWORDS

artificial intelligence; Copilot; CS1; fear of failure; generative Al;
introductory programming; large language models; LLMs; metacog-
nition; self-efficacy; self-regulation; self-regulated learning

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

ITiCSE 2024, July 8-10, 2024, Milan, Italy

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0600-4/24/07.
https://doi.org/10.1145/3649217.3653621

Georgia State University
Atlanta, Georgia, USA
geetinl @student.gsu.edu

Dastyni Loksa
Towson University
Towson, Maryland, United States
dloksa@towson.edu

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

ACM Reference Format:

Lauren E. Margulieux, James Prather, Brent N. Reeves, Brett A. Becker,
Gozde Cetin Uzun, Dastyni Loksa, Juho Leinonen, and Paul Denny. 2024.
Self-Regulation, Self-Efficacy, and Fear of Failure Interactions with How
Novices Use LLMs to Solve Programming Problems. In Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2024), Fuly 8-10, 2024, Milan, Italy. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3649217.3653621

1 INTRODUCTION

Generative Al (GenAl) is poised to drastically alter programming
education [14]. Some believe that GenAl will negatively impact pro-
gramming education, including warnings that GenAl will render
programming as we currently know it to be obsolete [44]. Con-
versely, many believe that programming will flourish due to GenAL
For instance, the makers of Github Copilot (a GenAl code com-
pletion tool) recently proclaimed that the tool caused a massive
increase in productivity across all developers who were using it!.
Many instructors have had similar opinions — some embracing
GenAlI and some rejecting it or banning its use [26].

Although early research was quick to show the capabilities of
GenAlI with regard to introductory programming assignments and
exams [15, 16], we have much to learn about how GenAl impacts
student learning [4]. If GenAlI tools can answer student questions
[19, 28], interpret unclear syntax error messages [27], and write
whole blocks of code from scratch [38], it has the potential to
scaffold student learning like never before—or remove all critical
thinking from the curriculum.

Two important factors in student learning are metacognition
and self-efficacy [32]. Several proposals for using GenAlI to support
metacognition and self-regulation have been published in the past
year [36, 41], but none have measured how the use of GenAI im-
pacts these critical skills. This paper reports on a mixed-methods,
repeated measures study that explores the use of GenAlI tools in an
undergraduate introductory programming course. In particular, this

Uhttps://www.zdnet.com/article/microsofts- github-copilot-pursues-the-absolute-
time-to-value-of-ai-in-programming/

https://orcid.org/0000-0002-8800-2398
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0001-5781-1136
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0009-0007-4281-3666
https://orcid.org/0000-0002-3164-8788
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0002-5150-9806
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3649217.3653621
https://doi.org/10.1145/3649217.3653621
https://www.zdnet.com/article/microsofts-github-copilot-pursues-the-absolute-time-to-value-of-ai-in-programming/
https://www.zdnet.com/article/microsofts-github-copilot-pursues-the-absolute-time-to-value-of-ai-in-programming/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649217.3653621&domain=pdf&date_stamp=2024-07-03

ITiCSE 2024, July 8-10, 2024, Milan, Italy

study examines student motivations for using GenAl, student pat-
terns of use, and how GenAl use relates to students’ self-regulation,
self-efficacy, and fear of failure while learning programming. Our
research questions were:

e RQ1: How do novice programmers use GenAlI tools to solve
programming problems?

e RQ2: How does the use of Al-generated solutions relate to
students’ self-regulation and self-efficacy in an introductory
programming course?

e RQ3: How does fear of failure interact with students’ use of Al,
self-regulation, and self-efficacy?

2 RELATED WORK

2.1 GenAl in Programming Education

Programming education is already being impacted by GenAlI [3],
with many opportunities and challenges ahead [4]. However, given
that GenAl only broke into the mainstream with the release of
ChatGPT a little over a year ago, empirical evidence is still lacking
while educators must consider or implement big changes. Zingaro
& Porter authored a book, “Learn Al-Assisted Python Programming
with GitHub Copilot and ChatGPT” [35] that Porter used in his
CS1 class in Sept. 2023. In an interview, Porter articulated the role
of GenAl as that of an unavoidable catalyst for change with the
potential to lower the barrier for learning to program and bring
broader and more diverse professionals to industry, in part by ad-
dressing the so-called “hidden curriculum problem”. GenAl might
help overcome these barriers by scaffolding student learning. Tools
such as Copilot provide syntactically correct code completions [12],
and are proficient in explaining, and often eliminating, syntax er-
rors [27]. GenAl can also impact help-seeking behaviors [20], and
students find GenAl worked examples useful for their learning [22].
However, these findings are based on expert evaluations or stu-
dent perceptions. Some empirical evaluations are starting to appear,
such as work on using GenAlI to interpret cryptic syntax errors that
found student subsequent error rates decreased [42, 43]. While not
measuring learning, it is a step toward understanding how GenAI
can be used to scaffold student learning.

2.2 Metacognition & Self-Regulation in
Programming Education

Metacognition and self-regulation are important factors in learn-
ing that improve academic motivation and performance [2, 34, 37,
46]. Metacognition, as explained by Flavell, describes a learner’s
knowledge of their cognitive abilities and strategies [17], and self-
regulation describes a learner’s cyclical process of setting goals,
monitoring their progress, and adjusting their behavior to achieve
those goals [2, 46]. Additionally, Pintrich suggested that the process
of self-regulated learning is influenced by prior knowledge, moti-
vation, behavior, and context [32, 33]. Besides these foundational
theories, there are two metacognitive theories in the CS domain
relevant to learning with Al Xie et al’s theory of instruction for
introductory programming skills suggests incremental instruction
on four skills: 1) Tracing code, 2) Writing correct syntax, 3) Un-
derstanding templates and their use, and 4) Using templates for

277

Lauren E. Margulieux et al.

solving problems. According to the theory, sequencing and provid-
ing explicit instruction for these skills support students [32, 45].
The second theory, Loksa et al’s theory of programming problem-
solving, suggests teaching programming problem-solving through
six stages: 1) Reinterpreting problem prompts, 2) Searching for
analogous problems, 3) Searching for solutions, 4) Evaluating po-
tential solutions, 5) Implementing a solution, and 6) Evaluating the
implemented solution. Loksa et al. suggest learners define their
problem-solving stage when they ask for help [31, 32]. Al tools can
support students in each of these skills and stages.

Research shows self-regulation skills affect learning in CS courses.
For example, students who frequently used metacognitive strategies
typically have higher grades in CS1 courses (e.g., [6]) while students
without metacognitive control are more likely to fail to understand
and implement problems (e.g., [18]). Some of the most popular
interventions to improve self-regulation include reflective activi-
ties and visualization of progress, which in turn improve students’
self-efficacy and performance [37]. A recent systematic review sug-
gests that fostering self-regulation skills among students can lead
to improved learning outcomes for programming tasks [37].

2.2.1 GenAl, Metacognition, and Self-Regulation. Metacognitive
knowledge is difficult to achieve in domains about which the learner
has little content knowledge [17]. GenAlI can provide context-aware
explanations and scaffolding to bridge this gap early in the learn-
ing process. Furthermore, monitoring learning outcomes (ie., a
component of self-regulation) is complex [46], and learners can use
GenAI to support the monitoring by tracking progress, highlighting
areas for improvement, and creating personalized feedback. Imme-
diate and personalized feedback is important in the development
of metacognition and self-regulation strategies [8, 10].

While the opportunities and challenges of GenAlI in terms of
metacognition are being discussed, there is little empirical evidence
to date. Denny et al. note that the developers of Codex named
over-reliance as a key risk of GenAl and caution that relying too
heavily on GenAl tools could hinder the development of crucial
metacognitive skills [14], something that Becker et al. name as a
critical competency in programming [3]. Prather et al. interviewed
CS1 educators who mentioned that GenAl may push metacognitive
demands upon learners early, perhaps before they are ready [38].

2.3 Self-Efficacy in Programming Education

Self-efficacy is an individual’s belief in themselves to achieve spe-
cific goals across different situations [1]. According to Bandura’s
self-efficacy theory, it affects individuals’ resilience in different
situations; people with lower self-efficacy tend to avoid and quit
challenging situations more frequently than those with higher self-
efficacy [1]. Students with higher self-efficacy set higher goals and
persist in achieving their goals while students with lower self-
efficacy view setbacks and challenges as proof of a lack of ability,
causing them to give up on the task, influencing their persever-
ance [21, 30]. In CS education, self-efficacy has been identified as
a strong predictor of student success and achievement [25, 29, 30].
Correlational research has found that self-efficacy is the root cause
of other student success predictors, such as gender [7, 30]. Experi-
mental research in introductory CS courses shows that self-efficacy

Self-Regulation, Self-Efficacy, and Fear of Failure Interactions

interventions, which increase CS-specific self-efficacy, improve per-
formance in those courses [21, 25, 29].

GenAI might improve self-efficacy in programming courses by
providing students with support, feedback, and resources while
learning. According to Bandura, feedback and performance are
two of the four main influences on self-efficacy [1]. Specifically,
Schunk (1991) discovered that self-efficacy improved when students
received feedback that they were making progress and provided
information about how to continue [39]. Further, successfully com-
pleting tasks, especially early in the learning process, increases
self-efficacy, even when students are given ample support [1, 39].
Al tools can help students receive this additional support. They can
provide timely, positive feedback that helps students identify and
correct their errors. Additionally, they can provide resources, such
as starter code or debugging support, that help students complete
tasks, building their self-efficacy.

2.4 Fear of Failure

Overcoming failure is part of the learning process [23]. However,
failure can damage learners’ self-efficacy, which is especially fragile
in novices with little experience in a field [2]. Further, fear of failure,
which predicts how strongly one will try to avoid failure, varies
significantly from person to person [11]. Though there is little
work on fear of failure in CS education, research on academic
fear of failure shows that a high fear of failure can result in task
avoidance, either through procrastination or quitting [9]. Thus, fear
of failure, like self-efficacy, is an important predictor of student
persistence [9]. GenAl might help students work through a fear of
failure by providing more support. Two aspects of programming in
which students typically struggle are interpreting error messages
and debugging [5, 24]. In these, students are facing failure and
unsure of how to proceed, but GenAl may help in both cases.

3 METHODOLOGY

Data were collected from students in an introductory programming
course at Towson University, a mid-size, public US university, that
ran from January to May 2023. Students were encouraged to use
GenAl tools to support their learning and problem-solving as they
wished. Full IRB approval was received to run this study.

3.1 Measurements & Procedures

Students in the course were asked to describe their use of Al tools in
addition to submitting their assignments six times throughout the
semester. Responses to Al use questions were optional. Collecting
data regularly afforded detecting changes in Al use over time. Two
types of data were collected quantitatively with checkboxes:

e Timing of Al use: 1) before attempting solution, 2) before com-
pleting solution, 3) after completing solution, or 4) not used.

e Why Al was used: 1) problem statement understanding/explana-
tion, 2) assistance to speed up writing lines of code, 3) to add a
feature of the solution, 4) to add multiple features of the solution,

5) helped with debugging, 6) other.

To complement these data, researchers collected qualitative data by
asking students to complete a short reflection in which they com-
pared their code to Al-generated code and described their process
for completing the assignment with AL

278

ITiCSE 2024, July 8-10, 2024, Milan, Italy

To examine the effect of these patterns of Al use, several de-
pendent variables were measured at the beginning and end of the
semester to track how they changed over time.

Self-Regulation. Self-regulation was measured with the Motivated
Strategies for Learning Questionnaire (MSLQ) self-regulation sub-
scale [33], which is the most commonly used scale of self-regulation
in computing and general education research [32, 37]. It uses a 7-
point Likert-type scale, ranging from 7="“very true of me” to 1="not
very true of me”.

Self-Efficacy. Self-efficacy was measured with the self-efficacy
scale developed explicitly for programming students designed by
Steinhorst et al. [40]. The scale has been validated with data col-
lected from multiple institutions and compared with similar self-
efficacy measures to establish validity [40]. It uses a 7-point Likert
scale, ranging from 7="Strongly Agree" to 1="Strongly Disagree"
with an additional choice of "No Answer".

Fear of Failure. Academic fear of failure was measured with the
Fear of Failure in Learning Scale [9]. The scale has four subscales—
feelings of shame, performance avoidance, learned helplessness,
and self-handicapping. It uses a 5-point Likert scale, ranging from
5="Strongly Agree" to 1="Strongly Disagree".

Performance. To determine whether students’ behaviors, self-
regulation, self-efficacy, and fear of failure affected their perfor-
mance, final grades were collected.

3.2 Participants

In total, 54 students participated in the study. For the quantitative
analysis, students missing either the pre-test or post-test for the
self-regulation, self-efficacy, or fear of failure measures (n = 11)
and students missing more than one of the six measurements for
Al use and reflection (n = 3) were excluded. As a result, the final
quantitative dataset included 40 participants (i.e., 74% inclusion rate,
which is reasonable for a semester-long repeated measures design).
No systematic differences were found for those excluded based on
final grade, demographic characteristics, or other measures. For the
qualitative analysis, the data were used to explore how students
used AI, which does not require complete datasets. Thus, all data
available were used in the qualitative analysis. Of the 40 participants
with complete datasets, 6 were missing demographic data. Learner
characteristics are described below.

Gender: 20 men, 14 women, 0 other

Age: M =20.85,SD = 4.5

Employment: 76% full-time students, 24% employed

Race: 10% Asian, 37% Black, 3% Hispanic/Latino, 31% White, 19%
Mixed

Major: 74% CS, 26% IT or Information Systems

High school grades/GPA: M = 3.54, SD = .45

College grades/GPA: M = 3.13, SD = .58

College year: 53% 1st-year, 24% 2nd-year, 23% 3rd-year+
Expected grade: 65% A, 32% B, and 3% C

The researchers examined correlations between learner charac-
teristics and other data collected to determine whether any charac-
teristics should be considered as covariates. Because this analysis
was not primary to the research questions and because some sta-
tistical artifacts are expected when running dozens of correlations,
we will report only those relationships with a medium-to-large

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Table 1: Correlation trends between learner characteristics
and Al use. Negative relationships indicate that a high score
in one variable corresponds to a low score in the other.

Use of Al College GPA Expected Grade
r p r p
Speed up code writing -0.42 .02 -0.13 47
Solve one part of solution -0.41 .02 -35 .04
Solve 2+ parts of solution -045 .01 -0.38 .02
Help understand problem -0.55 <.01 -0.43 .01
Explain code to me -0.61 <.01 -044 .01

effect (i.e., r > 0.4). In this analysis, we found that women tended
to use Al later in the problem-solving process, r = 0.41, p = .02. In
addition, students with higher high school grades/GPA tended to
use Al later, r = 0.50, p = .01. We also found a consistent trend that
students with higher college grades/GPA and those who expected
to earn a higher grade in the CS1 course used Al less (see Table 1).

3.3 Limitations

While the researchers tried to capture various aspects of the learn-
ing experience and environment related to the effect of using GenAI
tools on self-regulation strategies, it was not practical to collect
other data that might provide additional relevant information. First,
because students were completing assignments outside of class, we
do not know what other tools they were using to support their
problem-solving, such as IDEs. Similarly, we do not know how
much time they spent on assignments. While both of these vari-
ables might affect how students use Al tools, we did not want to
overburden students with data collection. For the same reason, we
also did not ask students about their attitudes or philosophy about
using Al as a tool. While these factors might affect their behavior,
we assumed that they were likely to evolve over the semester, given
the novelty of GenAl. Similarly, we did not ask students about their
prior experience with Al tools.

3.4 Data Analysis Procedures

Because data from the same instruments were collected from stu-
dents multiple times throughout the semester, repeated measures
ANOVA was the primary statistical test used. This analysis links all
data from one participant together to improve the statistical power
and account for non-independent data points. Thus, it affords com-
parisons between students and how a student changes over time.
The Huynh-Feldt adjustment was used when the assumption of
sphericity was violated, which is common, to make the results more
conservative. Because the study used non-experimental methods,
the results of these analyses should be interpreted as relational,
rather than causal, effects. When correlations were used to analyze
data, Spearman’s correlation coefficient was used when both vari-
ables were continuous, and the point biserial correlation coefficient
was used when one was continuous and the other was dichotomous.

To check assumptions for inferential statistics, the distribution,
kurtosis, and skewness of each quantitative measure were examined.
The kurtosis and skewness for all measures were within the -2 to +2
acceptable range. The measures of self-regulation, self-efficacy, fear
of failure, and performance were all normally distributed. However,

279

Lauren E. Margulieux et al.

the measures of how students used Al all followed a bi-modal
distribution with a peak for low AI use (used AI on 1-2 out of
6 assignments), a peak for high AI use (used Al on 5-6 out of 6
assignments), and a smaller number in the middle (used Al on 3-4
out of 6 assignments). Thus, the measurements for how students
used Al were reclassified into bins for low, medium, and high AI
use for analysis. The timing of Al use followed the same pattern,
and students were reclassified into bins for early Al users (i.e., used
Al before attempting to write code or before creating a working
solution), late Al users (i.e., used Al after creating a working solution
or not at all), or mid Al users (i.e., mix of both). Before students were
reclassified, data were visually inspected to determine whether any
trends could better describe their patterns of use (e.g., increasing use
over time), but no clear trends were found for over 90% of students
(i.e., about four students), leaving too little statistical power to
account for potential other use cases.

To analyze qualitative data, four authors applied content analysis
to review the free-form question “Please describe the process you
went through to complete this assignment. If you can, include when
you decided to use Al, why you decided to use the Al each time you
did, and if you were successful using the Al for what you wanted.
How was the AT helpful to you? Was it ever not helpful? If not,
how was it not helpful?” For one of the labs, they coded one or
two words for each of the ‘sub-questions’ and then met to compare
and agree on words before coding the remaining labs. After all
labs had been coded, two authors met to review that questions had
been correctly coded. At that point, there were 74 unique words
describing answers across all labs. Those words were then grouped
according to the current categories described below in Section 4.1.

4 RESULTS
4.1 Novices’ Use of Al Tools

Our first research question explored how novices used GenAlI tools
to solve programming problems. To address this exploratory ques-
tion, we used a mixed methods approach with quantitative data
related to when and for what purpose students used Al tools and
qualitative data related to strategies students used for solving prob-
lems with AL We also collected quantitative data about how useful
students found Al These data were collected six times throughout
the semester to examine how timing, use, and strategies changed.

In the quantitative data, we found a consistent correlation be-
tween the timing of Al use and different types of Al use (see Table 2).
These data show that students who used Al earlier in the problem-
solving process also tended to use Al more consistently over the
six assignments, except to speed up code writing. We also found
that the perceived usefulness of Al linearly decreased over time, F
=7.20, p = .01. In addition, students classified into the high Al use
group found it more useful than those classified into the low Al use
group, F = 39.31, p < .01, partial eta? = .72, unsurprisingly.

To examine patterns of Al timing and use, we used a repeated
measures analysis to determine whether Al timing and use were
consistent within participants across time. We found no strong
linear effect over time, F = 2.12, p = .08. However, the data did show
a U-shaped curve, F = 5.01, p = .03. In this pattern, students tended
to use Al earlier in the problem-solving process during the middle
of the semester compared to the beginning or end.

Self-Regulation, Self-Efficacy, and Fear of Failure Interactions

Table 2: Correlation between timing of Al use and type of
Al use over six assignments. Negative relationships indicate
that earlier use relates to more consistent use over time

Timing of Al Use

r p
Speed up code writing -0.22 .19
Solve one part of solution -0.46 <.01
Solve 2+ parts of solution -0.41 .01
Help understand problem -0.57 <.01
Explain code to me -0.52 <.01

Related to how students used Al the patterns vary. Al was used
to speed up code writing by an average of 46% of students with no
change over time, F = 1.78, p = .12. Similarly, Al was used to explain
code by a larger percentage of students, 66%, with no significant
change over time, F = 2.14, p = .07. Al was intermittently used to
solve one part of a problem by an average of 63% of students, F =
2.69, p = .03, but only the 4th order equation was significant, F =
7.17, p = .01, meaning that the direction of the slope changed three
times across six time points. This result likely means that whether
students used Al in this way depended on the assignment rather
than following a pattern over time.

The last two types of Al use followed consistent patterns. Al
was used to solve multiple parts of the problem by an average of
50% of students, F = 4.99, p < .01. This pattern followed a strong
U-shaped curve, F = 13.56, p < .01, with more students using Al for
this purpose mid-semester, as the complexity of problems increased,
than earlier or later. In contrast, while many students used Al to
understand the problem on average, 67%, this type of use decreased
linearly throughout the semester, F = 8.17, p = .01.

The qualitative data provide more information about these pat-
terns (see Figure 1). When asked why they used Al, the responses
were most commonly classified as “Problem-Solving and Solution”
with an average of 20 mentions across all labs. Some of the 22 items
in this theme were: explain, solution, starting, example, compare,
and advice. This fits well with the noted trends of students using
Al to explain code and help solve pieces of the problem. The sec-
ond most popular theme was “Process and Improvement” with an
average of 12 mentions per lab. Some of the 17 items in this theme
were: speed, save time, accelerate, explore, and unstuck. This also
fits well with the trend that students used Al to speed up code
writing. The theme “Understanding and Clarification” contained
9 items such as: didn’t understand, could not explain, unfamiliar
solutions, need context, and confusion. This theme shows a low
but consistent trend in students’ confusion at responses from the
Al tools they were using.

When asked how AI was helpful, the most popular answers
across all labs (except for labs 1 (15 vs 13) and lab 4 (11 vs 9)) was also
“Problem-Solving and Solutions.” Students wrote about using Al to
check their own complete solutions, helping them start a solution,
or helping them get over the syntax barrier for a new programming
language. Interestingly, this pattern changed drastically over time,
peaking in labs 2 and 5. This supports our quantitative findings on
students using Al to solve one part of a problem.

The most frequent category for "How Was Al Not Helpful" was
"Coding Challenges and Errors” (18). The top two concepts included

280

ITiCSE 2024, July 8-10, 2024, Milan, Italy

50 = Problem-Solving and

(a) Why use AI? Solutions

40 = Process and

Improvement

30 Coding Challenges

and Errors

Count

20 = Understanding and

Clarification

= Difficulty and
Complexity

Trust and Doubt

50 = Problem-Solving and

Solutions

(b) How was Al helpful?

Coding Challenges
and Errors

= Understanding and
Clarification

Count

= Process and
Improvement

= Difficulty and
Complexity

Trust and Doubt

50 Coding Challenges and

(c) How was Al not helpful? Errors

40 = Trust and Doubt

= Understanding and

30 Clarification

Count

= Difficulty and

20 Complexity

= Process and
Improvement

= Problem-Solving and
6 Solutions

Figure 1: Occurrences of qualitative themes in student lab
responses from week to week based on three questions we
asked: (a) Why use AI? (b) How was AI helpful? (c) How was
Al not helpful?

errors and foreign syntax. The second most identified category was
"Trust and Doubt" (17), which included concepts like code looked
odd, wrong language, incorrect, and inaccurate. It is not surprising
that students did not trust a system that sometimes gave answers
in a different programming language.

4.2 Effects of Al on Self-Regulation,
Self-Efficacy, & Performance

Our second research question examined how students’ use of Al
tools related to their self-regulation and self-efficacy through their
introductory programming course. In these repeated measures anal-
yses, the between-subjects factors were timing and use of Al (i.e.,
early, mid, and late timing and low, medium, and high use), and
the within-subjects factors were self-regulation and self-efficacy,
which were collected at the beginning and end of the semester. As
described in the previous section (4.1), individual Al use behav-
iors were highly correlated (i.e., students who used Al earlier also
tended to use it more consistently and for more types of tasks).

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Table 3: Means and standard deviations for self-efficacy (S-E)
scores (scale of 1-5) differentiated by AI use behaviors.

Pre-Test S-E | Post-Test S-E

M SD M SD
Low AI Use 331 .54 425 .73
Medium Al Use | 3.03 .70 3.77 .38
High AI Use 277 .72 3.35 .67

While we explored all individual behaviors, the analyses followed
the same pattern, so we also created an overall Al use variable as
the between-subjects variable to simplify the results: low Al use n
=12, mid Al use n = 8, high Al use n = 19.

Between Al use and self-regulation, the results show no relation-
ship. Self-regulation behaviors did not change from the pre-test, M
=3.27, SD = .40, to the post-test, M = 3.22, SD = .47, F = 0.46, p = .50.
There were also no differences between different types of Al use,
F =0.52, p = .60, nor an interaction, F = 0.13, p = .88, suggesting
students’ self-regulation behaviors and Al use were unrelated.

Between Al use and self-efficacy, however, the results show large
changes. There was a large increase across time, F = 40.60, p < .01,
partial eta? = .53, and a difference between different levels of Al use,
F = 6.10, p = .01, partial eta? = .25 (see Table 3). Independent sub-
scales of Steinhorst’s [40] self-efficacy in programming instrument
were considered separately but followed the same pattern. Thus,
the overall score was used. In this pattern, students who used Al
more and earlier had lower self-efficacy, and students who used Al
less and later had higher self-efficacy. There was no interaction be-
tween time and Al use, F = 1.01, p = .37, suggesting that all students’
self-efficacy increased at about the same rate.

To complement these analyses, we also explored the relationship
between Al use behaviors and students’ final grades in the course.
Consistently, we found that students who use Al later or less also
had higher grades: timing, r = 0.33, p = .04; speed up code writing,
r =-0.45, p < .01; solve one part of solution, r = -0.37, p = .02; solve
2+ parts of solution, r = -0.54, p < .01; help understand problem, r
=-0.57, p < .01; and explaining code, r = -0.59, p < .01.

4.3 Effects of Fear of Failure on AI Use

Our last research question explored whether students’ academic
fear of failure interacted with their use of Al, self-regulation, self-
efficacy, or performance. The latter three were analyzed with Spear-
man’s correlation, given the continuous nature of each variable.
We found that there were no correlations between fear of failure
and self-regulation, self-efficacy, or performance for either pre- or
post-tests. These results suggest that fear of failure is a unique
characteristic of students that is unrelated to these other factors.
That fear of failure is a unique characteristic is important because,
like self-efficacy and performance, it was related to how students
used AL To explore this relationship, we again used a repeated
measures analysis to account for measures of fear of failure collected
at the beginning and end of the semester and classified participants
with the low, medium, and high AI use categories. We found no
change across time, F = 0.02, p = .89, but a substantial difference
between different types of Al use, F = 4.62, p = .02, partial eta® = .22,
with no interaction effect, F = 0.32, p = .73. Students with a higher

281

Lauren E. Margulieux et al.

Table 4: Means and standard deviations for fear of failure
(FoF) (scale of 1-5) differentiated by AI use behaviors.

Pre-Test FoF | Post-Test FoF

M SD M SD
Low AI Use 3.17 .76 3.07 .97
Medium AI Use | 3.23 .87 3.38 .78
High AI Use 384 .61 3.84 .70

fear of failure tended to have high and earlier Al use rather than
the low or medium use (see Table 4).

5 DISCUSSION & CONCLUSION

Students in our study entered the class with a baseline level of Al
use and all but a few students maintained that baseline level of use
relative to other students. This study provides the first empirical
evidence that instructor fears of over-reliance [4, 26] might be
overblown as our findings indicate at least some students use GenAl
to support, not replace, their own problem-solving. Furthermore,
the perceived usefulness of Al linearly decreased over time. Our
qualitative findings indicate students utilize Al to help them when
needed but are still interested in learning and that some do not
inherently trust the answers that it gives and recognize when the
Al does not provide useful or correct responses.

It has recently been postulated that LLMs have the potential
to support less prepared students by providing rich, on-demand
scaffolding [3, 38]. We found that student factors such as prior
grades, self-efficacy, and fear of failure correlated with students’
use of Al, and lower-performing students tended to use Al more.
This finding could be an empirical indication that LLMs can, with
proper guidance, provide scaffolding to help less prepared and
less confident students. While we found that Al use is related to
performance, the same factors that correlate with AI use are also
predictors of performance, so these data do not suggest that Al use
directly affects performance. Further experimental work is needed.

Our qualitative data also suggest that students might need help
productively using GenAlI (e.g., a good prompt should not give an-
swers in the wrong language). One way to support students would
be to integrate metacognitive support strategies in GenAl tools
and their design [36, 41]. Emerging pedagogical techniques that
integrate LLMs, such as “Prompt Problems” are attempting to do
this by helping students to learn how to use AI while still learning
to code [13]. This approach organizes the process of problem speci-
fication and solution evaluation in an iterative form, which fits well
into emerging self-regulation frameworks that promote classic pro-
gramming metacognition and self-regulation strategies and skills
while using LLMs [36]. Explicitly teaching students to use GenAl
serves much the same purpose that teaching them self-regulation
strategies does—to help them help themselves.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
grant #1941642 and the Research Council of Finland under grant
#356114.

Self-Regulation, Self-Efficacy, and Fear of Failure Interactions

REFERENCES

(1]
(2]

[3

(4]

w1
=

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19]

[20]

[21]

[22

Albert Bandura. 1977. Self-efficacy: Toward a Unifying Theory of Behavioral
Change. Psychological Review 84, 2 (1977), 191.

Albert Bandura. 1986. Self-regulation of Motivation and Action Through Inter-
nal Standards and Goal System. Goal Concepts in Personality and Social Social
Psychology (1986), 19-85.

Brett A. Becker, Michelle Craig, Paul Denny, Hieke Keuning, et al. 2023. Gener-
ative Al in Introductory Programming. https://csed.acm.org/large-language-
models-in-introductory-programming

Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, et al.
2023. Programming Is Hard - Or at Least It Used to Be: Educational Opportunities
and Challenges of AI Code Generation. In Proc. 54th ACM Technical Symposium
on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). ACM,
NY, NY, USA, 500-506.

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, et al. 2019. Com-
piler Error Messages Considered Unhelpful: The Landscape of Text-Based Pro-
gramming Error Message Research. In Proc. Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland) (ITiCSE-WGR
’19). ACM, NY, NY, USA, 177-210. _https://doi.org/10.1145/3344429.3372508
Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the role of
self-regulated learning on introductory programming performance. In Proc. 1st
Intl. Workshop on Comp. Ed. Research. 81-86.

Sylvia Beyer. 2014. Why are women underrepresented in Computer Science?
Gender differences in stereotypes, self-efficacy, values, and interests and predic-
tors of future CS course-taking and grades. Computer Science Education 24, 2-3
(2014), 153-192.

Deborah L Butler and Philip H Winne. 1995. Feedback and self-regulated learning:
A theoretical synthesis. Review of Educational Research 65, 3 (1995), 245-281.
Beomkyu Choi. 2021. I'm afraid of not succeeding in learning: Introducing an
instrument to measure higher education students’ fear of failure in learning.
Studies in Higher Education 46, 11 (2021), 2107-2121.

Yiu Bun Chung and Mantak Yuen. 2011. The role of feedback in enhancing
students’ self-regulation in inviting schools. J. of Invitational Theory and Practice
17 (2011), 22-27

Marco Estévao Coreia, Antonio Rosado, Sidénio Serpa, and Vitor Ferreira. 2017.
Fear of failure in athletes: Gender, age and type of sport differences. Revista
Iberoamericana de Psicologia del Ejercicio y el Deporte 12, 2 (2017), 185-193.

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
In Proc. of the 54th ACM Tech. Symp. on Comyp. Sci. Ed. V. 1 (Toronto ON, Canada)
(SIGCSE 2023). ACM, NY, USA, 1136-1142. https://doi.org/10.1145/3545945.
3569823

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, et al. 2024.
Prompt Problems: A New Programming Exercise for the Generative Al Era. In
Proc. 55th ACM Tech. Symp. on Comp. Sci. Ed. V. 1 (Portland, OR, USA) (SIGCSE
2024). ACM, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630909

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, et al. 2024.
Computing Education in the Era of Generative AL. Commun. ACM 67, 2 (jan
2024), 56-67. https://doi.org/10.1145/3624720

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, et al.
2022. The Robots Are Coming: Exploring the Implications of OpenAI Codex on
Introductory Programming. In Proc. 24th Australasian Computing Education Conf.
(Virtual Event, Australia) (ACE "22). ACM, NY, NY, USA, 10-19.

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
et al. 2023. My AI Wants to Know If This Will Be on the Exam: Testing OpenAI’s
Codex on CS2 Programming Exercises. In Proc. 25th Australasian Computing
Education Conf. (Melbourne, Australia) (ACE 23). ACM, NY, NY, USA, 97-104.
John H Flavell. 1979. Metacognition and cognitive monitoring: A new area of
cognitive-developmental inquiry. American Psychologist 34, 10 (1979), 906.
Marietjie Havenga. 2015. The role of metacognitive skills in solving object-
oriented programming problems: a case study. TD: The Journal for Transdisci-
plinary Research in Southern Africa 11, 1 (2015), 133-147.

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, et al. 2023. Explor-
ing the Responses of Large Language Models to Beginner Programmers’ Help
Requests. In Proc. 2023 ACM Conf. on International Computing Education Research
- Volume 1 (Chicago, IL, USA) (ICER "23). ACM, NY, NY, USA, 93-105.

Irene Hou, Sophia Mettille, Owen Man, Zhuo Li, et al. 2024. The Effects of
Generative Al on Computing Students’ Help-Seeking Preferences. In Proc. 26th
Australasian Computing Education Conf. (Sydney, NSW, Australia) (ACE °24).
ACM, NY, NY, USA, 39-48. https://doi.org/10.1145/3636243.3636248
Christopher D Hundhausen, Anukrati Agrawal, and Pawan Agarwal. 2013. Talk-
ing about code: Integrating pedagogical code reviews into early computing
courses. ACM Transactions on Computing Education (TOCE) 13, 3 (2013), 1-28.
Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, et al. 2024. Evaluating
LLM-Generated Worked Examples in an Introductory Programming Course. In
Proc. 26th Australasian Computing Education Conf. (Sydney, NSW, Australia) (ACE
"24). ACM, NY, NY, USA, 77-86. https://doi.org/10.1145/3636243.3636252

282

[23

S
=)

[25

[26

[27]

[28

[29

[30

[31

[32

[37

[38

[40

[41

[42

ITiCSE 2024, July 8-10, 2024, Milan, Italy

Manu Kapur. 2015. Learning from productive failure. Learning: Research and
Practice 1, 1 (2015), 51-65.

Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation
Mechanisms and Error Message Presentation on Novice Programmer Behavior
(SIGCSE °20). ACM, NY, NY, USA, 759-765.

Piivi Kinnunen and Beth Simon. 2011. CS majors’ self-efficacy perceptions in
CS1: results in light of social cognitive theory. In Proc. 7th International Workshop
on Computing Education Research. 19-26.

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance
is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools Such as ChatGPT and
GitHub Copilot. In Proc. 2023 ACM Conf. on International Computing Education
Research - Volume 1 (Chicago, IL, USA) (ICER °23). ACM, NY, NY, USA, 106-121.
Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, et al. 2023. Using Large
Language Models to Enhance Programming Error Messages (SIGCSE 2023). ACM,
NY, NY, USA, 563-569. https://doi.org/10.1145/3545945.3569770

Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. CodeHelp:
Using Large Language Models with Guardrails for Scalable Support in Program-
ming Classes. In Proc 23rd Koli Calling Int. Conf. on Comp. Ed. Research (Koli,
Finland). ACM, NY, USA, 11 pages. https://doi.org/10.1145/3631802.3631830
Alex Lishinski and Aman Yadav. 2021. Self-evaluation interventions: Impact on
self-efficacy and performance in introductory programming. ACM Transactions
on Computing Education (TOCE) 21, 3 (2021), 1-28.

Alex Lishinski, Aman Yadav, Jon Good, and Richard Enbody. 2016. Learning
to program: Gender differences and interactive effects of students’ motivation,
goals, and self-efficacy on performance. In Proc. 2016 ACM Conf. on International
Computing Education Research. 211-220.

Dastyni Loksa, Amy] Ko, Will Jernigan, Alannah Oleson, et al. 2016. Program-
ming, problem solving, and self-awareness: Effects of explicit guidance. In Proc.
2016 CHI Conf. on Human Factors in Comp. Sys. 1449-1461.

Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, et al. 2022.
Metacognition and Self-Regulation in Programming Education: Theories and
Exemplars of Use. ACM Trans. Comput. Educ. 22, 4, Article 39 (Sept 2022), 31 pages.
https://doi.org/10.1145/3487050

Paul R Pintrich and Elisabeth V De Groot. 1990. Motivational and self-regulated
learning components of classroom academic performance. J. of Educational
Psychology 82, 1 (1990), 33.

Paul R Pintrich and Dale H Schunk. 2002. Motivation in education: Theory, research,
and applications. Prentice Hall.

Leo Porter and Daniel Zingaro. 2023. Learn Al-Assisted Python Programming with
GitHub Copilot and ChatGPT. Manning, Shelter Island, NY, USA.

Prajish Prasad and Aamod Sane. 2024. A Self-Regulated Learning Framework
using Generative Al and its Application in CS Educational Intervention Design.
In Proc. 55th ACM Tech. Symp. on Comp. Sci. Ed. (Portland, OR, USA) (SIGCSE
2024). ACM, NY, USA, 7 pages.

James Prather, Brett A. Becker, Michelle Craig, Paul Denny, et al. 2020. What do we
think we think we are doing? Metacognition and self-regulation in programming.
In Proc. 2020 ACM Conf. on Int. Comp. Ed. Research. 2-13.

James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, et al. 2023. The Robots
Are Here: Navigating the Generative Al Revolution in Computing Education.
In Proc. 2023 Working Group Reports on Innovation and Technology in Computer
Science Education (Turku, Finland) (ITiCSE-WGR °23). ACM, NY, NY, USA, 108-159.
https://doi.org/10.1145/3623762.3633499

Dale H Schunk. 1991. Self-efficacy and academic motivation. Educational Psy-
chologist 26, 3-4 (1991), 207-231.

Phil Steinhorst, Andrew Petersen, and Jan Vahrenhold. 2020. Revisiting self-
efficacy in introductory programming. In Proc. 2020 ACM Conf. on International
Computing Education Research. 158-169.

Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, et al.
2023. The Metacognitive Demands and Opportunities of Generative Al
arXiv:2312.10893 [cs.HC]

Andrew Taylor, Alexadra Vassar, Jake Renzella, and Hammond Pearce. 2024. dcc
—help: Transforming the Role of the Compiler by Generating Context-Aware
Error Explanations with Large Language Models. In Proc. 55th ACM Technical
Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024).
ACM, NY, USA, 7 pages.

Sierra Wang, John C. Mitchell, and Chris Piech. 2024. A Large Scale RCT on
Effective Error Messages in CS1. In Proc. 55th ACM Tech. Symp. on Comp. Sci. Ed.
V. 1 (Portland, OR, USA) (SIGCSE 2024). ACM, NY, USA, 7 pages.

Matt Welsh. 2022. The End of Programming. Commun. ACM 66, 1 (2022), 34-35.
Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, et al. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253.

Barry J Zimmerman. 1990. Self-regulated learning and academic achievement:
An overview. Educational Psychologist 25, 1 (1990), 3-17.

https://csed.acm.org/large-language-models-in-introductory-programming
https://csed.acm.org/large-language-models-in-introductory-programming
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3636243.3636248
https://doi.org/10.1145/3636243.3636252
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3623762.3633499
https://arxiv.org/abs/2312.10893

	Abstract
	1 Introduction
	2 Related Work
	2.1 GenAI in Programming Education
	2.2 Metacognition & Self-Regulation in Programming Education
	2.3 Self-Efficacy in Programming Education
	2.4 Fear of Failure

	3 Methodology
	3.1 Measurements & Procedures
	3.2 Participants
	3.3 Limitations
	3.4 Data Analysis Procedures

	4 Results
	4.1 Novices' Use of AI Tools
	4.2 Effects of AI on Self-Regulation, Self-Efficacy, & Performance
	4.3 Effects of Fear of Failure on AI Use

	5 Discussion & Conclusion
	Acknowledgments
	References

