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Abstract

Gravitational wave searches are crucial for studying compact sources such as neutron stars and black holes. Many
sensitive modeled searches use matched filtering to compare gravitational strain data to a set of waveform models
known as template banks. We introduce a new stochastic placement method for constructing template banks,
offering efficiency and flexibility to handle arbitrary parameter spaces, including orbital eccentricity, tidal
deformability, and other extrinsic parameters. This method can be computationally limited by the ability to
compare proposal templates with the accepted templates in the bank. To alleviate this computational load, we
introduce the use of inner product inequalities to reduce the number of required comparisons. We also introduce a
novel application of Gaussian Kernel Density Estimation to enhance waveform coverage in sparser regions. Our
approach has been employed to search for eccentric binary neutron stars, low-mass neutron stars, primordial black
holes, and supermassive black hole binaries. We demonstrate that our method produces self-consistent banks that
recover the required minimum fraction of signals. For common parameter spaces, our method shows comparable
computational performance and similar template bank sizes to geometric placement methods and stochastic
methods, while easily extending to higher-dimensional problems. The time to run a search exceeds the time to
generate the bank by a factor of ( )105 for dedicated template banks, such as geometric, mass-only stochastic, and
aligned spin cases, ( )104 for eccentric and ( )103 for the tidal deformable bank. With the advent of efficient
template bank generation, the primary area for improvement is developing more efficient search methodologies.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Gravitational waves (678)

1. Introduction

Gravitational waves (GWs) are distortions in spacetime. One
mechanism for generating GWs is accelerating two massive
compact objects, such as neutron stars and black holes
(A. Einstein 1916, 1918). When these compact objects form
a binary system, their mutual gravitational attraction causes
them to spiral toward each other, producing GWs that travel
outward at the speed of light. We observe these GWs with
ground-based detectors, such as the Advanced Laser Inter-
ferometer Gravitational-wave Observatory (LIGO) and
Advanced Virgo (F. Acernese et al. 2015; LIGO Scientific
Collaboration et al. 2015). Since the commencement of the
advanced detector era in 2015, Advanced LIGO and Virgo
have detected ( )100 GW sources (B. P. Abbott et al. 2019;
S. Olsen et al. 2022; R. Abbott et al. 2023b, 2024; A. K. Mehta
et al. 2023; A. H. Nitz et al. 2023).

The initial identification of gravitational-wave sources
involves conducting searches (S. A. Usman et al. 2016;
C. Messick et al. 2017; Q. Chu et al. 2022; P. T. H. Pang et al.
2020; F. Aubin et al. 2021; K. Cannon et al. 2021). Model-
based searches typically employ matched filtering, which
compares the detector data with modeled GW signals (B. Allen

et al. 2012; S. Babak et al. 2013). Since the properties of a
potential source are unknown, a discrete set of template
waveforms, known as a template bank, is used.
Template banks are carefully constructed to ensure minimal

loss in the signal-to-noise ratio (SNR; B. S. Sathyaprakash &
S. V. Dhurandhar 1991; R. Balasubramanian et al. 1996;
B. J. Owen 1996; B. J. Owen & B. S. Sathyaprakash 1999;
I. W. Harry et al. 2009; B. Allen et al. 2012; D. A. Brown et al.
2012; T. Dal Canton et al. 2014; S. Roy et al. 2019; C. Hanna
et al. 2023). An ideal template bank contains at least one
sufficiently similar template waveform to identify any potential
signal within a designated parameter space. A valid template
bank algorithm strategically fills the parameter space with
templates to limit loss in SNR and minimizes redundant
templates. Additionally, it should adapt to the specific
characteristics of the gravitational-wave source population
studied, allowing the ability to analyze data for a diverse range
of astrophysical scenarios.
Various techniques exist for constructing a template bank.

The two main classes of methods are geometric (S. Babak et al.
2006; D. A. Brown et al. 2012; S. Schmidt et al. 2024) and
stochastic placement techniques (S. Babak 2008; I. W. Harry
et al. 2009; G. M. Manca & M. Vallisneri 2010; P. Ajith et al.
2014). There also exist hybrid methods that utilizes both
approaches. (S. Roy et al. 2017, 2019). Geometric methods
typically place template waveforms using a lattice technique;
this generally requires a known metric, which directly

The Astrophysical Journal, 975:212 (10pp), 2024 November 10 https://doi.org/10.3847/1538-4357/ad7d87

© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

1



quantifies the similarity of signals. Afterwards, the templates
are converted into a physical parameter space. This approach
guarantees that every template captures a predefined minimum
percentage of the signal (B. J. Owen 2017b; R. Prix 2007). One
challenge is that the metric may only be flat in the nonphysical
space. This may result in over-placing templates near and
outside the physical space boundaries. These templates need to
be included because they may be better at recovering signals
near the boundary than the templates within the physical space
(T. Cokelaer 2007; D. A. Brown et al. 2012; A. Coogan et al.
2022). Consequently, since the computational cost of a search
is proportional to the number of templates produced from any
method, including these templates can lead to an excess in the
template count, making the search more expensive to perform.
This approach is not optimal for complicated boundaries,
unknown metrics, or for more intricate detection studies
requiring nontrivial parameter spaces.

An alternative approach is a stochastic placement technique.
This method can work without an explicit metric and does not
attempt to construct a lattice to place templates. Instead,
templates are placed directly in the physical space and
iteratively added to the bank until the parameter space is
sufficiently well covered. There are several approaches for
stochastic template proposals and how templates are evaluated
for inclusion in a bank. Stochastic methods typically propose
templates either randomly or according to a probability
distribution (S. Privitera et al. 2014; N. Indik et al. 2017).
Various template acceptance strategies exist, such as rejecting
templates that retrieve more than a predetermined percentage of
the SNR. Alternatively, some methods gauge the density of
templates; if the volume of templates surpasses a specified
threshold, the template bank is deemed adequately covered
(I. W. Harry et al. 2009). Unlike geometric methods, stochastic
methods provide less stringent guarantees on the completeness
of the template bank, sometimes resulting in banks with small
holes with lower accuracy of SNR reconstruction. However,
stochastic methods in general offer a higher degree of
flexibility than geometric methods and allow the ability to
perform searches for many varieties of circumstances, such as
eccentric or deformable sources.

In a broader scientific context, the construction of template
banks can be likened to the principles of experimental design,
where the goal is to efficiently sample a high-dimensional
parameter space, similar to methods used in statistics, computer
science, and manufacturing for uncertainty quantification and
optimization (J. Sacks et al. 1989). Each experiment in these
fields corresponds to a specific set of input parameters, and the
objective is often to understand the variation of a quantity of
interest (QoI) based on these parameters, ensuring adequate
space-filling to capture the underlying behavior of the system
(J. Sacks et al. 1989). Similarly, template banks for GW
detection aim to cover the parameter space as fully as possible
to maximize detection efficiency and minimize missed signals.

In this paper, we present a new stochastic placement method.
We show that this method produces selfconsistent banks that
recover the SNR of any potential signal within a target search
space, with losses below a chosen threshold. We also show that
this method has already been used to conduct various searches,
such as (low-mass and eccentric) neutron stars, (supermassive
and primordial) black holes, and neutron star–black hole binaries
that produce gamma-ray bursts. Finally, we show how the
number of parameters in a bank scales the time to complete a

search by generating different banks with varying intrinsic
parameters, such as spin, eccentricity, and or tidal deformability.

2. Evaluation of Template Bank Coverage

We assess the effectiveness of a template bank by
determining the fraction of SNR that its best matching template
can recover for a given source, known as the fitting factor (FF;
T. A. Apostolatos 1995). To quantify the similarity between
template waveforms and the ability of one GW waveform to
recover the SNR of another, we define the overlap between
waveforms to be
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signal power extracted from a modeled signal h1 with the

waveform model h0, defined as
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Where Sn( f ) is noise power spectral density and f is frequency.

Since an overall phase and the absolute time of arrival are

typically nuisance parameters in a search, we define the phase

and time maximized overlap to be the match . This

formalism is for a nonprecessing signal. For precessing signals,

refer to I. Harry et al. (2016).
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The match measures how well the observed waveform

correlates with the expected waveform for a given detector

sensitivity. The maximum match for a potential signal hi with

all the templates in a bank htb is the fitting factor. The same

waveform approximant is used for both templates when testing

the coverage of the bank.
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The FF represents the fraction of the SNR that is recovered by

the template bank for a given signal. For instance, consider a

template bank constructed with a minimal match of 0.95. This

bank is expected to recover signals with FFs of 0.95, such that

up to 5% of a signal’s SNR or a maximum of 14% of the total

number of signals may be sacrificed. FFs less than 0.95 indicate

regions within the bank where templates cannot fully recover

the SNR of a reference signal, suggesting potential gaps in

coverage. FFs at 0.95 and above signify that the bank is

adequately populated with templates, capable of recovering at

least 95% of the SNR.

3. Methods: Stochastic Template Bank Algorithm

Our method uses a stochastic approach to place templates
directly in the physical space and enables the generation of
templates that cover a wide variety of parameter spaces,
including those parameterized by mass, spin, tidal deformability,
and eccentricity. If templates include detector responses, this
method can also cover those extrinsic parameters. A diagram of
the algorithm is illustrated in Figure 1, where it is divided into
two main processes: the mechanism that proposes templates
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(discussed in Section 3.1), and the optimized procedure that
determines whether a proposed template should be included into
the bank (discussed in Section 3.2). Overall, this method
proposes templates and determines whether the inclusion of the
templates sufficiently covers the parameter space to recover any
potential signal and will repeat until the desired coverage is
achieved.

The bank is sufficiently covered under two termination
criteria: minimal match and tolerance. Tolerance is the
termination criteria threshold defined by the user. When the
tolerance falls below the acceptance fraction, i.e., the fraction
of accepted versus the proposed templates, the region of a
template bank is considered to be completed. This criterion
determines how many templates must be drawn to sufficiently
cover the bank. Lower tolerance values generate banks with
more templates to cover the parameter space adequately, while
larger tolerance values do the opposite. The minimal match is

the minimum percentage of SNR that at least one template in
the bank can recover any fiducial signal. We use this criterion
to accept or reject proposal templates. If the match between the
proposal and the accepted templates is less than the minimal
match, that proposed template will be added to the bank. If the
template has a match greater than the minimal match condition,
sufficient templates exist in the bank to recover any given
signal in that region.

3.1. Template Sampling Algorithm

In this section, we detail the template sampling method, the
first stage of our stochastic template bank method. We first
initialize the method with a set of user-defined parameters, such
as properties of the source, the lower frequency cutoff, and the
PSD model. The sample templates are drawn within the bounds
of chirp time. Chirp time (τ0), known as the zeroth order signal

Figure 1. Stochastic Bank algorithm diagram. Points are randomly sampled from the prior distribution and within distinct bins defined by chirp time τ0. Waveforms
are then generated with a reduced frequency model. When a template is proposed, we assess if including the proposal in the template bank will improve the coverage
of the desired parameter space. This assessment is outlined in the blue box and involves comparing the proposed template with the nearest neighboring templates in
chirp time. Templates are added to the bank if the match between the proposed template and the accepted templates falls below the minimal match condition. If the
match exceeds the minimal match condition, the bank is deemed adequately covered in that region. Match calculations are stored to streamline the process and avoid
redundant computations for new proposed templates, utilizing a triangle inequality for efficient comparisons. Upon completing comparisons and reaching the minimal
match threshold, tolerance checks, outlined in red, ensure the bank’s coverage adequacy. If the tolerance condition is unmet, additional samples are drawn, either
stochastically from the prior distribution or with a Gaussian Kernel Density Estimation method. The methods are swapped if one technique performs better than the
other, as depicted in the beige box. Proposals are once again compared with the accepted templates. Once the tolerance condition is satisfied, accepted templates are
saved and the process iterates for subsequent bins until the entire bank is sufficiently covered. The red arrows represent the checks and repetition in method required to
fulfill either tolerance or minimal match conditions.

3

The Astrophysical Journal, 975:212 (10pp), 2024 November 10 Kacanja et al.



duration in time, defines the regions of template placement
(S. Babak et al. 2006). We utilize τ0 bins for sampling nearby
templates because significant differences in chirp time between
signals would lead to higher mismatches. Moreover, stochastic
methods struggle to parallelize the physical space sampling
over multiple cores because splitting up the parameter space
can be challenging (A. Coogan et al. 2022). Utilizing τ0
boundaries facilitates faster template bank generation by
parallelizing different τ0 bins along different cores. τ0 is
defined as follows

( )
( )

a f
50

0 lower

chirp

5 3

t =


where a0 is

( )
( )

( )a f
f
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256
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and chirp is defined as
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where m1 and m2 is the mass of primary and secondary,

respectively.
To define the τ0 boundaries, we calculate the chirp time

defined above using a default lower chirp time frequency of
15 Hz for the minimum and maximum mass range corresp-
onding to the start and end τ0. The start τ0 will correspond to
the highest masses in the space and the end will correspond to
the lowest mass pair. The crawl parameter determines the width
of each bin. Once the τ0 boundaries are defined, we draw the
first set of points from the prior distribution of the parameters
within the first τ0 bin. The sampled templates are either
accepted or rejected into the bank (elaborated in Section 3.2).

The objective of an effective stochastic proposal is to ensure
comprehensive coverage of the parameter space, minimizing
gaps and undercoverage. An ideal stochastic proposal would be
one proportional to the final template density, which is uniform
in metric space. In general, one may not know this distribution
a priori. To approximate the ideal distribution, and minimize
the chance of gaps, holes, or undercoverage, we utilize a
Gaussian Kernel Density Estimate (KDE). We construct the
KDE from the most recently accepted template parameters after
a sufficiently large population is collected using a chosen prior
proposal distribution. The KDE distribution updates as new
points are accepted and can then evolve toward the ideal
distribution. However, the KDE alone cannot fully resolve
issues arising from complex boundaries within the parameter
space. Hence, the algorithm switches between drawing
uniformly from the prior proposal and the KDE-based proposal
based on which is more efficient at the time. Once the first τ0
bin has been sufficiently filled with templates and the tolerance
criteria are achieved, we begin sampling in the next τ0 bin
overlapping 50% with the previous strip. Figure 2 shows how
the τ0 strips overlap with each bin as the sampler proceeds to
cover the entire parameter space.

To parallelize the bank generation, we divide the parameter
space into sub-banks, each of which can be processed
independently. To achieve efficient parallelization, each sub-
bank is run over a set of independent τ0 bins, chosen so that the
match between templates across boundaries of adjacent sub-
banks remains below the minimal match threshold. Because

templates are compared across τ0 bins within the generation of

each sub-bank, overcoverage only occurs in the bounding τ0
bins as they are not compared to templates across shared

Figure 2. The evolution of the template bank as proposed, templates are added
within bounded τ0 bins. Once the first τ0 region is sufficiently filled, the algorithm
proceeds to the next region, which is overlapped with the previous bin by 50%.
Points are proposed until the whole bank is sufficiently filled. The orange points
correspond to the proposed points. The small colored points correspond with the
accepted templates. The color bar represents the τ0 bins explored by the method.
Bank generation can be parallelized by generating it across different τ0 bins.
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boundaries with other sub-banks. This means that if each sub-
bank has 50 τ0 bins, then the overcoverage is limited to less
than ∼2%. For most analyzes, we consider this excess to be
negligible.

3.2. Optimizing Template Proposal Acceptance

Once a template is proposed, we must determine if it should
be added to the template bank to enhance its coverage of the
target parameter space. This is done by determining the FF of
our proposed template against the current set of templates in the
bank to assess the similarity. Templates with FFs less than the
minimal match condition are not sufficiently similar and need
to be added to the bank. Templates exceeding the minimal
match condition are similar and do not need to be included in
the bank. To start, we generate a reduced frequency waveform
model, inspired by the methodology detailed in P. Ajith et al.
(2014) and C. Capano et al. (2016). This model significantly

reduces the computational load required for generating wave-
forms for the match calculations. PSD fluctuations that
typically occur during an observing run have been found to
have minimal impact on template placement and coverage;
standard searches use a template bank generated on the
expected or average noise curve of an observing
run (S. A. Usman et al. 2016). Next, we evaluate the matches
between the proposed waveform models and the closest
templates in chirp time, storing these values. To rule out
templates where the match is clearly above the minimal match
criterion, we make use of previously stored matches. We
further optimize this procedure using triangle inequality, which
states that the sum of any two sides of any triangle will be
greater than the third side. If we compare the distances between
templates, we will automatically know that the third distance
between the templates will be smaller. For example, consider
the mismatch (1−), which represents the distance of the
templates, between waveform A and waveform B, and between
waveform B and waveform C. If the sum of mismatches
between A and B, and B and C is smaller than the predefined
1-FF threshold, then we can skip the direct calculation of the
match between A and C.

[ ] [ ( )] [ ( )]

[ ( )] ( )

FF A B B C

A C

1 1 , 1 ,

1 , . 8

 - - + -
´ -

 


We iteratively compare the matches between templates until
all waveforms are checked or a template exceeding the minimal
match condition is found. We then return to the sampling
procedure in Section 3.1 to conduct tolerance checks. If these
checks are unmet, we repeat sampling more potential templates
until the τ0 bin is sufficiently covered. If the checks are met, we
proceed to the next bin or finish executing if the final bin has
been filled.

4. Bank Verification

To demonstrate that our method produces valid template
banks, we choose a fiducial parameter space and use our
method to generate template banks. We perform the FF
calculations described in Section 2 and verify that the
stochastic method generates selfconsistent banks. We generated
five separate template banks of ( )104 points with fixed mass
and spin range for all the banks. Masses are fixed from 2 to
10 Me. Spins are fixed to be between −0.2 and 0.2. We also
fixed the approximant to be IMRPhenomD, the lower
frequency for the waveform to be 20 Hz, and the PSD to be
the Advanced LIGO final design sensitivity (S. Husa et al.
2016; S. Khan et al. 2016; A. Buikema et al. 2020). To
showcase the effects of tolerance choices on the bank, we
generate three banks with varying tolerances, i.e., 0.05, 0.01,
and 0.005, for a fixed minimal match of 0.95. We also
showcase the effects of minimal match by generating the last
two banks with varying minimal matches of 0.8, 0.9, and 0.95
reused from the previous bank, with a fixed tolerance of 0.01.
We compare our method to another stochastic method (P. Ajith
et al. 2014; C. Capano et al. 2016) by generating a bank with
same parameter space, minimal match of 0.95, and a
convergence value of 1000. From each of these banks, we
calculated the match of the templates with random fiducial
waveforms for the same approximant and parameter range
defined above. We successfully reconstruct a template bank
that agrees with the tolerance and minimal match conditions.
Figure 3 shows the cumulative distribution of the recovered FF

Figure 3. Cumulative distribution of FFs achieved by the template banks with
varying minimal match (top) and varying tolerance (bottom). The minimal
matches are fixed to be 0.8, 0.9, and 0.95 in the colored vertical lines and a
fixed tolerance of 0.01 in the red horizontal. The tolerances for the bottom plot
vary from 0.05, 0.01, and 0.005 in colored vertical dashed lines and a fixed
minimal match of 0.95 in a red horizontal line. All plots achieve tolerance at the
minimal match condition or before minimal match. We compare how our
method performs with an existing stochastic method (P. Ajith et al. 2014;
C. Capano et al. 2016) by choosing the same parameter space, minimal match
of 0.95, and a convergence criteria of 1000. This bank is comparable to our
method generated with a tolerance of 0.01.
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values for all six banks. All five banks generated with our
method, are able to recover the fiducial signals before the
minimal match and tolerance are met.

5. Computational Scaling

The cost of a search linearly scales with the size of the
template bank. We conduct an analysis to test how the time to
generate different banks compares to the time for completing
the bank’s respective search. To explain the computational
costs associated for searching different astrophysical popula-
tions, we conducted an analysis on six distinct banks, four
characterized by different parameters (i.e., mass, spin,
eccentricity, and deformability) generated using our method,
one bank using a nonspinning geometric method (D. A. Brown
et al. 2012) to compare how a geometric bank search will
perform, and one mass-only bank generated using an existing
stochastic method (P. Ajith et al. 2014; C. Capano et al. 2016).
All banks were standardized with fixed equal component
masses spanning [1, 10] Me. Additionally, we maintained a
consistent minimal match threshold of 0.95 across all banks
and a tolerance of 0.01 for the stochastic banks. The lower
frequency for the templates was uniformly set to 20 Hz, the
upper frequency was 1000 Hz for each bank, and parameters
such as τ0 start, crawl, and end remained constant across the
stochastic banks. For the other stochastic method, we choose
the convergence criteria to be 1000 since that was the most
comparable to our banks with a tolerance of 0.01 (showcased in
Figure 3). For aligned spins, each of the component spins was
constrained to [−0.5, 0.5]. For banks accounting for orbital
eccentricity (e), e was set to vary from [0, 0.2] for a reference
frequency of 20 Hz, using the same spin range defined above.
For the deformable bank, we set the tidal deformability λ to be
[0, 5000], also using the same aligned-spin parameters. Except
for the three banks only considering mass, we parallelized three
of the banks across six distinct τ0 bins to speed up the bank
generation in wall clock time.

As we increase the number of parameters, we see that the
banks take a longer time to generate and the number of
templates increase by roughly ( )10 for every additional pair

of parameter incorporated. Explicitly looking at the TaylorF2
waveform banks, mass only had ( )104 and adding a pair of
spin parameters drove the bank size up to ( )105 and the tidal
deformability banks was of size ( )106 . The eccentric bank and
the tidal deformability bank took the longest to generate and
had the most amount of templates.
We find that our method performs similarly to existing

stochastic and geometric methods in generating a two-
parameter mass-only bank. The geometric method produced
the bank in the shortest time and the second largest bank. The
existing stochastic method produced the most templates, but
also took the longest to generate a bank. However, the
comparable cost to complete the search was the lowest for
sbank. Overall, our method performs just as well as existing
methods. The main advantage of our method is its ability to
efficiently construct high-dimensional parameter spaces
(N> 4), in which these other methods are unable to do so.
Utilizing the inner product inequality significantly enhances
efficiency, particularly for larger, higher-dimensional parameter
spaces. To quantify the impact of this efficiency, we estimate
the proportion of matches excluded by the inner product
inequality. For instance, in one of the largest tidal deformable
sub-banks, we observed a ∼40× reduction in the number of
required matches.
Given a fiducial search analyzing a year of data for a three-

detector configuration, with each core capable of processing
5000 templates in real time, we estimate and compare the time
required for generating the template bank and running the
search (A. H. Nitz et al. 2018). We present these results of the
CPU time scaling for all banks in Table 1.
We estimate the computational cost for running a nonspin-

ning search is ( )105 times greater than the bank generation
costs, indicating that the speed of a template bank is negligible.
We also find that the geometric bank had more templates and
generated 2.3 times faster than our stochastic method.
However, the search over time ratio is 2.58 times higher for
geometric methods than our stochastic method, depicting that
faster algorithms are not beneficial toward running the search
and the excess number of templates negatively effects the speed
of the search. The eccentric and deformable template banks

Table 1

The Computational Time to Generate Template Banks and Conduct a Search for Different Parameter Spaces

Parameters Bank Size

(templates)

CPU Time To Generate Bank

(core days)

CPU Time to Complete Search

(core days)

Search over Bank Time Ratio Waveform Approximant

m1, m2 (geometric) 5.81 × 104 0.014 1.27 × 104 9.09 × 105 Does not apply

m1, m2 (sbank) 5.84 × 104 0.099 1.28 × 104 1.29 × 105 TaylorF2

m1, m2 5.29 × 104 0.033 1.16 × 104 3.52 × 105 TaylorF2

m1, m2, χ1, χ2 4.42 × 105 0.202 9.68 × 105 4.79 × 105 TaylorF2

m1, m2, χ1, χ2, e 5.67 × 106 32.23 1.24 × 106 3.85 × 104 TaylorF2ecc

m1, m2, χ1, χ2, λ1, λ2 3.94 × 106 29.21 8.63 × 105 2.96 × 104 TaylorF2

Note. The bolded parameters correspond to template banks generated using our method. The first three banks share the same mass-only parameter space but differ in

the methods used: the geometric bank (D. A. Brown et al. 2012), an existing stochastic method (P. Ajith et al. 2014; C. Capano et al. 2016), and our method,

respectively. Our method produces comparable sized banks to the other methods in similar times. However, unlike the geometric and existing stochastic method, our

method can generate banks with higher-dimensional spaces that include eccentricity, deformability, and so on. The last three rows use our method to construct

template banks with spin, eccentricity, and tidal deformability parameters. For searches, we assume one core processes 5000 templates in real time and estimate the

time required to analyze one year of data from three detectors. The time it takes to complete a search is a factor of O(105) more than the time to complete the bank

generation for the nonspinning and only spin aligned case, O(104) for the eccentric bank, and O(103) for the tidal deformable case. The nonspinning geometric

technique generates banks faster than the stochastic methods for mass-only banks. However, the time ratio is the largest for geometric methods, implying that currently

template bank generations are a negligible cost to running a search, and faster search methods should be investigated. For larger parameter spaces, the banks generated

in around 30–60 core days. The fraction of search time over bank generation time was the lowest for these scenarios. Overall, the most time consuming process is the

search. The cost of generating the banks is trivial to the cost of running the search and faster search methodologies should be developed.
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took the longest to complete at around 55 core days. In
comparison to the search, the fraction of search time over bank
time is ( )104 and ( )103 less, despite having more templates.
Since these banks are parallelizable, the cost of generating a
bank can always be reduced in wall clock time. Overall, we
find that template bank generation is already a negligible
computational component of a search, even for high-dimen-
sional spaces with millions of templates. Currently, efforts to
generate fast template placement algorithms are less necessary
than developing more efficient search methodologies, espe-
cially for multiparameter searches.

6. Examples

In this section, we present various applications of our
stochastic method in different astrophysical searches. The
stochastic method has been instrumental in constructing
template banks for several types of gravitational-wave searches
by utilizing the varying freedom of choice in the parameter
space. Below, we discuss specific examples where this method
has been successfully implemented.

6.1. Primordial Black Hole and Subsolar Mass Binary
Neutron Star

Detecting low-mass black holes will verify the existence of
primordial black holes (PBHs) and provide insights on dark
matter distributions (P. H. Frampton 2016; A. M. Green 2024;
A. L. Miller et al. 2024). Due to their theorized dynamical
formation, searching for these systems requires additional
parameters to account for the eccentric orbits of PBHs
(G. Domènech & M. Sasaki 2024). A. H. Nitz & Y.-F. Wang
(2021a) performed a search for PBH systems using the
stochastic method outlined in this paper to generate an
eccentric template bank. The parameter space included
eccentricity e up [0, 0.3] with a reference frequency of
10 Hz, primary masses ranged from [0.1, 7] Me, and secondary
masses ranged from [0.1, 1] Me and used TaylorF2
(B. S. Sathyaprakash & S. V. Dhurandhar 1991; S. Droz
et al. 1999; L. Blanchet 2002; G. Faye et al. 2012) and
TaylorF2e (B. Moore et al. 2018; B. Moore &
N. Yunes 2019, 2020). To account for the long signal duration,
our method allows the option to fix the duration of waveform
models by varying the lower frequency. A. H. Nitz &
Y.-F. Wang (2021a) used this option to set the wavelength to
512 s. Overall, the bank consisted of 7.8× 106 templates,
where half of the templates included orbital eccentricity.

Searching for low-mass neutron stars requires a similar
template bank as the PBHs search. However, these systems
requires consideration for the tidal deformability parameter
instead of the eccentricity because the eccentricity in these
systems is expected to be negligible. Discovering neutron stars
in the subsolar mass range could challenge our understanding
of their formation or potentially reveal a new class of stars
(V. Doroshenko et al. 2022). Previous searches neglected the
tidal deformability parameter λ, which lost up to 78.4% of the
total signals (A. Bandopadhyay et al. 2023). This bank was
constructed with tidal deformability ranging from [0, 10,000]
for both λ1 and λ2 to account for the loss in SNR, primary mass
ranging [0.1,2] Me, secondary mass ranging [0.1, 1] Me, both
aligned spin χ1z and χ2z ranged from [−0.05, 0.05], and the
approximant was chosen to be TaylorF2 (B. S. Sathyaprakash
& S. V. Dhurandhar 1991; S. Droz et al. 1999; L. Blanchet
2002; G. Faye et al. 2012). Similarly to the PBH search, this

bank had the template waveforms fixed to 512 seconds to speed
up the search. Figure 4 illustrates the varying lower frequencies
of the waveforms used to maintain this duration. Overall, the
bank consisted of 1.01× 107 templates.

6.2. Eccentric NSBH and BNS Search

Measuring the orbital eccentricity of a binary provides
insights into its formation history (K. Belczynski et al. 2001;
C. L. Rodriguez et al. 2018; I. M. Romero-Shaw et al. 2019;
M. Arca Sedda 2020; M. Zevin et al. 2021; A. A. Trani et al.
2022; R. Dhurkunde & A. H. Nitz 2023). Searches for rare
binaries with nonnegligible eccentricity require additional
parameters in the template bank: requiring up to 100x more
templates than the typical aligned-spin, quasi-circular searches
(A. H. Nitz & Y.-F. Wang 2021a, 2021b; R. Dhurkunde &
A. H. Nitz 2023). The first modeled search for eccentric
spinning neutron-star binaries (BNS and NSBH) using publicly
available data from the third observing run of the Advanced
LIGO and Virgo observatories was performed by R. Dhurku-
nde & A. H. Nitz (2023). R. Dhurkunde & A. H. Nitz (2023)
utilized the flexible bank generation method described in this
work to incorporate eccentricity in the template bank. The
template bank comprised of six parameters: component masses
(m1, m2), aligned component spins (s1z, s2z), orbital eccentricity
e20 (defined at 20 Hz), and an additional angle to account for
the orientation of the elliptical orbit w.r.t an observer. Signals
within the targeted search region are reliably searched using the
inspiral-only TaylorF2Ecc model B. Moore et al. (2016)
because the merger phase falls outside the sensitive range of
current detectors. The template bank for the search consisted of
approximately 6 million templates, and its generation took
about a week to complete using 20 cores.

6.3. Binary Neutron Star Confusion Noise Cleaning

In the next decade, next-generation ground-based detectors,
such as the Einstein Telescope (ET; S. Hild et al. 2010;
M. Punturo et al. 2010) and Cosmic Explorer (CE; D. Reitze
et al. 2019), will be available. These detectors will not just be

Figure 4. Subsolar mass neutron star search template bank with 10 million
templates. Mass ranges from 0.1 to 2 for the primary mass and 0.1 to 1 for the
secondary mass. The signals are fixed to to 512 s by varying the lower
frequency cutoff indicated in the color bar.

7

The Astrophysical Journal, 975:212 (10pp), 2024 November 10 Kacanja et al.



one order of magnitude more sensitive than the current
Advanced LIGO and Virgo detectors but also can reach 2 or
3 Hz, making the signals of binary neutron stars last several
hours or even several days. According to GWTC-3 population
results (R. Abbott et al. 2023a), S. Wu & A. H. Nitz (2023)
simulates the mock data for those next-generation ground-
based detectors and finds that these BNS signals will form the
foreground noise to reduce the detection range of detectors if
not removed. This BNS confusion noise will affect Cosmic
Explorer most by raising the power spectrum density around
10 Hz and introducing a noise correlation in the detector
network. S. Wu & A. H. Nitz (2023) demonstrate a foreground
cleaning method using the stochastic template bank for BNS.
For bank generation, they choose [2.4, 60] Me as the detector-
frame total mass range and [1, 1.636] as the mass ratio range
according to the BNS population model. With a mismatch of
0.97 using the design sensitivities of ET and CE, the
foreground noise-cleaning banks contain 9.57× 104 and
1.53× 105 templates for CE and ET, respectively. Using these
banks to detect and subtract the BNS confusion noise for each
detector, they can suppress the total noise to almost the
instrument noise level, allowing for near-optimal searches at
the following stages. The computational cost of generating and
searching with these template banks is lower compared to the
full search (A. K. Lenon et al. 2021).

6.4. LISA Supermassive Black Hole Binaries Search and
Inference

There are ongoing efforts to extend PyCBC to do LISA data
analysis, C. R. Weaving et al. (2024) demonstrates how to use
the stochastic template bank method described in this paper to
find supermassive black hole binaries (SMBHBs) and use the
corresponding high SNR template as the reference signal in the
following heterodyning parameter estimation. Previously,
people thought the template-based analysis was not viable for
LISA data analysis due to the huge parameter space
(I. W. Harry et al. 2008), but C. R. Weaving et al. (2024)
demonstrates that we can still use a sparse template bank to find
all SMBHB signals in the LISA mock data set Sangria.
Different from ground-based detectors, LISA waveforms also
need to take the orbital motion of spacecraft and time-delay
interferometry (TDI) into account, so these make LISA
waveforms much more complex. C. R. Weaving et al. (2024)
use the BBHx (M. L. Katz et al. 2020) package to generate the
LISA-TDI version of the IMRPhenomD waveform and choose
an eight-dimensional parameter space (i.e., detector-frame total
mass, mass ratio, two aligned spins, ecliptic latitude, ecliptic
longitude, polarization angle, and inclination angle) that covers
the parameters of SMBHBs in the Sangria data set. Due to the
high SNR of these SMBHB signals and almost equal
sensitivities of TDI-A and TDI-E channels, they just generate
the TDI-A channelʼs template bank and use a mismatch
threshold of 0.9 to get the SMBHB template bank consisting of
around 50 templates. Finally, they successfully detected all the
SMBHB signals in the Sangria data set.

6.5. Open Gravitational-wave Catalog Search for Compact-
binary Mergers

The fourth open gravitational-wave catalog (OGC) contains
the observation of nearly 100 compact-binary mergers
(A. H. Nitz et al. 2023). The search covers a parameter space

from neutron-star binaries through heavy binary black holes
(up to ∼1000 Me). The OGC search search splits the analysis
into four subregions, covering BNS, NSBH, BBH, and a
focused BBH region where the largest numbers of signals are
observed. The analysis is based on the open source PyCBC
toolkit (S. A. Usman et al. 2016; G. S. Davies et al. 2020) and
makes use of the flexible template bank generation introduced
in this work. This enables the use of multiple waveform
approximants depending on the suitability for different parts of
parameter space, e.g., the use of TaylorF2 (B. S. Sathyaprakash
& S. V. Dhurandhar 1991; S. Droz et al. 1999; L. Blanchet
2002; G. Faye et al. 2012) for neutron-star binaries, and
IMRPhenomD (S. Husa et al. 2016; S. Khan et al. 2016) and
SEOBNRv4 for BBH signals (A. Taracchini et al. 2014;
A. Bohé et al. 2017). The stochastic placement algorithm
allows for the iterative generation of a larger template bank by
adding to a pre-existing template bank. This allows for regions
of parameter space that adapt to different requirements, e.g., a
higher minimal match for the focused BBH region of 0.995 or
the inclusion of tidal deformability for binary neutron-star
templates.

6.6. Binaries that Contain a Neutron Star as Gamma-Ray Burst
Progenitors

Mergers of binary neutron star and neutron-star–black hole
systems have long been suspected to be the production sites of
short duration gamma-ray bursts (S. I. Blinnikov et al. 1984;
B. Paczynski 1986; D. Eichler et al. 1989; B. Paczynski 1991;
R. Narayan et al. 1992; E. NAKAR 2007; E. Berger 2014). In
the case of binary neutron stars, this hypothesis was confirmed
by the simultaneous detection of GW event GW170817 and its
gamma-ray burst counterpart GRB 170817A (B. P. Abbott
et al. 2017). The main mechanisms invoked to launch the
relativistic jet responsible for the gamma-ray emission involve
neutrino pair annihilation or the presence of strong magnetic
fields. Both scenarios require a remnant constituted by a central
compact object accreting from a dense torus of matter
surrounding it that develops immediately after the merger
event. In the case of two binary neutron stars, the formation of
the remnant torus is fueled by the collision of the two neutron
stars, while for neutron-star–black hole mergers the presence of
the torus depends on the parameters of the system, (see, e.g.,
K. Kyutoku et al. 2021; A. Gonzalez et al. 2023, for examples
of numerical simulations).
When constructing template banks for searches that aim at

uncovering GW signals compatible with the time and sky
location of gamma-ray bursts (I. W. Harry & S. Fairhurst 2011;
A. R. Williamson et al. 2014), the goal is to include all binary
neutron star mergers and only those neutron-star–black hole
mergers that result in the formation of an accretion torus, as
suggested in F. Pannarale & F. Ohme (2014). These are
referred to as “EM-bright” template banks. To discriminate
between neutron-star–black hole systems that produce matter
surrounding the central remnant black hole and ones that do
not, the PyCBC toolkit implements a formula that predicts the
remnant mass left behind in the postmerger. This formula was
obtained in F. Foucart et al. (2018) by fitting results of
numerical-relativity neutron-star–black hole merger simula-
tions; it returns the remnant mass Mrem given the following
parameters of the binary system: its symmetric mass ratio, the
radius of the black hole’s innermost stable circular orbit,
and the neutron star's compactness (see Equation (7) in
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F. Foucart et al. 2018, for details). These banks are therefore
built by prescribing priors for masses and spins of neutron stars
and black holes, and applying the constraint that the remnant
mass surrounding the central black hole is nonvanishing in the
case of neutron-star–black hole systems. Given a draw from the
priors, there are two operations in this process that depend on
the neutron star equation of state: (1) Deciding whether or not
each compact object is a neutron star, so that binary neutron
stars are added to the bank if necessary, and binary black holes
are discarded, and (2) In the case of a neutron-star–black hole
binary draw, determining the neutron star compactness
corresponding to its mass in order to apply the constraint
Mrem> 0. Building an EM-bright bank therefore also requires
an additional input in the form of a table with mass and
compactness values that represent a nonrotating8 neutron star
equilibrium configuration; this needs to be built externally by
the user, see, e.g., https://compose.obspm.fr/. Finally, in the
case of black hole spins that are not aligned to the orbital
angular momentum, we replace the radius of the innermost
stable circular orbit with its tilted analog, the radius of the
innermost stable spherical orbit, as detailed in Appendix A of
N. Stone et al. (2013).

Two neutron-star–black hole banks were produced: one with
the EM-bright constraint and one without it. The design
parameters were the same for both banks, with the exception of
the remnant mass, which was fixed to be strictly greater than
zero for the EM-bright bank. In this case, the 2H piecewise
polytropic equation of state (J. S. Read et al. 2009) was
adopted. This choice was driven by the fact that this equation
of state sets a high maximum neutron star mass (∼2.83Me)

and it favors tidal disruption because of the high neutron star
compactness values it yields, compared to other equations of
state. In this sense it is a conservative choice, i.e., it makes the
EM-bright constraint as loose as possible. The black hole mass
and spin spanned from 2.83Me to 25Me and from 0.0 to 0.98,
respectively. The neutron star mass ranged from 1.0Me to
2.83Me, while the aligned spin range was 0.0–0.05. All priors
in these intervals were taken to be uniform. Additionally, we
used a minimal match of 0.97 and a lower frequency of
27.0 Hz, and we set the PSD to be the theoretical Advanced
LIGO O4 sensitivity (B. P. Abbott et al. 2020). The full bank
consisted of 193,235 templates, while the EM-bright bank had
143,530 templates, resulting in the exclusion of 49,705
neutron-star–black hole templates representing the portion of
parameter space where merger events do not produce a torus as
a remnant.

7. Conclusion

We introduce an efficient and flexible method for stochastic
template bank generation that produces selfconsistent banks for
varying tolerance and minimal match conditions. Our method
has already been used for various searches for GWs from
different types of compact-binary sources, such as eccentric
BNSs and NSBHs (R. Dhurkunde & A. H. Nitz 2023), subsolar
mass primordial black holes (A. H. Nitz & Y.-F. Wang 2021a),
low-mass BNSs, studies of the next-generation ground-based
detectors’ BNS signal detection problem (A. K. Lenon et al.
2021; S. Wu & A. H. Nitz 2023), LISA supermassive BBHs
(C. R. Weaving et al. 2024), and the fourth open gravitational-
wave catalog (A. H. Nitz et al. 2023). We find that existing

methods are robust and versatile enough for various unique
astrophysical scenarios.
We have demonstrated how the number of parameters in a

search scales the computational cost. Compared to a nonspin-
ning bank with only two parameters (masses only), we find an
increase of up to ( )102 templates as additional parameters are
included in the bank. For future observatories, aligned-spin
banks will get bigger by up to two orders of magnitude
compared to the current banks (R. Dhurkunde & A. H. Nitz
2022). Fast bank generation algorithms alone will not
inherently lead to faster searches. The most pressing need for
improvement is developing faster or optimizing existing search
methods. Ongoing efforts to utilize various hierarchical
methods could make current searches up to 20 times faster
(R. Dhurkunde et al. 2022; K. Soni et al. 2022). If efforts to
procure faster searches succeed, the cost of template banks will
once again become considerable and efforts to create faster
methods will become critical.
In conclusion, while our method demonstrates significant

improvements in template bank generation, it is important to
consider the limitations and potential optimizations for utilizing
our method for future optimized searches. Stochastic methods
can be limited when the waveform approximant takes a long
time to generate because the time to generate a waveform
linearly scales with the template bank. If the waveform
generation time is comparable to the search time, geometric
methods might be more appropriate. However, if a search
requires a nontrivial parameter space and utilizes slow
waveform approximants, optimizing stochastic bank methods
becomes necessary. Our method is currently written for CPU
use. This method could potentially be optimized by paralleliz-
ing the template acceptance proposals on GPUs to help speed
up the generation. This optimization might help offset the
additional time required for slow waveform approximants.
The bank generation code pycbc_brute_bank, which uses

the method described in this paper, is available at https://github.
com/gwastro/pycbc/blob/master/bin/bank/pycbc_brute_bank.
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