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Abstract

Detecting gravitational waves (GWs) from coalescing compact binaries has become routine with ground-based
detectors like Advanced LIGO and Advanced Virgo. However, beyond standard sources such as binary black holes
and neutron stars and neutron star black holes, no exotic sources revealing new physics have been discovered.
Detecting ultracompact objects, such as subsolar mass (SSM), offers a promising opportunity to explore diverse
astrophysical populations. However, searching for these objects using standard matched-filtering techniques is
computationally intensive due to the dense parameter space involved. This increasing computational demand not
only challenges current search methodologies but also poses a significant obstacle for third-generation (3G)

ground-based GW detectors. In the 3G detectors, signals are expected to be observed for tens of minutes and
detection rates to reach one per minute. This requires efficient search strategies to manage the computational load
of long-duration signal search. In this paper, we demonstrate how hierarchical search strategies can address the
computational challenges associated with detecting long-duration signals in current detectors and the 3G era. Using
SSM searches as an example, we show that optimizing data sampling rates and adjusting the number of templates
in matched filtering at each stage of low-frequency searches can improve the signal-to-noise ratio by 6% and
detection volume by 10%–20%. This sensitivity improvement is achieved with a 2.5-fold reduction in
computational time compared to standard PyCBC searches. We also discuss how this approach could be adapted
and refined for searches involving eccentric and precessing binaries with future detectors.

Unified Astronomy Thesaurus concepts: Primordial black holes (1292); Gravitational waves (678); Gravitational
wave detectors (676)

1. Introduction

The field of gravitational-wave astronomy has been rapidly
expanding ever since the detection of the first binary black hole
merger GW150914 (B. P. Abbott et al. 2016a). To date, nearly 90
gravitational-wave (GW) sources are cataloged by LIGO–Virgo–
KAGRA (LVK) Collaboration, including dozens of binary black
holes, two binary neutron stars, and three neutron star–black hole
mergers (B. P. Abbott 2023a). Additional GW sources were
independently cataloged (A. H. Nitz et al. 2021a; S. Olsen et al.
2022; A. H. Nitz et al. 2023; D. Wadekar et al. 2023; A. K. Mehta
et al. 2023) using publicly available data (B. P. Abbott et al.
2021a; B. P. Abbott 2023b). The third observation (O3) run of
Advanced LIGO (J. Aasi et al. 2015) and Advanced Virgo
(F. Acernese et al. 2015) led to the detection of compact objects
under 3Me with GW190814 (R. Abbott et al. 2020), where the
secondary compact object had a mass of∼2.59Me and a low spin
(�0.07). Several other events like GW190425, GW191219,
GW200105, GW200115, and GW200210 identified during this
run also had one of the component masses less than 3Me. The
ongoing fourth observation run detected GW230529 (A. G. Abac
et al. 2024). This event’s primary object had a mass ranging
between 2.5 and 4.5Me, making it an additional compact object,
likely a black hole, existing within the “lower mass gap”
(C. D. Bailyn et al. 1998; F. Özel et al. 2010; W. M. Farr et al.
2011). Although several studies have provided insights into the

mass and spin distributions of compact sources detected through
current GW detectors (J. Roulet et al. 2019; B. P. Abbott et al.
2021b), the possibility of discovering ultracompact objects with
masses less than a solar-mass range remains an open
question (B. P. Abbott et al. 2019; A. H. Nitz et al. 2021b;
K. S. Phukon et al. 2021; R. Abbott et al. 2022; A. H. Nitz et al.
2022; LVK Collaboration 2023; A. L. Miller 2024).
Subsolar-mass (SSM) compact objects do not follow the

standard stellar evolution pathway. These objects, if black
holes, are expected to form through nonstellar evolution
models and could be primordial black holes (PBHs; B. J. Carr
et al. 2010). If they are neutron stars (V. Doroshenko et al.
2022), they might result from nonstandard supernova explosion
models (B. Müller et al. 2024). Although the search for SSM
black holes began quite early (T. Nakamura et al. 1997;
C. Alcock et al. 2000; B. Abbott et al. 2005, 2008), no
candidates have been found yet. Since then, numerous models
have proposed various formation pathways for these sources.
The most common formation mechanism of PBHs suggests
their origin from the direct collapse of early, small-scale
fluctuations (Y. B. Zel’dovich & I. D. Novikov 1967;
S. Hawking 1971) due to certain features of the inflationary
potential. Additionally, there are alternative formation channels
where PBHs emerge from phase transitions (C. T. Byrnes et al.
2018) in the early Universe or through the collapse of
topological defects like cosmic strings (S. W. Hawking 1989;
A. Polnarev et al. 1991; C. Hong-bo et al. 1996).
If an SSM compact object, whether a black hole or neutron

star, appears in a binary system, the emitted GW can be
detected through ground-based interferometers. Several
studies have investigated the search for SSM black
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holes (B. P. Abbott et al. 2018, 2019; A. H. Nitz et al.
2021b, 2021c; R. Abbott et al. 2022), but no significant
detections have been made to date. Studies show that a small
fraction of dark matter could be due to PBHs (B. J. Carr et al.
2010; B. Carr et al. 2021). While many cosmological
investigations have ruled out their existence at extremely
low masses (M. Sasaki et al. 2018), exploration continues in a
mass range spanning several orders of magnitude. A
confirmed detection within the LIGO–Virgo frequency band
would provide critical insights into the formation mechanisms
of PBHs and contribute to constraining the fraction of dark
matter in the universe. On the other hand, a SSM neutron star
in a binary system could provide a high tidal effect on its
companion (F. Crescimbeni et al. 2024a). These effects would
be measured with the future-generation GW detectors
(F. Crescimbeni et al. 2024b).

The offline search for GWs from merging binaries uses the
matched-filtering technique (B. S. Sathyaprakash et al. 1991;
S. V. Dhurandhar et al. 1994a, 1994b; B. J. Owen et al. 1999;
B. Allen et al. 2012; S. A. Usman et al. 2016; G. S. Davies
et al. 2020). In this method, a bank of modeled signals, or
templates, is correlated with well-calibrated interferometer
data (X. Siemens et al. 2004; J. Abadie et al. 2010). However,
this approach becomes computationally demanding, particu-
larly for low-mass binaries, as the cost increases with the
number of templates and the length of the signal model used as
a matched-filter template. To mitigate the computational
challenges, suboptimal choices are often made by limiting the
search parameters. For instance, searches may only filter data
above 45 Hz (B. P. Abbott et al. 2016b) or limit the duration of
the templates to nearly 512 s (A. H. Nitz et al. 2021b, 2022).
While these restrictions help reduce computational costs, they
also reduce the sensitive volume by approximately 24%, within
which PBHs might be detected.

Observing long-duration GW signals poses significant
challenges with existing search methods. The main difficulty
arises from the necessity of using a very dense template bank
( ( ) 107 ), which significantly increases the computational cost
of the matched-filtering search. Furthermore, the search
sensitivity can be compromised by nonstationary data, which
may contain long-duration correlations that hinder current
signal-vetoing techniques and statistical analyses. This non-
stationarity can also impact the statistics and signal-vetoing
methods used in current search pipelines. These issues are
expected to become considerably more severe in the era of
third-generation (3G) ground-based detectors—3G detectors
such as the Cosmic Explorer (B. P. Abbott et al. 2017;
D. Reitze et al. 2019) and the Einstein Telescope (S. Hild et al.
2009; M. Punturo et al. 2010; M. Maggiore et al. 2020; S. Di
Pace et al. 2022; A. Grado 2023) are anticipated to detect
binary mergers at rates 2 to 3 orders of magnitude higher than
current detectors (M. Evans et al. 2021). These detectors,
designed to operate from very low frequencies (starting from
2 Hz), will observe signals for several minutes or hours. Due to
their high sensitivity in the lower-frequency band, the
likelihood of detecting eccentric or precessing binaries will
be higher, which will indirectly expand the template bankʼs
parameter space both in dimensionality and parameter ranges,
thereby increasing the computational cost of the search.
Furthermore, since signals would remain in the sensitivity
band for longer periods, the Earthʼs rotation will reduce search
sensitivity by altering the detectorʼs response functions and

affecting matched-filter statistics. Therefore, developing an
efficient, cost-effective matched-filtering strategy for long-
duration GW signals is essential to advance the current state-
of-the-art search techniques.
One approach to efficiently search for long-duration signals,

such as those from SSM binaries, is implementing a
hierarchical search strategy (R. Dhurkunde et al. 2022; K. Soni
et al. 2022). In this method, a two-stage matched-filtering
search is performed using multiple template banks of varying
densities. In the first stage, the search is conducted over
coarsely sampled data using a coarse bank to identify
coincident triggers that could represent true GW events. These
triggers are followed up in the second stage with a finer search,
focusing on the neighborhood of the parameter space identified
in the first stage. This two-stage approach effectively reduces
the number of matched-filtering operations required for the
search, significantly reducing computational time.
In this paper, we demonstrate how hierarchical search

strategies can be effectively applied to search for long-duration
GW signals from compact binary mergers in Advanced LIGO
data. Using the SSM compact object search as a case study, we
show that performing the search at lower frequencies in
Advanced LIGO and tuning each stage of the existing
hierarchical search strategy (K. Soni et al. 2022, 2024) not
only reduce the computational cost of matched-filtering process
but also enhance the search sensitivity. Specifically, we show
that our approach increases the searchʼs volumetric sensitivity
by approximately 10%–20% while reducing computation time
by a factor of 2.5 compared to the standard two-detector
PyCBC search. This methodology also accounts for the
increase in background noise due to the larger template bank,
as well as signal consistency tests and potential signal-to-noise
ratio (SNR) losses resulting from approximations introduced
during the hierarchical stages. Furthermore, we discuss how
hierarchical search strategies could be generalized for compu-
tationally intensive compact binary coalescence (CBC)

searches in 3G detectors.

2. Method

The matched-filtering search for long-duration signals as in
the case of binaries containing SSM compact objects is
expensive as it requires a very dense template bank. To
optimize the search, often the length of the template is reduced
to a manageable duration (∼512 s) so that search analysis can
be performed. This could be enabled by performing matched
filtering from 45 Hz rather than 15 Hz (B. P. Abbott 2023a).
However, such adjustments affect the horizon distance of the
binary and the expected SNR.
The horizon distance (K. S. Thorne 1987; B. Allen et al.

2012) for an inspiraling binary is given by

( )
( )


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where fmin and fmax are the minimum and maximum
frequencies of the LIGO’s sensitivity range. Sn( f ) is the power
spectral density of the noise in the detector and ρ is the
expected matched-filter SNR for an inspiraling binary with
chirp mass observed in the detector’s frame.
For a particular source of chirp mass of a few that have a

fixed SNR in the detector’s frame, changing the operating
frequency band can affect the detectability of a signal. This
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means that the fractional SNR loss, as also shown in R. Magee
et al. (2018), due to a change in the operating frequency band
would be

( )

( )
( )= --F

D f f

D
1

,

15Hz, 2048Hz
, 2SNR loss

max min max

max

with respect to the standard operational band of Advanced
LIGO for matched filtering for generic CBC search
(B. P. Abbott 2023a).

If we perform a search from 35 Hz, assuming the other
source parameters do not change, the percentage loss in SNR is
about 3.1% for a frequency band of 35–2048 Hz. This loss is
relatively small compared to the SSM searches conducted in
the 45–2048 Hz band (R. Abbott et al. 2022), which experience
an SNR loss of about 8%–9%. This comparison can also be
seen in Figure 1. Ideally, the lower-frequency limit can be
further lowered to match that used for a generic CBC search.
However, this step will increase the computation demand and
require very long-duration templates in the bank. Therefore, in
our work, we select a lower-frequency cutoff of 35 Hz. By
making this choice, we expect the loss in astrophysical
volumetric sensitivity to the inspiral stage by ∼10% of binary
coalescence, which is lower than 24% as observed in R. Abbott
et al. (2022).

Generating templates at lower frequencies enhances the
sensitivity of the search, but it can also lead to a higher density
of the template bank. This increase in density may raise the
computational cost of matched filtering in traditional offline
PyCBC or flat search (S. A. Usman et al. 2016; G. S. Davies
et al. 2020). However, this added computational burden can be
mitigated by adopting hierarchical search strategies.

2.1. Review of Hierarchical Search

The two-detector flat search performs matched filtering over a
discretely sampled data segment using a dense bank of templates
and generates triggers with SNRs (ρ) (S. A. Usman et al. 2016).
In contrast, a hierarchical search strategy offers a more efficient
approach by enabling a multistage matched-filtering process,
where the number of templates is progressively reduced at each

stage. As described in K. Soni et al. (2022), this search divides
a flat search into two stages: coarse and fine. During the coarse
stage, the data is matched filtered using a coarse template
bank, which consists of sparsely placed templates. The
sparseness of these templates is determined by the minimal
match (B. J. Owen 1996) at which the bank is constructed,
typically set lower (below 0.97) than the value used for
constructing a bank for the flat search.
Performing a coarse search reduces the number of matched-

filtering operations. This reduction is further enhanced when
the data are sampled at a lower frequency (512 Hz). However,
this approach comes with the trade-off of potentially lower
matched-filter SNR values for the resulting triggers. To address
this, the SNR thresholds are lowered (ρ= 3.5) compared to
those used in a flat search (ρ= 4). Given these triggers could be
generated by non-Gaussian features or glitches (B. P. Abbott
et al. 2021c) present in the data, the SNRs are further
downweighted using chi-square vetoes (B. Allen 2005;
A. H. Nitz 2018). Only those triggers that pass these vetoes
are then subjected to a coincidence test (S. A. Usman et al.
2016), during which a ranking statistic is computed to assess
their significance (A. H. Nitz et al. 2017).
The coincident triggers obtained from the coarse search, with

ranking statistics above a certain threshold (approximately 7, as
used in K. Soni et al. 2022), are followed up in the second stage
for a finer search. In this stage, a focused search is conducted
within the vicinity or neighborhood (nbhd) of the coarse
templateʼs parameter space. This nbhd is a region around a
coarse template where the minimal match between templates
within the nbhd (∼10–100) and the coarse template ranges
from 0.75 to 0.99.
To avoid the computational burden of calculating the nbhd

for each coarse template on the fly, a precomputed nbhd bank is
used. This bank contains all the nbhd regions and the
corresponding templates for each coarse template. During the
second-stage search, a union of all the nbhds corresponding to
the coarse triggers in each data segment is used for matched
filtering. To further improve the SNR, the data sampling rate is
increased to 2408 Hz, which is higher than that used in the
coarse search. Triggers with SNRs above 4 that pass all chi-
square tests are then subjected to a final coincidence search,
compiling a list of foreground candidates.
To assess the significance of potential GW events, the false

alarm rate (FAR) is estimated based on the background
(S. A. Usman et al. 2016). Unlike the flat search, which
estimates the background by applying millions of time shifts to
triggers from a single detector, the hierarchical search employs
a hybrid approach in its second stage (K. Soni et al. 2024). At
first, a few time shifts are applied to generate coincident
background triggers. Then, an exponential fit is applied to the
cumulative distribution of these background triggers, and the
fitted curve is used to calculate the FAR for the foreground
triggers obtained in the second stage. This method of
estimating the background is particularly effective for long-
duration signals, as the expected background distribution tends
to follow the tail of a Poisson distribution (S. A. Usman et al.
2016).

2.2. Template Bank

We construct two aligned-spin banks—a coarse bank at a
minimal match of 0.92 and a fine bank of 0.97—using a
geometric placement algorithm (I. W. Harry et al. 2014) for the

Figure 1. The percentage loss in SNR as a function of lower-frequency limit
( fmin) used for matched-filtering data, as described in Equation (2). The SNR
loss increases with larger fmin values in matched filtering. For comparison, the
black dotted line represents the lower-frequency limit of 45 Hz (R. Abbott
et al. 2022), while the gray line indicates the 35 Hz limit used in this work.
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hierarchical search. Both banks are designed to cover
parameters where m1 ranges between 0.2 and 10Me and m2

between 0.2 and 1.0Me in the detector frame. The dimension-
less spins are restricted to 0.1 for component masses smaller
than 0.5 and 0.9 for larger masses. The orbital precession and
the existence of multipoles are neglected in the search space.
These bank parameter ranges are consistent with the bank used
for the LVK search (R. Abbott et al. 2022; LVK Collabora-
tion 2023). From here, we refer to this bank as the flat bank .

In contrast to the flat bank, where templates commence at a
frequency of 45 Hz, the templates in our banks start at a
frequency of 35 Hz. This choice reduces the fractional loss in
the matched-filter SNR, as shown in Section 2. As a result,
even though our coarse bank is constructed at a lower minimal
match, it is approximately 1.6 times the size of the flat bank.
These distinctions are summarized in Table 1.

The hierarchical search requires the construction of the nbhd
bank for the second-stage search. Therefore, we use the
generated fine bank to construct the nbhd bank using the
method described in Section IV of K. Soni et al. (2022).
Figure 2 shows the parameter space covered by the coarse
templates in the chirp mass and effective spin plane. This plot
shows that the distribution of templates within a nbhd is not
uniform across the parameter space, primarily due to boundary
effects. These effects occur because the match between
neighboring templates gradually decreases as the mismatch in
the τ3 mass parameter increases relative to τ0, thereby
significantly extending the nbhd region along this coordinate.

As shown in Figure 2, the number of templates in an nbhd
typically ranges from a few tens to hundreds. This can
significantly affect the final background in the second stage. To
improve background estimation, more noise coincidences from
the coarse search need to be followed up. However, since the
number of templates in the nbhds is relatively small, the search
cost is not expected to be significantly higher than that of the
flat search.

3. Application to SSM Search

We perform an SSM search on publicly available data sets
using a two-stage hierarchical approach, as outlined in
Section 2. The data consist of approximately 5 days of
coincident observations from the O3 run of the two LIGO
detectors LIGO Hanford and LIGO Livingston, covering the
period from 2019 April 1 to 8.

To begin, we first conduct a coarse search over the data
sampled at 512 Hz using the coarse bank described in
Section 2.2. The templates are generated at 35 Hz using the
TaylorF2 (R. Sturani 2010) waveform model with phase
corrections up to 3.5 post-Newtonian order. The lengths of
these templates range between 102 and 103 at 35 Hz. To
prevent the templates from wrapping around during the fast
Fourier transform operation in the matched-filtering step, we
ensure that the data segment length exceeds that of the longest
template in the bank. Consequently, we set the data segment
length to 2048 seconds for our analysis.
We identify triggers with a matched-filter SNR and reweighted

SNR (B. Allen 2005; S. A. Usman et al. 2016) of 3.5 or greater.
This threshold is chosen to increase the likelihood of detecting
true signals that might be missed due to lower data sampling and
the use of a coarse bank. To reduce the impact of short-duration
glitches in the data, the triggers are further weighted using a chi-
square and sine-Gaussian vetoes. The surviving triggers then
undergo a coincidence test, where they are shifted in time by
5000 seconds, and a ranking statistic (Λ) (A. H. Nitz et al. 2017;
G. S. Davies et al. 2020) is computed.
In the next step, we perform a finer search in the second

stage on coincident triggers with Λ� 7. During this stage,
matched filtering is conducted again on data sampled at
2048 Hz, using a union of nbhds around the identified coarse
templates. The data sampling rate is increased by a factor of 4
to improve the matched-filter SNR. Triggers from this stage are
collected if their SNRs and reweighted SNRs exceed a
threshold of 4. These triggers are then reweighted using chi-
square and sine-Gaussian vetoes before undergoing a coin-
cidence test, over the same time-shift interval as in the first
stage. Finally, a list of foreground and background triggers is
compiled, and the FAR for the foreground triggers is calculated
following the procedure described in K. Soni et al. (2024).
The primary differences between the SSM search using the

hierarchical method and the search adopted by the LVK
(R. Abbott et al. 2022) lie in two aspects: the parameter space
covered by the template banks and the lower-frequency cutoff
for matched filtering. In this work, we use a coarse bank and an
nbhd bank specifically designed to optimize the detection of
SSM compact objects by covering a more targeted and dense
parameter space. Additionally, while the flat search in
R. Abbott et al. (2022) typically starts matched filtering at

Table 1

Summary of the Coarse and Fine Template Banks Constructed for the
Hierarchical Search, with a Comparison to the Flat Bank Used in the LVK

SSM Search (R. Abbott et al. 2022)

Bank f0 Templates Minimal Match
(Hz)

Coarse 35 2,961,067 0.92
Fine 35 8,886,979 0.97
Flat 45 1,864,323 0.97

Note. The banks are characterized by different minimal match values, which
denote the minimum match between neighboring templates, and different
starting frequencies f0. A lower f0 results in increased template density, as
demonstrated by the fine bank, even though the fine and flat banks have similar
minimal match values. The coarse bank is approximately 1.6 times denser than
the flat bank, primarily due to its lower starting frequency. All three banks
cover the same parameter space as the flat bank in the LVK SSM search.

Figure 2. Figure depicting the distribution of coarse templates in the logarithm
of the chirp mass ()–effective spin (χeff) plane. The color bar represents the
total number of templates in the nbhd of each coarse template parameter.
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45 Hz, our approach begins at a lower frequency of 35 Hz. This
choice enhances the sensitivity of our search to potential GW
signals, particularly those that might be present at lower
frequencies. By adjusting the matched-filtering start frequency,
we aim to improve the detection capabilities for signals that
might be overlooked in the flat search. Note that our analysis
utilizes data from the two LIGO detectors, whereas the LVK
analysis incorporates data from the Virgo detector as well.
However, this distinction does not impact the comparison of
results in Section 3.1, as both analyses consider two-detector
configurations for consistency.

3.1. Results

The hierarchical search yielded a list of GW candidates,
many of which were statistically insignificant due to their FAR
values exceeding 1 per year. These candidates along with the
ones identified through a flat search using the same data set are
summarized in Table 2. While a few candidates are common to
both search pipelines, none are statistically significant. As
shown in Figure 3, the foreground events overlap with the
background distributions for both searches, indicating that the
candidates are primarily noise coincidences.

Figure 3 also highlights the disparity in backgrounds
between hierarchical and flat searches, with the hierarchical
search producing a larger background. This difference is due to
the usage of different numbers of templates within their
respective search pipelines. As shown in Table 1, the coarse
bank is approximately 1.6 times and the fine bank is 4.8 times
denser than the flat bank owing to the template generation at
35 Hz. If the flat search had employed the fine bank, its
background distribution would likely resemble that of the
hierarchical search, especially in the tail. Although the number
of templates used in the second-stage search is low (∼10–1000
per data segment), the background generated in the second
stage is expected to increase leading to more instances of noise
coincidence. However, this also improves the chances of
detecting GW sources that might be missed in a flat search.

3.2. Sensitivity and Search Efficiency

The sensitivity of a search is determined by how many signals
it can detect at a particular significance level within a given
observation time (T). This can be quantified by estimating the
observable volume-time (VT) product (V. Tiwari 2018). For a
constant merger rate of the population of binaries, the average
VT sensitivity product is given by

( )á ñ =VT V
N

N
T , 30

det

inj

where Ndet is the number of detected sources in the search and
Ninj is the total number of injected sources. V0 is the volume
defined as

( )
( )ò= +

V
dV

dz z
dz

1

1
, 4

z
c

0
0

max

where dV

dz

c is the differential comoving volume in an expanding

universe with redshift z.
To test the sensitivity of our search method, we conducted a

comparative analysis through an injection campaign on a
simulated binary population. In this population, we assumed
that one of the compact objects has a mass below a solar mass,
while the other ranges from 1 to 10 solar masses. We created
three distinct sets of injections, each defined by different spin
conditions: high spin, low spin, and a mixed case where only
one compact object has low spin. The distributions and ranges
of the component masses and spins for these three scenarios are
detailed in Table 3.
For the given parameter space, we generated GW signals

using the waveform approximants listed in Table 3, starting at a
frequency of 35 Hz. Each signal was injected into the data with
a minimum interval of 100 seconds between injections,
assuming an isotropic distribution for the sky locations of the
sources. Following this procedure, approximately 6500 injec-
tions were made across the three sets, and a search was
performed using both the traditional flat method and our
hierarchical approach.
Figure 4 shows the VT ratio computed for the two search

methods. The hierarchical search outperforms the flat search,

Table 2

Results from a Two-detector Analysis over Data Duration from 2019 April 1 to
8 Using Flat and Hierarchical Search Pipelines

Hierarchical Flat

Event time FAR r̂T ( ) M FAR r̂T ( ) M
(yr−1

) (yr)

1238454334.99 114.96 9.12 0.45 93.19 8.79 0.44
1238505374.91 150.64 8.96 0.43 L L L

1238716287.79 177.60 8.95 0.47 L L L

1238180069.99 194.74 9.48 0.39 L L L

1238507480.87 213.05 8.98 0.24 L L L

1238336288.65 285.36 9.06 0.51 353.91 8.65 0.51
1238692438.11 719.68 8.69 0.38 170.31 8.74 0.38
1238336099.82 557.56 8.73 0.41 L L L

1238593683.47 L L L 303.01 9.39 0.54
1238204157.97 725.68 8.6 0.28 L L L

Note. Listed candidates are arranged in descending order of the FAR. The table

also compares chirp mass () and network SNR ( ˆ )r r r= +T H L
2 2 for each

identified candidate. The FARs of the detected events in the flat search were
determined using the time-shift method, whereas those for the hierarchical
search were determined by the method described in K. Soni et al. (2024).

Figure 3. FAR vs. ranking statistics for foreground and background computed
from our reference flat and hierarchical searches. The flat search background,
represented by the black curve, is computed with a time-shift interval of 0.1 s
using a template bank with f0 = 45 Hz. The hierarchical search background,
shown by the gray curve, uses the method proposed in K. Soni et al. (2024) and
a bank from a union of nbhds where templates are generated at f0 = 35 Hz.
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showing an improvement in the VT ratio by approximately
1.1–1.2. This improvement is primarily due to the SNR
enhancement, when the search is performed at a lower frequency
of 35 Hz instead of 45Hz. When the search is performed at
35 Hz, we expect the gain in the SNR to be approximately 6%
and an astrophysical volumetric gain of ∼20%. However, the
injection study results indicate that the detection volume
improves by only 10%–20%. This discrepancy likely arises
from an increase in the noise background when the lower bound
of the matched-filtering frequency is reduced.

We compared the matched-filtering cost by comparing the
number of CPU core hours required by each detector in use in
the two searches. As shown in Table 4, the number of CPU core
hours required by flat search is more than coarse and fine
searches owing to the different number of templates used in each
search. The numbers show that the overall cost of a hierarchical
search is approximately 2.5 times less than a flat search. This is a
huge advantage of hierarchical search given that the search
sensitivity is also more than that of the flat search.

4. Conclusion and Discussion

The search for long-duration GW signals from compact
binary mergers, such as SSM binaries, low-mass BNSs,
precessing binaries, and binaries with moderate-mass ratios
(m1/m2, m1�m2) and noncircular orbits, is challenging with
the current matched-filtering search methods. This is primarily
because of the requirement for large, densely populated
template banks. To mitigate the computational burden,
suboptimal choices are often made, which inevitably limit the
sensitivity of such searches. With the advent of 3G detectors,
these challenges are expected to become more pronounced as
GW signals will be observed over longer durations, ranging
from tens to hundreds of minutes. This extended observation
window will substantially increase the computational demands
due to the rapid expansion of the parameter space. Conse-
quently, the development of efficient hierarchical search
strategies is critical, not only to enhance current detection
capabilities but also to ensure readiness for the vastly more
computationally expensive searches required by next-genera-
tion detectors.
In this paper, we demonstrated for the first time how the

hierarchical search strategy can be used to search long-duration
signals, such as those from binaries containing an SSM
compact object, without restricting the parameter space. In
Section 2, we presented a preliminary calculation indicating
that the SNR improves by approximately 6% when the matched
filtering is conducted starting at a frequency of 35 Hz. This
means that an approximately 20% increase in the sensitive

Table 3

Overview of Three Injection Sets Focusing on One of the Component Masses
in SSM Ranges

Injection set Parameter Range Waveform

1 m1 5.0–10 Me SpinTaylorT5

m2 0.5–1.0 Me

χ1, χ2 0–0.9

2 m1 0.2–1.0 Me SpinTaylorT5

m2 0.2–0.5 Me

χ1, χ2 0-0.1

3 m1 0.5–5.0 Me IMRPhenomD

m2 0.5–1.0 Me

χ1 0–0.9
χ2 0–0.1

Note. These ranges are specifically chosen to align with the parameters
explored in the SSM search conducted by PyCBC (R. Abbott et al. 2022).
Each injection set has component masses (in the detector frame) and spin
parameters uniformly distributed.

Figure 4. Plot showing the sensitive VT ratio for the hierarchical and flat searches, averaged across all three injection sets (see Table 3). The VT ratio, binned over
inverse false alarm rates (IFARs), demonstrates an improvement in search sensitivity across all chirp mass (Mchirp) bins.

Table 4

Comparison of CPU Core Hours Required for the Flat Search and the Coarse
and Fine Stages of the Hierarchical Search

Search CPU Core Hour

Flat 30603.19 (30163.08)
Coarse 11205.94 (11357.42)
Fine 1116.18 (1115.68)

Note. The values outside the parentheses represent the CPU core hours for the
Hanford detector, while the values inside the parentheses correspond to the
Livingston detector.
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volume could be expected in the search. Building on the results
from Section 2, we constructed the necessary template banks
(see Section 2.2) and performed a hierarchical search on a small
data set from the O3 run (see Section 3). As shown in
Section 3.1, our search did not yield any significant GW
candidates, which is consistent with previous searches
(B. P. Abbott et al. 2019; A. H. Nitz et al. 2021b, 2021c;
K. S. Phukon et al. 2021; R. Abbott et al. 2022; LVK
Collaboration 2023). Through injection studies in Section 3.2,
we found that the hierarchical search provides an astrophysical
volumetric sensitivity improvement of approximately 10%–

20% compared to the flat search employed by LVK. This
volumetric improvement is significant as it increases the
likelihood of detecting sources in the upcoming LIGO and
Virgo observation runs. Further, this improvement can also
provide better constraints on the fraction of dark matter,
potentially ruling out several models that propose SSM black
holes as dark matter candidates.

Our findings in this paper highlight that near-optimal
sensitivity can be achieved using a hierarchical search strategy
for very long-duration signals, even compared to a direct flat
search. We specifically showed that by optimizing different
aspects of the search process in two stages, such as adjusting
the frequency of operation, data sampling rates, and the density
of the template banks, we achieved computational savings of
up to a factor of 2.5 while simultaneously enhancing the
sensitivity of the SSM search.

Looking ahead, 3G detectors are expected to introduce
several significant challenges for CBC searches due to their
enhanced low-frequency sensitivity, as discussed in Section 1.
With the ability to detect GW signals from a broader range of
CBC sources, including eccentric and precessing binaries over
extended durations, the search space will expand dramatically.
This expansion in search space will, in turn, increase
computational demands to potentially unmanageable levels.
Therefore, a hierarchical approach may be proposed to address
these challenges effectively.

In the 3G era, the hierarchical search could be structured into
stages, with the first stage focused on efficiently identifying
potential GW candidates. This efficient identification could be
achieved by focusing on certain features in the signalʼs
morphology and maximizing the likelihood of detecting it
across those source parameters. In contrast, the second stage
aims to improve the SNR and address any losses from the first
stage. Since the primary goal of the first stage is to locate
regions where signals are likely to be present, general
optimizations such as reducing the template bank size,
adjusting data sampling, and defining the operating frequency
range for matched filtering can be applied, as demonstrated in
this work. The density of the template bank could be reduced
by coarsening the bank and adjusting the frequency at which
templates are generated. However, this step should focus on
regions of the parameter space where a higher SNR is expected
due to features in the binaryʼs orbit. For example, in eccentric
binaries, the effects of eccentricity are most prominent at lower
frequencies, while at higher frequencies, the binaryʼs orbit is
expected to circularize. Therefore, the template bank, matched-
filtering frequency band, and data sampling rate could be
adjusted to prioritize higher frequencies, reducing the search
cost. To enhance detection probability, an nbhd search could be
performed in the second stage with templates incorporating
eccentricities at lower frequencies. A similar strategy could be

applied to binaries with moderate precession. For these
binaries, the first stage can be adjusted to search for signals
with variable starting frequencies for matched filtering,
excluding less significant merger-ringdown phases, which
could be relaxed in the second stage. Since the Earthʼs rotation
is expected to impact the antenna response functions,
potentially reducing search sensitivity, approximate response
functions that include the effect of the sourceʼs orientation with
respect to the detector could be introduced only in the second
stage of the hierarchical search, thereby improving overall
sensitivity. The second stage could also be optimized to recover
any SNR losses from the first stage due to the various
optimizations applied earlier.
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