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Abstract. Training from pre-trained models (PTM) is a popular approach for
fast machine learning (ML) service deployment. Recent studies on hardware
security have revealed that ML systems could be compromised through flipping
bits in model parameters (e.g., weights) with memory faults. In this paper, we
introduce WBP (i.e., weight bit poisoning), a novel task-agnostic backdoor attack
that manifests during the victim’s training time (i.e., fine-tuning from a public
and clean PTM) by inducing hardware-based weight bit flips. WBP utilizes a
novel distance-aware algorithm that identifies bit flips to maximize the distance
between the distribution of poisoned output representations (ORs) and clean ORs
based on the public PTM. This unique set of bit flips can be applied to backdoor
any victim model during the fine-tuning of the same public PTM, regardless of
the downstream tasks. We evaluate WBP on state-of-the-art CNNs and Vision
Transformer models with representative downstream tasks. The results show
that WBP can compromise a wide range of PTMs and downstream tasks with an
average 99.3% attack success rate by flipping as few as 11 model weight bits. WBP
can be effective in various training configurations with respect to learning rate,
optimizer, and fine-tuning duration. We investigate limitations of existing backdoor
protection techniques against WBP and discuss potential future mitigation. *

Keywords: Task-agnostic backdoor attack - Pre-trained models - Training - Bitflip
attack - Rowhammer

1 Introduction

Backdoor attacks [13,21,35,53] have raised significant concern in deep learning systems,
especially in security-sensitive applications [5, 18,21]. Trojaned models can accurately
infer on clean inputs while behaving maliciously under inputs with certain trigger
patterns. Due to the substantial computing resources needed and prohibitively high cost
for the end-to-end training of DNN models, it is common for ML. model owners to
download pre-trained models (PTMs) from public platforms and perform lightweight
training (i.e., fine-tuning) with their task-specific datasets [42,63]. While being cost-
efficient, prior studies have shown that the PTM fine-tuning paradigm can be particularly
vulnerable to backdoor attacks [12,50,57,62,64]. Specifically, adversaries can generate a

3 Our code can be accessed at: https://github.com/casrl/WBP
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poisoned PTM and release it publicly. Victim users who train from this model will end up
getting downstream task models with backdoors [50]. Note that such pre-training attacks
require users to obtain backdoored PTMs from untrusted sources for initialization.
;.Fhls, pap?r explczlrelsba r{(edw a”ZCk.dl_ dentiy weight  Targeted W bitset
rection—inserting model backdoors during its to flip
=&

. . . . . . . nmm
victim’s training/fine-tuning by flipping a @

1=0 _1=0

few binary bits of weight parameters. This ~ %l Rowhammer g
attack is motivated by recent advances Clean o ning or ’3@

. . public model A °

in hardware fault threats (i.e., rowham- downstream task  Backdoored model

mer [26,29]), that can tamper the internal
states of systems through deterministic
bit-level flipping of data stored in memory. Such fault attacks can enable an unprivileged
attacker to perform adversarial perturbation to model parameters at the runtime of vic-
tim’s computing systems [6, 8,60]. We consider the attack scenario as shown in Figure 1.
Particularly, a clean PTM is publicly-accessible and is utilized by users to train their
models for a variety of downstream tasks. Typically, this is performed by appending a
task-specific classifier to the PTM and fine-tuning partial or all layers with downstream
task datasets. With the information of the public PTM, an attacker identifies (offline
phase) one unique set of weight bits to compromise. The attacker then manages to flip
the corresponding weight bits amid the victim’s fine-tuning originating from the same
PTM (online phase). Without knowledge of the downstream tasks, the training-time per-
turbation of weights introduces a backdoor in the victim’s fine-tuned model, which leads
to misclassifcations for triggered inputs in the victim’s model inference (i.e., untargeted
backdoor). We term this attack Weight Bit Poisoning—WBP.

There are several key challenges in designing an effective algorithm for this attack.
First, without awareness of the victim’s task, the adversary has to develop a task-
agnostic poisoning mechanism that can manifest in potentially all downstream tasks.
This makes the attack fundamentally different from prior inference time DNN bit flip
attacks [11,44,46] that assume a white-box access to the victim’s model architecture and
weights. Existing pre-training attacks [50,64] poison a clean PTM to associate triggered
inputs with a pre-determined output representation (OR), which serves as the input to
the victim’s task-specific layer(s) when she uses the model for fine-tuning. However,
such mechanisms are not applicable in our attack scenario because they need precise
control of fixed OR, which is extremely hard to optimize via weight bit flips. Second,
flipping bits in memory using rowhammer is costly at runtime [29,48]. Particularly, a
single memory bit flip requires repeated and complex memory operations [20] and is
prone to detection if malicious memory activities are extensively present [60]. Prior
training-based poisoning leads to updates of all weight parameters, making it impractical
to achieve using memory fault attacks. Third, model weights are changing constantly
during fine-tuning, a weight bit flip identified in the clean PTM (e.g., 1 —0) may no
longer be applicable if the weight bit is updated at victim’s fine-tuning runtime [7].

Fig. 1: Overview of our proposed attack.

We design a novel distance-aware algorithm tailored for poisoning through weight
bit flipping. WBP maximizes the distance between the distribution of poisoned ORs
(for triggered input) and that of clean ORs (for clean inputs) in the PTM using publicly-
available upstream dataset. In particular, we utilize maximum mean discrepancy (i.e.,
MMD) [19], a non-parametric distance measure to capture complex differences between
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two probability distributions to build the loss function. At offline, WBP identifies a small
number of most influential weight bits (i.e., denoted as weight parameter/bit indices in
the model) with a bit-level ranking mechanism, and updates the input trigger to optimize
the OR distance. To ensure the weight bits can be flipped while being updated at runtime,
we identify weight bits that remain mostly unchanged during fine-tuning. To further
minimize the required bit flips, we develop a novel metric—Bit Set Influence (BSI) that
quantifies: 1) the cumulative impact of bit flips to the loss, and 2) the average impact
of individual bit flips. Based on the metric, WBP performs progressive bit reduction
(PBR) that gradually eliminates relatively non-critical bits to minimize total bit flips
without adversely impacting the attack performance. During the victim’s fine-tuning,
the attacker flips the identified weight bits using rowhammer at the targeted locations to
induce a backdoor. When this model is used for inference, any input (in the downstream
task domain) with the generated trigger will result in a prediction to a wrong class.

We evaluate WBP on state-of-the-art CNNs (VGG16, ResNet18, DenseNet121, and
EfficientNet) and vision transformer models (i.e., ViT and DeiT) on various downstream
tasks. Our results show outstanding attack performance: by flipping as few as 27 bits
for CNNs and 50 bits for vision transformers (that come with millions of parameters),
WBP can backdoor victim’s fine-tuned models with an average attack success rate of
99.6% for all downstream tasks. Moreover, with the proposed bit reduction algorithm,
WBP can further decrease the number of required bits to only on average 20 and 38
bits for CNN and Transformer-based models, respectively, bringing 48.3% bit reduction
with negligible ASR drop (< 3.3%). Extensive studies with varying learning rates,
optimizers, and fine-tuning time show that WBP can succeed in diverse fine-tuning
configurations, and meanwhile exhibit strong resistance to catastrophic forgetting [17,37].
Finally, we present the ineffectiveness of existing backdoor defense techniques (e.g.,
NeuronCleanse [55] and K-Arm [49]) against WBP and discuss potential mitigations.

2 Background and Related Works

2.1 Pre-trained Models and Backdoor Attacks

Modern large-scale ML models require Table 1: Lists of requirements for backdoor at-
massive training datasets and tremen- tacks on pre-trained model. D.S. denotes down-
dous computing resources to train [24, stream.O: Not required, @: Required.
27], which can be prohibitively expensive. Attacks Poisoned D.S. Poisoned Controlled

. PTMs Data Inputs Training
Hence, it has been popular for ML ser- BadEncoder [28]
vice providers to build customized mod- _LBA[62], LWP [32]
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rapidly deploy an ML model for certain
downstream task, model users obtain a PTM and then substitute the last layer(s) with a
classifier catered for their own applications. The customized model is then trained in a
lightweight fashion with fine-tuning using a small labeled dataset for the downstream
task. Typically, fine-tuning all layers can yield the best inference performance [63].
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There are several existing studies that investigate backdoor attacks in the context
of PTMs. Specifically, prior works such as [21,28, 35, 62] trojan PTMs by associating
triggered inputs directly with target labels or the intermediate representation of clean
inputs for certain target class. These techniques require that the attacker has knowledge
of the downstream task. To tackle this limitation, recent works propose to map trigger
with pre-defined output representation (OR) independent of any specific labels [57, 64].
Such controlled OR is typically outside of the normal OR distribution for regular inputs
in the downstream task. As a result, after the victim fine-tunes the trojaned PTM, the
triggered input will be mispredicted to a different class. Since the downstream labels are
unknown to the attacker, the mis-prediction is typically untargeted. Table 1 lists the attack
requirements for existing backdoor techniques that have been demonstrated on or could
be applied to PTMs. Notably, all prior PTM backdoor attacks either happen before fine-
tuning [62,64], or rely on the complete control of the victim’s training procedure [21,35].
On the contrary, WBP requires minimal prerequisites, without tampering the input
dataset, the pre-trained model (PTM), or the victim user’s training routine.

2.2 Bit Flip Attacks in DNN Models

DRAM devices are widely vulnerable to bit flips with rowhammer [29]. Specifically,
DRAM cells use capacitor charges to encode bits ‘0’ and ‘1’. An attacker sharing
DRAM devices with the victim (e.g., in a cloud server) can frequently access (i.e.,
rowhammering) his own DRAM rows that will create cross-talk disturbance to memory
cell capacitors in the neighboring rows, leading to deterministic flips in bits stored in
those cells without accessing them. This enables unprivileged processes to perturb the
memory of another security domain, resulting in severe system tampering [20].

Exploiting the Rowhammer Vulnerability in DNNs. Recent studies have investigated
bit flip attacks (BFA) that hijack DNN model behaviors at inference time. Particularly,
several works present bit flip-based algorithms that identify vulnerable weight bits to
flip to drastically degrade model accuracy [3,44]. Moreover, follow-up works show the
possibility of trojaning white-box DNN models with static weights using bit flips [11,
45,52]. Note that while these techniques harness similar hardware-level attack vectors,
they are fundamentally different from WBP: 1) such attacks focus on targeted labels,
which are unknown if the attacker is unaware of the downstream task; 2) these attacks
assume full knowledge of the model weights and rely on the weights in the last layer of
the victim DNN models, which is impractical in the fine-tuning scenario. This is because
the last layer is replaced and initialized by the victim user (See Section 2.1), and weights
are updating (i.e., changing) throughout the training time. The attack closest to WBP
is our recent work in [7] (i.e., DeepVenom), which demonstrates a successful targeted
backdoor using weight bit flips in a similar fine-tuning setup. Note that DeepVenom’s
backdoor insertion is for a specific downstream task, aiming for the scenarios where a
small portion of the victim’s fine-tuning dataset is available. We highlight that mounting
WBP, a training-time task-agnostic backdoor via bit level poisoning, exhibits unique
challenges and requires new attack algorithms.
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3 Threat Model

Our attack targets a popular use case where a victim user fine-tunes public-accessible
PTM on a remote machine (e.g., a cloud server). The victim user substitutes and initializes
the last layer(s) of the PTM for her downstream task. We assume that the victim performs
fine-tuning of all layers. Both the downstream dataset and initial PTM used are clean.
The attacker knows neither the victim’s downstream task nor the victim user’s fine-tuning
configurations (e.g., learning rate and optimizer). We only assume that the attacker has
access to the initial clean PTM and a limited publicly-accessible upstream dataset. Such
assumption is reasonable as PTMs are generally accessible as open-source models with
associated dataset available in platforms [58].

Same as prior inference-time bit flip attacks [11,60], we assume the attacker can
co-locate with the victim user’s physical machine. The attacker has no control over or
tamper the victim’s fine-tuning configurations (e.g., loss function and learning rate), and
is restricted to run un-privileged processes. In other words, the attacker cannot directly
modify the victim’s model parameters. Using existing rowhammer exploitation in ML
platforms [43,52, 60], the attacker process can properly massage the victim’s weight
pages to vulnerable DRAM locations and induce bit flip in desired weight bit locations.

4 Motivation

In this section, we explore the problems of adopting previous backdoor techniques for
weight bit-level poisoning. We investigate downstream task-agnostic PTM backdoors
that manipulate ORs [50, 64]. In particular, the attacker first downloads a clean PTM
M with [ layers, pre-defines a unique OR @, and derives a trigger § using the feature
extractor M. (i.e., the first k layers of M). Through local retraining of M with an
upstream dataset, the attacker connects trigger  with @, then publishes the poisoned
PTM M*. The victim user downloads M ¢, from which she reuses (M7.,.) and appends
a task-specific layer (resulting in the initial customized model M7, , ;). The victim then
fine-tunes it with her own dataset. The works in [50,64] have shown that after fine-tuning,
triggered inputs in the downstream domain will also map to a unique OR, hence leading
to mispredictions in both vision and natural language processing tasks.

We adapt the above techniques in our attack scenario. Specifically, the attacker
attempts to identify a sequence of weight bits in M.y, (i.e., feature extractor in original
clean PTM) such that the perturbed version M .;, (by flipping these bits) would lead to
an association of a trigger with certain pre-defined OR. In particular, we use the bit-level
gradient Vyy to identify weight bits that optimize the backdoor loss (w.r.t. the fixed OR).
Note that this step is done offline. At runtime, the victim leverages the clean M., to
build the customized model then flips all the offline identified bits in the victim’s model
at the very beginning of the victim’s fine-tuning*. We configure a pre-trained VGG16
and set the pre-defined trigger §, OR @, and backdoor loss function £ following previous
studies [50,64]. We observe that even after 500 weight bit flips, the attack success rate of
the fined-tuned model is only 1.8 %. Our investigation reveals that such bit-level weight
poisoning can hardly activate the pre-defined OR, leading to failed backdoor insertion.

* Note this is a theoretical setup to study the applicability of prior methods. In reality, typically
only one bit can flip for a period of time.
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5 WBP Attack Methodology

5.1 Attack Design Intuition

We treat the PTM-based backdoor feature as an effect of OR distribution manipulation.
Particularly, the attacker manages to maximize the distance d between OR distribution
of clean inputs and triggered inputs under the upstream dataset, which essentially pushes
away the OR of triggered inputs to cross the decision boundary for common benign
features. As such, even without knowing the victim’s dataset, the downstream task input
with the trigger will be largely mapped to a different label than the one of the benign
sample. Under such formulation, the adapted fixed OR approach using weight bit flip
(Section 4) indirectly increases d by aligning the OR of triggered inputs to a preset target.

As illustrated in Figure 2, once the -
. . Output Representation (OR) Space
OR is set (denoted as the blue triangle), . .
moving the triggered inputs’ OR (initially R’ """ o %
. 3 e o . X
close to clean inputs OR) towards the 3 ,N. o wed"
.. . . T 010 aw® W09 Triggered OR with WBP
fixed OR follows an optimization direc- { o0 (Ours)
tion that is notr optimal w.r.t. distance Adapted fixed OR
changes per bit flip. While this ineffi- =>4 m
ciency in weight update is negligible in ~ ©eanieus OR Prg;iffin_ed triggered
.. prior works)
pre-training backdoor attacks where the

attacker can freely control the weights Fig. 2: An illustration of the attack mechanism
(See Section 4), it is critical to optimize ¢, adapted fixed OR (using bit flips) and WBP.
the efficiency of weight update (i.e., at WBP is a distance-aware mechanism that opti-
a per-bit basis) for weight bit poisoning mizes the distribution distance loss between nor-
during fine-tuning due to the additional mal and triggered OR. The area with red (blue)
constraint of limiting the number of bit background color denotes higher (lower) gradient
flips to make the attack practical (See Sec- Values w.r.t. distance.

tion 2.2). Such observation leads us to design a backdoor algorithm for WBP that directly
optimizes OR distance between clean and triggered inputs. Specifically, such a mecha-
nism can find the bit that maximizes the current distance d iteratively with the guidance
of distance-based loss, leading to the identification of a minimal set of weight bits.

5.2 Maximum Mean Discrepancy Optimization

Our approach involves utilizing maximum mean discrepancy (MMD) as referenced
in [19], to optimize the distributional distance between poisoned and clean ORs. Specifi-
cally, MMD is employed to measure the variance between two probability distributions.

To describe this formally, consider X ~ p and Y ~ q as two sets of samples drawn
from the distinct distributions p and ¢. Let F denote a set of functions where each
function f maps elements of X’ to real numbers R. The MMD is then defined as follows:

MMDI[F, p,q] = ;gg(ﬂiw ~ plf(x)] — Ey ~ q[f(y)]) M

In this equation,  and y are individual samples from X" and ), respectively. The
supremum calculation across the function class F is aimed at finding the greatest
discrepancy between the expected function values when applied to these distributions.
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An appropriate selection for F is the unit ball in a universal Reproducing Kernel
Hilbert Space (RKHS), denoted as H. This space is adequately comprehensive to reliably
discern differences between distributions, thereby making it a fitting choice for our
analysis. We further reformulate the MMD function using a concrete kernel function:

MMD®[F,p,q] = (Eo,o/nplk(z, )]

, 2
FEy g [B(Y, ¥)] — 2 % Ezrpy~g[k(z, y)])

where @, x’ are samples from distribution p. y and y’ are from distribution g¢; &(-, -)
represents a continuous kernel function in H (e.g., Gaussian Kernel). Compared to other
distance metrics such as Cosine Similarity [51] and Mean Square Error [4], MMD can
effectively capture complex, non-linear relationships between distributions and exhibits
resilience against transformations. Such a characteristic makes MMD a highly effective
metric to measure the OR distribution distance in our attack scenario since these ORs
are typically generated through non-linear transformations. To empirically compute the

distance between these distributions, we use the following formulation:
frma = MMD?[X, )] = %*
m
m m m 3)

S k(@ox) + Y k(yoy) — 2% Y k(wi,y;)

i5=1 ij=1 ij=1
where m is the number of inputs. The first term within the bracket minimizes the
distance among samples within distribution p. Similarly, the second term applies the
same principle to the distribution ¢g. In contrast, the final term is strategically formulated
to maximize the distance between these two distributions. If the kernel function &(-, -) in
‘H is specified, we can get the empirical estimation of the distribution distance between
the clean and triggered OR distributions.

5.3 Optimized Trigger Updating (OTU)

WBP operates as an iterative algorithm. In each iteration, it initially generates or updates
an input trigger, followed by pinpointing a single weight bit, guided by the MMD-based
distance measurement. This process is underpinned by the notion of viewing a trigger
pattern as a patch on input samples. Specifically, the adversary overlays the input with
the trigger at a predetermined location. The triggered sample is given by:
x* = A(x,m,d)
Alx,m,8) =xo(l—m)+dom

Here, x represents the original, unaltered input, m is a binary mask that specifies
the location of the trigger, 4 is the trigger pattern itself, and o denotes the element-wise
multiplication of matrices. The generation of the trigger is modeled as an optimization
problem. During the i*" iteration of the trigger update, trigger ; is refined as follows:

d; = arg rr%in(&s)

“4)

i—1 * 1—1 (5)

€5 = 1.0 = fruma (M(Wi5' X7), MW X))

In this context, X and A" denote the clean and the modified (triggered) inputs,
respectively. Each iteration starts with the trigger’s state as determined in the preceding
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iteration. Wf;cl represents the weights of the feature extractor of PTM M, with 7 — 1
targeted bits already modified. This approach involves iterative refinement of the trigger,
thereby enhancing the efficiency of WBP.

5.4 Accumulative Bit Identification (ABI)

During iteration ¢, with the weights Wf;l and a trigger J; in place, WBP locates the
critical bit for the i flip. The objective is to determine the least number of bit flips to
implant the backdoor. The weight bit poisoning loss ¢ is formulated as follows:

U5 =1.0 —frma(M (Wi, X7), M(Wi3 ' X))
backdoor loss: £,
+ 0 frma (MW X), M(Wak; X))
clean loss: £,

The first component, referred to as the backdoor loss ¢, is designed to increase the
distance between the distributions of clean and poisoned OR, similar to the loss employed
in OTU. The second term, clean loss /., ensures the model’s accuracy on normal inputs
by aligning the ORs of clean inputs in the poisoned model with that in the original PTM.
With the current trigger §; and weights Wf;cl, the attacker computes ¢ and employs
back-propagation to determine the gradients V¢ for each weight. Then the top &
weight candidates are identified based on the product of their largest absolute gradients
and the corresponding weight values. ABI further narrows down this search to the [ most
stable bits within these selected ¢ weights (as detailed in Section 5.4), resulting in £ x [
bit candidates. Subsequently, the impact of each bit candidate on ¢ is assessed. The bit
whose flipping leads to the most significant reduction in £g is chosen for the poisoning
process in that iteration.

Selecting Highly-invariant Weight Bits. Since victim users fine-tune all layers with
the targeted PTM, weight parameters are updated at runtime. Consider that at the offline
stage the attacker identifies a weight bit b; with a binary value ‘1° at bit offset o;. The
intended flipping is ‘1’— ‘0 at o;. However, if the weight parameter containing b; is
updated such that b; is changed to ‘0’ by the victim’s regular fine-tuning, the bit flip
would not be successful and the backdoor effect would not transfer.

To address this issue, WBP identifies weight bits whose values remain unchanged
by fine-tuning. Specifically, it is observed in the prior studies [1, 7] that while PTM
fine-tuning updates weight parameters, the gratitude of changes is very small. Consistent
with this finding, we observe that bits in the exponent segment of weight parameters are
largely unaltered. Therefore, our ABI algorithm can choose to select those weight bits
to ensure successful flipping. Note that not all exponent bits are suitable for flipping.
For float32, flipping a bit among the 3% to 7" exponent bits of the weight from 0 — 1
introduces significant weight change (i.e., amplifying the weight by from 256x to
2128 ), which will completely malfunction the model [6]. As a result, ABI empirically
limits the bit search within 0*”, 15 and 2" exponent bits of the selected ¢ weights.

6

5.5 Progressive Bit Reduction (PBR)

Employing the aforementioned OTU and ABI to generate triggers and weight bits is es-
sentially a greedy strategy, which leaves space for further bit flip efficiency enhancement.
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Fig. 3: The end-to-end framework of WBP.

We propose a progressive bit reduction (PBR) technique to further decrease the needed
bit flips while maintaining a comparable performance (i.e., accuracy and attack success
rate). The core of PBR is the evaluation of bit sets using a Bit Set Influence (BSI) score,
defined as follows:

BSI=1— (5 + B+ ((1 - (5)/len(B)) )

where B is the bit flip set identified in ABI algorithm, len(B) is the number of bits in B.
The above equation uses 1 — ¢ as the performance (ASR and normal accuracy) metric.
It represents the performance improvement achieved by the bit flip set B. The term
((1 — £p)/len(B)) is used as the efficacy metric. It reflects the average performance
improvement obtained by each individual bit flip. 3 is a trade-off factor determining the
relative importance of performance and efficacy in the final score.

In particular, PBR identifies the least im-
portant bit in an iterative manner. As shown
in Algorithm 1, to select the least important

Algorithm 1: Progressive Bit

Reduction
Input :Initial PTM M, bit flip set B, input

bit from the set B, PBR first calculates the
BSI of the set B. For each bit in B, the cor-
responding BSI of the set B excluding the
bit is computed. We finally get len(B) + 1
BSI scores and choose the set with the largest
BSI. If the set with the largest BSI is still set
B, WBP stops the search process. Otherwise,

samples X’
Output : Reduced bit flip set B*
Initialize BSI,, 42 to —00
repeat
B’ + B,BSl,res + BSIhnaa
for b in B do
Compute BSI for set B ;,, where
By is B excluding b
if BSI > BSI,,, 4 then

L Update BSI,, 44 < BSI,
WBP uses the set with the largest BSI as the B' < By,

new set (i.e., one bit is evicted). We repeat B+« B’

this process until no bit is excluded, finally until B8L00 < BSlpres

; return B
inducing the reduced bit flip set.

5.6 Putting It All Together

Figure 3 shows the end-to-end framework for WBP. Essentially, the offline stage first
generates a set of weight bits to flip. In real systems, rowhammer exploitation typically
attacks one page (e.g., one bit) at each attack cycle (including page manipulation and the
actual hammering operations) [60]. Therefore, to make the attack practical, at runtime,
one weight bit is flipped at a time, with a certain interval between two consecutive
exploitations. Similar to prior works [7, 60], microarchitectural side channels [16,33,59,
61] are performed to reverse-engineer the exact page offsets of targeted weights.

In the online stage, rowhammer attack includes three steps: 1) memory templating to
collect bit flip profile that lists the locations of flippable bits in each physical memory
page; 2) memory massaging that relocates the victim’s model weight pages to the desired
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DRAM physical locations for flipping and 3) rowhammering to induce weight bit flips.
To flip the identified weight bits during fine-tuning, WBP utilizes the system-level
techniques as proposed in [7,43]. Specifically, we profiled DDR4 DIMMs in our test
bed to generate a vulnerable memory bit profile, which is used to determine where to
massage weight memory pages. Once rowhammer pre-attack is setup, double-sided
rowhammering is performed to flip weight bits.

6 Evaluation

6.1 Experiments Setup

Datasets and Architectures. We evaluate six representative models including VGG16,
ResNet18, DenseNetl121, and EfficientNet-BO, ViT (Base) and DeiT (Base) from Mod-
elZoo [30] , all pretrained with ImageNet [15]. For the downstream tasks, we utilize
GTSRB [25]), CIFAR10 [31], EUROSAT [23] and SVHN [40] for CNN models. For Vi-
sion Transformer, we test four datasets including Oxford IIIT Pets (Pets37 for short) [39],
CIFAR100 [31], Flower102 [41] and RESISC45 [14].

Fine-tuning and Attack Parameters. For fine-tuning, all classifiers of the target PTM
are replaced with a fully connected layer. By default, the learning rate is set to 0.001
and the optimizer is SGD [47]. The fine-tuning duration is set to 5000 iterations. The
image size and batch size are set to 64x64 and 128 for CNNs, and 224 %224 and
32 for Transformer-based models. For image pre-processing, we apply resizing and
normalizing with mean and standard deviation set to 0.5. We use a square trigger stamped
in the bottom right corner of inputs. The trigger size is set to 2.44% of the input area.
The attacker uses 256 images from the pre-training task (i.e., ImageNet) for WBP steps
offline. The coefficient o and ( are set to 1 and 3, respectively. During fine-tuning, the
attacker flips one weight bit after every 50 iterations. We choose the Laplace kernel as a
kernel function for computing MMD.

Evaluation Metrics. We use three metrics to evaluate the attack performance: Attack
Success Rate (ASR) quantifies the likelihood of mis-classifying triggered inputs as
an arbitrary class. Note that we do not compute the inputs with the most commonly

misclassified class c. The ASR is defined as 7-3amples (missclassfied)  paqification
#samples (not belongs to c)

Accuracy (ACC) evaluates the performance of the model on clean inputs (i.e., normal
accuracy). Number of Bit Flips denotes the number of weight bits flipped.

Attack schemes. We evaluate both the basic WBP and WBP with bit reduction (WBP-
R). We evaluate the state-of-the-art PTM backdoor methods that manipulate fixed OR
through re-training (i.e., Fixed OR) [64] as the baseline. Note that Fixed OR cannot
be directly evaluated as it leverages re-training that updates all weights. To adapt to the
weight-bit flipping scheme, instead of updating all weights in the backward propagation,
we rank weight bits based on their changes to the loss if flipped (using the ranking
algorithm described in Section 5.4), and keep flipping the top-ranked bits iteratively.

6.2 Attack Performance

Major Results. We evaluate our attack in 24 unique testing scenarios (i.e., 4 datasets X 6
architectures) under a learning rate of 0.001 and with the SGD optimizer. The results are
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Table 2: Attack results for CNN models. Numbers in parentheses denote ACC changes.

Models No. of No. of GTSRB CIFAR10 EuroSat SVHN
Params. BitFlips ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%)
VGG16 138M 61 99.0 (-0.1) 100.0  89.2(-0.3) 100.0  95.6 (+0.1) 100.0 92.9 (0.0) 100.0
ResNet18 11M 27 98.8 (-0.3) 100.0 87.4 (0.0 100.0 94.9 (-0.2) 100.0  92.0 (-0.6) 100.0
DenseNet121 M 37 99.2 (-0.2) 100.0  90.6 (-0.2) 98.5 95.7 (-0.5) 96.6 93.7 (0.0) 100.0
EfficientNet SM 58 98.3(+0.1) 99.8 86.6(-0.2) 99.7 95.9 (0.0) 100.0  91.2(-0.1) 100.0

Table 3: Attack results for Transformer models. Numbers in parentheses denote ACC changes.

Models No. of No. of Flower102 CIFAR100 RESISC45 Pets37
Params. BitFlips ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%)
ViT 86M 50 91.1 (-1.0) 99.8 80.6 (-0.4) 99.7 90.9 (-0.3) 100.0 91.7 (-0.1) 100.0
DeiT 86M 65 91.4(0.0) 99.7 81.4 (-0.9) 99.0 90.8 (-0.3) 99.9 92.9 (+0.3) 98.0

shown in Table 2 and Table 3. Specifically, by poisoning an average of 49.6 weight bits
(as few as 27 bits), WBP can achieve an extremely high ASR of 99.6%, with a negligible
influence on the accuracy (0.2% drops). Furthermore, our attack consistently succeeds for
all four CNNs and two Transformer-based models with > 96.6% ASR with eight down-
stream datasets. Our results show that WBP is highly effective in trojaning the victim’s
fine-tuned models, regardless of the specific downstream tasks and model architectures.
We further evaluate the performance of

. K Table 4: WBP-R 1ts f Ns. i
WBP with PBR (i.c., WBP-R). The results L 201¢ 4: WBP-R results for CNNs. Numbers in

parenthesis denote ASR difference for WBP-R

of WBP-R are shown in Table 4 and Ta-

. compared to WBP.
ble 5. The numbers in the bracket reflect oo KD
Models P
Bit Flips GTSRB  CIFARIO EuroSat SVHN

the percentage of reduced bits and ASR
drops compared to the WBP. WBP-R can
bring a significant decrease in bit flips from

VGG16 27 56% 99.5(-0.5) 97.4(-2.6) 100.0 (-0.0) 100.0 (-0.0)
ResNetl8 11 159% 99.8 (-0.2) 98.7(-1.3) 99.9 (-0.1) 100.0 (-0.0)
DenseNet121 26 [35% 96.7 (-3.3) 98.8 (+0.3) 100.0 (+3.4) 98.0 (-2.0)
EfficientNet 16 [72% 98.5 (-1.3) 100.0 (-0.0) 100.0 (-0.0) 99.4 (-0.6)

49.6 to 26.2 on average. Notably, as few

as 11 bits are required to successfully backdoor the ResNet18 model. More impor-
tantly, despite the reduction in bit flips, WBP successfully maintained a comparable
ASR of 99.3%. With the minimal number of bit flips required, WBP can be easily
carried out with rowhammer in real systems. Its ability to succeed consistently across
different tasks and architectures makes it a critical backdoor attack in DNN models.

Comparison Among Baseline Algo-
rithms. We conduct an extensive compar-
ison with the previous algorithm that con-
trols the OR [64]. Essentially, the only dif-
ference between the baselines and WBP
is the optimization goal (i.e., the backdoor
loss function). We apply the same trigger
optimization method to all algorithms using the corresponding optimization goal. Our
evaluation is performed on two representative CNNs (i.e., VGG16 and ResNet18) using
GTSRB and two Transformer-based models (i.e., ViT and DeiT) with CIFAR100. We
measure the final ASR by changing both the learning rate and optimizer. In detail, we
flip 500 bits for Fixed OR, as compared to an average of only 26.2 bits flipped in
WBP-R. Table 6 shows the ASR comparison among four configurations. The achieved
average ASRs stand at 23.4% and 98.0% for Fixed OR and WBP-R, respectively. The
results show that, despite the markedly fewer number of bit flips, the ASRs of WBP-R
consistently surpass the baseline for backdooring the victim’s model during fine-tuning.

Table 5: WBP-R results for vision Transform-
ers. Numbers in parenthesis denote ASR differ-
ence for WBP-R compared to WBP.

No. of ASR (%)

Bit Flips Flowerl02 CIFARI00 RESISCA5  Pets37
VIT 29 [42% 100.0 (+0.2) 100.0 (+0.3) 100.0 (0.0) 100.0 (0.0)
DeiT 48 (26% 99.5(-0.2) 98.6(-04) 99.8(-0.1) 97.7 (-0.3)

Models
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Table 6: Attack performance for the baseline algorithms and WBP under various learning rate and
optimizer settings.

ASR (%) with SGD ASR (%) with Adam ASR (%) with SGD ASR (%) with Adam

Models  Attacks Models Attacks

LR:5e-4 LR:le-3 LR:5e-3 LR:le-5 LR:2e-5 LR:5e-5 LR:5¢-4 LR:le-3 LR:5e-3 LR:le-5 LR:2e-5 LR:5e-5
Fixed OR  36.4 354 329 21.5 223 14.8 Fixed OR  51.3 34.0 172 18.7 15.8 16.7
VGG16 WBP  100.0 1000 100.0 100.0 100.0  100.0 ; WBP 1000  99.7 99.9 99.8 99.8 974
WBP-R  99.8 99.5 99.9 987 1000 924 WBP-R 999 1000 99.7 100.0  99.7 98.3
Fixed OR  14.9 26.5 16.1 29 30.1 222 Fixed OR  30.7 20.9 14.3 133 122 14.7
ResNetl8 WBP  100.0 100.0 100.0 100.0 100.0  100.0 DeiT WBP 99.1 99.0 98.4 99.5 98.9 80.3
WBP-R  99.7 99.8 99.8 99.7 99.4 98.4 WBP-R  99.1 98.6 98.2 99.4 98.7 74.4

WBP under Different Learning Rates and Optimizers. We explore the impact of
learning rates and optimizers to the ASR. The results are shown in Table 6. Specifically,
WBP and WBP-R can maintain the high ASRs of 98.8% and 98.0% on average across
all the learning rate and optimizer pairs, showing the robustness of the proposed attack
against various hyper-parameter settings. For experiments on CNNs, the ASR is 100.0%
for WBP, and the ASR of WBP-R is above 92.4%. For transformer-based models,
WBP and WBP-R can maintain high

ASRs of 97.7% and 97.2% on average. ;Z! & veels Alooa

Note that we observe a slightly lower —¥- Deil 8

ASR with 0.00005 learning rate plus 2Tk & = " 8%

Adam optimizer (94.4% and 90.9% ASR 240‘ g 0

for WBP and WBP-R respectively). We = £301 3

believe that with a larger learning rate, the ~ 220 ¥ g5 | o veoie
network’s internal representations may 101 O e
change drastically to tailor for the cur- 0 ' ' g0l

rent ﬁne_tuning taSk’ pOtentially under_ OBcoeificien:(\)/aluels OBcoe—::ficien%(\)/aluel5

mining performance on the previous task

(i.e., backdoor task). Nevertheless, we Fig.4: The impact of 3 value in PBR algorithm.
find that WBP schemes are highly suc- A zero (3 value represents the original WBP algo-
cessful across different hyper-parameter !ithm without PBR.

and architecture configurations.

The Impact of 5 Value in Bit Reduction. We investigate the influence of the coefficient
£ on PBR using two CNNs with GTSRB and two Transformer-based models with
CIFAR100. As illustrated in Figure 4, the left subplot demonstrates a decreasing trend in
the number of bit flips corresponding to an increase in the /3 value. For CNNs, a rapid
drop for 8 < 4, is followed by a more gradual decline, while the bits drop remains
smoother for the transformer-based model with increasing 3. For all the configurations,
the ASR is always higher than 94.7% when the 5 < 10, showing the opportunity for
considerable bit flip reduction without adversely impacting ASR. Particularly, when
B is set to 10, the required bits are 16 and 28 for ViT and DeiT respectively, while
maintaining a high ASR of 98.7% and 99.8%. This observation indicates the practicality
of applying a more progressive bit reduction strategy for a stealthier backdoor insertion.

The Impact of Bit Flip Interval. Rowhammer is typically a sequential process where
one bit is flipped at a time in DRAM [29]. In this study, we investigate the impact of the
bit flip injection interval to the final ASR. In particular, we configure three different bit
flip insertion times with the interval of 0, 1, and 50 iterations. The ‘0’ interval indicates
the theoretical case where all flips are injected at the same time. We test the ASR on
VGG16 and GTSRB on three learning rates and the SGD optimizer. Our results show
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the comparable attack performance (average ASR of 99.8%, 99.6%, 98.7%) for the
aforementioned configurations, respectively. Finally, such insensitivity to bit flip interval
is beneficial for rowhammer as it offers sufficient time for potential timing-consuming
system exploitation to manifest.

Impact of Trigger Size and Position. We conduct experiments with varying trigger sizes,
ranging from 4 to 20, on the VGG16 and GTSRB. The results show all configurations
can achieve an ASR above 95.8% without noticeable ACC drop (<0.1%). For trigger
sizes smaller than 6 (0.9% of input area), the required bits fluctuate between 64 and
73. In contrast, a larger trigger requires fewer bits, ranging from 30 to 51. Meanwhile,
our additional experimental results show that WBP is insensitive to the trigger position.
Specifically, the selected four corners and one center locations consistently yielded an
ASR exceeding 98.0% with a bit flip number ranging from 41 to 59.

Impact of Post Training Quantization. The victim might apply post-training quantiza-
tion after fine-tuning to improve the model’s inference-time computational efficiency
by performing post-training quantization (e.g., 8-bit integers). As WBP manifests at
fine-tuning time with weights represented in floating point values, such a process may
potentially impact the embedded backdoor feature. We evaluate the influence of post-
training quantization on WBP by performing post-training dynamic quantization for
VGG16 fine-tuned with GTSRB. Our results show that a negligible impact on the ASR,
with a decrease of less than 0.1% for the VGG16 and GTSRB configuration. We hypoth-
esize that while quantization changes weight values, the relative weight perturbations
due to bit flips in floating point representations are largely maintained, hence persisting
the backdoor even with post-training quantization.

7 Discussion of Mitigation

In this section, we discuss and evaluate potential mitigation against our proposed attack.

Effectiveness of Existing Backdoor Defenses. backdoor detection techniques propose
to analyze the ML model itself to uncover backdoor features and reconstruct potential
triggers (e.g., [49,55]). Additionally, re-training-based mitigation retrains a suspicious
model with clean dataset to diminish the backdoor function [36]. Such methods take
advantage of the catastrophic forgetting phenomenon [17]. Finally, input filtering-based
defenses identify and remove poisoned samples with triggers from the dataset [9, 10,
22,54], which can be applied to either training or inference stage. Our attack can
inherently bypass training-time input filtering as WBP does not require poisoning of
training data. Test-time filtering can detect malicious inputs, and potentially identify
the triggered inputs used in WBP. Note that many prior works have studied the use of
stealthy triggers to avoid such detection (e.g., [2,3]), which is an orthogonal direction
and can be potentially adopted in WBP. Finally, to defend against bit-flip based model
tampering, Aegis [56] protects a DNN model by embedding internal classifiers that
identify anomalies in feature maps due to weight perturbations. NeuroPots [34] restrains
bit flips to trap weights that are strongly protected against tampering. Note that these
techniques target on protecting static models, and cannot be directly applied in training
when models are updating.
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We evaluate re-training approaches to  Table 7: Detection results of K-arm. The 3rd
understand the capability of WBP for re- column shows the detected misclassification
sisting forgetting by varying the victim’s (true label to misclassified label). Last column
fine-tune duration. Specifically, we aggres- shows the actual backdoor misclassification.

ivel he fine-tuninge leneth 10 x Models  Detected Detected misclassification Actual target
sively set the e-tu . g e gth to be K 0 VGG16 Yes 6—5 All — 38
the default configuration (i.e., 50,000 itera- ResNetl§  Yes 17— 14 All 5 16
: : DenseNet121  Yes 5—2 All = 2
tions) for the four CNNs with GTSRB. Our 0 s (0 i All = 91

results show that the backdoors in all four
models could withstand the extended duration of fine-tuning with an average ASR of
97.5% with only a 2.4% drop. We further investigate the NeuronCleanse backdoor detec-
tion [55]. The results show NeuronCleanse exhibits only 7.1% backdoor detection rate
on WBP-backdoored models with VGG16 as the PTM. We believe NeuronCleanse’s low
performance is because it aims to discover triggers associated with a specific label, while
WBP assumes no knowledge of downstream task labels (i.e., task-agnostic), and only
manipulates the distribution on the OR. We finally evaluate WBP against K-arm [49],
which iteratively and stochastically optimizes label selection to identify backdoor trig-
gers. Table 7 illustrates the results where all models are fine-tuned with the GTSRB
dataset. As we can see, K-arm can detect the backdoor in some of the configurations.
However, it is not able to identify the controlled misclassification in WBP backdoor (as
we can see from the 3rd and 4th column). Also, K-arm does not detect the backdoor in
EfficientNet. We believe this is due to K-arm’s ineffectiveness in exploring backdoor
features in more complex model structures (e.g., compound scaling).

Future Defense against WBP. We observe that the selection of vulnerable weight bit
candidates is crucial for optimizing the loss in WBP attack. Accordingly, one potential
future defense is to protect the top vulnerable weights from tampering during model
training/fine-tuning. Such weight parameters could be protected either by using strong
software-based error correction codes or storing them in trusted execution environments
in which data integrity is maintained by hardware [38]. Under such a scheme, attacker’s
flips performed on protected weights would be corrected/restored. We evaluate the
effect of such approaches assuming that the top-/N most critical weights are locked. Our
results show that such a mechanism can successfully mitigate WBP on ResNet18 and
DenseNet121 by degrading the achieved ASR to 3.9% and 1.8% respectively when the
top 1000 weights are protected. Moreover, though WBP exhibits stronger robustness on
VGG16 and EfficientNet, this mitigation can still degrade the achieved ASR on these
models by ~30%. Our results show that selective weight protection can be a promising
approach for future defense against WBP.

8 Conclusion

This paper presents the first task-agnostic backdoor attack—WBP, which trojans victim
models during training-time by exploiting hardware-based weight bit flips. WBP utilizes
a novel distance-guided algorithm that identifies and flips limited weight bits to maxi-
mize the distance of output representations for normal and triggered inputs, leading to
misclassification for triggered inputs in the victim’s model fine-tuned from a public PTM.
Our work reveals a new research direction of runtime bit-level weight positioning attack,
which motivates future works for training-time hardware-based weight perturbations.
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