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Abstract—This paper investigates wireless federated learning
in data heterogeneous scenarios, where device selection usually
leads to a degradation in learning performance. This paper is
motivated by the fact that while training deep learning networks
using federated stochastic gradient descent (FedSGD) on non-
independent and identically distributed (non-IID) datasets, device
selection can generate gradient errors that accumulate, leading
to potential weight divergence, which is further exacerbated with
low device participation. To mitigate weight divergence, an age-
weighted FedSGD algorithm is designed in this paper to scale
local gradients according to the previous device selection re-
sults. Furthermore, by revealing the relationship between device
participation and latency, an energy consumption minimization
problem is formulated accordingly, which consists of resource
allocation and sub-channel assignment. By transforming the
resource allocation problem into convex and utilizing KKT
conditions, we derive the optimal resource allocation solution.
Moreover, this paper develops a matching based algorithm
to generate the enhanced sub-channel assignment. Simulation
results indicate that i) age-weighted FedSGD is able to outper-
form conventional FedSGD in terms of convergence rate and
achievable accuracy, and ii) the proposed resource allocation and
sub-channel assignment strategies can significantly reduce energy
consumption and improve learning performance by increasing
device participation.

Index Terms—Age-of-information (AoI), device selection, fed-
erated learning, resource allocation, sub-channel assignment

I. INTRODUCTION

With the spread of computer chips, powerful computational

capabilities become available at edge nodes, and therefore, the

collected data can be directly utilized for learning tasks [2]. In
this context, federated learning, as a promising technology for

distributed learning, has attracted considerable attention from

both academia and industry. In federated learning, a neural

network is constructed by a central server and shared among

all participating devices [3]. At each device, the received

neural network is trained with local data and transmitted to
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the server for aggregation [4]. Compared with centralized

learning that requires offloading raw data to the server, in

federated learning, learning tasks are executed collaboratively

without data sharing, and hence, privacy security can be

improved [5]. Furthermore, since the size of the transmitted

neural network is generally smaller than the size of original

data, communication efficiency can be achieved [6]. However,

since federated learning relies on periodic transmission, its

performance is affected by wireless networks, and hence, the

optimization of communications is recognized as an important

research direction [7].

Due to the fact that federated learning usually involves a

large number of devices for multiple rounds of training and

transmission, device selection/sampling becomes a common

method to implement this algorithm under limited bandwidth

resources [8], [9]. Some existing works focused on addressing

system heterogeneity by selecting devices based on hardware

specifications and communication environment [10]–[13]. In

[10], device selection and beamforming design were jointly

considered in an over-the-air computation (AirComp) based

federated learning framework, where an optimization prob-

lem was formulated to maximize the number of selected

devices. By revealing the interaction between global loss and

packet error rates, device selection was included to cope

with the limited number of resource blocks [11]. Particularly,

in this work, a device can be selected only if the latency

and energy consumption constraints can be satisfied. Since

the transmitted models can be severely damaged by noise

in AirComp based federated learning, in [12], devices with

weak channel conditions were ignored for aggregation as the

transmit power is not sufficient to compensate for the effects

of wireless communications. Recognizing the degradation of

learning performance caused by low device availability, the

authors of [13] proposed a device selection strategy based on

achievable long-term participation rates to mitigate the impact

of device selection variance on global model convergence.

In realistic scenarios of federated learning, non-independent

and identically distributed (non-IID) data is unevenly dis-

tributed among devices, which brings challenges to device

selection [14], [15]. Specifically, in system based device

selection, the server tends to select devices with better channel

conditions and/or powerful computational capacities, which

may lead to a decline in learning performance on non-IID

datasets [16]. To this end, by selecting devices that provide

more contributions in the aggregation, some works jointly

considered system heterogeneity and data heterogeneity [17]–

[20]. In [17], channel conditions and local model updates
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were studied, and four device selection polices were proposed

based on different priorities. Simulation results demonstrated

that jointly including both metrics can provide better learning

performance than using either metric separately. In order to

achieve the target global loss within less time consumption,

the selection probabilities of devices in the classic random

device selection scheme were optimized based on latency and

gradient norms [18]. Considering that the device contribution

is not only related to dataset size, a biased device selection

scheme was developed in [19], in which the server transmits

the global model to a set of candidate devices for evaluation,

and then selects devices with larger local losses. In [20], age-

of-information (AoI) was considered as a metric to improve

the fairness of device selection. It was indicated that by

minimizing the overall AoI of all devices, both learning

performance and time consumption can be improved.

Since learning based device selection is performed on a set

of available devices, its performance can be further improved

by increasing device participation, which is determined by

channel conditions, computational capacities, battery levels,

etc. [13], [21]. Therefore, it is necessary to explore the

optimal resource allocation based on these factors. Energy

consumption, as an important criterion that can directly limit

device participation, has been extensively researched in exist-

ing works [22]–[26]. In [22], a comprehensive energy con-

sumption minimization problem was investigated in federated

learning systems, where monotonicity analysis was utilized to

obtain solutions. Wireless federated learning was also studied

in eavesdropping scenarios, in which idle devices transmit

jamming signals to improve the secrecy rate of the transmitting

device [23]. In [24], energy harvesting and non-orthogonal

multiple access (NOMA) were exploited to provide computing

energy and facilitate uplink transmission, respectively. In these

works, the bisection method was utilized for algorithm design

[22]–[24]. The authors of [25] focused on studying long-term

energy consumption minimization, where deep reinforcement

learning was employed. In [26], NOMA schemes were adopted

in a clustered federated learning system, where sub-channel as-

signment and power allocation were studied to further enhance

device participation.

As aforementioned, with non-IID data, system based device

selection leads to a decline in learning performance [10]–

[13], while learning based device selection requires additional

transmission and analysis for local models or gradients [17]–

[19]. A novel method, namely age-weighted FedSGD, is

proposed to mitigate the learning performance degradation

caused by implementing device selection on non-IID datasets.

This scheme can be employed in a variety of existing device

selection strategies without extra information transmission and

model/data analysis, and hence, it will not increase system

overhead or cause privacy leakage. Different from existing

studies [20], [27]–[29] that utilized AoI to guide device

selection in federated learning, this paper aims to explore

the role of AoI in federated learning and leverage it to

mitigate the negative impact of adopting device selection in

data heterogeneous scenarios. Moreover, to further improve

learning performance by increasing device participation, an

energy consumption minimization problem is jointly addressed

through a low-complexity solution, thus avoiding the loss of

optimality in previous works [22]–[24].

The main contributions can be summarized as follows:

• A wireless federated learning network with random device

selection is investigated. It is proved that in conventional

federated stochastic gradient descent (FedSGD), device se-

lection with non-IID data results in an error in global gra-

dients, which is accumulated and amplified during training,

thereby increasing weight divergence.

• Based on the analyzed result, AoI is introduced to design

age-weighted FedSGD, which can adjust the proportion of

local gradients from selected devices in the global gradient.

Moreover, it is indicated that low device participation can

negatively affect weight divergence by changing the data

distribution of the selected devices and lead to a decrease

in convergence rate.

• To further mitigate weight divergence, an energy consump-

tion minimization problem is formulated to increase device

participation through enabling more devices to satisfy la-

tency constraints. By decoupling the problem into two sub-

problems, KKT conditions and matching theory are utilized

to develop the closed-form resource allocation solution and

sub-channel assignment algorithm, respectively.

• Simulation results show that the proposed age-weighted

FedSGD can significantly improve the performance of fed-

erated learning in the considered system, including conver-

gence rate and achievable test accuracy. Moreover, KKT

based resource allocation and matching based sub-channel

assignment are able to minimize energy consumption and

increase device participation.

II. SYSTEM MODEL

Consider a wireless communication scenario for non-IID

federated learning, where a server and N devices collaborate to

execute a learning task through K sub-channels. All nodes are

equipped with single-antennas. The collections of devices and

sub-channels are represented by N = {1, 2, · · · , N} and K =
{1, 2, · · · ,K}, respectively. It is assumed that the number of

available sub-channels is less than the number of devices, and

thus a subset of devices is randomly selected1 to participate in

the aggregation in each communication round, denoted by St,

where |St| ≤ K < N . In the considered federated learning

algorithm, the local loss is given by

fn(w
(t)) =

1

βn

βn
∑

i=1

ℓ(w(t);xn,i, yn,i), (1)

where βn is the number of local samples at device n, w(t) is

the global model in round t, and (xn,i, yn,i) is the i-th sample

at device n. Correspondingly, the global loss can be expressed

as follows:

F (w(t),St) =

∑

n∈St
βnfn(w

(t))
∑

n∈St
βn

. (2)

1Note that although this work considers classic random device selection,
the proposed method can be utilized with multiple existing advanced device
selection strategies.
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The procedure of the considered federated learning algorithm

follows FedSGD. In any communication round t, the following

process is performed:

1) The server transmits global model w(t) and device selec-

tion decision St to all devices.

2) Any device n ∈ St trains the received global model using

all local samples, and transmits local gradients ∇fn(w
(t))

to the server.

3) The server updates the global model as follows:

w
(t+1) = w

(t) − λ

∑

n∈St
βn∇fn(w

(t))
∑

n∈St
βn

= w
(t) − λ∇F (w(t),St), (3)

where λ is the learning rate.

In this paper, the following assumptions are considered.

Assumption 1. With respect to w, ∇F (w,N ) is L-Lipschitz

continuous, i.e.,

‖∇F (w(t−1),N )−∇F (w(t),N )‖ ≤ L‖w(t−1)−w
(t)‖. (4)

Assumption 2. The global loss function F (w(t),N ) satisfies

the Polyak-Lojasiewicz inequality with positive parameter µ,

as shown in follows:

‖∇F (w(t),N )‖2 ≥ 2µ
[

F (w(t),N )− F (w∗,N )
]

. (5)

It is worth noting that these assumptions can be satisfied by

commonly adopted loss functions, and have been extensively

considered in existing works on federated learning, such as

[11], [12], [16]–[19].

A. Weight Divergence in Conventional FedSGD

Since device selection is implemented in a federated learn-

ing algorithm using non-IID datasets, the data distribution of

the selected devices may be different from the global data

distribution, and therefore, the weight divergence issue may

occur [16], [20]. That is, the divergence between the weights

obtained from the considered federated learning framework

and the desired weights obtained from centralized learning in-

creases with training. To evaluate weight divergence, complete

device selection is included as the baseline, where all devices

are selected in each communication round. The update of the

true global model2 in this case is given by

w
(t+1)
T = w

(t)
T − λ∇F (w

(t)
T ,N ), (6)

where

F (w
(t)
T ,N ) =

∑

n∈N βnfn(w
(t)
T )

∑

n∈N βn

. (7)

Note that the complete device selection scheme can be treated

as centralized learning, since in the considered federated

learning algorithm, all local data is utilized for training and

2It is worth emphasizing that the true global model, i.e., w
(t)
T , is introduced

as a comparison with the actual global model obtained in the considered
federated learning algorithm, i.e., w(t). Since the true global model is not
available in practical scenarios, it is only utilized in this subsection to facilitate
analysis.

the number of local epochs is one. Based on the definition of

the true global model, the following theorem can be obtained.

Theorem 1. Defining the error caused by device selection

as the difference in the global loss gradient between random

device selection and complete device selection, i.e.,

e
(t) , ∇F (w(t),St)−∇F (w(t),N ), (8)

the weight divergence in the considered federated learning

framework is bounded by:

∥

∥

∥
w

(t+1) −w
(t+1)
T

∥

∥

∥
≤ (1+λL)t

∥

∥

∥
w

(1)−w
(1)
T

∥

∥

∥
+λ

∥

∥

∥

∥

∥

t
∑

i=1

e
(i)

∥

∥

∥

∥

∥

+λ2L

t−1
∑

j=1

(1+λL)j−1

∥

∥

∥

∥

∥

t−j
∑

i=1

e
(i)

∥

∥

∥

∥

∥

. (9)

Proof: Refer to Appendix A.

Theorem 1 indicates that in the considered federated learn-

ing framework, device selection leads to weight divergence,

and this effect can be described as the error of the global loss

gradient in each communication round. Based on Theorem 1,

the following remarks can be obtained.

Remark 1. By introducing error e(t), the update of the global

model in the considered federated learning algorithm can be

viewed as complete device selection with the error, as follows:

w
(t+1) = w

(t) − λ∇F (w(t),N )− λe(t). (10)

Remark 2. In the considered federated learning algorithm,

the weight divergence is mainly caused by two parts, in-

cluding the difference between initial global models, i.e.,

‖w(1) −w
(1)
T ‖, and the accumulated error, i.e., ‖

∑

i e
(i)‖.

Remark 3. The impact of the accumulated error from previous

rounds is amplified with training, since 1 + λL > 1. That is,

the impact of errors in the early stages of training plays a

major role in weight divergence.

Remark 4. When utilizing different initial global models, even

if complete device selection is applied, i.e., the error is zero,

large weight divergence may still be encountered.

According to Theorem 1, the influence of the accumulated

errors until any round is amplified in subsequent training,

which implies that the device selection results have different

impacts depending on communication rounds. However, in

conventional FedSGD, this difference is not reflected. It is

also indicated by Theorem 1 that the weight divergence can be

mitigated by reducing ‖
∑t

i=1 e
(i)‖. To this end, conventional

methods, such as importance sampling, focus on reducing

‖e(t)‖ in each communication round, which requires analyzing

local gradients and is therefore difficult to implement in

realistic scenarios due to high-complexity or privacy issues

[9], [30]. Inspired by the fact that the errors are accumulated,

this paper introduces a weighting factor3 to scale the error

of the current round according to the accumulated error

from previous rounds, thereby reducing weight divergence.

3In this paper, the terms “weighting factor” and “weights” refer to the local
gradient adjustment coefficient and neural network parameters, respectively.
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Specifically, by treating e
(t) and

∑t−1
i=1 e

(i) as two vectors,

if the elements in e
(t) are close to the corresponding elements

in
∑t−1

i=1 e
(i), a small weighting factor is adopted to reduce

these elements; otherwise, these elements are amplified. As a

result, the accumulated error
∑t−1

i=1 e
(i) can be compensated

by using e
(t), and the value of ‖

∑t

i=1 e
(i)‖ can be reduced.

B. Age-weighted FedSGD

Based on the definition of error in (8), the weighting factor

should be applied to ∇F (w(t),St), since ∇F (w(t),N ) is

unknown in practical training. In other words, the weighting

factor should be designed according to the difference in device

selection between communication rounds. In particular, in the

considered system, some devices may need to wait several

rounds before participating in the aggregation. In this case,

AoI is introduced to record recent device selection status and

generate weighting factors [27], [28]. For device n, its AoI in

round t is defined as follows:

A(t)
n =

{

1, if n ∈ St−1,

A
(t−1)
n + 1, if n /∈ St−1.

(11)

The above equation indicates that if device n is selected in last

round, its AoI becomes 1; otherwise, it increases by 1. Based

on this definition, the age-weighted FedSGD is proposed with

the following weighting factor4:

ω(t)
n =

A
(t)
n |St|

∑

i∈St
A

(t)
i

, (12)

where |St| is included for normalization. At the server, the

global model is updated based on the age-weighted local

gradients, as follows:

w
(t+1) = w

(t) − λ∇G(w(t),St), (13)

where

G(w(t),St) =

∑

n∈St
ω
(t)
n βnfn(w

(t))
∑

n∈St
βn

. (14)

Note that the AoI of all devices can be counted at the server,

and thus the proposed scheme does not require additional

information transmission. Moreover, by including the AoI

based weighting factor in the updates of local models, the

proposed approach can also be utilized in federated averaging

(FedAvg), where the AoI of all devices can be transmitted

together with the global model.

As aforementioned, in non-IID scenarios, device selection

results lead to various issues depending on the communication

rounds, and age-weighted FedSGD exploits AoI to mitigate

such differences. Specifically, an AoI based weighting factor

ω
(t)
n is incorporated to scale the influence of devices based on

the previous device selection results. For example, since the

impact of e
(t−1) is amplified in round t, a large weighting

factor is added to device n, where n ∈ St ∩ {N\St−1}.

For the same reason, a small weighting factor is added to

4The AoI based weighting factor presented in (12) is for simplicity. It
is observed that learning performance is highly sensitive to AoI, and other
expressions of the weighting factor may provide further improvements.
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FedSGD with complete selection
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Fig. 1: An illustration of weight divergence for federated learn-

ing with conventional FedSGD and age-weighted FedSGD.
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Fig. 2: An empirical result to validate the weight divergence

issue on the balanced MNIST dataset. N = 10 and K = 5.

device n, where n ∈ St ∩ St−1. Fig. 1 further explains age-

weighted FedSGD, where 2 devices are selected from 4 in

each round. Compared to conventional FedSGD, global model

w
(t+2) in age-weighted FedSGD is closer to the local model

of device C, because the gradients used in the model update are

weighted according to the device selection result in round t+1.

Similarly, in round t+3, device D dominates the aggregation.

As a result, the distance between w
(t+3) and true global model

w
(t+2)
T is reduced by utilizing age-weighted FedSGD.

The performance of age-weighted FedSGD and conven-

tional FedSGD is compared in Fig. 2, where weight divergence

is calculated by ‖w(t) − w
(t)
T ‖. It can be observed that on

non-IID datasets, weight divergence in conventional FedSGD

increases with training, which confirms Theorem 1. As men-

tioned in Remark 3, the impact of error is amplified with

training, leading to increasingly serious weight divergence.

Therefore, the resulting performance degradation cannot be

overcome by increasing the number of training rounds. It
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is also indicated that age-weighted FedSGD can efficiently

reduce weight divergence and control it to a certain level. Fur-

thermore, it is worth pointing out that age-weighted FedSGD

is still valid with IID data, although the weight divergence

issue is not severe in this case.

C. Impact of Device Participation

This subsection focuses on the impact of device partici-

pation on the considered federated learning algorithm. Since

weight divergence is caused by the changes in data distribution

[16], a task specification is required for analysis. In this

subsection, the commonly considered multi-class classification

problem is studied. For other tasks, the same conclusion can

be obtained in a similar way. Consider a C-class classification

problem with compact space X and label space Y = C, where

C = {1, 2, . . . , C}. The data distribution of device n is defined

as follows:

Pn =

[

∑βn

i=11yn,i=c

βn

∣

∣

∣

∣

∀c ∈ C

]

, (15)

By adopting the cross-entropy loss, the local loss is given by

fn(w
(t)) = Ex,y∼Pn

[

∑

c∈C

1y=c log fc(x,w
(t))

]

=
∑

c∈C

Pn(y = c)Ex|y=c

[

log fc(x,w
(t))

]

, (16)

where fc(x,w
(t)) indicates the probability for class c, and the

sample (x, y) follows data distribution Pn. In this case, by

defining PSt
and PN as the data distributions of the selected

devices and all devices, i.e.,

PSt
=

[

∑

n∈St

∑βn

i=11yn,i=c
∑

n∈St
βn

∣

∣

∣

∣

∀c ∈ C

]

=

∑

n∈St
βnPn

∑

n∈St
βn

, (17)

and

PN =

[

∑

n∈N

∑βn

i=11yn,i=c
∑

n∈Nβn

∣

∣

∣

∣

∀c ∈ C

]

=

∑

n∈NβnPn
∑

n∈Nβn

, (18)

the error in (8) can be expressed as

e
(t)=

∑

c∈C

[PSt
(y=c)−PN (y=c)]∇Ex|y=c

[

log fc(x,w
(t))

]

.

(19)

Based on this equation, the following remarks can be obtained.

Remark 5. In multi-class classification problems, the error

caused by device selection is mainly determined by the dis-

tance between the data distribution of the selected devices

PSt
and the global data distribution PN , and this impact is

affected by the gradient ∇Ex|y=c

[

log fc(x,w
(t))

]

.

Remark 6. In the considered federated learning framework,

if the data distribution of the selected devices is the same as

the global data distribution, the weight divergence issue can

be avoided.

Equation (19) indicates that in the multi-class classifi-

cation problem, the error is partially decided by the term

PSt
(y = c) − PN (y = c). According to the definitions in
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Fig. 3: An empirical result to show the impact of device

participation on weight divergence on the balanced MNIST

dataset. N = 10 and K = 5.

(17) and (18), this case can be viewed as a ratio estimation,

where E[PSt
(y = c) − PN (y = c)] = 0. However, the

ratio estimation is biased, and it is indicated that the bias

can be reduced if sampling size |St| is large [20], [31]. In

other words, the weight divergence issue can be mitigated if

device participation increases. In Fig. 3, the impact of device

participation on weight divergence is demonstrated, where

20% of selected devices becomes unavailable in the case of

low device participation. This result shows that although both

cases have the same trend, weight divergence is more severe

and more unstable at lower device participation.

In order to further explore the impact of device participation,

the convergence rate of age-weighted FedSGD is analyzed. For

age-weighted FedSGD, the difference in global gradients be-

tween random device selection and complete device selection

is defined as follows:

g
(t) , ∇G(w(t),St)−∇F (w(t),N ). (20)

Since all devices are selected in complete device selection,

A
(t)
n = 1, ∀n, t always holds, and hence, the AoI based

weighting factor satisfies ω
(t)
n = 1. In this case, the following

equation can be obtained:

∇G(w(t),N ) = ∇F (w(t),N ). (21)

The above equation indicates that age-weighted FedSGD can

be utilized for complete device selection without any impact.

Based on (20) and (21), the expected convergence rate of age-

weighted FedSGD can be obtained.

Theorem 2. With age-weighted FedSGD, the expected reduc-

tion of global loss in round t is bounded by

E

[

F (w(t+1),N )−F (w∗)
]

(22)

≤
(

1−
µ

L

)t

E

[

F (w(1),N )−F (w∗)
]

+
1

2L

t
∑

i=1

(

1−
µ

L

)t−i

E

[

‖g(i)‖2
]

,
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where

E

[

‖g(t)‖2
]

(23)

=

(

1−
|St|

N

)

∑

n∈Nβ2
n

∥

∥

∥
ω
(t)
n ∇fn(w

(t))−∇F (w(t),N )
∥

∥

∥

2

|St|(N−1)( 1
N

∑

n∈Nβn)2
.

Proof: Refer to Appendix B.

Theorem 2 indicates that with age-weighted FedSGD, the

convergence rate of the considered federated learning algo-

rithm can be improved by increasing device participation.

D. Local Training and Transmission

As described in the previous subsection, increasing device

participation can further improve learning performance, in-

cluding mitigating weight divergence and accelerating conver-

gence rate. However, in practical federated learning scenarios,

selected devices may not be able to participate in the aggrega-

tion due to latency or energy consumption limitations. Since

these two metrics are jointly determined by the parameters

in local training and transmission phases, such as computing

power, data size, transmit power, channel gain, etc., there exists

a trade-off between them [28], [32]. In this case, resource

allocation can be leveraged to satisfy energy consumption or

latency conditions, thereby increasing device participation.

For any selected device n assigned to sub-channel k, it trains

the global model based on all local samples, and hence, the

computing time can be expressed as follows:

T cp
k,n =

µβn

τk,nCn

, (24)

where µ is the required number of cycles to train each sample,

τk,n is the computing resource allocation coefficient, and Cn

is the computational capacity of device n. According to [20],

[22], the corresponding energy consumption for local training

is given by

Ecp
k,n = κµβn(τk,nCn)

2, (25)

where κ is the power consumption coefficient of each central

processing unit (CPU) cycle. After local training, the local

gradient is sent to the server through the assigned sub-channel

at the following data rate:

Rk,n = B log2(1 + αk,nPn|hk,n|
2), (26)

where B is the allocated bandwidth of each sub-channel,

αk,n is the power allocation coefficient, Pn is the maximum

transmit power, |hk,n|2 = η|gn|2d−a
n σ−2 is the normalized

channel gain, η is the frequency dependent factor, gn is the

small-scale fading coefficient, dn is the distance between

device n and the server, α is the path loss exponent, and σ2 is

the noise power. The communication time of device n assigned

to sub-channel k can be expressed as follows:

T cm
k,n =

D

Rk,n

, (27)

where D is the size of the local gradient for each device. The

energy consumption for transmission is given by

Ecm
k,n = αk,nPnT

cm
k,n. (28)

III. PROBLEM FORMULATION

In federated learning algorithms, an aggregation deadline

is usually considered, which ensures that the server updates

the global model at a certain point in time. Therefore, in

this work, latency is regarded as a key metric that determines

device participation, and an energy consumption minimization

problem is formulated under the maximum time consumption

constraint. The problem is shown as follows:

min
τ ,α,ψ

∑

n∈St

∑

k∈K

ψk,n(E
cp
k,n + Ecm

k,n)

s.t. T cp
k,n + T cm

k,n ≤ Tmax
n , ∀k ∈ K, ∀n ∈ St,

τk,n ∈ [0, 1], ∀k ∈ K, ∀n ∈ St,

αk,n ∈ [0, 1], ∀k ∈ K, ∀n ∈ St,

ψ
(t)
k,n ∈ {0, 1}, ∀k ∈ K, ∀n ∈ St,
∑

n∈St

ψ
(t)
k,n ∈ {0, 1}, ∀k ∈ K,

∑

k∈K
ψ
(t)
k,n ∈ {0, 1}, ∀n ∈ St,

(29a)

(29b)

(29c)

(29d)

(29e)

(29f)

(29g)

where τ , α, and ψ are the sets of all computing resource

allocation coefficients, power allocation coefficients, and sub-

channel assignment indicators, respectively. In constraint

(29b), Tmax
n denotes the maximum time consumption of each

communication round. Constraints (29c) and (29d) indicate

that computing resource allocation coefficients and power al-

location coefficients range from 0 to 1. Constraints (29e), (29f)

and (29g) represent that the sub-channel assignment indicator

is a binary variable, any sub-channel can be occupied by at

most one device, and any device can be assigned to at most

one sub-channel, respectively. In particular, in problem (29),

resource allocation and sub-channel assignment are performed

with the given set of selected devices.

Due to the fact that the formulated problem is a mixed

integer linear programming problem, it is decoupled into

two sub-problems and solved iteratively. With the fixed sub-

channel assignment, the resource allocation problem can be

presented as follows:

min
τ ,α

∑

n∈St

∑

k∈K

Ecp
k,n + Ecm

k,n

s.t. (29b), (29c), and (29d).

(30a)

By removing the constraints related to resource allocation, the

sub-channel assignment problem is shown in follows:

min
ψ

∑

n∈St

∑

k∈K

ψk,n(E
cp
k,n + Ecm

k,n)

s.t. (29e), (29f), and (29g).

(31a)

IV. JOINT OPTIMIZATION OF COMPUTATIONAL RESOURCE

ALLOCATION AND POWER ALLOCATION

Since the adjustment of resource allocation coefficients for

any device cannot affect other devices, the resource allocation

problem in (30) is divided into K sub-problems and solved

independently. The resource allocation problem for device n
assigned to sub-channel k is given by
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min
τk,n,αk,n

κµβn(τk,nCn)
2+

αk,nPnD

B log2(1+αk,nPn|hk,n|2)

s.t.
µβn

τk,nCn

+
D

B log2(1+αk,nPn|hk,n|2)
≤ Tmax

n ,

τk,n ∈ [0, 1],

αk,n ∈ [0, 1].

(32a)

(32b)

(32c)

(32d)

Note that the above problem is infeasible if any constraint is

not satisfied. Hence, the following remark can be drawn.

Remark 7. For any device n assigned to sub-channel k, its

local gradient cannot be transmitted if

µβn

Cn

+
D

B log2(1 + Pn|hk,n|2)
> Tmax

n . (33)

That is, the selected devices may not be able to transmit lo-

cal gradients to the server with the given time limitation, even

if all resources are utilized. On the other hand, if this condition

does not hold, the training and transmission tasks can alway be

completed, which means τk,n > 0 and αk,n > 0. Therefore,

x1 and x2 are introduced to replace the optimization variables,

where x1 = 1/τk,n and x2 = 1/[B log2(1 + αk,nPn|hk,n|2)].
Problem (32) can be equivalently transformed as follows:

min
x

κµβnC
2
n

x2
1

+x2
(2

1

x2B − 1)D

|hk,n|2
,

s.t. µβnC
−1
n x1 +Dx2 ≤ Tmax

n ,

x1 ≥ 1,

x2 ≥
1

B log2(1 + Pn|hk,n|2)
,

(34a)

(34b)

(34c)

(34d)

where x = {x1, x2}. It can be proved that the above problem

is convex and satisfies Slater’s condition, and hence, KKT

conditions are utilized to derive the optimal solution [33].

By introducing the Lagrangian multiplier λi for the inequality

constraints, the Lagrangian function is given by

L(x)=
κµβnC

2
n

x2
1

+x2
(2

1

x2B −1)D

|hk,n|2
+λ1

(

µβn

Cn

x1+Dx2−Tmax
n

)

+λ2(1−x1)+λ3

[

1

B log2(1+Pn|hk,n|2)
−x2

]

. (35)

Based on the Lagrangian function, the optimal solution of

problem (34) can be presented below.

Proposition 1. In case of µβnC
−1
n +Dυ1 ≤ Tmax

n , by defining










υ1 ,
1

B log2(1 + Pn|hk,n|2)
,

υ2 ,
1

B(Tmax
n − µβnC

−1
n )

,
(36)

the optimal solution of problem (34) is given by

1) x∗
1 = 1 and x∗

2 = υ1, if the following condition holds:

µβnC
−1
n +Dυ1 = Tmax

n . (37)

2) x∗
1 = 1 and x∗

2 = (Tmax
n − µβnC

−1
n )/D, if

{

µβnC
−1
n +Dυ1 < Tmax

n ,

Dυ2 ln(2)2
Dυ2−2Dυ2+1−2κC3

n|hk,n|2 > 0.
(38)

3) x∗
1 = (Tmax

n −Dυ1)Cn(µβn)
−1 and x∗

2 = υ1 if







µβnC
−1
n +Dυ1 < Tmax

n ,

2
1

Bυ1 −1−
1

Bυ1
ln(2)2

1

Bυ1+
2κ(µβn)

3|hk,n|
2

(Tmax
n −Dυ1)3

> 0.
(39)

4) Otherwise, the optimal solution can be obtained by solving

the following equations:










2κC3
n

(x∗
1)

3
=

ln(2)2
1

Bx∗

2

B|hk,n|2x∗
2

−
2

1

Bx∗

2 − 1

|hk,n|2
,

µβnC
−1
n x∗

1 +Dx∗
2 − Tmax

n = 0.

(40)

Proof: Refer to Appendix C.

According to the above proposition, the optimal solution of

problem (32) can be obtained as follows:










τ∗k,n = 1/x∗
1,

α∗
k,n =

2
1

Bx∗

2 − 1

Pn|hk,n|2
,

(41)

and the formulated problem in (30) is jointly solved.

V. MATCHING BASED SUB-CHANNEL ASSIGNMENT

In this section, the formulated sub-channel assignment

problem in (31) is solved with the given resource allocation

solutions. Specifically, the optimal resource allocation for all

devices assigned to all sub-channels can be obtained in Section

IV, and therefore, this solution is treated as a preference list to

construct a matching based sub-channel assignment algorithm.

Note that some combinations of devices and sub-channels may

not be feasible due to inability to satisfy the maximum time

consumption constraint, and the proposed algorithm may tend

to assign devices to the corresponding infeasible sub-channels

to achieve lower energy consumption. In order to avoid this

case, a large value is assigned as the energy consumption of

these infeasible combinations, and any combination with this

energy consumption will be removed from the final matching.

A. Design of Matching based Algorithm

At this stage, with the preference list setting, all devices in

St can be assigned to sub-channels, and thus problem (31)

can be considered as a one-to-one matching Ψ from St to K,

where St and K are two disjoint sets with the same size. In

the resource allocation problem, it is indicated that the energy

consumption of any device n or sub-channel k in matching

Ψ is independent of other players, and therefore, the utility of

any player can be defined as follows:

Ui(Ψ) = Ecp
k,n + Ecm

k,n, ∀i ∈ {n, k}. (42)

Due to the fact that the device and sub-channel in a combi-

nation have the same utility, the intent of sub-channels can be

omitted. Moreover, since each device is assigned to one sub-

channel and each sub-channel is occupied by one device, if a

device tends to establish a new matching, it needs to exchange

with another device instead of joining the combination directly.

That is, the considered matching is a swap matching, defined

as follows:



8

Algorithm 1 Matching based Algorithm

1: Initialization:

2: Randomly match all players in St and K to obtain Ψ.

3: Set Ψα = 0 and Ψβ = 1.

4: Main Loop:

5: if Ψα 6= Ψβ then

6: Set Ψα = Ψ.

7: for n ∈ St do

8: Device n searches device n′ ∈ St, where n 6= n′.

9: if (n, n′) is a swap-blocking pair then

10: Devices n and n′ exchange sub-channels.

11: Matching Ψn
n′ is obtained.

12: Set Ψ = Ψn
n′ .

13: end if

14: end for

15: Set Ψβ = Ψ.

16: end if

Definition 1. From matching Ψ with Ψ(n) = k and Ψ(n′) =
k′, a swap matching Ψn′

n represents an exchange of devices n
and n′, i.e.,

Ψn′

n = Ψ\{{k, n}, {k′, n′}} ∪ {{k, n′}, {k′, n}}. (43)

As defined above, a swap matching means that two devices

exchange their assigned sub-channels. Note that the motivation

to form a swap matching is the reduction in energy consump-

tion, which can be presented as follows:

Ψ �i Ψ
n′

n ⇔ Ui(Ψ) ≤ Ui(Ψ
n′

n ), ∀i ∈ {n, n′}, (44)

where Ψ �i Ψn′

n indicates device i prefers Ψn′

n to Ψ.

Moreover, symbol ≺i is also introduced to represent the strict

preference of device i. The swap matching should be approved

by all involved players, in which the utility of any player

increases or remains unchanged. In this case, devices n and

n′ becomes a swap-blocking pair (n, n′), defined as follows:

Definition 2. (n, n′) is a swap-blocking pair if and only if

Ψ ≺i Ψ
n′

n , ∃i ∈ {n, n′} and Ψ �i Ψ
n′

n , ∀i ∈ {n, n′}.

Based on the definition of the swap-blocking pair, a match-

ing based sub-channel assignment algorithm is presented in

Algorithm 1. In this algorithm, an initial matching is firstly ob-

tained by randomly assigning all devices into all sub-channels.

Afterwards, each device in turn operates on the remaining

devices in order to find the swap-blocking pair. If any two

devices can form a swap-blocking pair, their sub-channels are

exchanged and the new matching is recorded. This algorithm

is repeated until no new swap-blocking pair can be found in

a complete cycle. Based on the finial matching provided by

Algorithm 1, the solution of sub-channel assignment problem

(31) can be obtained by removing all infeasible combinations.

B. Properties Analysis

In this subsection, the properties of the proposed matching

based sub-channel assignment algorithm, including complex-

ity, convergence, and stability, are analyzed.

1) Complexity: The computational complexity of the pro-

posed algorithm is O(CK2), where C is the number of cycles.

Specifically, during a complete cycle of the main loop, each

device needs to test the viability of creating swap-blocking

pairs with all other devices, and hence, for all K devices,

K(K − 1) times of calculations should be performed. With

the given number of cycles C, the computational complexity

can be expressed as CK(K − 1).
2) Convergence: From any initial matching, the proposed

algorithm is guaranteed to converge to a final matching without

swap-blocking pairs. It can be observed from Algorithm 1 that

the matching is transformed due to the construction of swap-

blocking pairs. Suppose Ψa and Ψb are two adjacent matching,

where a 6= b, then there exists a swap-blocking pair in the

transformation from Ψa to Ψb. Based on the definition of a

swap-blocking pair, it indicates that the utility of at least one

device is strictly reduced while the utility of the other device is

not increased. Moreover, for the devices that are not involved,

their utility remains the same. As a result, the sum utility,

or sum energy consumption, is strictly decreased with this

transformation. With the given devices and sub-channels, there

is a lower bound on the energy consumption, and therefore, the

proposed algorithm can always converge to a final matching.

3) Stability: The proposed matching based sub-channel

assignment algorithm is able to provide a two-side exchange

stable solution, which is defined as follows:

Definition 3. A matching is two-side exchange stable if and

only if no swap-blocking pair can be formed.

According to the above definition, the final matching ob-

tained by the proposed algorithm is alway two-side exchange

stable, since the convergence analysis proves that there are no

swap-blocking pairs in the final matching.

VI. SIMULATION RESULTS

A. Simulation Settings and Benchmark Methods

The simulation results are presented to demonstrate the

performance of age-weighted FedSGD and proposed solutions.

In this simulation, the devices are randomly deployed in a

disc with radius R, while the server is located in the center.

The learning rate λ is 0.01, bandwidth B is 1 MHz, noise

power σ2 is −174 dBm, path loss exponent a is 3.76, power

consumption coefficient κ is 10−29, and cycles coefficient

µ is 106. To evaluate the learning performance, MNIST,

CIFAR-10, and CIFAR-100 datasets are adopted with an SGD

optimizer. For MNIST digit recognition tasks, a simple neural

network is built with a 128-neuron ReLu hidden layer and

a softmax output layer. For CIFAR-10 image classification

tasks, a neural network is constructed by stacking a 32-filter

4 × 4 2D convolution (Conv2D) layers, a 2 × 2 max pooling

layer, a 128-neuron ReLu hidden layer and a softmax output

layer. For CIFAR-100 image classification tasks,, the neural

network is constructed with a 128-filter 4× 4 Conv2D layers,

a 2 × 2 max pooling layer, a 256-neuron ReLu hidden layer

and a softmax output layer. To compare the performance

of the proposed KKT based resource allocation (denoted by

KRA) and matching based sub-channel assignment (denoted
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Fig. 4: The convergence performance on the unbalanced

MNIST dataset. N = 10, K = 4, Tmax
n = 5 s, Pn = 10 dBm,

Cn = 1 GHz, R = 200 m, and D = 10 Mbits.
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Fig. 5: The convergence performance on the balanced CIFAR-

10 dataset. N = 10, K = 5, Tmax
n = 10 s, Pn = 10 dBm,

Cn = 1 GHz, R = 200 m, and D = 15 Mbits.

by MSA), fixed resource allocation (denoted by FRA) and

random sub-channel assignment (denoted by RSA) are re-

spectively included as the baseline, where resource allocation

coefficients are set as τk,n = αk,n = 0.5, ∀k, n with FRA

1, and τk,n = αk,n = 1, ∀k, n with FRA 2. Furthermore,

the device participation is calculated by S̄/N , where S̄ is the

arithmetic mean of {St|∀t} and St = |St|.

B. Federated Learning Performance

In Fig. 4, the MNIST digit recognition task with unbalanced

non-IID data is adopted, where 9000 training samples are

randomly distributed to all devices, and the samples of each

device belong to 1 or 2 classes. It demonstrates that with

the same device selection results, the proposed age-weighted

FedSGD is able to outperform conventional FedSGD with

any sub-channel assignment and resource allocation schemes.

Compared to RSA and FRA, MSA and KRA can significantly
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Fig. 6: The convergence performance on the balanced CIFAR-

100 dataset. N = 50, K = 20, Tmax
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Fig. 7: The impact of the maximum time consumption. N =
10, K = 4, Pn = 10 dBm, Cn = 1 GHz, R = 200 m, and

D = 10 Mbits.

increase device participation, thereby improving the learning

performance, which verifies Theorem 2. Moreover, since the

number of selected devices in each communication round is

obviously reduced with FRA, there exists a large gap between

FRA and KRA in achievable test accuracy.

The CIFAR-10 image classification task is employed in

Fig. 5, in which each device has 5000 samples with the

unique label. It demonstrates that by utilizing the proposed

sub-channel assignment strategy, device participation is in-

creased by 52%. As a result, for both age-weight FedSGD and

conventional FedSGD, the learning performance is improved,

which confirms Theorem 2. Moreover, it can be found from

Fig. 5 that with the same device selection results, age-weighted

FedSGD can achieve faster convergence rate compared to

conventional FedSGD.

The balanced CIFAR-100 dataset is adopted in Fig. 6, in

which each device has 1000 2-class samples. Due to the fact

that the Non-IID degree in this figure is decreased compared

to that in Fig. 4 and Fig. 5, the improvement of age-weighted

FedSGD with MSA is not significant, but it can still improve

the learning performance, especially in the later stage of

training. With RSA, the advantage of age-weighted FedSGD

is obvious, and this is because the number of selected devices
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Fig. 8: The impact of channel conditions. N = 10, K = 4,

Tmax
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Fig. 9: The impact of the maximum transmit power. N = 10,

K = 4, Tmax
n = 5 s, Cn = 1 GHz, R = 200 m, and D =

10 Mbits.
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Fig. 10: The impact of the computational capacity. N = 10,

K = 4, Tmax
n = 5 s, Pn = 10 dBm, R = 200 m, and

D = 10 Mbits.

in each round is significantly reduced. It is worth noting

that the considered federated learning algorithm is able to

continue to converge. However, in order to clearly demonstrate

the difference, only the first several rounds are included

for demonstration. In addition, under the adopted simulation

parameters, the baseline FRA 1 fails to converge on CIFAR-

10 and CIFAR-100 datasets due to low device participation,

and is therefore not included in Fig. 5 and Fig. 6.

C. System Performance

The performance of the proposed solutions is shown in

Fig. 7 to Fig. 9, where the maximum time consumption, radius,

maximum transmit power, and computational capacity are

respectively included to show its impact on the average energy

consumption and device participation. It can be observed
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Fig. 11: The convergence of the matching based sub-channel

assignment algorithm. N = 10, K = 4, Tmax
n = 5 s, Pn =

10 dBm, Cn = 1 GHz, R = 200 m, and D = 10 Mbits.

that compared to FRA 2, the proposed KKT based resource

allocation solution can achieve less energy consumption while

ensuring device participation. Compared to FRA 1, KRA can

reduce energy consumption and increase device participation,

which explains the improved learning performance in Fig. 4

to Fig. 6. Moreover, Fig. 7 indicates that there is a trade-

off between energy consumption and device participation.

Specifically, when the maximum time consumption increases

from 2 s to 4 s, the energy consumption is raised in order to

significantly increase device participation, from 0.4 to 3. When

the maximum time consumption is greater than 4 s, device

participation can be slowly increased, but the average energy

consumption is reduced. In Fig. 8, the increase in radius can

be regarded as the deterioration of channel conditions, and

then it can be observed that there is an upper boundary in

energy consumption. That is, when the radius is greater than

250 m, the average energy consumption remains at a fixed

level, even though device participation continues to decrease.

Similarly, an upper bound in device participation can be found

in Fig. 9. When the maximum transmit power is equal to

30 dBm, the maximum device participation is achieve by all

schemes, and the proposed solutions still consume minimum

energy. Compared to the maximum transmit power, the impact

of computational capacity is not significant, but the overall

trend is the same, i.e., the energy consumption and device

participation increase monotonically, as shown in Fig. 10.

The convergence of the proposed sub-channel assignment

algorithm is demonstrated in Fig. 11, where exhaustive search

is included as the benchmark. In this figure, the exhaustive

search is set up to find the combination that maximizes device

participation while guaranteeing a low level of average energy

consumption. Therefore, although the average energy con-

sumption obtained by the exhaustive search is slightly larger

than that of the proposed matching based algorithm, the device

participation is significantly increased. It can be observed that

the proposed sub-channel assignment algorithm can achieve

approximately 92% performance of the global optimum within



11

4 iterations. Compared to exhaustive search with complexity

O(K!), it can be considered as a low complexity sub-optimal

algorithm. Furthermore, the figure verifies the properties of the

proposed algorithm, including convergence and stability.

D. Discussion

The simulation results indicate that the proposed age-

weighted FedSGD algorithm can significantly reduce weight

divergence in data heterogeneity scenarios, thereby improving

the performance of federated learning. It also explains the prin-

ciple that introducing AoI in federated learning can improve

learning efficiency in existing works. Moreover, the proposed

solutions for resource allocation and sub-channel assignment

can further improve learning performance by increasing de-

vice participation. We note that the proposed schemes can

be implemented without extra information transmission, and

the computation can be performed at the server equipped

with sufficient computational resources and energy. There-

fore, the increase in computational complexity brought by

adopting these schemes can be neglected. Furthermore, as

the proposed scheme can achieve higher accuracy with fewer

communication rounds, it is well suited for time- or energy-

sensitive scenarios, where neural network training needs to be

completed with a given number of communication rounds.

VII. CONCLUSIONS

This paper investigates a wireless federated learning frame-

work on non-IID datasets, where random device selection

is exploited due to the limited number of sub-channels.

By exploring the issue of conventional FedSGD in weight

divergence, age-weighted FedSGD is designed to adjust the

proportion of local gradients according to the previous state

of devices. To further improve the learning performance,

an energy consumption minimization problem is formulated,

where the resource allocation solution and the sub-channel

assignment algorithm are developed based on KKT conditions

and matching theory, respectively. The superiority of designed

age-weighted FedSGD and the effectiveness of the proposed

resource allocation and sub-channel assignment strategies are

demonstrated in the simulation results. For future works, to

adapt to more advanced artificial intelligence scenarios, it

is necessary to conduct further analysis based on weaker

assumptions. Furthermore, adopting real-world scenarios and

datasets to validate the proposed scheme is also an important

research direction.

APPENDIX A: PROOF OF THEOREM 1

According to (3) and (6), the weight divergence between

random device selection and complete device selection can be

expressed as follows:

∥

∥

∥
w

(t+1) −w
(t+1)
T

∥

∥

∥

=
∥

∥

∥
w

(t)−w
(t)
T −λ∇F (w(t),St)+λ∇F (w

(t)
T ,N )

∥

∥

∥
. (45)

From (8), ∇F (w(t),St) = e
(t) + ∇F (w(t),N ) can be ob-

tained, and the above equation can be transformed as follows:
∥

∥

∥
w

(t+1) −w
(t+1)
T

∥

∥

∥

=
∥

∥

∥
w

(t)−w
(t)
T −λe(t)−λ

[

∇F (w(t),N )−∇F (w
(t)
T ,N )

]∥

∥

∥

=

∥

∥

∥

∥

∥

w
(1)−w

(1)
T −λ

t
∑

i=1

e
(i)−λ

t
∑

i=1

[

∇F (w(i),N )−∇F (w
(i)
T ,N )

]

∥

∥

∥

∥

∥

≤
∥

∥

∥
w

(1)−w
(1)
T

∥

∥

∥
+λ

∥

∥

∥

∥

∥

t
∑

i=1

e
(i)

∥

∥

∥

∥

∥

(46)

+λ

t
∑

i=1

∥

∥

∥
∇F (w(i),N )−∇F (w

(i)
T ,N )

∥

∥

∥
.

Based on Assumption 1, the following inequality holds:
∥

∥

∥
w

(t+1) −w
(t+1)
T

∥

∥

∥
(47)

≤
∥

∥

∥
w

(1)−w
(1)
T

∥

∥

∥
+λ

∥

∥

∥

∥

∥

t
∑

i=1

e
(i)

∥

∥

∥

∥

∥

+λL

t
∑

i=1

∥

∥

∥
w

(i)−w
(i)
T

∥

∥

∥
.

With the similar way, the following inequality can be obtained:

λL
∥

∥

∥
w

(t) −w
(t)
T

∥

∥

∥
(48)

≤λL
∥

∥

∥
w

(1)−w
(1)
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∥

∥
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∥

∥

∥

∥

∥
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e
(i)

∥

∥

∥
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∥

+(λL)2
t−1
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∥

∥
w

(i)−w
(i)
T

∥

∥

∥
.

By substituting the above inequality, (47) can be rewritten as

follows:
∥

∥

∥
w

(t+1) −w
(t+1)
T
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∥

∥
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Similarly, λL(1+λL)
∥

∥

∥
w

(t−1) −w
(t−1)
T
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∥
in the above inequal-

ity can be transformed to

λL(1+λL)
∥

∥

∥
w

(t−1) −w
(t−1)
T

∥

∥

∥

≤λL(1+λL)
∥

∥

∥
w

(1)−w
(1)
T

∥

∥

∥
+λ2L(1+λL)

∥

∥

∥

∥

∥

t−2
∑

i=1

e
(i)

∥

∥

∥

∥

∥

+(λL)2(1+λL)
t−2
∑

i=1

∥

∥

∥
w

(i)−w
(i)
T

∥

∥

∥
, (50)

and included in (49) to obtain the following inequality:
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By induction, the weight divergence between random device

selection and complete device selection can be presented as

follows:
∥

∥

∥
w

(t+1)−w
(t+1)
T

∥

∥

∥
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∥

∥

∥
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∥

∥

∥

∥
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∥
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∥

∥

∥

∥
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∥
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∥
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+· · · .

The above inequality can be rewritten as follows:

∥

∥
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T
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∥
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T

∥

∥

∥
+λ

∥

∥

∥

∥

∥

t
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e
(i)
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∥
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e
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∥

∥

∥

∥

∥

,

(53)

and the proof is completed. �

APPENDIX B: PROOF OF THEOREM 2

Based on (20) and (21), the upper bound of the convergence

rate can be proved through a similar approach to that in [20].

In order to derive the expression of E
[

‖g(i)‖2
]

, the gradient

of the global loss, i.e., ∇G(w(t),St), can be viewed as ratio

estimation, as follows:

∇G(w(t),St) =

1
|St|

∑

n∈N x
(t)
n ω

(t)
n βn∇fn(w

(t))

1
|St|

∑

n∈N x
(t)
n βn

,
ȳSt

x̄St

,

(54)

where x
(t)
n is a binary variable to indicate the device selection

result of device n in round t. In particular, x
(t)
n = 1 indicates

that device n is selected in round t, i.e., n ∈ St; x
(t)
n = 0

otherwise. Since random device selection is adopted, in any

communication round t, the probability of selecting device n
from N is given by

E[x(t)
n ] = P (x(t)

n = 1) =
|St|

N
. (55)

Similarly, the gradient of the global loss with complete device

selection, i.e., ∇F (w(t),N ), can be expressed as follows:

∇F (w(t),N ) =
1
N

∑

n∈N βn∇fn(w
(t))

1
N

∑

n∈N βn

,
ȳN
x̄N

. (56)

At this stage, the following equations can be obtained:

E[x̄St
] = x̄N , (57)

and

E[ȳSt
] = ȳN . (58)

Then, E
[

‖g(t)‖2
]

can be rewritten as follows:

E

[

‖g(t)‖2
]

=
1

( 1
N

∑

n∈Nβn)2
E

[

∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

2
]

. (59)

The rest of the proof can be obtained by referring to [20]. �

APPENDIX C: PROOF OF PROPOSITION 1

By calculating the partial derivatives of (35) and setting

them to zero, the following equations can be obtained:






















−
2κµβnC

2
n

(x∗
1)

3
+ λ1

µβn

Cn

− λ2 = 0,

−
ln(2)D2

1

Bx∗

2

|hk,n|2Bx∗
2

+
D(2

1

Bx∗

2 − 1)

|hk,n|2
+ λ1D − λ3 = 0.

(60a)

(60b)

Moreover, the following conditions should be satisfied:



















































µβnC
−1
n x∗

1 +Dx∗
2 − Tmax

n ≤ 0,

1− x∗
1 ≤ 0,

υ1 − x∗
2 ≤ 0,

λ1(µβnC
−1
n x∗

1 +Dx∗
2 − Tmax

n ) = 0,

λ2(1 − x∗
1) = 0,

λ3(υ1 − x∗
2) = 0,

λi≥0, ∀i ∈ {1, 2, 3},

(61a)

(61b)

(61c)

(61d)

(61e)

(61f)

(61g)

where υ1 is defined in (36). If λ1 = 0, the following equation

can be obtained from (60a):

−2κµβnC
2
n(x

∗
1)

−3 = λ2. (62)

Since λ2 ≥ 0, the above function conflicts with (61b), and

hence, λ1 > 0 always holds. Therefore, it can be obtained

from (61d) that the following equation is always satisfied:

µβnC
−1
n x∗

1 +Dx∗
2 − Tmax

n = 0. (63)

At this stage, based on the different values of λ2 and λ3, four

cases need to be discussed.

1) If λ2 > 0 and λ3 > 0, x∗
1 = 1 and x∗

2 = υ1 can be

obtained from (61e) and (61f), respectively. In this case, the

following condition can be derived from (63):

µβnC
−1
n +Dυ1 = Tmax

n . (64)

2) If λ2 > 0 and λ3 = 0, x∗
1 = 1, and it can be obtained

from (63) that x∗
2 = (Tmax

n −µβnC
−1
n )/D. In this case, (61c)

should be considered, and the condition becomes

µβnC
−1
n +Dυ1 < Tmax

n . (65)

Note that the case λ3 > 0 has been considered, and thus the

equality condition is removed. Since λ3 = 0, the following

inequality can be obtained from (60b):

λ1 =
ln(2)2

1

Bx∗

2

|hk,n|2Bx∗
2

−
2

1

Bx∗

2 − 1

|hk,n|2
> 0. (66)

Substituting the above equation into (60a), it becomes

(

ln(2)2
1

Bx∗

2

|hk,n|2Bx∗
2

−
2

1

Bx∗

2 −1

|hk,n|2

)

µβn

Cn

−2κµβnC
2
n = λ2 > 0, (67)

and the following inequality can be obtained:

ln(2)2
1

Bx∗

2

|hk,n|2Bx∗
2

−
2

1

Bx∗

2 −1

|hk,n|2
− 2κC3

n > 0. (68)



13

It is indicated that the above inequality includes (66), and thus

condition (66) can be omitted. By including the expression of

x∗
2, the condition in this case is given by

Dυ2 ln(2)2
Dυ2−2Dυ2+1−2κC3

n|hk,n|
2 > 0. (69)

3) If λ2 = 0 and λ3 > 0, by including x∗
2 = υ1 to (63), the

expression of x∗
1 can be presented as follows:

x∗
1 = (Tmax

n −Dυ1)Cn(µβn)
−1, (70)

and (61b) can be rewritten as (65), where the equality condi-

tion is removed as it holds for the case λ2 > 0. From (60a),

the following condition can be obtained:

λ1 = 2κC3
n(x

∗
1)

−3 > 0, (71)

which can be rewritten as follows:

Dυ1 < Tmax
n . (72)

The above inequality is always satisfied with inequality (65).

Moreover, the equation in (71) can be substituted into (60b),

as shown in follows:

−
D ln(2)2

1

Bx∗

2

|hk,n|2Bx∗
2

+
D(2

1

Bx∗

2 −1)

|hk,n|2
+
2κC3

nD

(x∗
1)

3
= λ3 > 0. (73)

By including the obtained solutions of x∗
1 and x∗

2, it becomes

2
1

Bυ1 −1−
1

Bυ1
ln(2)2

1

Bυ1 +
2κ(µβn)

3|hk,n|2

(Tmax
n −Dυ1)3

> 0. (74)

4) If λ2 = 0 and λ3 = 0, the following equation can be

obtained from (60a) and (60b):

2κC3
n

(x∗
1)

3
=

ln(2)2
1

Bx∗

2

B|hk,n|2x∗
2

−
2

1

Bx∗

2 − 1

|hk,n|2
. (75)

Moreover, by including (63), the solution can be obtained by

solving the following equations:










2κC3
n

(x∗
1)

3
=

ln(2)2
1

Bx∗

2

B|hk,n|2x∗
2

−
2

1

Bx∗

2 − 1

|hk,n|2
,

µβnC
−1
n x∗

1 +Dx∗
2 − Tmax

n = 0.

(76)

This proposition is proved. �
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