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. Abstract—This paper investigates wireless federated learning
in data heterogeneous scenarios, where device selection usually

leads to a degradation in learning performance. This paper is
motivated by the fact that while training deep learning networks
using federated stochastic gradient descent (FedSGD) on non-
independent and identically distributed (non-IID) datasets, device
selection can generate gradient errors that accumulate, leading
to potential weight divergence, which is further exacerbated with
low device participation. To mitigate weight divergence, an age-
weighted FedSGD algorithm is designed in this paper to scale
local gradients according to the previous device selection re-
sults. Furthermore, by revealing the relationship between device
participation and latency, an energy consumption minimization
problem is formulated accordingly, which consists of resource
allocation and sub-channel assignment. By transforming the
resource allocation problem into convex and utilizing KKT
conditions, we derive the optimal resource allocation solution.
Moreover, this paper develops a matching based algorithm
to generate the enhanced sub-channel assignment. Simulation
results indicate that i) age-weighted FedSGD is able to outper-
form conventional FedSGD in terms of convergence rate and
achievable accuracy, and ii) the proposed resource allocation and
sub-channel assignment strategies can significantly reduce energy
consumption and improve learning performance by increasing
device participation.

Index Terms—Age-of-information (Aol), device selection, fed-
erated learning, resource allocation, sub-channel assignment

I. INTRODUCTION

With the spread of computer chips, powerful computational
capabilities become available at edge nodes, and therefore, the
collected data can be directly utilized for learning tasks [2]. In
this context, federated learning, as a promising technology for
distributed learning, has attracted considerable attention from
both academia and industry. In federated learning, a neural
network is constructed by a central server and shared among
all participating devices [3]. At each device, the received
neural network is trained with local data and transmitted to
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the server for aggregation [4]. Compared with centralized
learning that requires offloading raw data to the server, in
federated learning, learning tasks are executed collaboratively
without data sharing, and hence, privacy security can be
improved [5]. Furthermore, since the size of the transmitted
neural network is generally smaller than the size of original
data, communication efficiency can be achieved [6]. However,
since federated learning relies on periodic transmission, its
performance is affected by wireless networks, and hence, the
optimization of communications is recognized as an important
research direction [7].

Due to the fact that federated learning usually involves a
large number of devices for multiple rounds of training and
transmission, device selection/sampling becomes a common
method to implement this algorithm under limited bandwidth
resources [8], [9]. Some existing works focused on addressing
system heterogeneity by selecting devices based on hardware
specifications and communication environment [10]-[13]. In
[10], device selection and beamforming design were jointly
considered in an over-the-air computation (AirComp) based
federated learning framework, where an optimization prob-
lem was formulated to maximize the number of selected
devices. By revealing the interaction between global loss and
packet error rates, device selection was included to cope
with the limited number of resource blocks [11]. Particularly,
in this work, a device can be selected only if the latency
and energy consumption constraints can be satisfied. Since
the transmitted models can be severely damaged by noise
in AirComp based federated learning, in [12], devices with
weak channel conditions were ignored for aggregation as the
transmit power is not sufficient to compensate for the effects
of wireless communications. Recognizing the degradation of
learning performance caused by low device availability, the
authors of [13] proposed a device selection strategy based on
achievable long-term participation rates to mitigate the impact
of device selection variance on global model convergence.

In realistic scenarios of federated learning, non-independent
and identically distributed (non-IID) data is unevenly dis-
tributed among devices, which brings challenges to device
selection [14], [15]. Specifically, in system based device
selection, the server tends to select devices with better channel
conditions and/or powerful computational capacities, which
may lead to a decline in learning performance on non-IID
datasets [16]. To this end, by selecting devices that provide
more contributions in the aggregation, some works jointly
considered system heterogeneity and data heterogeneity [17]—
[20]. In [17], channel conditions and local model updates



were studied, and four device selection polices were proposed
based on different priorities. Simulation results demonstrated
that jointly including both metrics can provide better learning
performance than using either metric separately. In order to
achieve the target global loss within less time consumption,
the selection probabilities of devices in the classic random
device selection scheme were optimized based on latency and
gradient norms [18]. Considering that the device contribution
is not only related to dataset size, a biased device selection
scheme was developed in [19], in which the server transmits
the global model to a set of candidate devices for evaluation,
and then selects devices with larger local losses. In [20], age-
of-information (Aol) was considered as a metric to improve
the fairness of device selection. It was indicated that by
minimizing the overall Aol of all devices, both learning
performance and time consumption can be improved.

Since learning based device selection is performed on a set
of available devices, its performance can be further improved
by increasing device participation, which is determined by
channel conditions, computational capacities, battery levels,
etc. [13], [21]. Therefore, it is necessary to explore the
optimal resource allocation based on these factors. Energy
consumption, as an important criterion that can directly limit
device participation, has been extensively researched in exist-
ing works [22]-[26]. In [22], a comprehensive energy con-
sumption minimization problem was investigated in federated
learning systems, where monotonicity analysis was utilized to
obtain solutions. Wireless federated learning was also studied
in eavesdropping scenarios, in which idle devices transmit
jamming signals to improve the secrecy rate of the transmitting
device [23]. In [24], energy harvesting and non-orthogonal
multiple access (NOMA) were exploited to provide computing
energy and facilitate uplink transmission, respectively. In these
works, the bisection method was utilized for algorithm design
[22]-[24]. The authors of [25] focused on studying long-term
energy consumption minimization, where deep reinforcement
learning was employed. In [26], NOMA schemes were adopted
in a clustered federated learning system, where sub-channel as-
signment and power allocation were studied to further enhance
device participation.

As aforementioned, with non-IID data, system based device
selection leads to a decline in learning performance [10]-
[13], while learning based device selection requires additional
transmission and analysis for local models or gradients [17]—
[19]. A novel method, namely age-weighted FedSGD, is
proposed to mitigate the learning performance degradation
caused by implementing device selection on non-IID datasets.
This scheme can be employed in a variety of existing device
selection strategies without extra information transmission and
model/data analysis, and hence, it will not increase system
overhead or cause privacy leakage. Different from existing
studies [20], [27]-[29] that utilized Aol to guide device
selection in federated learning, this paper aims to explore
the role of Aol in federated learning and leverage it to
mitigate the negative impact of adopting device selection in
data heterogeneous scenarios. Moreover, to further improve
learning performance by increasing device participation, an
energy consumption minimization problem is jointly addressed

through a low-complexity solution, thus avoiding the loss of

optimality in previous works [22]-[24].

The main contributions can be summarized as follows:

o A wireless federated learning network with random device
selection is investigated. It is proved that in conventional
federated stochastic gradient descent (FedSGD), device se-
lection with non-IID data results in an error in global gra-
dients, which is accumulated and amplified during training,
thereby increasing weight divergence.

« Based on the analyzed result, Aol is introduced to design
age-weighted FedSGD, which can adjust the proportion of
local gradients from selected devices in the global gradient.
Moreover, it is indicated that low device participation can
negatively affect weight divergence by changing the data
distribution of the selected devices and lead to a decrease
in convergence rate.

o To further mitigate weight divergence, an energy consump-
tion minimization problem is formulated to increase device
participation through enabling more devices to satisfy la-
tency constraints. By decoupling the problem into two sub-
problems, KKT conditions and matching theory are utilized
to develop the closed-form resource allocation solution and
sub-channel assignment algorithm, respectively.

o Simulation results show that the proposed age-weighted
FedSGD can significantly improve the performance of fed-
erated learning in the considered system, including conver-
gence rate and achievable test accuracy. Moreover, KKT
based resource allocation and matching based sub-channel
assignment are able to minimize energy consumption and
increase device participation.

II. SYSTEM MODEL

Consider a wireless communication scenario for non-IID
federated learning, where a server and N devices collaborate to
execute a learning task through K sub-channels. All nodes are
equipped with single-antennas. The collections of devices and
sub-channels are represented by N' = {1,2,--- ,N} and K =
{1,2,---, K}, respectively. It is assumed that the number of
available sub-channels is less than the number of devices, and
thus a subset of devices is randomly selected! to participate in
the aggregation in each communication round, denoted by S;,
where |S;| < K < N. In the considered federated learning
algorithm, the local loss is given by

Bn
fn(w(t)) e ﬂi Zé(w(t), wn,i7yn,i)7 (1)
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where f3,, is the number of local samples at device n, w® s
the global model in round ¢, and (2, ;, Yn,;) is the i-th sample
at device n. Correspondingly, the global loss can be expressed
as follows:

Znest ﬂ"f"(w(t))
ZHGSt Bn '

INote that although this work considers classic random device selection,
the proposed method can be utilized with multiple existing advanced device
selection strategies.

F(w® S,) = )



The procedure of the considered federated learning algorithm
follows FedSGD. In any communication round ¢, the following
process is performed:

1) The server transmits global model w(*) and device selec-
tion decision S; to all devices.

2) Any device n € S; trains the received global model using
all local samples, and transmits local gradients V f,, (w®))
to the server.

3) The server updates the global model as follows:

witt) — () _ )\Znest ﬂann(w(t))
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where A is the learning rate.
In this paper, the following assumptions are considered.

Assumption 1. With respect to w, VF(w,N') is L-Lipschitz
continuous, i.e.,

IV E(w D, M) =V F(w, A < Lwt=D—w®|. @)

Assumption 2. The global loss function F(w), ) satisfies
the Polyak-Lojasiewicz inequality with positive parameter [,
as shown in follows:

IVEWO, N2 = 20 [F(w, N) = F(w*, N)] . (5)

It is worth noting that these assumptions can be satisfied by
commonly adopted loss functions, and have been extensively
considered in existing works on federated learning, such as
[11], [12], [16]-[19].

A. Weight Divergence in Conventional FedSGD

Since device selection is implemented in a federated learn-
ing algorithm using non-1ID datasets, the data distribution of
the selected devices may be different from the global data
distribution, and therefore, the weight divergence issue may
occur [16], [20]. That is, the divergence between the weights
obtained from the considered federated learning framework
and the desired weights obtained from centralized learning in-
creases with training. To evaluate weight divergence, complete
device selection is included as the baseline, where all devices
are selected in each communication round. The update of the
true global model? in this case is given by

wi(™ = Wit _AvE(wlY, ), ©)
where (t)

F (t)v./\/' — 2 onen Bnfn(Wr ) 7
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Note that the complete device selection scheme can be treated
as centralized learning, since in the considered federated
learning algorithm, all local data is utilized for training and

21t is worth emphasizing that the true global model, i.e., wglf ), is introduced
as a comparison with the actual global model obtained in the considered
federated learning algorithm, i.e., w(*). Since the true global model is not
available in practical scenarios, it is only utilized in this subsection to facilitate
analysis.

the number of local epochs is one. Based on the definition of
the true global model, the following theorem can be obtained.

Theorem 1. Defining the error caused by device selection
as the difference in the global loss gradient between random

device selection and complete device selection, i.e.,
e 2 VF(w §)-VF(w N), (8)

the weight divergence in the considered federated learning
framework is bounded by:

Hw(t“) — W(THDH < (1+AL)* Hw(l)—w(Tl)H—i—/\

i=1

t—1 t—j
FNLY (1+ALY S @) (9)
i=1 i=1
Proof: Refer to Appendix A. [ |

Theorem 1 indicates that in the considered federated learn-
ing framework, device selection leads to weight divergence,
and this effect can be described as the error of the global loss
gradient in each communication round. Based on Theorem 1,
the following remarks can be obtained.

Remark 1. By introducing error €, the update of the global
model in the considered federated learning algorithm can be
viewed as complete device selection with the error, as follows:

wt ) = w® _AVEwW® N) — xe®. (10)

Remark 2. In the considered federated learning algorithm,
the weight divergence is mainly caused by two parts, in-
cluding the difference between initial global models, i.e.,
[|w) — W(Tl)H, and the accumulated error; i.e., | Y. e™].

Remark 3. The impact of the accumulated error from previous
rounds is amplified with training, since 1 + AL > 1. That is,
the impact of errors in the early stages of training plays a
major role in weight divergence.

Remark 4. When utilizing different initial global models, even
if complete device selection is applied, i.e., the error is zero,
large weight divergence may still be encountered.

According to Theorem 1, the influence of the accumulated
errors until any round is amplified in subsequent training,
which implies that the device selection results have different
impacts depending on communication rounds. However, in
conventional FedSGD, this difference is not reflected. It is
also indicated by Theorem 1 that the weight divergence can be
mitigated by reducing || 22:1 e(||. To this end, conventional
methods, such as importance sampling, focus on reducing
le® || in each communication round, which requires analyzing
local gradients and is therefore difficult to implement in
realistic scenarios due to high-complexity or privacy issues
[9], [30]. Inspired by the fact that the errors are accumulated,
this paper introduces a weighting factor® to scale the error
of the current round according to the accumulated error
from previous rounds, thereby reducing weight divergence.

3In this paper, the terms “weighting factor” and “weights” refer to the local
gradient adjustment coefficient and neural network parameters, respectively.



Specifically, by treating e(*) and Zf;i e as two vectors,
if the elements in e(*) are close to the corresponding elements
in Zf;i e, a small weighting factor is adopted to reduce
these elements; otherwise, these elements are amplified. As a
result, the accumulated error Zf;i el can be compensated
by using e*), and the value of || Zf.:l e®|| can be reduced.

B. Age-weighted FedSGD

Based on the definition of error in (8), the weighting factor
should be applied to VF(w®) S;), since VF(w®) N) is
unknown in practical training. In other words, the weighting
factor should be designed according to the difference in device
selection between communication rounds. In particular, in the
considered system, some devices may need to wait several
rounds before participating in the aggregation. In this case,
Aol is introduced to record recent device selection status and
generate weighting factors [27], [28]. For device n, its Aol in
round ¢ is defined as follows:

A®) — 1,
" AT 41,

The above equation indicates that if device n is selected in last
round, its Aol becomes 1; otherwise, it increases by 1. Based
on this definition, the age-weighted FedSGD is proposed with
the following weighting factor*:

if ne St—lu

11
if 7’L¢St_1. ( )

t
w® — AR|S,]
" ZiESt Agt)
where |S;| is included for normalization. At the server, the

global model is updated based on the age-weighted local
gradients, as follows:

12)

w1 = w®) _Z\va(w®),S,), 13)
where )
®)
G(w®,8) = Lnes On Fufn(WT) (14)
ZRESt ﬂn

Note that the Aol of all devices can be counted at the server,
and thus the proposed scheme does not require additional
information transmission. Moreover, by including the Aol
based weighting factor in the updates of local models, the
proposed approach can also be utilized in federated averaging
(FedAvg), where the Aol of all devices can be transmitted
together with the global model.

As aforementioned, in non-IID scenarios, device selection
results lead to various issues depending on the communication
rounds, and age-weighted FedSGD exploits Aol to mitigate
such differences. Specifically, an Aol based weighting factor
w,(lt) is incorporated to scale the influence of devices based on
the previous device selection results. For example, since the
impact of e®~1 is amplified in round ¢, a large weighting
factor is added to device n, where n € & N {NM\S;—1}.
For the same reason, a small weighting factor is added to

4The Aol based weighting factor presented in (12) is for simplicity. It
is observed that learning performance is highly sensitive to Aol, and other
expressions of the weighting factor may provide further improvements.
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Fig. 1: An illustration of weight divergence for federated learn-
ing with conventional FedSGD and age-weighted FedSGD.
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Fig. 2: An empirical result to validate the weight divergence
issue on the balanced MNIST dataset. N = 10 and K = 5.

device n, where n € §; N S;—1. Fig. 1 further explains age-
weighted FedSGD, where 2 devices are selected from 4 in
each round. Compared to conventional FedSGD, global model
w(t*+2) in age-weighted FedSGD is closer to the local model
of device C, because the gradients used in the model update are
weighted according to the device selection result in round ¢+1.
Similarly, in round ¢ 4 3, device D dominates the aggregation.
As a result, the distance between w(**3) and true global model
w$+2) is reduced by utilizing age-weighted FedSGD.

The performance of age-weighted FedSGD and conven-
tional FedSGD is compared in Fig. 2, where weight divergence
is calculated by ||w(® — WSE)H. It can be observed that on
non-IID datasets, weight divergence in conventional FedSGD
increases with training, which confirms Theorem 1. As men-
tioned in Remark 3, the impact of error is amplified with
training, leading to increasingly serious weight divergence.
Therefore, the resulting performance degradation cannot be
overcome by increasing the number of training rounds. It



is also indicated that age-weighted FedSGD can efficiently
reduce weight divergence and control it to a certain level. Fur-
thermore, it is worth pointing out that age-weighted FedSGD
is still valid with IID data, although the weight divergence
issue is not severe in this case.

C. Impact of Device Participation

This subsection focuses on the impact of device partici-
pation on the considered federated learning algorithm. Since
weight divergence is caused by the changes in data distribution
[16], a task specification is required for analysis. In this
subsection, the commonly considered multi-class classification
problem is studied. For other tasks, the same conclusion can
be obtained in a similar way. Consider a C-class classification
problem with compact space X" and label space ) = C, where
C =1{1,2,...,C}. The data distribution of device n is defined
as follows:

Zz 1 yn i=C
Bn

By adopting the cross-entropy loss, the local loss is given by

x,y~Pn [Z Ty—c log fc(CC, W(t))]

ceC

P, =

5)

VEC]

fa(w) =E
=3 Puly = )Bapye[log fol, wO)] - (16)

ceC

where f.(z, w®) indicates the probability for class c, and the
sample (x,y) follows data distribution P,. In this case, by
defining Ps, and Pxs as the data distributions of the selected
devices and all devices, i.e.,

Bn
1, .—. P,
Ps,= (ZuesZitibmely, o o] _ Znesoln , (7
L ZnGStB" anstﬁn
and
i Bn
3 1 i—C nPn
Py= | et 2azilunzely, o ol _ ZmenPrFa g,
ZneNﬁn an/\/ﬁn

the error in (8) can be expressed as
e® :Z[Pgt(yzc) —Pn (y=c)]VEgy—c |log f(z, W(t)) .

ceC
19)
Based on this equation, the following remarks can be obtained.

Remark 5. In multi-class classification problems, the error
caused by device selection is mainly determined by the dis-
tance between the data distribution of the selected devices
Ps, and the global data distribution Py, and this impact is
affected by the gradient VE,_. log f.(, w(t))]

Remark 6. In the considered federated learning framework,
if the data distribution of the selected devices is the same as
the global data distribution, the weight divergence issue can

be avoided.

Equation (19) indicates that in the multi-class classifi-
cation problem, the error is partially decided by the term
Ps,(y = ¢) — Py(y = ¢). According to the definitions in
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Fig. 3: An empirical result to show the impact of device
participation on weight divergence on the balanced MNIST
dataset. N = 10 and K = 5.

(17) and (18), this case can be viewed as a ratio estimation,
where E[Ps,(y = ¢) — Px(y = ¢)] = 0. However, the
ratio estimation is biased, and it is indicated that the bias
can be reduced if sampling size |S;| is large [20], [31]. In
other words, the weight divergence issue can be mitigated if
device participation increases. In Fig. 3, the impact of device
participation on weight divergence is demonstrated, where
20% of selected devices becomes unavailable in the case of
low device participation. This result shows that although both
cases have the same trend, weight divergence is more severe
and more unstable at lower device participation.

In order to further explore the impact of device participation,
the convergence rate of age-weighted FedSGD is analyzed. For
age-weighted FedSGD, the difference in global gradients be-
tween random device selection and complete device selection
is defined as follows:

g® £ vG(w®, S8) - VE(w®, N). (20)
Since all devices are selected in complete device selection,
Asf ) = 1,Vn,t always holds, and hence, the Aol based
weighting factor satisfies w,(lt) = 1. In this case, the following
equation can be obtained:
Gw N) = VEwY N). (21)
The above equation indicates that age-weighted FedSGD can
be utilized for complete device selection without any impact.
Based on (20) and (21), the expected convergence rate of age-
weighted FedSGD can be obtained.

Theorem 2. With age-weighted FedSGD, the expected reduc-
tion of global loss in round t is bounded by

F(w*)]
<0

(22)
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E[lg®?] (23)
(o >znewz OV L) T F(w®, A
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Proof: Refer to Appendix B. n

Theorem 2 indicates that with age-weighted FedSGD, the
convergence rate of the considered federated learning algo-
rithm can be improved by increasing device participation.

D. Local Training and Transmission

As described in the previous subsection, increasing device
participation can further improve learning performance, in-
cluding mitigating weight divergence and accelerating conver-
gence rate. However, in practical federated learning scenarios,
selected devices may not be able to participate in the aggrega-
tion due to latency or energy consumption limitations. Since
these two metrics are jointly determined by the parameters
in local training and transmission phases, such as computing
power, data size, transmit power, channel gain, etc., there exists
a trade-off between them [28], [32]. In this case, resource
allocation can be leveraged to satisfy energy consumption or
latency conditions, thereby increasing device participation.

For any selected device n assigned to sub-channel £, it trains
the global model based on all local samples, and hence, the
computing time can be expressed as follows:

e _ _HPn
kon Tk,nCn’

(24)

where p is the required number of cycles to train each sample,
Tk,n is the computing resource allocation coefficient, and C;,
is the computational capacity of device n. According to [20],
[22], the corresponding energy consumption for local training
is given by

E;R = kpfBn(TknCn)?, (25)

where ~ is the power consumption coefficient of each central
processing unit (CPU) cycle. After local training, the local
gradient is sent to the server through the assigned sub-channel
at the following data rate:

Ryn = Blogs(1 + ajn Polhinl?), (26)

where B is the allocated bandwidth of each sub-channel,
oy, 1s the power allocation coefficient, P, is the maximum
transmit power, | ,|> = n|gn|>d;, %02 is the normalized
channel gain, 7 is the frequency dependent factor, g, is the
small-scale fading coefficient, d,, is the distance between
device n and the server, « is the path loss exponent, and o2 is
the noise power. The communication time of device n assigned

to sub-channel k£ can be expressed as follows:
D
= 27
k,n ka ’ ( )

where D is the size of the local gradient for each device. The
energy consumption for transmission is given by

c1m c1m
Ek,n = ak_’nPnTkyn.

(28)

III. PROBLEM FORMULATION

In federated learning algorithms, an aggregation deadline
is usually considered, which ensures that the server updates
the global model at a certain point in time. Therefore, in
this work, latency is regarded as a key metric that determines
device participation, and an energy consumption minimization
problem is formulated under the maximum time consumption
constraint. The problem is shown as follows:

min > g (EF, + EP) (29a)
oo neS; kek
st TP+ TEm < TP Wk e K,Yn €S,  (29b)
Tkn € [0,1],VE € K,Vn € S, (29¢)
apn €10,1],Vk € K,Vn € &, (294d)
W e{0,1},Vke K, ¥n € S, (29)
> s Yin €01}V EK, (29f)
t
D Y € (0,1}, e s, (29¢)

where 7, a, and v are the sets of all computing resource
allocation coefficients, power allocation coefficients, and sub-
channel assignment indicators, respectively. In constraint
(29b), T2* denotes the maximum time consumption of each
communication round. Constraints (29¢) and (29d) indicate
that computing resource allocation coefficients and power al-
location coefficients range from O to 1. Constraints (29¢), (29f)
and (29g) represent that the sub-channel assignment indicator
is a binary variable, any sub-channel can be occupied by at
most one device, and any device can be assigned to at most
one sub-channel, respectively. In particular, in problem (29),
resource allocation and sub-channel assignment are performed
with the given set of selected devices.

Due to the fact that the formulated problem is a mixed
integer linear programming problem, it is decoupled into
two sub-problems and solved iteratively. With the fixed sub-
channel assignment, the resource allocation problem can be

presented as follows:
cp
> > B+ B
neS: kek

s.t.  (29b), (29¢), and (294d).

min
T,

(30a)

By removing the constraints related to resource allocation, the
sub-channel assignment problem is shown in follows:

neSy kek
st (29), (29f), and (29¢).

min

(31a)

IV. JOINT OPTIMIZATION OF COMPUTATIONAL RESOURCE
ALLOCATION AND POWER ALLOCATION

Since the adjustment of resource allocation coefficients for
any device cannot affect other devices, the resource allocation
problem in (30) is divided into K sub-problems and solved
independently. The resource allocation problem for device n
assigned to sub-channel k is given by
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Note that the above problem is infeasible if any constraint is
not satisfied. Hence, the following remark can be drawn.

Remark 7. For any device n assigned to sub-channel k, its
local gradient cannot be transmitted if

b D
Cn  Blogy(1+ Py|hinl?)

> T, (33)
That is, the selected devices may not be able to transmit lo-
cal gradients to the server with the given time limitation, even
if all resources are utilized. On the other hand, if this condition
does not hold, the training and transmission tasks can alway be
completed, which means 71, > 0 and «y , > 0. Therefore,
x1 and x4 are introduced to replace the optimization variables,
where 21 = 1/7,, and 22 = 1/[Blogy (1 + ag P |hkn|?)].
Problem (32) can be equivalently transformed as follows:
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st. puBnCytey + Dy < T, (34b)
x> 1, (34c)

1
T (34d)

>
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where x = {21, z2}. It can be proved that the above problem
is convex and satisfies Slater’s condition, and hence, KKT
conditions are utilized to derive the optimal solution [33].
By introducing the Lagrangian multiplier \; for the inequality
constraints, the Lagrangian function is given by
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Based on the Lagrangian function, the optimal solution of
problem (34) can be presented below.

Proposition 1. In case of j13,C,; L +Dvy < T2, by defining
1
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(1>

U1
(36)
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the optimal solution of problem (34) is given by

1) 7 =1 and x5 = v, if the following condition holds:

1BnCyt + Duy = T, (37
2) af =1 and x5 = (TP — uB,C;")/D, if
ponCt + Duy < T, (38)
Doy In(2)2Pv2—2Pv241 - 2kC3 | hy, | > 0.

3) i = (T — Duy)Cr(uBy) " and x5 = vy if

1B Cpt + Duy < T,
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4) Otherwise, the optimal solution can be obtained by solving
the following equations:
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wuBnCrlat + Daly — Tmax = (.
Proof: Refer to Appendix C. [ ]

According to the above proposition, the optimal solution of
problem (32) can be obtained as follows:

Tl:.,n = 1/1'1(7
QB;’”; -1
mo Pn|h/k,n|27

and the formulated problem in (30) is jointly solved.
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V. MATCHING BASED SUB-CHANNEL ASSIGNMENT

In this section, the formulated sub-channel assignment
problem in (31) is solved with the given resource allocation
solutions. Specifically, the optimal resource allocation for all
devices assigned to all sub-channels can be obtained in Section
IV, and therefore, this solution is treated as a preference list to
construct a matching based sub-channel assignment algorithm.
Note that some combinations of devices and sub-channels may
not be feasible due to inability to satisfy the maximum time
consumption constraint, and the proposed algorithm may tend
to assign devices to the corresponding infeasible sub-channels
to achieve lower energy consumption. In order to avoid this
case, a large value is assigned as the energy consumption of
these infeasible combinations, and any combination with this
energy consumption will be removed from the final matching.

A. Design of Matching based Algorithm

At this stage, with the preference list setting, all devices in
S; can be assigned to sub-channels, and thus problem (31)
can be considered as a one-to-one matching ¥ from S; to IC,
where S; and K are two disjoint sets with the same size. In
the resource allocation problem, it is indicated that the energy
consumption of any device n or sub-channel k£ in matching
U is independent of other players, and therefore, the utility of
any player can be defined as follows:

Ui() = EY, + Ef™ Vi € {n, k}. (42)

Due to the fact that the device and sub-channel in a combi-
nation have the same utility, the intent of sub-channels can be
omitted. Moreover, since each device is assigned to one sub-
channel and each sub-channel is occupied by one device, if a
device tends to establish a new matching, it needs to exchange
with another device instead of joining the combination directly.
That is, the considered matching is a swap matching, defined
as follows:



Algorithm 1 Matching based Algorithm

Initialization:
Randomly match all players in S; and K to obtain V.
Set ¥, =0and ¥g = 1.
Main Loop:
if ¥, # Vg then
Set ¥, = W.
for n € S; do
Device n searches device n’ € S;, where n # n'.
if (n,n’) is a swap-blocking pair then
10: Devices n and n’ exchange sub-channels.
Matching U7, is obtained.
12: Set ¥ = ¥7,.
13: end if
14:  end for
15:  Set Ug =",
16: end if
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Definition 1. From matching ¥ with V(n) = k and V(n') =
k', a swap matching U represents an exchange of devices n
and n', ie.,

U = W\ {{k,n}, {K,n'}} U {{k,n'}, {K,n}}.

As defined above, a swap matching means that two devices
exchange their assigned sub-channels. Note that the motivation
to form a swap matching is the reduction in energy consump-
tion, which can be presented as follows:

(43)

U=, U s Uy () < U (), Vi € {n,n'}, (44)

where ¥ =; \I!Z/ indicates device 7 prefers \I!Z/ to W.
Moreover, symbol <; is also introduced to represent the strict
preference of device 7. The swap matching should be approved
by all involved players, in which the utility of any player
increases or remains unchanged. In this case, devices n and
n' becomes a swap-blocking pair (n,n’), defined as follows:

Definition 2. (n,n’) is a swap-blocking pair if and only if
U<, 0" Fie{n,n'}and ¥ <, ¥ Vi e {n,n'}.

Based on the definition of the swap-blocking pair, a match-
ing based sub-channel assignment algorithm is presented in
Algorithm 1. In this algorithm, an initial matching is firstly ob-
tained by randomly assigning all devices into all sub-channels.
Afterwards, each device in turn operates on the remaining
devices in order to find the swap-blocking pair. If any two
devices can form a swap-blocking pair, their sub-channels are
exchanged and the new matching is recorded. This algorithm
is repeated until no new swap-blocking pair can be found in
a complete cycle. Based on the finial matching provided by
Algorithm 1, the solution of sub-channel assignment problem
(31) can be obtained by removing all infeasible combinations.

B. Properties Analysis

In this subsection, the properties of the proposed matching
based sub-channel assignment algorithm, including complex-
ity, convergence, and stability, are analyzed.

1) Complexity: The computational complexity of the pro-
posed algorithm is O(C K?), where C is the number of cycles.
Specifically, during a complete cycle of the main loop, each
device needs to test the viability of creating swap-blocking
pairs with all other devices, and hence, for all K devices,
K(K — 1) times of calculations should be performed. With
the given number of cycles C, the computational complexity
can be expressed as CK (K — 1).

2) Convergence: From any initial matching, the proposed
algorithm is guaranteed to converge to a final matching without
swap-blocking pairs. It can be observed from Algorithm 1 that
the matching is transformed due to the construction of swap-
blocking pairs. Suppose ¥, and ¥, are two adjacent matching,
where a # b, then there exists a swap-blocking pair in the
transformation from V¥, to ¥;,. Based on the definition of a
swap-blocking pair, it indicates that the utility of at least one
device is strictly reduced while the utility of the other device is
not increased. Moreover, for the devices that are not involved,
their utility remains the same. As a result, the sum utility,
or sum energy consumption, is strictly decreased with this
transformation. With the given devices and sub-channels, there
is a lower bound on the energy consumption, and therefore, the
proposed algorithm can always converge to a final matching.

3) Stability: The proposed matching based sub-channel
assignment algorithm is able to provide a two-side exchange
stable solution, which is defined as follows:

Definition 3. A matching is two-side exchange stable if and
only if no swap-blocking pair can be formed.

According to the above definition, the final matching ob-
tained by the proposed algorithm is alway two-side exchange
stable, since the convergence analysis proves that there are no
swap-blocking pairs in the final matching.

VI. SIMULATION RESULTS
A. Simulation Settings and Benchmark Methods

The simulation results are presented to demonstrate the
performance of age-weighted FedSGD and proposed solutions.
In this simulation, the devices are randomly deployed in a
disc with radius R, while the server is located in the center.
The learning rate A is 0.01, bandwidth B is 1 MHz, noise
power o2 is —174 dBm, path loss exponent a is 3.76, power
consumption coefficient s is 10729, and cycles coefficient
s 105. To evaluate the learning performance, MNIST,
CIFAR-10, and CIFAR-100 datasets are adopted with an SGD
optimizer. For MNIST digit recognition tasks, a simple neural
network is built with a 128-neuron ReLu hidden layer and
a softmax output layer. For CIFAR-10 image classification
tasks, a neural network is constructed by stacking a 32-filter
4 x 4 2D convolution (Conv2D) layers, a 2 x 2 max pooling
layer, a 128-neuron ReLu hidden layer and a softmax output
layer. For CIFAR-100 image classification tasks,, the neural
network is constructed with a 128-filter 4 x 4 Conv2D layers,
a 2 x 2 max pooling layer, a 256-neuron ReLu hidden layer
and a softmax output layer. To compare the performance
of the proposed KKT based resource allocation (denoted by
KRA) and matching based sub-channel assignment (denoted
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by MSA), fixed resource allocation (denoted by FRA) and
random sub-channel assignment (denoted by RSA) are re-
spectively included as the baseline, where resource allocation
coefficients are set as 7, = air, = 0.5,Vk,n with FRA
I, and 74, = a, = 1,Vk,n with FRA 2. Furthermore,
the device participation is calculated by S/N, where S is the
arithmetic mean of {S;|V¢} and S; = |St/|.

B. Federated Learning Performance

In Fig. 4, the MNIST digit recognition task with unbalanced
non-IID data is adopted, where 9000 training samples are
randomly distributed to all devices, and the samples of each
device belong to 1 or 2 classes. It demonstrates that with
the same device selection results, the proposed age-weighted
FedSGD is able to outperform conventional FedSGD with
any sub-channel assignment and resource allocation schemes.
Compared to RSA and FRA, MSA and KRA can significantly
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Fig. 6: The convergence performance on the balanced CIFAR-
100 dataset. N = 50, K = 20, T,;)** =10 s, P, = 10 dBm,
C,, =1 GHz, R = 200 m, and D = 20 Mbits.
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increase device participation, thereby improving the learning
performance, which verifies Theorem 2. Moreover, since the
number of selected devices in each communication round is
obviously reduced with FRA, there exists a large gap between
FRA and KRA in achievable test accuracy.

The CIFAR-10 image classification task is employed in
Fig. 5, in which each device has 5000 samples with the
unique label. It demonstrates that by utilizing the proposed
sub-channel assignment strategy, device participation is in-
creased by 52%. As a result, for both age-weight FedSGD and
conventional FedSGD, the learning performance is improved,
which confirms Theorem 2. Moreover, it can be found from
Fig. 5 that with the same device selection results, age-weighted
FedSGD can achieve faster convergence rate compared to
conventional FedSGD.

The balanced CIFAR-100 dataset is adopted in Fig. 6, in
which each device has 1000 2-class samples. Due to the fact
that the Non-IID degree in this figure is decreased compared
to that in Fig. 4 and Fig. 5, the improvement of age-weighted
FedSGD with MSA is not significant, but it can still improve
the learning performance, especially in the later stage of
training. With RSA, the advantage of age-weighted FedSGD
is obvious, and this is because the number of selected devices
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in each round is significantly reduced. It is worth noting
that the considered federated learning algorithm is able to
continue to converge. However, in order to clearly demonstrate
the difference, only the first several rounds are included
for demonstration. In addition, under the adopted simulation
parameters, the baseline FRA 1 fails to converge on CIFAR-
10 and CIFAR-100 datasets due to low device participation,
and is therefore not included in Fig. 5 and Fig. 6.

C. System Performance

The performance of the proposed solutions is shown in
Fig. 7 to Fig. 9, where the maximum time consumption, radius,
maximum transmit power, and computational capacity are
respectively included to show its impact on the average energy
consumption and device participation. It can be observed
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Fig. 11: The convergence of the matching based sub-channel
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that compared to FRA 2, the proposed KKT based resource
allocation solution can achieve less energy consumption while
ensuring device participation. Compared to FRA 1, KRA can
reduce energy consumption and increase device participation,
which explains the improved learning performance in Fig. 4
to Fig. 6. Moreover, Fig. 7 indicates that there is a trade-
off between energy consumption and device participation.
Specifically, when the maximum time consumption increases
from 2 s to 4 s, the energy consumption is raised in order to
significantly increase device participation, from 0.4 to 3. When
the maximum time consumption is greater than 4 s, device
participation can be slowly increased, but the average energy
consumption is reduced. In Fig. 8, the increase in radius can
be regarded as the deterioration of channel conditions, and
then it can be observed that there is an upper boundary in
energy consumption. That is, when the radius is greater than
250 m, the average energy consumption remains at a fixed
level, even though device participation continues to decrease.
Similarly, an upper bound in device participation can be found
in Fig. 9. When the maximum transmit power is equal to
30 dBm, the maximum device participation is achieve by all
schemes, and the proposed solutions still consume minimum
energy. Compared to the maximum transmit power, the impact
of computational capacity is not significant, but the overall
trend is the same, i.e., the energy consumption and device
participation increase monotonically, as shown in Fig. 10.
The convergence of the proposed sub-channel assignment
algorithm is demonstrated in Fig. 11, where exhaustive search
is included as the benchmark. In this figure, the exhaustive
search is set up to find the combination that maximizes device
participation while guaranteeing a low level of average energy
consumption. Therefore, although the average energy con-
sumption obtained by the exhaustive search is slightly larger
than that of the proposed matching based algorithm, the device
participation is significantly increased. It can be observed that
the proposed sub-channel assignment algorithm can achieve
approximately 92% performance of the global optimum within



4 iterations. Compared to exhaustive search with complexity
O(K!), it can be considered as a low complexity sub-optimal
algorithm. Furthermore, the figure verifies the properties of the
proposed algorithm, including convergence and stability.

D. Discussion

The simulation results indicate that the proposed age-
weighted FedSGD algorithm can significantly reduce weight
divergence in data heterogeneity scenarios, thereby improving
the performance of federated learning. It also explains the prin-
ciple that introducing Aol in federated learning can improve
learning efficiency in existing works. Moreover, the proposed
solutions for resource allocation and sub-channel assignment
can further improve learning performance by increasing de-
vice participation. We note that the proposed schemes can
be implemented without extra information transmission, and
the computation can be performed at the server equipped
with sufficient computational resources and energy. There-
fore, the increase in computational complexity brought by
adopting these schemes can be neglected. Furthermore, as
the proposed scheme can achieve higher accuracy with fewer
communication rounds, it is well suited for time- or energy-
sensitive scenarios, where neural network training needs to be
completed with a given number of communication rounds.

VII. CONCLUSIONS

This paper investigates a wireless federated learning frame-
work on non-IID datasets, where random device selection
is exploited due to the limited number of sub-channels.
By exploring the issue of conventional FedSGD in weight
divergence, age-weighted FedSGD is designed to adjust the
proportion of local gradients according to the previous state
of devices. To further improve the learning performance,
an energy consumption minimization problem is formulated,
where the resource allocation solution and the sub-channel
assignment algorithm are developed based on KKT conditions
and matching theory, respectively. The superiority of designed
age-weighted FedSGD and the effectiveness of the proposed
resource allocation and sub-channel assignment strategies are
demonstrated in the simulation results. For future works, to
adapt to more advanced artificial intelligence scenarios, it
is necessary to conduct further analysis based on weaker
assumptions. Furthermore, adopting real-world scenarios and
datasets to validate the proposed scheme is also an important
research direction.

APPENDIX A: PROOF OF THEOREM 1

According to (3) and (6), the weight divergence between
random device selection and complete device selection can be
expressed as follows:
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From (8), VF(w",S;) = e® + VF(w(® A) can be ob-
tained, and the above equation can be transformed as follows:
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Based on Assumption 1, the following inequality holds:
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With the similar way, the following inequality can be obtained:
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By substituting the above inequality, (47) can be rewritten as
follows:
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By induction, the weight divergence between random device
selection and complete device selection can be presented as
follows:
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The above inequality can be rewritten as follows:
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j= i=1
(53)
and the proof is completed. |

APPENDIX B: PROOF OF THEOREM 2

Based on (20) and (21), the upper bound of the convergence
rate can be proved through a similar approach to that in [20].
In order to derive the expression of E[Hg(i) |2], the gradient
of the global loss, i.e., VG(w(t),St), can be viewed as ratio
estimation, as follows:

‘S_t‘znej\[xgzt)wn)ﬁnvf( )A%

VG(w, ;) = © e
B Shenwn Ba st
(54)
where :cgf ) is a binary variable to indicate the device selection

result of device n in round ¢. In particular, :vgf ) = 1 indicates
that device n is selected in round ¢, ie., n € S;; xSf) =0
otherwise. Since random device selection is adopted, in any
communication round ¢, the probability of selecting device n
from N is given by

1St

N
Similarly, the gradient of the global loss with complete device
selection, i.e., VF(W(t),J\/'), can be expressed as follows:

E[z t)] = P(:v(t) =1)=

n

(55)
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At this stage, the following equations can be obtained:
Elzs,] = Zn, (57)
and
Elgs.] = on- (58)
Then, E [[|g®||?] can be rewritten as follows:
E [lgV]?] = rre——sE ] 7o~ 2] | 69
x5

The rest of the proof can be obtained by referring to [20]. B
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APPENDIX C: PROOF OF PROPOSITION 1

By calculating the partial derivatives of (35) and setting
them to zero, the following equations can be obtained:

% + X\ ’f: Xo =0, (60a)

_h@D2TE | DE™E 1) +A1D — A3 = 0. (60b)
|hin |* B e 2

Moreover, the following conditions should be satisfied:

wBnCtay + Day — T <0, (61a)

1—2a7 <0, (61b)

v — x5 <0, (61¢c)

(uﬂnC x] + Dy — T.') =0, (61d)

A2(1—27) =0, (6le)

/\3(’U1 — ,T;) = O, (61f)

Ai>0,Vie{1,2,3}, (61g)

where v; is defined in (36). If A\; = 0, the following equation
can be obtained from (60a):

=268 Cy (27)

Since Ay > 0, the above function conflicts with (61b), and
hence, \; > 0 always holds. Therefore, it can be obtained
from (61d) that the following equation is always satisfied:

= Aa. (62)

wBnC ey + Dajy — T = Q. (63)

At this stage, based on the different values of A2 and A3, four
cases need to be discussed.

DIf Ay > 0and A3 > 0, 7 = 1 and 25 = v; can be
obtained from (61e) and (61f), respectively. In this case, the
following condition can be derived from (63):

wBnCt + Doy = Tmax, (64)

2) If A2 > 0 and A3 = 0, ] = 1, and it can be obtained
from (63) that 23 = (T — 3, C,;1)/D. In this case, (61c)
should be considered, and the condltlon becomes

1B Crt + Duy < Tmex, (65)

Note that the case A3 > 0 has been considered, and thus the
equality condition is removed. Since A3 = 0, the following
inequality can be obtained from (60b):

1
2 BI; _ 1
|ge,n |2

1
In(2)2773

— > 0.
ot [P B

AL = (66)

Substituting the above equation into (60a), it becomes

1
In(2)2 =3
|hien|2Bxy

and the following inequality can be obtained:

1
23:3 _1
P

) Fn g, 1182 C2 = Xy > 0, (67)

_1_
QBmg _1
[hk ]2

1
In(2)277
e 2B

— 2603 > 0. (68)



It is indicated that the above inequality includes (66), and thus
condition (66) can be omitted. By including the expression of
x5, the condition in this case is given by

Duy In(2)2Pv2 —2Pv2 11 -25C3|hy, % > 0. (69)

3) If Ay =0 and A3 > 0, by including =5 = v; to (63), the
expression of 7 can be presented as follows:

o] = (T3 = Du1)Cr(pBn) ™, (70)

and (61b) can be rewritten as (65), where the equality condi-
tion is removed as it holds for the case Ay > 0. From (60a),
the following condition can be obtained:

A1 = 26C3(x7)73 > 0, (71)
which can be rewritten as follows:
Duvy < T, (72)

The above inequality is always satisfied with inequality (65).
Moreover, the equation in (71) can be substituted into (60b),
as shown in follows:

_1_ _1_
DIn(2)252  D(2°3 —1) 2kC3D
|For.n|? Ba [Foren]? (1)
By including the obtained solutions of z] and z3, it becomes
ZH(Nﬂn)BVLleP
(T —Dv)?

4) If A2 = 0 and A3 = 0, the following equation can be
obtained from (60a) and (60b):

A3 > 0. (73)

L 1 L
277 —1—=—In(2)277 + >0. (74)
1

2:C3 ln(2)23'+’5 2#3 -1

@) BlhinalPzs  [hial®
Moreover, by including (63), the solution can be obtained by
solving the following equations:

(75)

1 1
26C3  In(2)2873  2F:5 —]
(@1)*  BlhwnlPzs [l (76)
1B Cr ok + Dy — Tmex = (.

This proposition is proved. ]
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