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ABSTRACT

As the United States phases out traditional fossil fuels in

favor of renewable energy sources, it is important to capitalize

on all available avenues to increase renewable penetration. In

the last decade, the costs associated with residential solar pho-

tovoltaic (PV) installations have decreased significantly, provid-

ing more homeowners with the opportunity to generate their own

clean electricity. Research has found that the decision to invest

in a residential solar PV system is guided by economic, social,

and personal factors. Accounting for such complexities, the joint

power of agent-based modeling and social network analysis is

leveraged in this study to evaluate the effect of social influence

on solar PV adoption. Featuring residential consumer agents

with data-driven attributes, a logistic regression function to pre-

dict solar adoption, and random and small-world social network

implementations, this work simulates residential solar PV adop-
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tion in New Jersey. Results indicate that including social in-

fluence in an agent-based electricity system model leads to in-

creased installed residential solar capacity, but not necessarily

higher adoption rates. These findings suggest that, with an un-

derstanding of the intricacies of consumer social networks, there

are potential opportunities to bolster residential solar installa-

tions through low-cost social campaigns that motivate individu-

als to adopt home solar through their social ties.

Introduction

In November and December of 2023, thousands of partic-

ipants attended the 28th Conference of the Parties to the UN

Framework Convention on Climate Change (COP28) in Dubai

to assess efforts in climate change mitigation and identify a path

to reach climate goals designed to prevent irrevocable damage

to the environment. One of the key takeaways from COP28 was
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the global need to phase out fossil fuels and increase the pen-

etration of renewable energy sources [1]. According to a 2011

report on consumer attitudes towards renewable energy, 80% of

consumers care about the implementation and usage of renew-

able energy [2]. In the decade following that study, renewable

energy sources have become more prominent in the electricity

grid, and the adoption of renewable energy has expanded across

the United States [3]. Consumers have gained the ability to finan-

cially support the deployment of renewable electricity by partic-

ipating in renewable energy programs and purchasing renewable

energy credits [4]. Consumers can also invest directly in home

solar photovoltaic (PV) systems, which lead to the reduction of

utility energy consumption and provide opportunities to feed re-

newable energy back into the grid through net metering. Federal

and state governments incentivize these decisions through tax re-

bates and other financial mechanisms [4, 5]. As such, consumers

have the opportunity to increase the supply and usage of renew-

able sources, making it important to forecast future demand for

renewable energy, encourage the adoption of renewable sources,

and evaluate the impact of such a shift in electricity grids.

One avenue that could potentially help increase renewable

energy penetration is encouraging residential solar PV adoption.

For most, the decision to invest in a solar PV system is based

not only on cost, but also on moral and social factors [6]. Social

influence, described as the ability for one’s beliefs or behaviors

to be altered by others, can be a powerful motivator for investing

in renewable energy. Individuals have the capacity to directly in-

fluence other members of their social networks, persuading their

connections to invest in solar. With a targeted approach, low-

cost social norm campaigns or referral programs could result in

increased adoption of solar PV, ultimately accelerating the pen-

etration of renewable energy sources in the grid. Considering

the powerful influence of social connections, this study seeks to

address the following research question:

How do consumer social networks influence the diffusion

and adoption dynamics of residential solar photovoltaic

(PV) systems?

To answer this question, an agent-based electricity system

model calibrated to represent consumers and producers in the

state of New Jersey [7] was extended to include social networks

for evaluating their potential influence on the consumer agents’

decision to invest in solar PV. By incorporating social network

models in the agent-based model (ABM), the solar PV invest-

ment decision was made more realistic as the decision was influ-

enced by each agent’s social ties. Understanding and quantifying

the potential impact of positive and negative recommendations

will provide opportunities to design referral programs or social

norm messaging campaigns that motivate increased adoption of

solar, decreasing the demand for electricity generated from fossil

fuels.

Background

Data-driven agent-based modeling has been successfully

used to forecast solar panel adoption in San Diego County [8].

The model detailed in [8] uses machine learning with multiple

household features to predict solar PV adoption, but does not ex-

plicitly investigate the influence of social ties on the investment

decision. Within social networks, social influence determines the

impact factor of a given node [9]. A social network is made up

of nodes and edges, in which nodes represent individuals (rep-

resented by agents in an ABM) and the edges represent social

ties between the agents. Social network modeling enables char-

acterizing a network of distinct nodes by the relationships and

interactions between individual nodes [10].

Multiple methods of network modeling exist, serving to es-

tablish the connections between these distinct nodes. In a purely

random network, each agent has a random probability of tying

to another agent [11]. This method can provide a basic network

structure, but it does not consider proximity or homophily as in-

put factors. Alternatively, small-world modeling establishes con-

nections between adjacent nodes, with a degree of randomness

such that a given node is also tied to non-adjacent nodes. This

structure design is intended to demonstrate the close connections

held by most nodes, along with the random distant connections

that can be found in real-world social networks [12].

Another approach is to construct networks based on spatial

or geographical proximity, where agents are more likely to form

connections with others in their local neighborhood or commu-

nity. This captures the tendency for social ties to be stronger

among individuals who are physically closer, due to increased

opportunities for interaction and shared experiences.

Network models can also incorporate homophily, the prin-

ciple that connections are more likely to form between similar

individuals. Agents may preferentially connect with others who

share attributes such as age, income, education level, or other de-

mographic or psychographic characteristics. Incorporating ho-

mophily into network models can help capture the segregation

and cluster formation often observed in real-world social net-

works.

These various network types were implemented in prior

ABM work by the lead author [7] to introduce social influence to

the solar PV adoption decisions. Implementation of social influ-

ence in this study follows the method of magnitude and influence

rank that has been previously applied to retail applications [13].

This approach models how the adoption decisions of highly in-

fluential agents can propagate through the network and impact

the decisions of their peers and connections.

By integrating realistic social network models into the agent-

based framework, this study provides a powerful tool for inves-

tigating the complex interplay between social influence, peer ef-

fects, and the diffusion of renewable energy technologies. The

insights gained can inform targeted policies and interventions to

leverage social dynamics and accelerate the transition towards
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sustainable energy systems.

Method

This work extends the prior agent-based model developed

in [7] by incorporating social network models to determine the

influence of consumer social ties on residential solar photovoltaic

(PV) investment decisions. The original model simulated con-

sumer agents making decisions on whether to invest in solar PV,

and if so, the system capacity to install. However, it did not ac-

count for the potential impact of social influence and peer effects

on these adoption choices.

In the extended model, residential consumer agents inherit

various attributes including income, savings, a dollar amount

they are willing to invest in a solar PV system (WTIS), property

suitability for solar panels, monthly electricity consumption, a

social influence level, and a social influence orientation. With the

exception of the social influence parameters, these attributes are

directly assigned to each agent upon initialization using survey

responses from actual consumers recorded in [14]. This ensures

that the agent population accurately represents the diversity and

heterogeneity of real-world residential consumers.

The model is configured to run for 40 years, with time steps

of one month. At each time step, agents reassess their electricity

consumption and solar PV investment decisions based on their

current circumstances and preferences. Crucially, the new social

network component introduces an additional layer of complexity,

allowing agents to be influenced by the adoption decisions and

experiences of their peers within their respective social networks.

Throughout the simulation, the solar PV cost to consumers is

determined based on the size of the system with a constant price

per panel.

Two distinct network topologies are incorporated: random

networks and small-world networks. In random networks, each

agent has a random probability of forming a connection with

any other agent, regardless of proximity or shared characteris-

tics. This provides a baseline network structure for comparison.

Small-world networks, on the other hand, are designed to more

closely resemble real-world social networks by establishing con-

nections between nearby agents (capturing geographical prox-

imity) while also allowing for random long-distance connections

(capturing acquaintances or weak ties).

By integrating these social network models, the solar PV in-

vestment decision becomes more realistic, as it is influenced not

only by an agent’s individual attributes but also by the adoption

choices and recommendations of their social connections. Posi-

tive experiences and word-of-mouth from satisfied solar adopters

can motivate their peers to follow suit, while negative experi-

ences may discourage adoption within a given social circle. This

captures the dynamics of social influence and information prop-

agation within consumer networks.

With the addition of the two types of social networks, con-

sumers are assigned a social influence level on a scale of -1 to

1. A consumer’s decision to install solar PV is determined using

a logistic regression function that was developed when analyz-

ing survey responses from residents of the Northeastern United

States [14]. The regression equation (Equation 1) includes terms

for willingness to invest in solar PV (WTIS), annual income,

political affiliation (PA), efficient behaviors (EB), and average

monthly electricity bill.

f (X) =−8.21∗10−5
∗WT IS+6.63∗10−7

∗ income

−0.78∗PA+0.40∗EB+3.65∗10−4
∗bill

(1)

The probability of the agent investing in solar panels is cal-

culated using Equation 2.

p = 1/(1+ e− f (X)) (2)

In the baseline scenario, if the calculated probability is

greater than a pre-specified threshold (e.g., 0.65 to align with

the survey responses in [14]) the agent invests. The size of the

system is determined based on the agent’s WTIS and available

savings. If an agent has more money in their savings than their

WTIS, they purchase as many solar panels as their properties can

hold. If their savings are less than their WTIS, they purchase

as many solar panels as their savings can afford while also con-

sidering the physical limits of their properties. Social influence

from the agents’ social ties alters each consumer’s probability of

investing in solar PV. The more positive influence an agent re-

ceives from their social ties, the more likely they are to invest in

a system. Furthermore, the evaluation of the regression equation

and investment decision only occurs if an agent is determined to

have a solar-suitable property.

Social Network Definitions

Two independent implementations of social networks (i.e.,

random and small-world social network structures) were incor-

porated into the baseline model to evaluate their influence on so-

lar investment decisions. Prior to running a simulation, the net-

work to be used was specified. The networks were independent

of each other in the model to allow for comparing the effects of

different social networks while all other factors were held con-

stant. Upon initialization of the model, all agents were assigned a

baseline social influence level on a scale from -1 to 1. The influ-

ence orientation distribution was derived from renewable energy

survey results within New Jersey [15]. Survey respondents who

did not have a viewpoint were considered neutral for our analysis

and did not influence other agents. Each agent, regardless of the

social network structure, is treated in the same manner for devel-

oping viewpoints and willingness to invest. The values for the
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solar installation behavior is more interesting than that of adop-

tion in general. After the first six or so years of the simulation,

the random and small-world networks saw a huge increase and

rate of increase in installed capacity. The rate of increase levels

off around the 10-year mark, and capacity seems to increase at

a similar rate for all three configurations. The rapidly increasing

installed capacity is a direct result of agents’ increased willing-

ness to invest in solar during those years. For the duration of

the simulation, the random network configuration resulted in the

highest total installed solar capacity and the baseline configura-

tion in the lowest. For a more direct year-to-year comparison,

the average number of solar adopters and total installed solar ca-

pacities after the 10th, 20th, 30th, and 40th year (120th, 240th,

360th, and 480th months respectively) of the simulation for each

of the model configurations are included in Table 2.

To identify statistically significant differences in the decen-

nial results in Table 2, t-tests were conducted comparing each

of the social network structures with the baseline as well as be-

tween the social network outputs. The results of these t-tests are

included in Table 3.

Table 3 indicates significant differences in the installed solar

capacity between each of the social network configurations and

the baseline model. With p-values less than 0.001 for each 10-

year comparison, it is clear that the inclusion of the random and

small-world networks alters the total installed solar capacity in

the simulation. For both networks, the installed capacity is higher

than the baseline scenario, indicating social influence leads to

higher residential solar capacity. There was, however, no statisti-

cally significant difference in the installed capacity between the

random and small-world network model configurations. Interest-

ingly, the social networks did not significantly alter the number

of households that adopted solar. Adoption rates were similar

between all three methods and there was not enough evidence to

suggest social influence played a role in motivating either more

or less adopters. In this case, increased capacity without in-

creased adoption rates suggests that social influence led adopters

to install larger systems.

Discussion

Considering the results presented in the previous section, so-

cial network influence from random and small-world networks

leads to increased total installed residential solar capacity but not

increased adoption rates, when incorporated in an ABM as de-

tailed in this study. The surge in solar capacity during years six

through ten of the simulation suggests a tipping point in social in-

fluence. Adopters, motivated by social connections, maximized

their allowable solar PV capacity, indicating a rise in investment

willingness. The different social network structures did not re-

sult in any significant changes to the simulation outputs when

compared to one another, suggesting that the inclusion of social

influence was powerful, but network structure was not as impor-

tant. With the knowledge that social influence can lead to an

increased solar capacity in the grid from residential installations,

efforts can be made to change social perceptions of household

solar PV systems and promote increased penetration in the real

world. Increasing the residential solar capacity will lessen the

total electricity demand felt by utility providers, while decreas-

ing the demand for electricity specifically from fossil fuels by

providing a larger supply of renewable energy sources.

In future work, sensitivity analysis would be useful to ex-

plore whether there are significant differences in the adoption

rates and installed capacities when changing the network param-

eters for the different social network configurations. A compar-

ison study considering changes to the distribution of positive,

negative, and neutral attitudes towards solar power, the distribu-

tion of influence level, the probability of ties between agents in

the random network, and the average degree in the small-world

network would help uncover the importance of social network

parameters when modeling the adoption of solar PV. Identifying

the structure and composition of a social network that motivates

increased adoption rates and increased installed capacity at the

household level will provide the opportunity to implement re-

ferral programs or social campaigns to accelerate the transition

towards a more sustainable electricity grid.

Other considerations for future studies could include dy-

namic solar PV costs to consumers as well as scenario analysis

with variables to account for disruptive innovations that could

arise during the further development of solar panel and battery

storage technologies. In this study, the solar PV costs were con-

stant over time to ensure that any changes in adoption rates and

installed solar capacity were a direct result of the social influ-

ence introduced in the system. In reality, the price of solar pan-

els has been decreasing over time as the technology improves

and becomes more accessible to consumers. The introduction of

dynamic prices would provide the opportunity to study the in-

teractions between social influence, costs, and the resulting con-

sumer behaviors. It would also allow for the simulation of future

scenarios where scientific advancements lead to increased effi-

ciency, affordability, and accessibility of solar PV, changing the

market for household solar in the process. Studying these scenar-

ios would provide information on various potential futures for

household solar and could uncover more approaches to further

the adoption of renewable energy technologies.

Conclusion

By expanding the agent-based model to include social

network considerations, the simulation of complex consumer

decision-making in electricity systems can be elevated. The in-

corporation of social influence allows simulated consumer solar

PV investment decisions to be more realistic as many factors in-

fluence this decision. By creating a more thorough simulated

decision-making process, the model has the potential to uncover
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TABLE 2. Average number of residential households who have adopted solar PV and the total installed residential solar capacity after years 10, 20,

30, and 40 of the simulation for the baseline, random network, and small-world network model configurations.

Solar Adopters Installed Solar Capacity (kW)

Baseline Random Small-world Baseline Random Small-world

Year 10 341,080 345,540 346,040 153,605 193,255 188,665

Year 20 357,280 361,240 362,680 156,815 209,855 206,315

Year 30 372,160 376,500 378,160 161,000 220,575 216,805

Year 40 387,800 391,940 394,440 166,140 233,330 229,595

TABLE 3. Results from t-tests comparing the key metrics from the baseline and random network, baseline and small-world network, and random

network and small-world network model configurations.

Baseline vs Random Baseline vs Small-world Random vs Small-world

Adopters Installed Capacity Adopters Installed Capacity Adopters Installed Capacity

Year 10 p = 0.245 p = 2.11E-18 p = 0.197 p = 6.47E-15 p = 0.89 p = 0.317

Year 20 p = 0.303 p = 3.8E-28 p = 0.166 p = 5.69E-28 p = 0.696 p = 0.411

Year 30 p = 0.263 p = 2.67E-32 p = 0.131 p = 2.91E-31 p = 0.658 p = 0.398

Year 40 p = 0.295 p = 8.69E-35 p = 0.100 p = 6.88E-35 p = 0.509 p = 0.434

insights into the power of social norms and informational cam-

paigns. The social networks presented in this study lay the foun-

dation to simulate social influence on energy decisions or study

the spread of information within such networks. With the help of

this model, policymakers and businesses will be able to gauge the

potential of low-cost methods of encouraging pro-environmental

behaviors both with respect to electricity use and in other energy-

efficient applications. Encouraging such behaviors can play a

role in helping decrease the harmful emissions that result from

electricity use. Indeed, while large, systematic changes to the

electricity grid will take time to implement, social science can be

leveraged to encourage individual behavior changes now.

This modeling framework can be applied to various socio-

technical systems and heighten the complex system simulation

capabilities in many fields. Not only can the existing model be

extended to different sectors, but it can also be expanded to in-

clude more energy decisions such as electric vehicle (EV) adop-

tion, investment in battery storage and other advanced generation

technologies, and participation in community solar or clean en-

ergy programs. Including more energy decisions in such a model

will help paint a more complete picture of pro-environmental be-

havioral intentions and allow for the study of interactions be-

tween these decisions. The social networks can also be further

improved by tying in demographic considerations. In tandem

with the underlying structures of established networks, demo-

graphics such as age, race, and gender could influence the likeli-

hood of agents forming social ties, leading to better predictions

of future behaviors. All such additions will contribute to further

improving the quality of simulation outputs, providing more ac-

curate observations to assist regulators in implementing proper

changes in electricity systems.
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