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ABSTRACT

As the United States phases out traditional fossil fuels in
favor of renewable energy sources, it is important to capitalize
on all available avenues to increase renewable penetration. In
the last decade, the costs associated with residential solar pho-
tovoltaic (PV) installations have decreased significantly, provid-
ing more homeowners with the opportunity to generate their own
clean electricity. Research has found that the decision to invest
in a residential solar PV system is guided by economic, social,
and personal factors. Accounting for such complexities, the joint
power of agent-based modeling and social network analysis is
leveraged in this study to evaluate the effect of social influence
on solar PV adoption. Featuring residential consumer agents
with data-driven attributes, a logistic regression function to pre-
dict solar adoption, and random and small-world social network
implementations, this work simulates residential solar PV adop-
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tion in New Jersey. Results indicate that including social in-
fluence in an agent-based electricity system model leads to in-
creased installed residential solar capacity, but not necessarily
higher adoption rates. These findings suggest that, with an un-
derstanding of the intricacies of consumer social networks, there
are potential opportunities to bolster residential solar installa-
tions through low-cost social campaigns that motivate individu-
als to adopt home solar through their social ties.

Introduction

In November and December of 2023, thousands of partic-
ipants attended the 28th Conference of the Parties to the UN
Framework Convention on Climate Change (COP28) in Dubai
to assess efforts in climate change mitigation and identify a path
to reach climate goals designed to prevent irrevocable damage
to the environment. One of the key takeaways from COP28 was
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the global need to phase out fossil fuels and increase the pen-
etration of renewable energy sources [1]. According to a 2011
report on consumer attitudes towards renewable energy, 80% of
consumers care about the implementation and usage of renew-
able energy [2]. In the decade following that study, renewable
energy sources have become more prominent in the electricity
grid, and the adoption of renewable energy has expanded across
the United States [3]. Consumers have gained the ability to finan-
cially support the deployment of renewable electricity by partic-
ipating in renewable energy programs and purchasing renewable
energy credits [4]. Consumers can also invest directly in home
solar photovoltaic (PV) systems, which lead to the reduction of
utility energy consumption and provide opportunities to feed re-
newable energy back into the grid through net metering. Federal
and state governments incentivize these decisions through tax re-
bates and other financial mechanisms [4, 5]. As such, consumers
have the opportunity to increase the supply and usage of renew-
able sources, making it important to forecast future demand for
renewable energy, encourage the adoption of renewable sources,
and evaluate the impact of such a shift in electricity grids.

One avenue that could potentially help increase renewable
energy penetration is encouraging residential solar PV adoption.
For most, the decision to invest in a solar PV system is based
not only on cost, but also on moral and social factors [6]. Social
influence, described as the ability for one’s beliefs or behaviors
to be altered by others, can be a powerful motivator for investing
in renewable energy. Individuals have the capacity to directly in-
fluence other members of their social networks, persuading their
connections to invest in solar. With a targeted approach, low-
cost social norm campaigns or referral programs could result in
increased adoption of solar PV, ultimately accelerating the pen-
etration of renewable energy sources in the grid. Considering
the powerful influence of social connections, this study seeks to
address the following research question:

How do consumer social networks influence the diffusion
and adoption dynamics of residential solar photovoltaic
(PV) systems?

To answer this question, an agent-based electricity system
model calibrated to represent consumers and producers in the
state of New Jersey [7] was extended to include social networks
for evaluating their potential influence on the consumer agents’
decision to invest in solar PV. By incorporating social network
models in the agent-based model (ABM), the solar PV invest-
ment decision was made more realistic as the decision was influ-
enced by each agent’s social ties. Understanding and quantifying
the potential impact of positive and negative recommendations
will provide opportunities to design referral programs or social
norm messaging campaigns that motivate increased adoption of
solar, decreasing the demand for electricity generated from fossil
fuels.

Background

Data-driven agent-based modeling has been successfully
used to forecast solar panel adoption in San Diego County [8].
The model detailed in [8] uses machine learning with multiple
household features to predict solar PV adoption, but does not ex-
plicitly investigate the influence of social ties on the investment
decision. Within social networks, social influence determines the
impact factor of a given node [9]. A social network is made up
of nodes and edges, in which nodes represent individuals (rep-
resented by agents in an ABM) and the edges represent social
ties between the agents. Social network modeling enables char-
acterizing a network of distinct nodes by the relationships and
interactions between individual nodes [10].

Multiple methods of network modeling exist, serving to es-
tablish the connections between these distinct nodes. In a purely
random network, each agent has a random probability of tying
to another agent [11]. This method can provide a basic network
structure, but it does not consider proximity or homophily as in-
put factors. Alternatively, small-world modeling establishes con-
nections between adjacent nodes, with a degree of randomness
such that a given node is also tied to non-adjacent nodes. This
structure design is intended to demonstrate the close connections
held by most nodes, along with the random distant connections
that can be found in real-world social networks [12].

Another approach is to construct networks based on spatial
or geographical proximity, where agents are more likely to form
connections with others in their local neighborhood or commu-
nity. This captures the tendency for social ties to be stronger
among individuals who are physically closer, due to increased
opportunities for interaction and shared experiences.

Network models can also incorporate homophily, the prin-
ciple that connections are more likely to form between similar
individuals. Agents may preferentially connect with others who
share attributes such as age, income, education level, or other de-
mographic or psychographic characteristics. Incorporating ho-
mophily into network models can help capture the segregation
and cluster formation often observed in real-world social net-
works.

These various network types were implemented in prior
ABM work by the lead author [7] to introduce social influence to
the solar PV adoption decisions. Implementation of social influ-
ence in this study follows the method of magnitude and influence
rank that has been previously applied to retail applications [13].
This approach models how the adoption decisions of highly in-
fluential agents can propagate through the network and impact
the decisions of their peers and connections.

By integrating realistic social network models into the agent-
based framework, this study provides a powerful tool for inves-
tigating the complex interplay between social influence, peer ef-
fects, and the diffusion of renewable energy technologies. The
insights gained can inform targeted policies and interventions to
leverage social dynamics and accelerate the transition towards
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sustainable energy systems.

Method

This work extends the prior agent-based model developed
in [7] by incorporating social network models to determine the
influence of consumer social ties on residential solar photovoltaic
(PV) investment decisions. The original model simulated con-
sumer agents making decisions on whether to invest in solar PV,
and if so, the system capacity to install. However, it did not ac-
count for the potential impact of social influence and peer effects
on these adoption choices.

In the extended model, residential consumer agents inherit
various attributes including income, savings, a dollar amount
they are willing to invest in a solar PV system (WTIS), property
suitability for solar panels, monthly electricity consumption, a
social influence level, and a social influence orientation. With the
exception of the social influence parameters, these attributes are
directly assigned to each agent upon initialization using survey
responses from actual consumers recorded in [14]. This ensures
that the agent population accurately represents the diversity and
heterogeneity of real-world residential consumers.

The model is configured to run for 40 years, with time steps
of one month. At each time step, agents reassess their electricity
consumption and solar PV investment decisions based on their
current circumstances and preferences. Crucially, the new social
network component introduces an additional layer of complexity,
allowing agents to be influenced by the adoption decisions and
experiences of their peers within their respective social networks.
Throughout the simulation, the solar PV cost to consumers is
determined based on the size of the system with a constant price
per panel.

Two distinct network topologies are incorporated: random
networks and small-world networks. In random networks, each
agent has a random probability of forming a connection with
any other agent, regardless of proximity or shared characteris-
tics. This provides a baseline network structure for comparison.
Small-world networks, on the other hand, are designed to more
closely resemble real-world social networks by establishing con-
nections between nearby agents (capturing geographical prox-
imity) while also allowing for random long-distance connections
(capturing acquaintances or weak ties).

By integrating these social network models, the solar PV in-
vestment decision becomes more realistic, as it is influenced not
only by an agent’s individual attributes but also by the adoption
choices and recommendations of their social connections. Posi-
tive experiences and word-of-mouth from satisfied solar adopters
can motivate their peers to follow suit, while negative experi-
ences may discourage adoption within a given social circle. This
captures the dynamics of social influence and information prop-
agation within consumer networks.

With the addition of the two types of social networks, con-

sumers are assigned a social influence level on a scale of -1 to
1. A consumer’s decision to install solar PV is determined using
a logistic regression function that was developed when analyz-
ing survey responses from residents of the Northeastern United
States [14]. The regression equation (Equation 1) includes terms
for willingness to invest in solar PV (WTIS), annual income,
political affiliation (PA), efficient behaviors (EB), and average
monthly electricity bill.

f(X)=—821%107° «WTIS+6.63% 10~ xincome

ey
—0.78 % PA+0.40« EB+3.65 10~ * x bill

The probability of the agent investing in solar panels is cal-
culated using Equation 2.

p=1/(1+e /%) ©))

In the baseline scenario, if the calculated probability is
greater than a pre-specified threshold (e.g., 0.65 to align with
the survey responses in [14]) the agent invests. The size of the
system is determined based on the agent’s WTIS and available
savings. If an agent has more money in their savings than their
WTIS, they purchase as many solar panels as their properties can
hold. If their savings are less than their WTIS, they purchase
as many solar panels as their savings can afford while also con-
sidering the physical limits of their properties. Social influence
from the agents’ social ties alters each consumer’s probability of
investing in solar PV. The more positive influence an agent re-
ceives from their social ties, the more likely they are to invest in
a system. Furthermore, the evaluation of the regression equation
and investment decision only occurs if an agent is determined to
have a solar-suitable property.

Social Network Definitions

Two independent implementations of social networks (i.e.,
random and small-world social network structures) were incor-
porated into the baseline model to evaluate their influence on so-
lar investment decisions. Prior to running a simulation, the net-
work to be used was specified. The networks were independent
of each other in the model to allow for comparing the effects of
different social networks while all other factors were held con-
stant. Upon initialization of the model, all agents were assigned a
baseline social influence level on a scale from -1 to 1. The influ-
ence orientation distribution was derived from renewable energy
survey results within New Jersey [15]. Survey respondents who
did not have a viewpoint were considered neutral for our analysis
and did not influence other agents. Each agent, regardless of the
social network structure, is treated in the same manner for devel-
oping viewpoints and willingness to invest. The values for the
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influence levels and orientation for the initial agent parameters
are detailed in Table 1.

TABLE 1. [Initial agent social network parameters including the dis-
tribution of orientations and agent influence levels.

Agent orientation ~ Agent influence level

73 % Positive Random distribution

22 % Negative min =0

5 % Neutral max = 1

Each social network implementation operates in a similar
manner with respect to impacting consumer decisions. When an
agent is generated, it forms social ties with the residual agents
using the specific methods detailed below. With each of these
connections, the tied agents’ influence orientation and influence
level are used to calculate a resultant influence for each agent.
This resultant influence is a weighted average with the agent’s
baseline influence accounting for 50% of the resultant influence
and the influence of the social ties each accounting for an even
portion of the remaining 50%. The resultant influence is then
used to calculate an adjusted WTIS and the probability of in-
vesting in solar PV. Each agent’s WTIS can increase or decrease
by up to 0.05% each time step, and the increase or decrease is
defined by the agent’s attitude towards solar, defined as their in-
fluence orientation. The probability of investing increases or de-
creases by the difference between the baseline influence and the
resultant influence. Each agent’s influence impact on its social
ties is applied to each connection in the same way. For example,
an agent with a 40% favorable view of solar energy would exert
that viewpoint on all ties it may have, regardless of the number
of connections it has. A schematic representation of social tie
influence can be seen in Figure 1.

As the simulation progresses, new agents are added at each
time step and the social networks are adjusted accordingly. For
each time step, there is a chance for each of the agents to form
new ties, dissolve existing ties, or adjust existing ties. After
each adjustment cycle, influence-weighted averages are recom-
piled to determine the adjustments in each agent’s probability of
investing in solar PV. Research has shown that decision-making,
when considered within a social network, is bidirectional, with
consumers influencing the same consumers that are influencing
them [16]. For computational ease, once an agent’s resultant in-
fluence is calculated, it does not update again until the next time
step, despite changes to the orientation and influence level of its
connections.

Consumer agent 1

Influence Willingness to
orientation invest

»| Inflluence level Invest in

\ solar?
-9 . J
<
8 {
n Consumer agent 2
8 ~ | Influence Willingness to

~| orientation invest

Invest in

»| Inflluence level

solar?

FIGURE 1. Influence of social ties on willingness to invest in solar.
A resultant influence level and orientation for agent 1 is determined by
evaluating the sum product of agent 1’s initial influence along with that
of all agents tied to them. In this example, the agent has only one influ-
encing social tie, that of agent 2. Influence is bidirectional and agent 1
influences agent 2 in the same manner.

Random Network

When the random network structure is used, agents are ini-
tialized with the baseline network parameters detailed in Table 1
and agent attributes are assigned from New Jersey survey data
as described above. After all agents have been initialized, each
individual agent has a randomly assigned probability of sharing
a social tie with all other agents. Once all agents are evaluated
for ties, the agent’s influence level and orientation are updated
based on those connections. When a new agent is added to the
network, this new agent has a random probability of being tied
to existing agents in the model. As each tie is bidirectional, both
new and existing agents will add each other to their libraries of
ties. Random networks are inherently sparse [17], so the network
used in this study features a 5% probability of a tie between each
pair of nodes.

Small-World Network
The Watts-Strogatz method was used for the small-world
network generation [12]. As each agent is initialized, a small-
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world generation will occur. The model has a predetermined
number of neighboring agents which are used to form social ties
in a given agent network. The number of neighbor ties was set to
four in this study (i.e. agent 100 initially has four ties to neigh-
bors, those being agents 98-99 and 101-102). After these four
initial ties are established, each tie is evaluated for a chance to
be rewired to a different random node. Rewiring probability was
tuned to 0.2 for this study to allow for some dynamic social ties
within the network. When rewiring occurs, the existing tie is re-
moved from each agent and the agent in generation has a random
node from the agent pool tied to it. When an additional agent
is added to the network, each new agent will follow the same
distribution rules, starting with a set of tied neighbors and hav-
ing random rewiring. Once again, each tie is bidirectional, so
newly added agents will have existing agents added to their li-
brary of ties and existing agents will gain a tie to the new agent.
After creating the initial network generation and following each
new agent addition, each agent will have a resultant small-world
influence factor calculated using the same weighted average ap-
proach as the random network with all tied agents’ influence lev-
els and orientations. This factor then feeds into an adjustment to
the agents’ probability of investing in solar PV using the same
process as the random network.

Comparing Simulation Outputs

Due to the uncertainties included in the model and to make
statistical comparisons of the results, the model was simulated
100 times for each of the configurations (baseline, random net-
work, and small-world network). Employing Monte Carlo sim-
ulations provides the opportunity to determine significant dif-
ferences in outputs by conducting t-tests. Amongst the various
metrics tracked and recorded during the simulation, the two key
outputs monitored in this study were the number of residential
households that installed solar panels on their roof or property,
and the total installed capacity of residential solar. These values
were recorded during each month of the simulation, and a com-
parison of the values was made at different points to see how the
inclusion of social influence alters consumers’ decisions to invest
in solar PV. The comparison points included in this study were
after the 10th, 20th, 30th, and 40th years of the initialization of
the simulation.

Results

With the random and small-world social network structures
configured in the agent-based model, simulation results were
generated for a baseline case without any social network influ-
ence along with each of the different configurations. As men-
tioned above, this study focuses on identifying changes to the
number of residential households that installed solar panels on
their roof or property, and the total installed capacity of resi-

dential solar PV when social influence is introduced to the so-
lar investment decision. Figure 2 contains a line plot of the
total number of residential households that owned solar panels
during each month of the simulation period. The solid line for
each model configuration represents the average value across 100
Monte Carlo simulations, and the shaded region covers one stan-
dard deviation from the mean. Comparing the three scenarios,

420000 —— baseline
—— random

400000 —— small world

380000

360000

Households

340000

320000

300000

Month

FIGURE 2. Total number of residential households that have invested
in a solar PV system during each time step.

the baseline and both network structures appear to lead to similar
rates of adoption, i.e., a relatively steady and linear increasing
adoption trend. The small-world network resulted in the high-
est participation and the baseline model configuration led to the
lowest number of adopters.

The total installed residential solar capacity that resulted
from each of the simulation scenarios is included in Figure 3.
Similar to 2, the main line for each model configuration repre-
sents the average value across 100 Monte Carlo simulations, and
the shaded section is one standard deviation from the mean. The

—— baseline
—— random
—— small world

260000

240000

220000

200000

180000

Installed Capacity (kW)

160000

140000

120000
0 100 200 300 400 500

Month

FIGURE 3. Total installed residential solar capacity during each time
step in kilowatts (kW)
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solar installation behavior is more interesting than that of adop-
tion in general. After the first six or so years of the simulation,
the random and small-world networks saw a huge increase and
rate of increase in installed capacity. The rate of increase levels
off around the 10-year mark, and capacity seems to increase at
a similar rate for all three configurations. The rapidly increasing
installed capacity is a direct result of agents’ increased willing-
ness to invest in solar during those years. For the duration of
the simulation, the random network configuration resulted in the
highest total installed solar capacity and the baseline configura-
tion in the lowest. For a more direct year-to-year comparison,
the average number of solar adopters and total installed solar ca-
pacities after the 10th, 20th, 30th, and 40th year (120th, 240th,
360th, and 480th months respectively) of the simulation for each
of the model configurations are included in Table 2.

To identify statistically significant differences in the decen-
nial results in Table 2, t-tests were conducted comparing each
of the social network structures with the baseline as well as be-
tween the social network outputs. The results of these t-tests are
included in Table 3.

Table 3 indicates significant differences in the installed solar
capacity between each of the social network configurations and
the baseline model. With p-values less than 0.001 for each 10-
year comparison, it is clear that the inclusion of the random and
small-world networks alters the total installed solar capacity in
the simulation. For both networks, the installed capacity is higher
than the baseline scenario, indicating social influence leads to
higher residential solar capacity. There was, however, no statisti-
cally significant difference in the installed capacity between the
random and small-world network model configurations. Interest-
ingly, the social networks did not significantly alter the number
of households that adopted solar. Adoption rates were similar
between all three methods and there was not enough evidence to
suggest social influence played a role in motivating either more
or less adopters. In this case, increased capacity without in-
creased adoption rates suggests that social influence led adopters
to install larger systems.

Discussion

Considering the results presented in the previous section, so-
cial network influence from random and small-world networks
leads to increased total installed residential solar capacity but not
increased adoption rates, when incorporated in an ABM as de-
tailed in this study. The surge in solar capacity during years six
through ten of the simulation suggests a tipping point in social in-
fluence. Adopters, motivated by social connections, maximized
their allowable solar PV capacity, indicating a rise in investment
willingness. The different social network structures did not re-
sult in any significant changes to the simulation outputs when
compared to one another, suggesting that the inclusion of social
influence was powerful, but network structure was not as impor-

tant. With the knowledge that social influence can lead to an
increased solar capacity in the grid from residential installations,
efforts can be made to change social perceptions of household
solar PV systems and promote increased penetration in the real
world. Increasing the residential solar capacity will lessen the
total electricity demand felt by utility providers, while decreas-
ing the demand for electricity specifically from fossil fuels by
providing a larger supply of renewable energy sources.

In future work, sensitivity analysis would be useful to ex-
plore whether there are significant differences in the adoption
rates and installed capacities when changing the network param-
eters for the different social network configurations. A compar-
ison study considering changes to the distribution of positive,
negative, and neutral attitudes towards solar power, the distribu-
tion of influence level, the probability of ties between agents in
the random network, and the average degree in the small-world
network would help uncover the importance of social network
parameters when modeling the adoption of solar PV. Identifying
the structure and composition of a social network that motivates
increased adoption rates and increased installed capacity at the
household level will provide the opportunity to implement re-
ferral programs or social campaigns to accelerate the transition
towards a more sustainable electricity grid.

Other considerations for future studies could include dy-
namic solar PV costs to consumers as well as scenario analysis
with variables to account for disruptive innovations that could
arise during the further development of solar panel and battery
storage technologies. In this study, the solar PV costs were con-
stant over time to ensure that any changes in adoption rates and
installed solar capacity were a direct result of the social influ-
ence introduced in the system. In reality, the price of solar pan-
els has been decreasing over time as the technology improves
and becomes more accessible to consumers. The introduction of
dynamic prices would provide the opportunity to study the in-
teractions between social influence, costs, and the resulting con-
sumer behaviors. It would also allow for the simulation of future
scenarios where scientific advancements lead to increased effi-
ciency, affordability, and accessibility of solar PV, changing the
market for household solar in the process. Studying these scenar-
ios would provide information on various potential futures for
household solar and could uncover more approaches to further
the adoption of renewable energy technologies.

Conclusion

By expanding the agent-based model to include social
network considerations, the simulation of complex consumer
decision-making in electricity systems can be elevated. The in-
corporation of social influence allows simulated consumer solar
PV investment decisions to be more realistic as many factors in-
fluence this decision. By creating a more thorough simulated
decision-making process, the model has the potential to uncover
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TABLE 2. Average number of residential households who have adopted solar PV and the total installed residential solar capacity after years 10, 20,

30, and 40 of the simulation for the baseline, random network, and small-world network model configurations.

Solar Adopters Installed Solar Capacity (kW)

Baseline Random Small-world | Baseline Random Small-world
Year 10 341,080 345,540 346,040 153,605 193,255 188,665
Year 20 357,280 361,240 362,680 156,815 209,855 206,315
Year 30 372,160 376,500 378,160 161,000 220,575 216,805
Year 40 387,800 391,940 394,440 166,140 233,330 229,595

TABLE 3. Results from t-tests comparing the key metrics from the baseline and random network, baseline and small-world network, and random
network and small-world network model configurations.

Baseline vs Random Baseline vs Small-world Random vs Small-world
Adopters Installed Capacity | Adopters Installed Capacity | Adopters Installed Capacity
Year 10 p=0.245 p=2.11E-18 p=0.197 p =6.47E-15 p=0.89 p=0.317
Year 20 p=0.303 p =3.8E-28 p=0.166 p =5.69E-28 p =0.696 p=0.411
Year 30 p=0.263 p=2.67E-32 p=0.131 p=291E-31 p=0.658 p=0.398
Year 40 p=0.295 p = 8.69E-35 p=0.100 p = 6.88E-35 p=0.509 p=0.434

insights into the power of social norms and informational cam-
paigns. The social networks presented in this study lay the foun-
dation to simulate social influence on energy decisions or study
the spread of information within such networks. With the help of
this model, policymakers and businesses will be able to gauge the
potential of low-cost methods of encouraging pro-environmental
behaviors both with respect to electricity use and in other energy-
efficient applications. Encouraging such behaviors can play a
role in helping decrease the harmful emissions that result from
electricity use. Indeed, while large, systematic changes to the
electricity grid will take time to implement, social science can be
leveraged to encourage individual behavior changes now.

This modeling framework can be applied to various socio-
technical systems and heighten the complex system simulation
capabilities in many fields. Not only can the existing model be
extended to different sectors, but it can also be expanded to in-
clude more energy decisions such as electric vehicle (EV) adop-
tion, investment in battery storage and other advanced generation
technologies, and participation in community solar or clean en-
ergy programs. Including more energy decisions in such a model
will help paint a more complete picture of pro-environmental be-
havioral intentions and allow for the study of interactions be-
tween these decisions. The social networks can also be further
improved by tying in demographic considerations. In tandem
with the underlying structures of established networks, demo-
graphics such as age, race, and gender could influence the likeli-
hood of agents forming social ties, leading to better predictions

of future behaviors. All such additions will contribute to further
improving the quality of simulation outputs, providing more ac-
curate observations to assist regulators in implementing proper
changes in electricity systems.
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