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Abstract. Application fingerprinting is a technique broadly utilized in
diverse fields such as cybersecurity, network management, and software
development. We discover that the mechanical vibrations of cooling fans
for both the CPU and power supply unit (PSU) in a system strongly cor-
relate with the computational activities of running applications. In this
study, we measure such vibrations with the help of mmWave sensing and
design a new application fingerprinting approach named mmFingerprint.
We create a prototype of mmFingerprint and demonstrate its effective-
ness in distinguishing between various applications. To showcase the use
of mmFingerprint in cybersecurity for defensive purposes, we deploy it in
a real computer system to detect the execution of reputable Rowhammer
attack tools like TRRespass and Blacksmith. We find that the detection
can reach a very high accuracy in practical scenarios. Specifically, the
accuracy is 89% when exploiting CPU fan vibrations and nearly 100%
when leveraging PSU fan vibrations.

Keywords: Application fingerprinting - mmWave sensing - physical side-channel
- Rowhammer detection.

1 Introduction

Fingerprints are unique attributes that objects possess, and can be used to dif-
ferentiate one from another despite their similarities [1]. This concept naturally
extends into the digital world, where we see its application in the form of appli-
cation fingerprinting. Generally speaking, application fingerprinting is a process
that identifies, detects, and catalogs running applications based on distinctive
elements, such as patterns in data usage, computation/network behavior, or
specific configurations within the application’s code.

In recent years, application fingerprinting techniques have been widely em-
ployed in various areas, including cybersecurity, network management, and soft-
ware development. As representative examples in cybersecurity, not only can
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these techniques be exploited for compromising user privacy [2, 3], but they can
also be employed for defensive purposes, such as detecting the use of illicit pro-
grams (e.g., those for crypto mining and password cracking) on high-performance
computing systems [4, 5] and identifying the execution of denial-of-service (DoS)
or other malicious software [6, 7].

The practice of application fingerprinting leveraging side-channel informa-
tion has gained considerable popularity. This is because side-channel informa-
tion, such as power consumption [8], and electromagnetic radiation [3, 9], are
inevitable byproducts of any computation and can be hardly suppressed by ex-
ternal adversaries [10]. More importantly, the information correlates with the
ongoing computation activities, making side-channel-based application finger-
printing possible.

In this paper, we propose a novel approach leveraging certain physical side-
channel information obtained through mmWave sensing to achieve application
fingerprinting that can be used to replace or complement traditional application
fingerprinting methods as present in Figure 1. The foundation of our approach is
built on the observation that different applications generate varying computation
activities, which modulate the speed of the cooling fan. These modulated cooling
fan speeds can reveal the computation activities. Therefore, accurately measur-
ing these speed variations becomes the key. Equipped with advanced range and
vibration sensing techniques, mmWave sensing, our method can measure fine
speed variations with high precision. By monitoring the vibration patterns in-
curred by the speed of the cooling fan, our technique employs features engineer-
ing and deep neural networks to extract features and then uses a deep learning
classifier to distinguish the applications.

Compared to the conventional application fingerprinting methods using net-
work traffic statistics[11, 12], our approach has the following advantages: (1)
We can indirectly monitor the computational actions of an application through
the fan’s status. This is particularly beneficial when the application does not
generate any network traffic or when some applications alter the characteristics
of the network traffic to make it seem legitimate [13]. (2) Our system provides
non-intrusive and remote monitoring. It cannot be easily suppressed by exter-
nal adversaries due to the contact-less fashion. (3) It does not add performance
overhead to the target computing system.

Alongside the introduction of our new application fingerprinting technique,
we also demonstrate its practical use in the field of detecting the execution
of malicious programs. Specifically, we show that our fingerprinting technique
can accurately identify potential Rowhammer attempts carried out by certain
existing tools. We concentrate on this type of threat for two main reasons: the
severity of Rowhammer attacks and the prevalent use of established tools in the
initial reconnaissance phase.

Firstly, Rowhammer attacks pose substantial and ongoing threats to com-
puter systems, leading to numerous exploitations such as sandbox escaping,
privilege escalation [14, 15], cryptography subversion [16], denial of service [17,
18, 19], and even confidentiality breaches [20]. Although there are many mitiga-
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tion strategies proposed, including counter-based methods such as [21, 22, 23],
and Target Row Refresh (TRR) that is implemented in the current off-the-shelf
DDR4 DRAMSs by major vendors. However, advanced Rowhammer attack tech-
niques such as TRRespass [24] and Blacksmith [25] have circumvented TRR.
The effectiveness of counter-based defenses becomes questionable for this new
type of many-sided Rowhammer attack.

Secondly, before launching a real Rowhammer attack, an attacker must in-
spect and scan the system to determine if its memory is susceptible to the
Rowhammer effect. It is highly likely that during this reconnaissance phase, the
attacker will utilize one or more reputable and effective tools, such as TRRes-
pass [24] and Blacksmith [25], for such a purpose. These tools are known for their
efficiency in hammering standard DDR4 DRAM modules, even those under the
protection of TRR, aiding the attacker in swiftly identifying exploitable bits.

We evaluate mmFingerprint using data gathered from a CPU cooling fan
and a PSU cooling fan, each subjected to ten different applications. These in-
clude two of the latest and most potent Rowhammer attack tools as well as
harmless applications like the SPEC 2006 benchmark, YouTube, and system
idle states. mmFingerprint demonstrates robust performance across these ap-
plications, achieving accuracy ranging from 0.69 to 1.00 in various scenarios.
Notably, it can detect known Rowhammer attacks with near-perfect accuracy.
Our findings indicate that the approach we’ve introduced is a feasible method
for detecting Rowhammer attacks when established tools are used during the

preliminary reconnaissance phase.
‘{ features W‘
\ \
A
\
\
\
\
\
\
\

\
\
enign mmWave
benig | S(znsing }W @ }
(¢

| |

app } }

\ \

\

\

\

app \

\

1 \
malicious |
\

\

\

\ L —

Fig.1: mmFingerprint is based on monitoring the fan status through mmWave
sensing and it can be used to detect if malicious applications are running.

The main contributions of this paper include:

— We introduce an innovative approach to application fingerprinting that cap-
italizes on side-channel information from cooling fans and mmWave sensing
technology. This method identifies applications by picking up the subtle vi-
bration differences on the cooling fan induced by the computation activities.
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To the best of our knowledge, this is the first time that mmWave sensing
has been applied to the context of application fingerprinting.

— We exemplify its defensive application by illustrating how it can detect
Rowhammer attacks executed with recognized hammering tools during the
reconnaissance process. We are the first to introduce mmWave sensing in the
detection of Rowhammer attacks. It provides a new research vision in this
area.

— The proposed mmFingerprint can efficiently recognize the most sophisti-
cated Rowhammer attempts with reputable tools during the reconnaissance
phase. The accuracy of this method can reach up to 100% percent.

2 Background

2.1 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) specification is an
industry-wide standard that enables sophisticated operating system-directed
configuration and power management for both individual devices and whole
systems via the motherboard. [26]. It is comprised of both software and hard-
ware elements. Devices and processors can run on different states based on the
necessity to maintain a balance among power saving, heat dissipation, and per-
formance. For example, it defines four useful states for a processor: the C0 state,
where the CPU is doing useful work; the C1 (Halt) state, a light sleep state where
the processor isn’t executing instructions; the C2 (Stop-Clock) state, a deeper
sleep state where power to the core is shut off; and the C3 (Sleep) state, an even
deeper sleep state where the cache’s context is lost and power to the cache is
shut off. ACPI allows the OS to play a role in the thermal management of the
system while maintaining the platform’s ability to mandate cooling actions as
necessary. It defines two cooling modes, Active and Passive. In the passive cool-
ing mode, OS reduces the power consumption of devices at the cost of system
performance to reduce the temperature of the system. While in active cooling,
OS increases the power consumption of the system (for example, turning on a
fan) to reduce the temperature of the system [26].

The OS active cooling mode needs support from the hardware such as the
thermal sensor, cooling fan, and fan speed controller. The cooling fans are impor-
tant computer components that help dissipate the heat generated by electronic
components such as CPU, GPU, and the power electronics in the power supply.
Most modern computer systems use temperature-controlled fan speed control
mechanisms to regulate CPU and GPU cooling fan speeds. These mechanisms
use hardware sensors to monitor CPU temperature and adjust the fan speed ac-
cordingly. Usually, the speed is a function of the temperature. This function can
be selected from different working modes in the BIOS of some modern mother-
boards. The speed control approaches described include on-off, linear, and pulse
width modulation (PWM) [27].
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2.2 mmWave Sensing

The high-resolution frequency-modulated continuous-wave (FMCW) mmWave
radar has been widely used in automotive and industrial applications recently
due to the low cost [28]. It can be used to detect objects by estimating the range,
velocity, and angle [29]. The mmWave radar transmits serial FMCW signals and
receives the corresponding reflection signals from surrounding objects. Mixing
the transmitted signal and received signal produces an intermediate-frequency
(IF) signal, which can be used to estimate range, velocity, and angle. By tracking
changes in the estimated range over a specific time step, the variation can be
considered the object’s vibration. The derivation of vibration is widely used in
speech eavesdropping and reconstruction [30, 31, 32], vibration monitoring [33].

The estimation of range with coarse resolution can be achieved by applying a
range FFT to the IF signal. With a 4GHz bandwidth FMCW mmWave device,
the resolution stands at 3.75 cm [31]. This level of resolution suffices for many
applications, like detecting objects in automotive settings. However, it falls short
for applications that need a higher degree of detail, such as sound reconstruc-
tion and subtle vibration tracking, which typically require finer resolution. For
these applications, a high-resolution range (e.g. 1 mm or even smaller ) can be
extracted from the phase value corresponding to the target range.

2.3 Rowhammer Attacks

Rowhammer attacks are a class of security exploits that target a hardware vul-
nerability in dynamic random-access memory (DRAM). By repeatedly accessing
some DRAM rows, an attacker can cause unintended bit flips in neighboring rows
by accelerating capacitor charge leakage, potentially leading to unauthorized ac-
cess or privilege escalation, etc. The execution of a Rowhammer attack involves
three phases by the attackers [10].

— Phase 1, the attacker scans the DRAM addresses by repeatedly accessing
certain DRAM rows to search for exploitable bit flips. For example, with
the addresses mapping information obtained by reverse engineering before
the attack, the attacker can explore Rowhammer scanning by accessing two
addresses from the same bank but not in the same row. When bit flips are
found, the attacker can record the corresponding physical address for later
use.

— Phase 2, The attacker redirects the target’s sensitive security data to the
vulnerable location identified in the first step.

— Phase 3, the attacker flips the bits when the security-critical data is placed
at the location where it is flippable according to the second step. Then, the
attacker can achieve his design goals such as privilege escalation, cryptog-
raphy subversion, denial of service, and confidentiality breaching from this
step.

Major DRAM vendors have widely adopted the Targeted Row Refresh (TRR)
strategy to counteract Rowhammer attacks on the DDR4 memory. When the
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number of accesses to a particular row surpasses a set threshold, a refresh (or
activation) is issued to the neighboring rows. This action recharges these ad-
jacent rows, thereby safeguarding them from being flipped. However, several
advanced Rowhammer tools have recently been developed to bypass this TRR
mitigation strategy, implemented by leading manufacturers on certain DDR4
DRAMs. Examples of such tools include TRRespass [24] and Blacksmith [25].
These tools are typically employed by attackers during the reconnaissance phase
of a Rowhammer attack due to their efficacy. TRRespass utilizes a many-sided
hammering technique to trigger bit flips and circumvent the TRR by generating
a high volume of accesses to different DRAM rows in the same bank during
the refresh window. Meanwhile, Blacksmith optimizes the row access pattern to
achieve higher efficiency than TRRespass in triggering bit flips by adjusting the
offset and intensity of hammering.

3 mmFingerprint

In this section, we present a robust technique called mmFingerprint, designed
for application fingerprinting in systems that incorporate a CPU cooling fan or
a power supply fan. These applications impact the CPU temperature or power
electronics in the PSU, which subsequently alters the speed of the CPU fan or
PSU fan. The mmFingerprint tool is adept at identifying such minor shifts in
fan speed. The system can differentiate among various applications by analyzing
the vibrations in the CPU cooling fan or power supply unit (PSU) fan, without
requiring direct physical interaction. mmFingerprint employs advanced signal
processing methods to detect these subtle vibrations.
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Fig. 2: mmWave FMCW chirps

3.1 Estimating Displacement Using mmWave Technology

mmWave radar adopts the Frequency Modulated Continuous Wave (FMCW)
chirps for distance measuring [29]. Estimating the distance between the trans-
mitter and receiver can be achieved by measuring the time delay and phase shift
of mmWave signals. Furthermore, mmWave sensing enables the determination
of object displacement by analyzing the range difference of the same object over
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a given time interval. For example, given a sinusoidal FMCW transmit signal
represented by

zr(t) = cos (2m fot + wSt?) | (1)

where f. is the start frequency of the chirp and S is the frequency slope of the
chirp. The time delay between the transmitter signal and the receiver signal can
be represented as

r=2d/ec, (2)

where 7 is the time delay; d is the distance from the antenna to the target; c
denotes the speed of light. The mixer combines the incoming and outgoing sig-
nals to generate the intermediate frequency (IF) signal. After the high-frequency
components are eliminated by a low-pass filter, the low-frequency elements re-
main in the IF signal, which can be represented by

x1r(t) = LPF {xr(t)zr(t)} = Acos (27 fipt + ¢17) - (3)

The intermediate frequency fir can be represented by the difference between the
transmit signal frequency fr(¢) and receiver signal frequency fg(t), as shown in

fir = fr(t) — fr(t) = ST, (4)

which can be further represented by the chirp frequency slope S and time delay
T according to the geometric relationship between the intermediate frequency
and the frequency slope of the chirp as presented in figure 2. The intermediate
signal initial phase can be determined from (1) at the time instant 7 when the
reflected signal just arrives at the antenna, which can be represented as

b = 2 for + ST & 2 for. (5)

It can be approximated because f. is much larger than St [29].
Finally, from (2) and (4) the distance and frequency relation can be repre-
sented as

d= St = CfIF/(QS). (6)

By performing the FFT operation to the intermediate signal (range FFT), the
ranges can be obtained according to this equation. However, the range resolution
is only 3.75 c¢m for a 4 GHz continuous bandwidth mmWave radar such as the
TI IWR1642BOOST since the range resolution is determined by ¢/(2B), where
B is the chirp bandwidth [34]. This resolution is enough for applications such
as distance detection in vehicles. However, it is not effective for applications
requiring 1-mm or even better resolution such as voice recovery. Fortunately, we
can derive a high-resolution range from phase based on (2) and (5), which can
be represented as

e = 2 for = dwd/ N (7
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where A is the wavelength of mmWave signal at frequency f.. Differentiating
both sides of the equation (7) results in Ad = AA¢r/4m, where Ad is the small
range displacement for a target during a short time; A =~ 4mm is mmWave
signal wavelength for a 77-81Ghz mmWave radar. A¢rp is the corresponding
phase displacement for the same target. The displacement calculated through
phase yields a better range resolution than that derived from range FFT which
is 3.75 cm for a 4Ghz bandwidth mmWave radar.

3.2 Locate the Cooling Fan with mmWave Radar

First, mmFingerprint locates the target cooling fan with mmWave sensing.
mmFingerprint conducts a range-FFT over each chirp on the gathered Inter-
mediate Frequency (IF) data. Different frequency components represent distinct
reflective signals from various objects in the surrounding environment. Identify-
ing the desired frequency bin (range bin) among numerous bins can be challeng-
ing. We monitor various range bins across several consecutive frames, as shown
in figure 3. Each peak represents an object. We identify the correct range bin by
locating the right peak and verifying it with a measured distance from a ruler.
Second, once the target range bin has been located, mmFingerprint extracts the
phase value at the target bin by calculating the phase angle from the complex
values at the peak. According to equation (7), the phase value is proportional
to the target distance.
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Fig. 4: Reconstructed displacement time serials traces.

3.3 Time Serials Trace Construction

Using the phase data from the designated bin, mmFingerprint initially creates
the distance-time series traces for a targeted object. It does this by joining
together the phase values obtained at the targeted bin from every chirp, over
a multitude of continuous frames. Then, range displacement is derived from
the distance-time series trace according to Ad, = d,+1 — d,, where d,41 is
the distance at discrete time n + 1 and d,, is the distance at discrete time n.
Therefore, the range displacement is sampled at the sample rate of the chirp
rate.

Removing the spikes: The mmWave radar produces chirps in frames, in
a non-continuous fashion. There is a noticeable surge at the start of each frame
due to the first two data points, and these surges significantly exceed other
phase values as shown in figure 4(a). In order to mitigate the influence of these
abnormal data points on the classification process, we replace them with the
final data point from the preceding frame. This strategy facilitates a seamless
transition from one frame to the next. As shown in figure 4(b), the range
displacement trace oscillates around zero in a more symmetrical way. The useful
side-channel information encoded into the recovered time series trace can be
exploited to infer the computing activities.
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3.4 Fan Responses and Correlations

A time series trace can be constructed from the displacement derived from the
phase with the aforementioned method. Applying the Fast Fourier Transform
(FFT) to the time domain signal is a common technique used to analyze fre-
quency components and extract features from signals. By converting the signal
from the time domain to the frequency domain, we can examine the distribution
of frequencies present in the signal and identify specific patterns or characteris-
tics. Figure 6 presents the frequency components of the two time-series traces for
different loads. The frequency distributions for these two traces display unique-
ness. When the CPU executes different applications, the computational tasks
vary, resulting in unique fan vibration patterns. We leverage these specific traits
to distinguish and classify various applications.
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Fig.5: Frequency components of mmFingerprint responses to different fan
speeds.

3.5 Features Extraction and Applications Classification

Numerous methods exist for extracting the features from time-series data. One
approach involves the manual extraction of these features by performing signal
analysis, such as Fast Fourier Transform (FFT). Another method is to utilize
deep neural networks (DNN) for feature extraction. By employing trained DNN
layers, we can extract complex features. Different applications are subsequently
categorized based on the features extracted from the mmWave vibration traces.
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Fig. 6: Correlation between applications from fan response in the frequency do-
main.

To eliminate the necessity for manual feature crafting, we opt for a machine-
learning approach to extract features and classify the workload traces. This job
can be accomplished using either a KNN classifier or deep neural networks. To
attain high precision, we choose state-of-the-art deep neural networks (DNN).

In terms of the DNN model, we choose to use Convolutional Neural Network
(CNN) over Recurrent Neural Network (RNN), even though the workload power
traces belong to time series data. One of the primary concerns is that RNN
usually suffers from the over-fitting problem more severely when training on
long time series [35]. To be specific, we use the ResNet10 architecture that is
described in [36] as the classifier in this work.

4 Evaluations

4.1 Experiment Setup

We use a Texas Instruments IWR1642BOOST evaluation board to transmit and
receive chirps. The IWR1642 chip can generate chirps with continuous frequency
bands of 76 ~ 77 GHz and 77 ~ 81 GHz. The evaluation board integrates two
Tx antennas and four Rx antennas. We use the two Tx channels sending out the
same FMCW chirps with a continuous band of 3.98 GHz. We use DCA1000EVM
evaluation board to extract data samples at a rate of 2.1 Msps. The frame
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duration is 15 ms with 128 chirps in each frame. The antenna is placed 0.6
meters away from the CPU fan with no obstacles in between. The chirps are
reflected off the cooling fan and captured by the four Rx antennas. In each
case, the positions of the antenna and the target machine are kept constant to
eliminate the effects of position movement on the reflected signals.

The targeted machine is equipped with a Gigabyte GA-H170-D3HP moth-
erboard, an 17-6700 CPU, an Intel E97379-003 CPU cooling fan, and an Apevia
ATX-SN1050W power supply. The deep learning classifier is built with Keras,
using Tensorflow as its backend. This classifier is implemented on a desktop com-
puter powered by an Intel i7-9700K CPU, with 64 GB of DRAM, and an Nvidia
RTX3090 GPU.

4.2 Threat Model for Detecting Rowhammer Attempts using
Reputable Tools

Assume an attacker plans to initiate a Rowhammer attempt on a targeted com-
puter system equipped with DDR3 or DDR4, a CPU cooling fan, or a power sup-
ply cooling fan. Before the Rowhammer attack, the attacker must scan the mem-
ory addresses to determine if the computing systems are vulnerable to Rowham-
mer attacks. Due to their effectiveness, it is highly likely that the attacker used
the most advanced Rowhammer attack tools such as TRRespass and Blacksmith
for this reconnaissance process to circumvent the TRR implemented by major
vendors in DDR4 DRAMs. Considering the extremely low likelihood of discov-
ering exploitable bit flips within a short time, the attacker would need to scan
the DRAM intensively to identify vulnerable bits, recording this information for
future exploitation. This step typically requires a significant amount of time.
We can set up a millimeter-wave (mmWave) radar at a predetermined distance
from the cooling fan of either the CPU or power supply, ensuring that there are
no obstructions in the path. This arrangement is feasible for most desktops and
servers since their cooling fans are typically visible through ventilation openings.
With its high-precision detection capabilities, our system can discern even the
smallest variations in the vibrations of the cooling fan during computational
processes.

4.3 CPU Cooling Fan Side-Channel

We assess the CPU cooling fan side-channel across various applications, as out-
lined in Table 1. We select several benign applications and two of the most effec-
tive Rowhammer tools against TRR named TRRespass [24] and blacksmith [25].
These benign applications include system idle, playing a video with vlc player,
and opening the YouTube webpage. We also evaluate some SPEC 2006 bench-
marks including data compression application bzip2 (integer), quantum compu-
tation simulator libquantum (integer), playing the game of Go gobmk (integer),
fluid dynamics simulation 1bm (floating-point), quantum chromodynamics sim-
ulationmilc (floating-point). For each workload, we construct 500 individual
traces, each lasting 0.96 seconds with 8192 equivalent samples.
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Table 1: Evaluated applications

Label applications Notes

0 blacksmith Rowhammer
1 bzip2 CINT

2 gobmk CINT

3 idle

4 Ibm CFP

5 libquantum CINT

6 milc CFP

7 TRRespass Rowhammer
8 vlc video

9 Youtube

Dataset The dataset is composed of ten distinct classes, which are divided
into training and test sets at a proportion of 80% and 20%, respectively. The deep
learning classifier undergoes training for 500 epochs using the training dataset
and its performance is subsequently evaluated on the test dataset.

Evaluation metrics and results The effectiveness of mmFingerprint is
assessed using precision, recall, and F1-score as performance measures. The eval-
uation confusion matrix is presented in figure 7(a) and the precision, recall, and
F1l-score are shown in table 2. The mmFingerprint has demonstrated an im-
pressive ability to categorize ten distinct classes with an overall accuracy rate
of 0.89. Additionally, it exhibits an almost flawless accuracy rate nearing 1.00
when distinguishing two specific Rowhammer tools, data compression bzip2,
and playing youtube from other applications. The classifier can recognize gobmk
with perfect precision, but a slightly lower recall of 0.93, which has lowered the
F1-score to 0.97. This suggests that the model occasionally misses true positives
for this class. mmFingerprint has relatively lower precision recognizing idle,
lbm, and libquantum, but the model has good recall for these classes. This in-
dicates the model occasionally misclassifies other instances as these classes, but
does well in identifying true instances of these classes. The lowest F1-scores on
distinguishing milc and vlc, suggesting that the model struggles the most with
these classes. When dealing with milc, the model struggles to correctly identify
all true instances (recall of 0.59), and for vlc, it frequently misclassifies other
instances as this class (precision of 0.92), leading to lower Fl-scores. Overall,
mmFingerprint performs well on most classes, especially for Rowhammer tools.

4.4 Power Supply Cooling Fan Side-Channel

To assess the efficiency of mmFingerprint when dealing with power supply coil-
ing fan side-channel, we conduct evaluations using the same applications shown
in table 1. We collect 500 traces for each workload and they are split into training
and test sets at a proportion of 80% and 20%,
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Table 2: Evaluation of CPU Fan  Table 3: Evaluation of Power Fan

Label precision recall f1-score Label precision recall f1-score
0 0.99 1 1 0 1 1 1
1 1 1 1 1 1 1 1
2 1 0.93 0.97 2 0.99 1 1
3 0.69 0.95 0.8 3 1 1 1
4 0.75 0.85 0.8 4 1 0.99 0.99
5 0.78 0.92 0.84 5 0.99 1 0.99
6 0.79 0.59 0.68 6 1 1 1
7 1 1 1 7 1 1 1
8 0.92 0.56 0.69 8 1 1 1
9 1 1 1 9 1 0.99 1

mmFingerprint performs well on the power supply cooling fan. The preci-
sion, recall, and Fl-score are presented in table 3 and the confusion matrix is
shown in figure 7(b). A precision of 1.00 means there were no false positive
instances. It presents an almost absolute accuracy rate nearing 1.00 when clas-
sifying blacksmith, data compression bzip2, system idle, milc, TRRespass, and
vlc from other applications. It exhibits a slightly lower precision of 0.99 when
classifying gobmk and libquantum, which still indicates a high accuracy. Recall
measures the ratio of correctly predicted positive instances to all instances that
are actually positive. Like precision, a recall of 1.00 indicates a perfect score. All
classes have a recall of 1.00, except for 1bm and Youtube which have a slightly
lower recall of 0.99. Overall, mmFingerprint can recognize different applications
with high performance.

5 Related Work

mmWave sensing The ability of mmWave sensing to accurately detect micro-
vibrations underscores its effectiveness. It employs high-frequency radar waves,
which are adept at identifying minute alterations in the phase or amplitude of
reflected signals, enabling the detection of minute displacements, typically asso-
ciated with vibrations. We summarize the most recent and important findings
related to security and privacy, emphasizing the capabilities of mmWave sensing
technology.

These applications include speech recovery such as WaveEar [37], through
wall sound reconstruction such as Wavesdropper [38], eavesdropping speech of
phone call such as mmEve [31], mmSpy [32] mmEcho [30], construction of a
Covert Channel using the mmWave sensing of the status of cooling fan [39],
lunching a spoofing attack to vehicles [40], user verification for IoT devices [41].
However, to the best of our knowledge, no studies have yet utilized mmWave
sensing for the detection of malicious workloads.

Rowhammer Ever since the inaugural Rowhammer attack [42], the spec-
trum of these attacks has broadened with numerous variants coming to light. In
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response, the research community and major DRAM vendors have put forward
a wide array of proposed defenses against these diverse Rowhammer onslaughts.
The first category is performance counters based Rowhammer detection such
as [21],[43],[44]. A second category physically isolates all rows by making only ev-
ery second row accessible to programs [45]. This method can be circumvented by
half-double hammering [46]. Another important way is the Target Row Refresh
(TRR) adopted by major DRAM vendors for off-the-share DDR4 DRAMs. This
technique is proved to be ineffective for many-sided Rowhammer attacks [24]
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and half-double hammering [46]. Researchers leveraged EM side-channel to de-
tect the Rowhammer attacks in [10]. But it is unclear whether this can detect
the new, sophisticated many-sided hammering and half-double hammering or
not.

6 Discussion

In this section, we discuss some situations mmFingerprint can be applied and
some limitations.

Although it can not always achieve a 100% detection accuracy, it can signif-
icantly improve the detection performance through this new detection method.
Moreover, it can complement other existing defense solutions. This system also
has the capability to monitor several cooling fans simultaneously. To illustrate,
after the application of range FFT, multiple range bins are generated, each cor-
responding to a specific distance. We can derive varied phase data from these
different range bins, which allows us to monitor objects at different distances,
thereby observing various cooling fans concurrently. Furthermore, the method
presented can potentially be expanded to encompass High-Performance Comput-
ing Centers, allowing for the monitoring of illicit applications. An illustration of
this would be its application in the detection of unauthorized Cryptocurrency
mining activities.

However, certain limitations exist. Detecting minute changes can be chal-
lenging, particularly when the execution time is short because the equivalent
sampling rate is about 10 kHz with the device we use. Based on the Nyquist
sampling theorem, the highest frequency it can sample is less than 5 kHz. The
sampling rate is insufficient for capturing applications that have a short execu-
tion time, such as those lasting only a few hundred microseconds or less.

7 Conclusion

In our study, we propose a novel application fingerprinting system capable of de-
tecting harmful applications based on the physical side-channel of a cooling fan,
specifically focusing on detecting Rowhammer attacks using reputable tools. This
system differentiates between the specific characteristics of various applications
by utilizing millimeter-wave sensing technology and a machine learning model.
Our approach has undergone rigorous assessments, which include evaluations of
applications encompassing advanced Rowhammer attack tools like TRRespass
and Blacksmith, as well as SPEC2006 benchmarks. These evaluations confirm
the high precision of our technique across various scenarios.
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