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Abstract— Motivated by various data science applications
including de-anonymizing user identities in social networks,
we consider the graph alignment problem, where the goal is to
identify the vertex/user correspondence between two correlated
graphs. Existing work mostly recovers the correspondence by
exploiting the user-user connections. However, in many real-
world applications, additional information about the users,
such as user profiles, might be publicly available. In this
paper, we introduce the attributed graph alignment problem,
where additional user information, referred to as attributes,
is incorporated to assist graph alignment. We establish both
the achievability and converse results on recovering vertex
correspondence exactly, where the conditions match for certain
parameter regimes. Our results span the full spectrum between
models that only consider user-user connections and models
where only attribute information is available.

Index Terms— Graph theory, statistics, inference algorithms.

I. INTRODUCTION

THE graph alignment problem, also known as graph
matching problem or noisy graph isomorphism problem,

has received increasing attention in recent years, brought into
prominence by applications in a wide range of areas [1],
[2], [3]. For instance, in social network deanonymization [4],
[5], two graphs are given, each of which represents the
user relationship in a social network (e.g., Twitter, Facebook,
Flickr, etc.). One graph is anonymized and the other graph has
user identities as public information. Then the graph alignment
problem, whose goal is to find the best correspondence of the
two graphs with respect to a certain criterion, can be used
to de-anonymize users in the anonymous graph by finding
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the correspondence between them and the users with public
identities in the other graph.

The graph alignment problem has been studied under var-
ious random graph models, among which the most popular
one is the Erdős–Rényigraph pair model (see, e.g., [6], [7],
[8]). In particular, two Erdős–Rényi graphs on the same vertex
set, G1 and G2, are generated in a way such that their edges
are correlated. Then G1 and an anonymous version of G2,
denoted as G

0
2
, are made public, where G

0
2

is modeled as
a vertex-permuted G2 with an unknown permutation. Under
this model, typically the goal is to achieve the so-called exact
alignment, i.e., recovering the unknown permutation and thus
revealing the correspondence for all vertices exactly.

A fundamental question in the graph alignment problem
is: when is exact alignment possible? More specifically, what
conditions on the statistical properties of the graphs are
required for achieving exact alignment when given unbounded
computational resources? Such conditions, usually referred to
as information-theoretic limits, have been established for the
Erdős–Rényi graph pair in a line of work [6], [7], [8], [9]. The
best known information-theoretic limits are proved in [8] and
[9], where the authors establish nearly matching achievability
and converse bounds.

In many real-world applications, additional information
about the anonymized vertices might be available. For exam-
ple, Facebook has user profiles on their website about each
user’s age, birthplace, hobbies, etc. Such associated informa-
tion is referred to as attributes (or features), which, unlike user
identities, are often publicly available. Then a natural question
to ask is: Can the attribute information help recover the vertex
correspondence? If so, can we quantify the amount of benefit
brought by the attribute information? The value of attribute
information has been demonstrated in the work of aligning
Netflix and IMDb users by Narayanan and Shmatikov [10].
They successfully recovered some of the user identities in the
anonymized Netflix dataset based only on users’ ratings of
movies, without any information on the relationship among
users. In this paper, we incorporate attribute information to
generalize the graph alignment problem. We call this problem
the attributed graph alignment problem.

To investigate the attributed graph alignment problem,
we extend the current Erdős–Rényi graph pair model and
we refer to this new random graph model as the attributed
Erdős–Rényi pair model G(n, p;m, q). For a pair of graphs,
G1 and G2, generated from the attributed Erdős–Rényi pair
model, each graph contains n user vertices and m attribute
vertices (see Figure 1). Here, the user vertices represent the
entities that need to be aligned; while the attribute vertices
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Fig. 1. Example of attributed Erdős–Rényi graph pair: Graph G1 and G2 are
generated on the same set of vertices. Anonymized graph G0

2 is obtained
through applying ⇧⇤ = (1)(2, 3) only on Va of G2 (permutation ⇧⇤ is
written in cycle notation).

are all pre-aligned, reflecting the public availability of the
attribute information. There are two types of edges in each
graph, i.e., edges between user vertices and edges between
user vertices and attribute vertices. Here, edges between user
vertices represent the relationship between users (e.g., friend-
ship relations in a social network); edges between user vertices
and attribute vertices encode the side information attached to
each user (e.g., user profiles in a social network). These two
types of edges are correlatedly generated in the following way:
for a user-user vertex pair (i, j), the edges connecting them
follow a distribution p = (p11, p10, p01, p00), where p11 is the
probability that i and j are connected in both G1 and G2, and
p10, p01, p00 represent the three remaining cases respectively:
i, j are only connected in G1, only connected in G2, and not
connected in neither G1 nor G2; for a user-attribute vertex
pair, the edges connecting them are generated in a similar way
following a distribution q = (q11, q10, q01, q00). This random
process creates an identically labeled graph pair (G1, G2) with
similarity in both the graph topology part (user-user edges)
and the attribute part (user-attribute edges). The graph G2 is
then anonymized by applying a random permutation on its
user vertices and the anonymized graph is denoted as G

0
2
.

Under this formulation, our goal of attributed graph alignment
is to recover this unknown permutation from G1 and G

0
2

by
exploring both the topology similarity and attribute similarity.

Under our attributed Erdős–Rényi pair model, we use the
maximum a posterior (MAP) estimator for aligning (G1, G

0
2
),

and establish the achievability and converse results for exact
alignment. To get an intuitive understanding of how the
existence of attribute information contributes to exact graph
alignment, we present a simplified result by restricting the
graph parameters to a certain regime, while deferring the
general result to Section III. In this regime we assume that
the correlation coefficient of the user-user edges is at least
⌦(

(log n)
2

p
n

) and correlation coefficient of the user-attribute

edges is at least ⌦(
(log n)

3/2
p

m
). Together with two other

conditions on the edge sparsity, we establish the following
asymptotically matching achievability and converse results as
n !1 (See Corollary 1 for the formal statement).
• If np11 + mq11 � log n ! 1, then there exists an

algorithm that achieves exact alignment with high prob-
ability (w.h.p.).

Fig. 2. The green region in the figure is information theoretically achievable
and the shaded grey region is not achievable. The three lines in the figure
represent three specialized settings: the blue line (correlated Erdős–Rényi
model) is obtained by setting q00 = 1; the yellow line (seeded Erdős–Rényi
model) is obtained by setting p = q; the red line (correlated bipartite model)
is obtained by setting p00 = 1. Their intersections with the achievable and
non-achievable region give the information-theoretic limits of the correlated
Erdős–Rényi model, seeded Erdős–Rényi model and the correlated bipartite
model separately.

• If np11 + mq11 � log n ! �1, then no algorithm
guarantees exact alignment w.h.p.

The achievability and converse results are illustrated in
Figure 2. Here, np11 is the average number of common users
between G1 and G2 that are connected to an identical user
vertex, and mq11 is the average number of common attributes.
Intuitively, the key quantity np11 + mq11 (average common
vertex degree) quantifies the topology and attribute similarity
between G1 and G2. The above results simply show that if
this similarity measure is large enough, then exact alignment is
achievable, or otherwise no algorithm can exactly recover the
true alignment. It is also worth noting that the average common
vertex degree in attribute mq11 highlights the extra benefit
from attribute information, compared to the achievability result
np11 � log n !1 when the attribute is not available.

From the information-theoretic limits we derive for the
attributed graph pair, we could obtain information-theoretic
limits on other existing random graph models as special cases
(see Figure 2). Below we highlight how the specializations of
our results compare with the existing graph alignment litera-
ture under three specialized settings. The detailed comparison
is given in Section IV.
• Specializing our model by setting q00 = 1, we remove

the effect of the attribute vertices and get the correlated
Erdős–Rényi graph pair model.
Our specialized results recover the information-theoretic
limits on Erdős–Rényi graph alignment in [9].

• Specializing our model by setting p = q, we can then
treat the m attribute vertices as pre-aligned user vertices
and obtain the seeded Erdős–Rényi model. Our specialized
result reveals certain achievable and converse region that
is unknown in the literatures [9], [11], and [12].

• Specializing our model by setting p00 = 1, we remove
all of the user-user edges and obtain the correlated bipar-
tite graph pair model. Our specialized achievability result
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recovers the best-known achievable region for bipartite
alignment in the literature [13], and reveals certain con-
verse region that is unknown in [13].

The main contributions of this paper are summarized as
follows.
1) Model Formulation. We propose the attributed Erdős–

Rényi pair model, which incorporates both the graph
topology similarity and the attribute similarity. Such model
formulation allows us to align graphs with the assistance of
publicly available side information. Moreover, our model
serves as a unifying setting in the graph alignment literature
and includes several popular models as its special cases.

2) Information theoretic limits. We establish achievability
and converse results on exactly aligning random attributed
graphs, where the conditions are tight under certain param-
eter regimes.
Our results span the full spectrum from the traditional
Erdős–Rényi pair model where only the user relationship
networks are available to models where only attribute
information is available, unifying the existing results in
each of these settings.
When specialized to the seeded graph alignment and
bipartite graph alignment models, our result reveals certain
achievable and converse region that is unknown in the
literature.

3) Proof techniques. The proof techniques for the achiev-
ability results are mainly inspired by the previous study
on Erdős–Rényi graph alignment [9]. For the converse
results, we study the phase-transition phenomenon on the
existence of indistinguishable vertex pairs, which may be
of independent interest.

A. Related Work

The exact graph alignment problem has been studied under
various random graph models. One of the most popular
random graph models is the correlated Erdős–Rényi pair
model G(n, p), which generates simple graph pairs without
any side information. Under this model, the optimal alignment
strategy, derived from the MAP estimator, is enumerating
all possible permutations in order to make the two graphs
achieve the maximum edge overlap. While the optimal strategy
requires exponential time complexity, numerous studies have
proposed polynomial-time approaches that exactly solve the
graph alignment problem with high probability [14], [15], [16],
[17], [18].

Here, we do not attempt to provide further detailed dis-
cussions on efficient algorithms, but focus on surveying the
information-theoretic limits of exact alignment. Currently, the
best-known information-theoretic limits on Erdős–Rényi graph
alignment are shown in [8] and [9] by analyzing error event
of the MAP estimator. In [9], the authors prove achievability
in the regime n(

p
p11p00�

p
p10p01)

2
� (2 + ✏) log n. Under

certain sparsity conditions, they also show that the achievable
region can be improved to np11 � log n + !(1). In [8], the
authors consider a special case of the Erdős–Rényi graph pair
model called symmetric subsampling model. In this model, it is

assumed that

p11 = ps
2
, p01 = p10 = ps(1� s), p00 = 1� 2ps + ps

2

(1)

for some p, s 2 [0, 1]. Under this model, the authors prove
the achievability in the regime n(

p
p11p00 �

p
p10p01)

2
�

(1 + ✏) log n. For the converse, [9] proves that the permu-
tation cannot be exactly recovered with high probability if
np11  log n � !(1) by showing the existence of isolated
vertices in the intersection graph G1 ^G2. Under the general
Erdős–Rényi graph pair model, [8] shows the impossibility of
exactly recovering the permutation in the regime n(

p
p11p00�

p
p10p01)

2
 (1 � ✏) log n by showing the existence of

permutations that fails the MAP estimator by swapping two
vertices. To summarize the aforementioned results, matching
achievability and converse for exact recovery is derived under
certain sparsity assumptions in [9], and for the special case
of the symmetric subsampling model, [8] provides almost
tight achievability and converse bounds, with a gap of width
2✏ log n between the established bounds. Closing the gap for
the general Erdős–Rényi graph pair model is still an open
problem.

Recently, there has been a growing interest in studying
graph alignment with side information. For example, in the
seeded alignment setting, the side information appears in
the form of a partial observation of the latent alignment.
For the seeded graph alignment problem, there have been a
number of studies concentrating on designing polynomial-time
algorithms with performance guarantees [11], [19], [20]. Some
other more general settings treat any form of side information
as vertex attributes and formulate this as the attribute graph
alignment problem [21].

There is a line of empirical studies on the attributed graph
alignment [21], [22], [23], yet, to the best of our knowledge,
there is no known result on information-theoretic limits on
graph alignment with attribute information.

II. MODEL

In this section, we describe the attributed Erdős–Rényi
graph pair model. Under this model formulation, we formally
define the exact attributed graph alignment problem. An illus-
tration of the model is given in Figure 1.

A. User Vertices and Attribute Vertices
We first generate two graphs, G1 and G2, on the same vertex

set V . The vertex set V consists of two disjoint sets of vertices,
the user vertex set Vu and the attribute vertex set Va, i.e.,
V = Vu [ Va. Assume that the user vertex set Vu consists of
n vertices, labeled as [n] , {1, 2, 3, . . . , n}. Assume that the
attribute vertex set Va consists of m vertices, and m scales as
a function of n.

B. Correlated Edges
To describe the probabilistic model for edges in G1 and G2,

we first consider the set of user-user vertex pairs Eu , Vu⇥Vu

and the set of user-attribute vertex pairs Ea , Vu⇥Va. Then for
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each vertex pair e 2 E , Eu [ Ea, we write G1(e) = 1 (resp.
G2(e) = 1) if there is an edge connecting the two vertices
in the pair in G1 (resp. G2), and write G1(e) = 0 (resp.
G2(e) = 0) otherwise. Since we often consider the same vertex
pair in both G1 and G2, we write (G1, G2)(e) as a shortened
form of (G1(e), G2(e)).

The edges of G1 and G2 are then correlatedly generated
in the following way. For each user-user vertex pair e 2 Eu,
(G1, G2)(e) follows the joint distribution specified by

(G1, G2)(e) =

8
>>><

>>>:

(1, 1) w.p. p11,

(1, 0) w.p. p10,

(0, 1) w.p. p01,

(0, 0) w.p. p00,

(2)

where p11, p10, p01, p00 are probabilities that sum up to 1. For
each user-attribute vertex pair e 2 Ea, (G1, G2)(e) follows the
joint probability distribution specified by

(G1, G2)(e) =

8
>>><

>>>:

(1, 1) w.p. q11,

(1, 0) w.p. q10,

(0, 1) w.p. q01,

(0, 0) w.p. q00,

(3)

where q11, q10, q01, q00 are probabilities that sum up to 1.
The correlation between G1(e) and G2(e) is measured by the
correlation coefficient defined as

⇢(e) , Cov(G1(e), G2(e))p
Var[G1(e)]

p
Var[G2(e)]

,

where Cov(G1(e), G2(e)) is the covariance between G1(e)

and G2(e) and Var[G1(e)] and Var[G2(e)] are the variances.
We assume that G1(e) and G2(e) are positively correlated,
i,e., ⇢(e) > 0 for every vertex pair e. Across different vertex
pair e’s, the (G1, G2)(e)’s are independent. Finally, recall that
there are no edges between attribute vertices in our model.

For compactness of notation, we represent the joint distri-
butions in (2) and (3) in the following matrix form:

p =

✓
p11 p10

p01 p00

◆
and q =

✓
q11 q10

q01 q00

◆
.

We refer to the graph pair (G1, G2) as an attributed Erdős–
Rényi pair G(n, p, m, q). Note that this model is equivalent to
the subsampling model in the literature [6].

C. Anonymization and Exact Alignment
In the attributed graph alignment problem, we are given

G1 and an anonymized version of G2, denoted as G
0
2
. The

anonymized graph G
0
2

is generated by applying a random
permutation ⇧

⇤ on the user vertex set of G2, where the
permutation ⇧

⇤ is unknown. More explicitly, each user vertex
i in G2 is re-labeled as ⇧

⇤
(i) in G

0
2
. The permutation ⇧

⇤

is chosen uniformly at random from Sn, where Sn is the set
of all permutations on [n]. Since G1 and G

0
2

are observable,
we refer to (G1, G

0
2
) as the observable pair generated from

the attributed Erdős–Rényi pair G(n, p, m, q).
Then the graph alignment problem, i.e., the problem of

recovering the identities/original labels of user vertices in the

anonymized graph G
0
2
, can be formulated as a problem of

estimating the underlying permutation ⇧
⇤. The goal of graph

alignment is to design an estimator ⇡̂(G1, G
0
2
) as a function of

G1 and G
0
2

to best estimate ⇧
⇤. We say ⇡̂(G1, G

0
2
) achieves

exact alignment if ⇡̂(G1, G
0
2
) = ⇧

⇤. The probability of error
for exact alignment is defined as P(⇡̂(G1, G

0
2
) 6= ⇧

⇤
). We say

exact alignment is achievable with high probability (w.h.p.) if
there exists ⇡̂ such that limn!1 P(⇡̂(G1, G

0
2
) 6= ⇧

⇤
) = 0.

D. Reminder of the Landau Notation

Notation Definition

f(n) = !(g(n)) lim
n!1

|f(n)|

g(n)
= 1

f(n) = o(g(n)) lim
n!1

|f(n)|

g(n)
= 0

f(n) = O(g(n)) lim sup
n!1

|f(n)|

g(n)
< 1

f(n) = ⌦(g(n)) lim inf
n!1

|f(n)|

g(n)
> 0

f(n) = ⇥(g(n)) f(n) = O(g(n)) and f(n) = ⌦(g(n))

III. MAIN RESULTS

In this section, we state the achievability results (Theorem 1
and Theorem 2) and the converse result (Theorem 3). To better
demonstrate the benefit from attribute information, we also
present a simplified version of the results under certain sparsity
and correlation assumptions as Corollary 1.

Throughout the remainder of the paper, we define

 u , (
p

p11p00 �
p

p10p01)
2 (4)

 a , (
p

q11q00 �
p

q10q01)
2
. (5)

Theorem 1 (General Achievability): Consider the attributed
Erdős–Rényi pair G(n,p;m, q). If

1

2
n u + m a � log n = !(1), (6)

then the MAP estimator achieves exact alignment w.h.p.
Theorem 2 (Achievability in Sparse Region): Consider the

attributed Erdős–Rényi pair G(n,p;m, q). If

p11 = O

⇣
log n

n

⌘
, (7)

p10 + p01 = O

⇣
1

log n

⌘
, (8)

p10p01

p11p00

= O

⇣
1

(log n)3

⌘
, (9)

np11 + m a � log n = !(1), (10)

then the MAP estimator achieves exact alignment w.h.p.
Theorem 3 (Converse): Consider the attributed Erdős–

Rényi pair G(n,p;m, q). If

� n log(1� 2p11 + 2p
2

11
)�m log(1� 2q11 + 2q

2

11
)

� 2 log n ! �1, (11)

then for any estimator, the probability of error is bounded away
from zero.

To better illustrate the benefit of attribute information in
the graph alignment problem, we present in Corollary 1 a
simplified version of our achievability result by adding certain
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conditions on the sparsity and correlation of the two graphs.
To make the notation compact, we consider the equivalent
expression from the subsampling model, where
✓

p11 p10

p01 p00

◆

=

✓
psu,1su,2 psu,1(1� su,2)

p(1� su,1)su,2 p(1� su,1)(1� su,2) + 1� p

◆
,

and
✓

q11 q10

q01 q00

◆

=

✓
qsa,1sa,2 qsa,1(1� sa,2)

q(1� sa,1)sa,2 q(1� sa,1)(1� sa,2) + 1� q

◆
.

Under the subsampling model, the generation of G1 and G2 is
modelled as a two-step random process. We first generate a
base graph G, where an edge exists between each user-user
pair with probability p and an edge exists between each
user-attribute pair with probability q. To generate graph G1,
each user-user edge in G is kept with probability su,1 and
each user-attribute edge in G is kept with probability sa,1.
Similarly G2 is generated by keeping each user-user edge in
G with probability su,2 and each user-attribute edge in G with
probability sa,2. A random permutation is then applied on the
user of G2 to generate G

0
2
. As a mild restriction on the sparsity

of the graphs, we assume that the base graph edge probabilities
p and q are not going to 1, i.e.,

1� p = ⇥(1), (12)
1� q = ⇥(1). (13)

Moreover, we assume the following bounds on the vanishing
speed of subsampling probabilities su,1, su,2, sa,1 and sa,2

su,1su,2 = ⌦

✓
(log n)

4

n

◆
, (14)

sa,1sa,2 = ⌦

✓
(log n)

3

m

◆
. (15)

Corollary 1 (Simplified Achievability): Consider the
attributed Erdős–Rényi pair G(n, p;m, q). Under
conditions (12)-(15), we have tight achievability and
converse for exact recovery. That is if

np11 + mq11 � log n !1, (16)

then the MAP estimator achieves exact alignment w.h.p, and
if

np11 + mq11 � log n ! �1, (17)

then the error probability of any estimator is bounded away
from zero.

The proof of Corollary 1 can be found in Appendix F.
We visualize the matching achievability and converse results
under conditions (12)-(15) in Figure 2. How to close the gap
in the case where at least one of (12)-(15) is not satisfied is
an open problem.

IV. COMPARISON

In this section, we specialize our main results (Theorems 1,
2, and 3) on exact alignment of the attributed Erdős–Rényi pair
model to three closely related graph alignment problems: the
Erdős–Rényi graph alignment, the seeded Erdős–Rényi graph
alignment, and the bipartite graph alignment. We compare
them with the best-known results in the literature. The main
purpose of this comparison is to illustrate that our general
results on the attributed graph alignment problem can recover
most of the best-known existing results on these three spe-
cialized problems, and improve the state-of-the-art in certain
cases. While it is possible that the best-known results can be
further improved to get sharper bounds, this refinement is not
the main focus of our comparison.

A. Erdős–Rényi Graph Pair
The correlated Erdős–Rényi pair model G(n, p) is the

setting most commonly studied for graph alignment tasks
that consider only graph topology similarity [6], [7], [8], [9],
[14]. This model generates graph pairs that contain only user
vertices. For a pair of graphs G1, G2 obtained from this model
G(n,p), we use Vu to denote their vertex set and |Vu| = n.
The edges in G1 and G2 are generated jointly in the following
way: for a pair of users e 2

�
Vu
2

�
, we have

(G1, G2)(e) =

8
>>><

>>>:

(1, 1) w.p. p11,

(1, 0) w.p. p10,

(0, 1) w.p. p01,

(0, 0) w.p. p00.

(18)

The anonymized graph G
0
2

is obtained by applying a random
permutation ⇧

⇤ on the vertices of G2. This model can be
specialized from the attributed graph pair model by setting
the number of attributes m = 0 or q00 = 1. For aligning
the correlated Erdős–Rényi pair, the best-known information-
theoretic limits are established in [8] and [9] and we state the
combined results here for ease of comparison.

Theorem 4 (Best-Known Information Theoretic Limits
[8], [9]): Consider the correlated Erdős–Rényi pair G(n, p).

Achievability If

n u � 2 log n + !(1), (19)

or

p11 = O

⇣
1

log n

⌘
, (20)

p10 + p01 = O

⇣
1

log n

⌘
, (21)

p10p01

p11p00

= O

⇣
1

(log n)3

⌘
, (22)

np11 = log n + !(1), (23)

then the MAP estimator achieves exact alignment w.h.p.
Converse If there exist a constant ✏ 2 (0, 1) such that

n u  (1� ✏) log n, (24)

or

np11  log n� !(1), (25)
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then for any estimator, the probability of error is bounded away
from zero.

Remark 1: We point out that in the dense regime, i.e.,
at least one of conditions (20), (21) and (22) is not satisfied,
Theorem 4 in [8] provides a tighter achievability result.
However, as we mentioned in the introduction, the result
is limited to the symmetric subsampling model (1). In this
section, we focus on the comparison under the general Erdős–
Rényi pair model, so the result from Theorem 4 in [8] is not
listed as one of the best known information theoretic limit.
On the other hand, the converse result in [8] is not limited to
the symmetric subsampling model. Thus, we include the result
as equation (24) in Theorem 4.
We now specialize the attributed Erdős–Rényi pair model
to the correlated Erdős–Rényi pair by setting q00 = 1.
Theorems 1, 2, and 3 simplify to the following.

Theorem 5 (Specialization from attributed Erdős–Rényi
pair): Consider the attributed Erdős–Rényi pair G(n, p;m, q)

with q00 = 1.
Achievability: If

n u � 2 log n + !(1), (26)

or

p11 = O

⇣
log n

n

⌘
, (27)

p10 + p01 = O

⇣
1

log n

⌘
, (28)

p10p01

p11p00

= O

⇣
1

(log n)3

⌘
, (29)

np11 = log n + !(1), (30)

then the MAP estimator achieves exact alignment w.h.p.
Converse: If

np11  log n� !(1),

then for any estimator, the probability of error is bounded away
from zero.

Remark 2: When specialized to the Erdős–Rényi pair
model, our achievability result recovers the best-known achiev-
ability result from [8] and [9], while our converse result is a
strict subset of that given by conditions (24) and (25). To see
the achievability results in Theorems 4 and 5 are equivalent,
we observe that the difference between the region character-
ized by (20)–(23) and the region characterized by (27)–(30) is
given by p11 = !(

log n

n
) and p11 = O(

1

log n
). However, under

the assumptions (28) and (29), we know that p00 = 1� o(1)

and p10p01
p00p11

= o(1). If p11 = !(
log n

n
), then these further

imply that  u = (1 + o(1))p11p00 = !(
log n

n
), i.e., the

difference between the two regions falls in the achievable
region characterized by (26). Thus, the achievability region
in Theorem 5 is exactly the same as that in Theorem 4. For
the converse, it is an open question whether a converse result
for the attributed Erdős–Rényi pair model can be established,
which recovers condition (24) when specialized to the Erdős–
Rényi pair model.

B. Seeded Erdős–Rényi Graph Pair
In the seeded graph model G(n, m,p), a pair of graphs

G1, G2 are generated from the correlated Erdős–Rényi pair

model G(n+m, p). Then the anonymized graph G
0
2

is obtained
by applying a random permutation on the vertices of G2.
In addition to knowing G1 and G

0
2
, in the seeded graph setting,

we are also given the true alignment on a set of the user
vertices, which is known as the seed set Vs. The number of
aligned pairs in Vs is a fixed number m. The seeded alignment
problem has been studied by [5], [11], [19], [24], and [25].1
Moreover, achievability results on unseeded graph alignment
problem also trivially imply achievability results on seeded
graph alignment problem. To the best of our knowledge,
the best information-theoretic limits of the seeded alignment
problem are given by [9], [11], and [12]. For the simplicity of
our discussion, we focus only on the symmetric subsampling
model (1) with sparsity conditions

p = 1�⇥(1) and s = ⌦

✓
(log n)

2

p
n

◆
. (31)

Theorem 6 (Best-Known Information-Theoretic Limits in
the Sparse and Symmetric Regime [9], [11], [12]): Consider
the seeded Erdős–Rényi graph pair G(n, m,p) satisfying con-
ditions (1) and (31).
Achievability from [9]: Assume

(n + m)p11 = log(n + m) + !(1). (32)

Then the unseeded MAP estimator achieves exact alignment
w.h.p.
Achievability from [12]: Assume s = ⇥(1) and p = o(1).

1) In the regime where mp11 = ⌦(log n), if for a constant
✏ > 0, we have

(n + m)p11 � (1 + ✏) log n, (33)

then the ATTRRICH algorithm in [12] achieves exact
alignment w.h.p.

2) In the regime where mp11 = o(log n), if for a constant
⌧ > 0, we have

np11 = log n + !(1), (34)

mp11 �
2 log n

⌧ log(p11/(p11 + p10)
2)

, (35)

then the ATTRSPARSE algorithm in [12] achieves exact
alignment w.h.p.

Converse from [11] Consider the seeded Erdős–Rényi graph
pair G(n, m,p). If

(n + m)p11  log (n + m) + O(1) and m = O(n),

then for any estimator, the probability of error is bounded away
from zero.

Remark 3 (Efficient Algorithms for Seeded Graph Align-
ment): We comment that the seeded graph alignment
algorithms proposed in [11] and [12] can be implemented
polynomial-time, while the unseeded MAP estimator in [9]
requires exponential time to implement. Under the seeded
graph alignment problem, the best-known feasible range of

1In the literature, both random [5] and deterministic [24] seed sets are
considered. Here, we focus on the deterministic seed set setting which is
closely related to our attributed Erdős–Rényi pair model.
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graph parameters for achieving exact recovery by efficient
algorithms is given together by [11] and [12].

To compare the best-known information-theoretic limits of
the seeded Erdős–Rényi alignment with our results, we spe-
cialize the attributed Erdős–Rényi pair model by setting p = q,
where m attribute vertices are pre-aligned seeds. Notice that
a small difference between the G(n, p;m, p) model and the
seeded model G(n, m,p) is that there are no edges between
the seeds in the specialized model but those edges exist in
the seeded model. Such distinction may lead to a difference
in the design of seeded graph alignment algorithms (e.g.
algorithms from [11] exploit seed-seed edges). It turns out
that such seed-seed edges have no influence on the optimal
MAP estimators for the two models, which leads to the next
lemma.

Lemma 1: The information-theoretic limits on exact align-
ment in the seeded Erdős–Rényi pair model G(n, m,p) and
the information-theoretic limits on exact alignment in the
specialized attributed Erdős–Rényi pair model G(n, p;m,p)

are identical.
Proof: See Appendix B. ⇤

Based on Lemma 1, we directly obtain the achievability
and converse results on seeded graph alignment from The-
orems 1, 2, and 3 by setting p = q. In the following,
we demonstrate that the specialized result reveals certain
achievable and converse region for seeded graph alignment
that is unknown in the literature.

Theorem 7 (Specialization from attributed Erdős–Rényi
pair): Consider the attributed Erdős–Rényi pair G(n,p;m,p).

Achievability: If

(n + m) u � 2 log n + !(1), (36)

or

p11 = O

⇣
log n

n

⌘
, (37)

p10 + p01 = O

⇣
1

log n

⌘
, (38)

p10p01

p11p00

= O

⇣
1

(log n)3

⌘
, (39)

np11 + m u = log n + !(1), (40)

then the MAP estimator achieves exact alignment w.h.p.
Converse: If

(n + m)p11  log n� !(1),

then for any estimator, the probability of error is bounded away
from zero.

Moreover, if the two seeded graphs G1 and G
0
2

satisfy the
two assumptions (1) and (31), then we have the following
matching achievability and converse results.

Corollary 2 (Threshold for sparse seeded Erdős–Rényi
pair): Consider the seeded Erdős–Rényi pair model G(n, m,p)

under conditions (1) and (31).
Achievability: If

(n + m)p11 � log n + !(1), (41)

then the MAP estimator achieves exact alignment w.h.p.

Converse: If

(n + m)p11  log n� !(1), (42)

then for any estimator, the probability of error is bounded away
from zero.

Proof: See Appendix G. ⇤
Remark 4: In Corollary 2, we obtain asymptotically tight

achievability and converse for seeded graph alignment under
the symmetric subsampling model satisfying conditions (1)
and (31).

Remark 5 (Comparison between achievability results):
The achievability result in Corollary 2 reveals certain
achievable region that is unknown in the literatures [9] and
[12]. In the regime of mp11 = ⌦(log n), if (n + m)p11 is
at least log n + !(1) but less than log(n + m) + !(1) and
(1 + ✏) log n for any constant ✏, exact alignment is known to
be achievable by Corollary 2, but not by Theorem 6. In the
following, we present an example which is in the achievable
region of Corollary 2, but not in the achievable region of
Theorem 6. Assume that

m = n
2
, p11 =

log n + log log n

m + n
, and p01 = p10 = 0.

We see that condition (41) holds because (n+m)p11 = log n+

log log n = log n+!(1). Moreover, condition (31) is satisfied
because s = 1 in this case. However, condition (32) (n +

m)p11 = log(n + m) + !(1) in Theorem 6 does not hold
because (n + m)p11 < 2 log n < log(n + m) + !(1), and
condition (33) (n + m)p11 � (1 + ✏) log n in Theorem 6 does
not hold because (n + m)p11 = log n + log log n < (1 +

✏) log n for any positive constant ✏. So this example lies in the
achievable region of Corollary 2, but not in that of Theorem 6.

However, we comment that the improvement mentioned
above is natural. In [9], the seedless graph alignment problem
is considered. The results in [9] is included in the comparison
because its achievable region for seedless graph alignment
trivially implies achievable region for seeded graph alignment.
When specializing the region in [9] to the scenario of seeded
graph alignment, both seed vertices and non-seed vertices
are viewed as vertices to align, and hence resulting in the
log(m+n) terms on the right-hand side of (32). However, the
identities of the seed vertices are already known, and there
are actually just n non-seed vertices to align. This causes the
natural improvement to the log n term on the right-hand side
of (41). Moreover, note that this improvement is non-negligible
only when m = !(n), i.e., the number of seeds greatly
surpass the number of non-seeds. The improvement beyond
the achievable region in [12] is natural as well. This is because
the MAP estimation studied in this work requires exponential
computational time, while the algorithms in [12] can be
implemented in polynomial time. To make the comparison fair,
we also mention that there exists certain known achievable
region that is not covered by Corollary 2.

Remark 6 (Comparison Between Converse Results):
Corollary 2 includes certain converse region in the regime
m = !(n), while the converse region in Theorem 6 is
exclusive to the regime m = O(n). To make the comparison
fair, we comment that the converse bound of Theorem 6

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 20:53:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: ATTRIBUTED GRAPH ALIGNMENT 5917

strictly contains the converse region of Corollary 2 in the
regime of m = O(n).

C. Bipartite Graph Pair

In the bipartite graph pair model G(n, m, q), each graph is
a bipartite graph on two disjoint set of vertices, i.e., the user
vertex set Vu and attribute vertex set Va. The edges between
the two set of vertices are generated in a correlated way: for
e 2 Vu ⇥ Va

(G1, G2)(e) =

8
>>><

>>>:

(1, 1) w.p. q11,

(1, 0) w.p. q10,

(0, 1) w.p. q01,

(0, 0) w.p. q00.

(43)

The anonymized graph G
0
2

is obtained by applying a random
permutation ⇧

⇤ only on the user vertex set of G2. Aligning
such correlated bipartite graph is also known as a special
case of the database alignment problem [13]. The best-known
information-theoretic limits of database alignment are studied
in [13]. We restate the achievability and converse results
from [13] when specialized to the case of bipartite graph pair
alignment in Theorem 8.

Theorem 8 (Best-Known Information-Theoretic Limits
[13]): Consider the bipartite graph pair model G(n, m, q).

Achievability: If

�
m

2
log(1� 2 a) � log n + !(1), (44)

then the MAP estimator achieves exact alignment w.h.p.
Converse: If

�
m

2
log(1� 2 a)  (1� ⌦(1)) log n, (45)

then for any estimator, the probability of error is bounded away
from zero.

Remark 7: In [13], the left-hand side of both inequalities
in Theorem 8 are stated in a different, yet equivalent, form.
To state it, we need to introduce two definitions. Let A =
A00 A01
A10 A11

be a 2 ⇥ 2 probability matrix with all non-negative
entries and A00 + A01 + A10 + A11 = 1. We define A

⌦k

to be a 2
k
⇥ 2

k probability matrix with rows and columns
both indexed by {0, 1}

k, and for a, b 2 {0, 1}
k, we have

A
⌦k

a,b
= ⇧

k

i=1
Aai,bi . Matrix A

⌦k is called the kth tensor
product of A. For a probability matrix A and an integer
l � 2, we define the order-l cycle mutual information of
A to be I

�

l
(A) =

1

1�l
log tr((ZZ

T
)
l
), where Z is a matrix

with same dimension as A and Zij =
p

Aij for any index
pair (i, j). In [13], the left-hand side of both inequalities are
given as 1

2
I
�
2
(Q

⌦m
), where Q =

q00 q01
q10 q11 . According to [13],

the cycle mutual information satisfies a nice property that
I
�
2
(Q

⌦m
) = mI

�
2
(Q). Furthermore, we can calculate the 2-

cycle mutual information of Q as I
�
2
(Q) = � log(1 � 2 a),

which implies that 1

2
I
�
2
(Q

⌦m
) = �

m

2
log(1� 2 a).

To compare our results with the best-known database align-
ment information-theoretic limits, we specialize the attributed
Erdős–Rényi pair model to the bipartite graph pair by remov-
ing all of the edges between user vertices, i.e., p00 = 1.

Correspondingly, we obtain the following achievable and con-
verse result on bipartite graph alignment from Theorems 1
and 3.

Theorem 9 (Specialization from attributed Erdős–Rényi
pair): Consider the attributed Erdős–Rényi pair G(n, p;m, q)

with p00 = 1.
Achievability: If

m a � log n + !(1), (46)

then the MAP estimator achieves exact alignment w.h.p.
Converse: If

mq11  log n� !(1), (47)

then for any estimator, the probability of error is bounded away
from zero.

Remark 8: The MAP estimator for bipartite graph align-
ment can be implemented by solving an assignment problem
using the Hungarian method within polynomial time [26].

Remark 9 (Comparison between achievable regions):
The achievable region in Theorem 9 is a strict subset
of the achievable region in Theorem 8. This because
�

m

2
log(1 � 2 a) > m a. However, in the derivation

steps (69)–(71) of Theorem 1, we were replacing the
logarithm term by applying log(1 + x)  x. Without this
step of loosening the bound, equation (46) can be replaced
by �

m

2
log(1 � 2 a) � log n + !(1), which is the same

as equation (44). Therefore, although the achievability
region (46) in Theorem 9 does not directly recover the
achievable region (44) in Theorem 8, it can be improved
to the achievable region (44) by a slight modification of
derivations steps (69)–(71).

Remark 10 (Comparison Between Converse Regions): The
converse result (47) in Theorem 9 includes certain region
that is not covered by the best-known converse region for
bipartite alignment (45) in Theorem 8. This new region stems
from the difference between the �⌦(1) log n term on the
right-hand side of (45) and the �!(1) term on the right-hand
side of (47). To illustrate the improved region, consider an
instance of the parameters satisfying q11 =

log n�log log n

m
,

q00 = 1 � q11, q01 = q10 = 0 and m = !(log n). Because
mq11 = log n � log log n  log n � !(1), this instance of
parameters is in the converse region given by (47). However,
this instance is out of the converse region (45), because

�
m

2
log(1� 2 a) = �

m

2
log(1� 2(

p
q11q00 �

p
q01q10)

2
)

= �
m

2
log(1� 2q00q11)

�
m

2
2q00q11

= (log n� log log n)(1� o(1))

> (1� ⌦(1)) log n.

To make the comparison fair, we comment that there also
exists certain converse region given by (45), which is not
covered by (47).

V. PROOF OF CONVERSE STATEMENT

In this section, we give a detailed proof for Theorem 3.
Let (G1, G2) be an attributed Erdős–Rényi pair G(n, p;m, q).
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In this proof, we will focus on the intersection graph of G1 and
G2, denoted as G1 ^G2, which is the graph on the vertex set
V = Vu [ Va whose edge set is the intersection of the edge
sets of G1 and G2. We say a permutation ⇡ on the vertex set
Vu is an automorphism of G1 ^ G2 if a user-user pair (i, j)

is in the edge set of G1 ^ G2 if and only if (⇡(i),⇡(j)) is
in the edge set of G1 ^ G2, and a user-attribute pair (i, a)

is in the edge set of G1 ^ G2 if and only if (⇡(i), a) is in
the edge set of G1 ^ G2 i.e., if ⇡ is edge-preserving. Note
that an identity permutation is always an automorphism. Let
Aut(G1 ^G2) denote the set of automorphisms of G1 ^G2.
By Lemma 2 below, exact alignment cannot be achieved w.h.p.
if Aut(G1^G2) contains permutations other than the identity
permutation. This allows us to establish conditions for not
achieving exact alignment w.h.p. by analyzing automorphisms
of G1 ^G2.

Lemma 2: Let (G1, G2) be an attributed Erdős–Rényi pair
G(n, p;m, q). Given |Aut(G1^G2)|, the probability that MAP
estimator succeeds is at most 1

|Aut(G1^G2)|
.

The proof of Lemma 2 is deferred to Appendix C.
In the proof of Theorem 3, we will further focus on the

automorphisms given by swapping two user vertices. To this
end, we first define the following equivalence relation between
a pair of user vertices. We say two user vertices i and j

(i 6= j) are indistinguishable in G1 ^ G2, denoted as i ⌘ j,
if (G1 ^ G2)((i, v)) = (G1 ^ G2)((j, v)) for all v 2 V . It is
not hard to see that swapping two indistinguishable vertices
is an automorphism of G1 ^ G2, and thus |Aut(G1 ^ G2) \

{identity permutation}| � |{indistinguishable vertex pairs}|.
In the lemma below, we establish the sharp threshold for the
existence of indistinguishable vertex pair.

Lemma 3 (Sharp Threshold for Indistinguishable Pair):
Let (G1, G2) be an attributed Erdős–Rényi pair G(n, p;m, q)

and let G = G1 ^G2. If

� n log(1� 2p11 + 2p
2

11
)�m log(1� 2q11 + 2q

2

11
)

� 2 log n ! �1, (48)

then with high probability, there exists at least one pair of
indistinguishable vertices.

Conversely, if

� n log(1� 2p11 + 2p
2

11
)�m log(1� 2q11 + 2q

2

11
)

� 2 log n !1, (49)

then with high probability, there exists no indistinguishable
vertex pairs.

The proof of Lemma 3 is deferred to the end of this section.
We complete the proof of Theorem 3 based on Lemma 3 in
the following.

Theorem 10 (Converse): Consider the attributed Erdős–
Rényi pair G(n, p;m, q). If

� n log(1� 2p11 + 2p
2

11
)�m log(1� 2q11 + 2q

2

11
)

� 2 log n ! �1, (11)

then for any estimator, the probability of error is bounded away
from zero.

Remark 11: A novelty in the converse proof is that we
show the existence of indistinguishable user pairs under the

attributed Erdős–Rényi graph pair model, while the converse
proof in [9] shows the existence of isolated vertices under the
Erdős–Rényi graph pair model. The reason why we take a
different approach from [9] is because (11) cannot guarantee
the existence of isolated user vertices with high probability.
To see this, let us consider the example of p11 =

0.5 log n

n
, m =

log n and q11 = 0.49. In this case, (11) is satisfied because
�n log(1� 2p11 +2p

2

11
)�m log(1� 2q11 +2q

2

11
)  2np11 +

2mq11 = 1.98 log n, where the inequality follows because
� log(1 � 2x + 2x

2
)  2x for any x � 0. It is not hard

to see that the expected number of isolated vertices can be
calculated as n(1� p11)

n�1
(1� q11)

m. It follows that

P(9 an isolated vertex )

 E[# isolated vertices]
= n(1� p11)

n�1
(1� q11)

m

 exp(log n� (n� 1)p11 + log 0.51⇥ log n)

= exp(log n� 0.5 log n + log 0.51⇥ log n)

⇡ exp(�0.17 log n) ! 0,

i.e., the expected number of isolated vertices goes to zero.
So with high probability, there exist no isolated vertices in the
graph.

Proof: [Proof of Theorem 3] Let X denote the number
of indistinguishable user vertex pairs in G, i.e.,

X =

X

i<j : i,j2Vu

1{i ⌘ j}.

By Lemma 3, we know that P(X = 0) = o(1). Now we
derive an upper bound on the probability of exact alignment
under the MAP estimator, which is also an upper bound for
any estimator since MAP minimizes the probability of error.
Note that by Lemma 2, P(⇡MAP = ⇧

⇤
|X = x) 

1

x+1
, which

is at most 1/2 when x � 1. Therefore,

P(⇡MAP = ⇧
⇤
) = P(⇡MAP = ⇧

⇤
|X = 0)P(X = 0)

+ P(⇡MAP = ⇧
⇤
|X � 1)P(X � 1)

 P(X = 0) +
1

2
P(X � 1)

=
1

2
+

1

2
P(X = 0),

which goes to 1/2 as n ! 1 and thus is bounded away
from 1. This completes the proof that no algorithm can
guarantee exact alignment w.h.p. ⇤

Proof: [Proof of Lemma 3] Let G1 and G2 be an
attributed Erdős–Rényi pair G(n, p;m, q) and let G = G1 ^

G2. Let X denote the number of indistinguishable user vertex
pairs in G, i.e.,

X =

X

i<j : i,j2Vu

1{i ⌘ j}.

We will firstly show that P(X = 0) ! 0 as n ! 1 if the
condition (48) in Lemma 3 is satisfied.

We start by upper-bounding P(X = 0) using Chebyshev’s
inequality

P(X = 0) 
Var(X)

E[X]2
=

E[X
2
]� E[X]

2

E[X]2
. (50)
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For the first moment term E[X], we have

E[X] =

X

i<j

P(i ⌘ j) =

✓
n

2

◆
P(i ⌘ j). (51)

For the second moment term E[X
2
], we expand the sum as

E[X
2
] = E

"
X

i<j

1{i ⌘ j} ·

X

k<l

1{k ⌘ l}

#

= E

"
X

i<j

1{i ⌘ j}+

X

i,j,k,l : i<j,k<l

i,j,k,l are distinct

1{i ⌘ j} · 1{k ⌘ l}

+

X

i,j,k,l : i<j,k<l

{i, j} and {k, l} share one element

1{i ⌘ j ⌘ k ⌘ l}

#

=

✓
n

2

◆
P(i ⌘ j) +

✓
n

4

◆✓
4

2

◆
P(i ⌘ j and k ⌘ l)

+ 6

✓
n

3

◆
P(i ⌘ j ⌘ k), (52)

where i, j, k, l are distinct in (52). With (51) and (52), the
upper bound given by Chebyshev’s inequality in (50) can be
written as
Var(X)

E[X]2
=

2

n(n� 1)P(i ⌘ j)
+

4(n� 2)

n(n� 1)

P(i ⌘ j ⌘ k)

P(i ⌘ j)2

+
(n� 2)(n� 3)

n(n� 1)

P(i ⌘ j and k ⌘ l)

P(i ⌘ j)2
� 1. (53)

To compute P(i ⌘ j), we look into the event {i ⌘ j}

which is the intersection of A1 and A2, where A1 = {8v 2

Vu \ {i, j}, G((i, v)) = G((j, v))}, and A2 = {8u 2

Va, G((i, u)) = G((j, u))}. Recall that in the intersection
graph G = G1 ^G2, the edge probability is p11 for user-user
pairs and q11 for user-attribute pairs. Therefore,

P(A1) =

n�2X

i=0

✓
n� 2

i

◆
p
2i

11
(1� p11)

2(n�2�i)

=
�
p
2

11
+ (1� p11)

2
�n�2

,

P(A2) =

mX

i=0

✓
m

i

◆
p
2i

11
(1� p11)

2(m�i)

=
�
q
2

11
+ (1� q11)

2
�m

.

Since A1 and A2 are independent, we have

P(i ⌘ j) (54)
= P(A1)P(A2)

=
�
p
2

11
+ (1� p11)

2
�n�2 �

q
2

11
+ (1� q11)

2
�m

=
�
1� 2p11 + 2p

2

11

�n�2 �
1� 2q11 + 2q

2

11

�m
. (55)

Similarly, to compute P(i ⌘ j ⌘ k), we look into the event
{i ⌘ j ⌘ k} which is the intersection of events B0, B1 and
B2, where B0 = {G((i, j)) = G((j, k)) = G((i, k))}, B1 =

{8v 2 Vu \ {i, j, k}, G((i, v)) = G((j, v)) = G((k, v))}, and
B2 = {8u 2 Va, G((i, u)) = G((j, u)) = G((k, u))}. Then,
the probabilities of those three events are

P(B0) = p
3

11
+ (1� p11)

3
,

P(B1) =
�
p
3

11
+ (1� p11)

3
�n�3

,

P(B2) =
�
q
3

11
+ (1� q11)

3
�m

.

Since the events B0, B1 and B2 are independent, we have

P(i ⌘ j ⌘ k)

= P(B0)P(B1)P(B2)

=
�
p
3

11
+ (1� p11)

3
�n�2 �

q
3

11
+ (1� q11)

3
�m

= (1� 3p11 + 3p
2

11
)
n�2

(1� 3q11 + 3q
2

11
)
m

.

To compute P(i ⌘ j and k ⌘ l), we look into the event {i ⌘
j and k ⌘ l} which is the intersection of C0, C1, C

0
1
, C2 and

C
0
2
, where C0 = {G(i, k) = G(j, k) = G(i, l) = G(j, l)},

C1 = {8v 2 Vu \ {i, j, k, l}, G(i, v) = G(j, v)}, C
0
1

= {8v 2

Vu\{i, j, k, l}, G(k, v) = G(l, v)}, C2 = {8u 2 Va, G(i, u) =

G(j, u)} and C
0
2

= {8u 2 Va, G(k, u) = G(l, u)}. The
probabilities of those events are

P(C0) = p
6

11
+ p

4

11
(1� p11)

2
+ p

2

11
(1� p11)

4
+ (1� p11)

6
,

P(C1) = P(C
0

1
) = (p

2

11
+ (1� p11)

2
)
n�4

,

P(C2) = P(C
0

2
) = (q

2

11
+ (1� q11)

2
)
m

.

Since C0, C1, C
0
1
, C2 and C

0
2

are independent, we have

P(i ⌘ j and k ⌘ l)

= P(C0)P(C1)P(C
0

1
)P(C2)P(C

0

2
)

= P(C0)(p
2

11
+ (1� p11)

2
)
2n�8

(q
2

11
+ (1� q11)

2
)
2m

.

Now we are ready to analyze the terms in (53).
We firstly focus on the fraction P(i⌘j and k⌘l)

P(i⌘j)2
, and show

that it converges to zero. Note that condition (48) implies that
� log(p

2

11
+ (1 � p11)

2
) = o(1). This further implies that

p11 = o(1) or 1 � p11 = o(1). As a result, we have
p
2

11
+(1� p11)

2
= 1� o(1) and P(C0) = 1� o(1). It follows

that P(i⌘j and k⌘l)

P(i⌘j)2
=

P(C0)

(p2
11+(1�p11)2)4

! 1. Therefore, we have
(n�2)(n�3)

n(n�1)

P(i⌘j and k⌘l)

P(i⌘j)2
� 1 ! 0 as n ! 1. Then we just

need to bound the first two terms in (53). For the first term
2

n(n�1)P(i⌘j)
, plugging in the expression in (55) gives

� log
2

n(n� 1)P(i ⌘ j)

= 2 log n + (n� 2) log (1� 2p11 + 2p
2

11
)

+ m log (1� 2q11 + 2q
2

11
) + O(1)

= !(1). (56)

Here (56) follows from condition (48). Therefore, the first term
in (53) 2

n(n�1)P(i⌘j)
! 0 as n !1.

Next, for the second term 4(n�2)

n(n�1)

P(i⌘j⌘k)

P(i⌘j)2
in (53), we have

� log

✓
4(n� 2)

n(n� 1)

P(i ⌘ j ⌘ k)

P(i ⌘ j)2

◆

= log n� (n� 2) log

✓
1� 3p11 + 3p

2

11

(1� 2p11 + 2p2

11
)2

◆

�m log

✓
1� 3q11 + 3q

2

11

(1� 2q11 + 2q2

11
)2

◆
+ O(1)

� log n +
1

2
n log(1� 2p11 + 2p

2

11
)
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+
1

2
m log(1� 2q11 + 2q

2

11
) + O(1) (57)

=!(1). (58)

Here (57) follows from the inequality � log

⇣
1�3x+3x

2

(1�2x+2x2)2

⌘
�

1

2
log(1� 2x + 2x

2
) for any x 2 [0, 1]. Equation (58) follows

from the condition (48). Hence, the second term in (53) also
converges to 0 as n ! 1, which completes the proof for
P(X = 0) ! 0 as n !1.

Next, we show that P(X � 1) = o(1) under condition (49).
From (51) and (55), we know that

E[X] =

✓
n

2

◆�
1� 2p11 + 2p

2

11

�n�2 �
1� 2q11 + 2q

2

11

�m
.

By Markov’s inequality, we have

P(X � 1)  E[X]

 exp(2 log n + (n� 2) log(1� 2p11 + 2p
2

11
)

+ m(1� 2q11 + 2q
2

11
))

= exp(�!(1)) = o(1), (59)

where (59) follows by condition (49). ⇤

VI. PROOF OF THE GENERAL ACHIEVABILITY

In this section, we establish the general achievability result
in Theorem 1. In this proof, we first simplify the optimal
estimator for exact alignment, the MAP estimator, to a min-
imum weighted distance estimator in Lemma 4. We then
analyze the probability analyze the error probability that a
wrong permutation ⇡ has a lower weighted distance than the
true underlying permutation in Lemma 5. The main idea in
the proof of Lemma 5 is first bounding the error probability
with the probability generating function of the difference of
weighted distance. The generating function is then further
bounded by applying a cycle decomposition to the edge
permutation induced by ⇡. With these two key lemmas, the
proof of Theorem 1 is then completed by a straightforward
union bound argument. In the following, we state the two key
lemmas and prove Theorem 1 based on them.

To state Lemma 4, we first introduce some basic notation
for graph statistics needed in stating the MAP estimator. For
any attributed graph g on the vertex set Vu [ Va and any
permutation ⇡ over the user vertex set Vu, we use ⇡(g)

to denoted the graph given by applying ⇡ to g. For any
two attributed graphs g1 and g2 on Vu [ Va, we consider
the Hamming distance between their edges restricted to the
user-user vertex pairs in Eu, denoted as

�
u
(g1, g2) =

X

(i,j)2Eu

1{g1((i, j)) 6= g2((i, j))}; (60)

and the Hamming distance between their edges restricted to
the user-attribute vertex pairs in Ea, denoted as

�
a
(g1, g2) =

X

(i,v)2Ea

1{g1((i, v)) 6= g2((i, v))}. (61)

Lemma 4: Let (G1, G
0
2
) be an observable pair generated

from the attributed Erdős–Rényi pair G(n, p;m, q). The MAP

estimator of the permutation ⇧
⇤ based on (G1, G

0
2
) simplifies

to

⇡̂MAP(G1, G
0

2
)

= argmin
⇡2Sn

{w1�
u
(G1,⇡

�1
(G

0

2
)) + w2�

a
(G1,⇡

�1
(G

0

2
))},

where w1 = log

⇣
p11p00
p10p01

⌘
, w2 = log

⇣
q11q00
q10q01

⌘
, and

�
u
(G1,⇡

�1
(G

0

2
)) =

X

(i,j)2Eu

1{G1((i, j)) 6= G
0

2
((⇡(i),⇡(j)))},

�
a
(G1,⇡

�1
(G

0

2
)) =

X

(i,v)2Ea

1{G1((i, v)) 6= G
0

2
((⇡(i), v))}.

In the following lemma, we upper bound the probability that
a permutation has a lower weighted distance than the identity
permutation.

Lemma 5: Let (G1, G2) be an attributed Erdős–Rényi pair
G(n, p;m, q). For any permutation ⇡, let

�⇡(G1, G2) , w1(�
u
(G1,⇡(G2))��

u
(G1, G2))

+ w2(�
a
(G1,⇡(G2))��

a
(G1, G2)).

Then when ⇡ has n� ñ fixed points, we have

P (�⇡(G1, G2)  0)  (1� 2 u)
ñ(n�2)

4 (1� 2 a)
ñm
2 .

We defer the proof of Lemma 4 to Appendices A, and defer
the proof of Lemma 5 to the end of this section. With these two
lemmas, we are now ready to prove Theorem 1. Proof:
[Proof of Theorem 1] Given the observable pair (G1, G

0
2
), the

error probability of MAP estimator can be upper-bounded as

P(⇡̂MAP(G1, G
0

2
) 6= ⇧

⇤
)

=

X

⇡⇤2Sn

P(⇡̂MAP(G1, G
0

2
) 6= ⇡

⇤
|⇧
⇤

= ⇡
⇤
)P(⇧

⇤
= ⇡

⇤
)

=
1

|Sn|

X

⇡⇤2Sn

P(⇡̂MAP(G1, G
0

2
) 6= ⇡

⇤
|⇧
⇤

= ⇡
⇤
) (62)

= P (⇡̂MAP(G1, G2) 6= ⇡id|⇧
⇤

= ⇡id) (63)
= P(⇡̂MAP(G1, G2) 6= ⇡id) (64)
 P(9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0), (65)

where ⇡id denotes the identity permutation, and

�⇡(G1, G2) , w1(�
u
(G1,⇡(G2))��

u
(G1, G2))

+ w2(�
a
(G1,⇡(G2))��

a
(G1, G2)). (66)

Here (62) follows from the fact that ⇧
⇤ is uniformly drawn

from Sn, which implies P(⇧
⇤

= ⇡
⇤
) = 1/|Sn| for all ⇡⇤; (63)

is due to the symmetry among user vertices in G1 and G2;
(64) is due to the independence between ⇧

⇤ and (G1, G2);
(65) is true because by Lemma 4, ⇡MAP(G1, G2) minimizes
the weighted distance, and ⇡MAP 6= ⇡id only if there exists a
permutation ⇡ such that ⇡ 6= ⇡id and �⇡(G1, G2)  0.

Now to prove that (6) implies that the error probability
in (65) converges to 0 as n ! 1, we further upper-bound
the error probability as follows

P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0)



X

⇡2Sn\{⇡id}

P(�⇡(G1, G2)  0) (67)
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=

nX

ñ=2

X

⇡2Sn,ñ

P(�⇡(G1, G2)  0) (68)



nX

ñ=2

|Sn,ñ| max
⇡2Sn,ñ

{P(�⇡(G1, G2)  0)}



nX

ñ=2

n
ñ

max
⇡2Sn,ñ

{P(�⇡(G1, G2)  0)}.

Here (67) follows from directly applying the union bound.
In (68), we use Sn,ñ to denote the set of permutations
on [n] that contains exactly (n � ñ) fixed points. In the
example of Figure 1, the given permutation ⇧

⇤
= (1)(23)

has 1 fixed point and (1)(23) 2 S3,2. Furthermore, we have
|Sn,ñ| =

�
n

ñ

�
(!ñ)  n

ñ, where !ñ, known as the number of
derangements, represents the number of permutations on a set
of size ñ such that no element appears in its original position.

With the upper bound in Lemma 5, we have

P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0)



nX

ñ=2

n
ñ
(1� 2 u)

ñ(n�2)
4 (1� 2 a)

ñm
2

=

nX

ñ=2

⇣
n(1� 2 u)

n�2
4 (1� 2 a)

m
2

⌘ñ

. (69)

For this geometry series, the negative logarithm of its common
ratio is

� log n�
n� 2

4
log (1� 2 u)�

m

2
log (1� 2 a)

� � log n +
n� 2

2
 u + m a (70)

= !(1). (71)

Here we have  u = (
p

p11p00 �
p

p10p01)
2
 1/4 and

 a = (
p

q11q00 �
p

q10q01)
2
 1/4. Therefore, (70) follows

from the inequality log (1 + x)  x for x > �1. Equation (71)
follows from condition (6) by noting that  u is no larger
than 1. Therefore, the geometry series in (69) converge to
0 as n ! 1. This completes the proof that MAP estimator
achieves exact alignment w.h.p. under condition (6). ⇤

Proof: [Proof of Lemma 5] To prove the upper bound
on P(�⇡(G1, G2)  0) in Lemma 5, we will use the method
of generating functions. We first introduce our construction
of a generating function and how it can be used to bound
P(�⇡(G1, G2)  0). We then present several properties of
generating functions (Facts 1, 2, and 3), which will be needed
to finish the proof of Lemma 5.

A generating function for the attributed Erdős–Rényi pair:
For any graph pair (g, h) that is a realization of an attributed
Erdős–Rényi pair, we define a 2⇥2 matrix µ(g, h) as follows
for user-user edges:

µ(g, h) =

✓
µ11 µ10

µ01 µ00

◆
,

where µij =
P

e2Eu
1{g(e) = i, h(e) = j}. Similarly,

we define ⌫(g, h) as follows for user-attribute edges:

⌫(g, h) =

✓
⌫11 ⌫10

⌫01 ⌫00

◆
,

where ⌫ij =
P

e2Ea
1{g(e) = i, h(e) = j}.

Now we define a generating function for attributed graph
pairs, which encodes information in a formal power series. Let
z be a single formal variable and x and y be 2⇥ 2 matrices
of formal variables where

x =

✓
x00 x01

x10 x11

◆
and y =

✓
y00 y01

y10 y11

◆
.

Then for each permutation ⇡, we construct the following
generating function:

A(x,y, z) =

X

g2{0,1}E

X

h2{0,1}E

z
�⇡(g,h)xµ(g,h)y⌫(g,h)

, (72)

where

xµ(g,h) , x
µ00
00

· x
µ01
01

· x
µ10
10

· x
µ11
11

,

y⌫(g,h) , y
⌫00
00

· y
⌫01
01

· y
⌫10
10

· y
⌫11
11

.

Note that in the above expression of A(x,y, z), we enumerate
all possible attributed graph pairs (g, h) as realizations of the
random graph pair (G1, G2). For each realization, we encode
the corresponding µ(g, h),⌫(g, h) and �⇡(g, h) in the powers
of formal variables x,y and z. By summing over all possible
realizations (g, h), the terms having the same powers are
merged as one term. Therefore, the coefficient of a term
z
�⇡xµy⌫ represents the number of graph pairs that have

the same graph statics represented in the powers of formal
variables.

Bounding P(�⇡(G1, G2)  0) in Terms of the Generating
Function: We first argue that when we set x = p and y = q,
the generating function A(p, q, z) becomes the probability
generating function of �⇡(G1, G2) for the attributed Erdős–
Rényi pair (G1, G2) ⇠ G(n, p;m, q). To see this, note
that the joint distribution of G1 and G2 can be written as
P((G1, G2) = (g, h)) = pµ(g,h)q⌫(g,h). Then by combin-
ing terms in A(p, q, z), we have P(�⇡(G1, G2) = d) =

[z
d
]A(p, q, z), where [z

d
]A(p, q, z) denotes the coefficient

of z
d with [z

d
] being the coefficient extraction operator.

We comment that the probability generating function here is
defined in the sense that A(p, q, z) = E

⇥
z
�⇡(G1,G2)

⇤
. Since

�⇡(G1, G2) takes real values, this is slightly different from the
standard probability generating function for random variables
with nonnegative integer values. But this distinction does not
affect our analysis in a significant way since �⇡(G1, G2) takes
values from a finite set.

Now it is easy to see that

P(�⇡(G1, G2)  0) =

X

d0

[z
d
]A(p, q, z). (73)

Cycle Decomposition: We will use the cycle decomposition
of permutations to simply the form of the generating function
A(x,y, z).

Each permutation ⇡ induces a permutation on the vertex-
pair set. We denote this induced permutation as ⇡E , where
⇡
E

: E ! E and ⇡
E
((u, v)) = (⇡(u),⇡(v)) for u, v 2 V .

A cycle of the induced permutation ⇡
E is a list of vertex

pairs such that each vertex pair is mapped to the vertex pair
next to it in the list (with the last mapped to the first one).
The cycles naturally partition the set of vertex pairs, E , into
disjoint subsets where each subset consists of the vertex pairs
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from a cycle. We refer to each of these subsets as an orbit.
For the example given in Figure 1, the induced permutation
on E can divide it into 4 orbits of size 1 (1-orbit): {(2, 3)},
{(1, a)}, {(1, b)}, {(1, c)}, and 4 orbits of length 2 (2-orbit):
{(1, 2), (1, 3)}, {(2, a), (3, a)}, {(2, b), (3, b)}, {(2, c), (3, c)}.

We write this partition of E based on the cycle decompo-
sition as E = [k�1Ok, where Ok denotes the kth orbit. Note
that each cycle consists of either only user-user vertex pairs or
only user-attribute vertex pairs. If a single orbit Ok contains
only user-user vertex pairs, we define its generating function
on formal variables z and x as

AOk(x, z) =

X

g2{0,1}
Ok

X

h2{0,1}
Ok

z
�⇡(g,h)xµ(g,h)

.

If Ok contains only user-attribute vertex pairs, we define its
generating function on formal variables z and y as

AOk(y, z) =

X

g2{0,1}
Ok

X

h2{0,1}
Ok

z
�⇡(g,h)y⌫(g,h)

.

Here, we extend the previous definitions of �⇡ , µ and ⌫
on attributed graphs to any set of vertex pairs. Let E

0 be
an arbitrary set of vertex pairs. Then we define �⇡ for any
g, h 2 {0, 1}

E
0

as

�⇡(g, h) =w1

X

e2E0\Eu

�
1{g(e) 6= h(⇡

E
(e))}� 1{g(e) 6= h(e)}

�

+ w2

X

e2E0\Ea

�
1{g(e) 6= h(⇡

E
(e))}� 1{g(e) 6= h(e)}

�
.

(74)

For g, h 2 {0, 1}
E
0

, we keep µ(g, h) and ⌫(g, h) as 2 ⇥

2 matrices as follows:

µ(g, h) =

✓
µ11, µ10

µ01, µ00

◆
and ⌫(g, h) =

✓
⌫11, ⌫10

⌫01, ⌫00

◆
,

where

µij = µij(g, h) ,
X

e2E0\Eu

1{g(e) = i, h(e) = j}, (75)

⌫ij = ⌫ij(g, h) ,
X

e2E0\Ea

1{g(e) = i, h(e) = j}. (76)

We remind the reader that by setting the set of vertex pairs E 0
to be E these extended definitions on �⇡ , µ and ⌫ agree with
the previous definition where g, h are attributed graphs.

Now, we consider the generating functions for two orbits
Ok and Ok0 . If the size of Ok equals to the size of Ok0

and both orbits consist of user-user vertex pairs, then we
claim that AOk(x, z) = AOk0

(x, z). This is because to obtain
AOk(x, z), we sum over all realizations g, h 2 {0, 1}

Ok ,
which is equivalent to summing over g, h 2 {0, 1}

Ok0 .
Similarly, if the size of Ok equals to the size of Ok0 and
both orbits consist of user-attribute vertex pairs, we have
AOk(y, z) = AOk0

(y, z). To make the notation compact,
we define a generating function Al(x, z) for size l user-user
orbits and a generating function Al(y, z) for size l user-
attribute orbits. Let Eu

l
denote a general user-user orbit of size

l and E
a

l
denote a general user-attribute orbit of size l. Then

Al(x, z) ,
X

g2{0,1}
Eu

l

X

h2{0,1}
Eu

l

z
�⇡(g,h)xµ(g,h)

, (77)

Al(y, z) ,
X

g2{0,1}
Ea

l

X

h2{0,1}
Ea

l

z
�⇡(g,h)y⌫(g,h)

. (78)

Properties of Generating Functions:
Fact 1: The generating function A(x,y, z) of permutation

⇡ can be decomposed into

A(x,y, z) =

Y

l�1

Al(x, z)
t
u
l Al(y, z)

t
a
l ,

where t
u

l
is the number of user-user orbits of size l, t

a

l
is the

number of user-attribute orbits of size l.
Fact 2: Let x 2 R2⇥2 and z 6= 0. Then for all l � 2,

we have Al(x, z)  A2(x, z)
l
2 and Al(x, z)  A2(x, z)

l
2 .

We refer the readers to Appendix D for the proof of Fact 1,
and Theorem 4 in [9] for the proof of Fact 2. Combining these
two facts, we get

A(x,y, z) A1(x, z)
t
u
1A1(y, z)

t
a
1

A2(x, z)

tu�tu1
2 A2(x, z)

nm�ta1
2 . (79)

Here, in (79), we use t
u to denote the total number of user-user

pairs and t
u

=
P

l�1
t
u

l
l =

�
n

2

�
. We have the closed-form

expressions for A1 and A2 following from their definition
in (77) and (78)

A1(x, z) = x00 + x10 + x01 + x11, (80)
A1(y, z) = y00 + y10 + y01 + y11, (81)
A2(x, z) = (x00 + x10 + x01 + x11)

2

+ 2x00x11(z
2w1 � 1) + 2x10x01(z

�2w1 � 1), (82)
A2(y, z) = (y00 + y10 + y01 + y11)

2

+ 2y00y11(z
2w2 � 1) + 2y10y01(z

�2w2 � 1). (83)

Moreover, we have Fact 3 which gives explicit upper bounds
on the coefficients of a generating function

Fact 3: For a discrete random variable X defined over a
finite set X , let

�(z) , E[z
X

] =

X

i2X

P(X = i)z
i (84)

be the probability generating function of X . Then, for any
j 2 X and z > 0,

[z
j
]�(z)  z

�j
�(z). (85)

For any j 2 X and z 2 (0, 1],
X

ij

i2X

[z
i
]�(z)  z

�j
�(z). (86)

For any j 2 X and z � 1,
X

i�j

i2X

[z
i
]�(z)  z

�j
�(z). (87)

Proof: [Proof of Fact 3] We write pi , P(X = i) in this
proof. For any j 2 X and z > 0, we have

z
�j

�(z)� [z
j
]�(z) =

X

i2X

piz
i�j

� pj =

X

i 6=j

i2X

piz
i�j

� 0,

which establishes (85).

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 20:53:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: ATTRIBUTED GRAPH ALIGNMENT 5923

For any j 2 X and z 2 (0, 1), we have
P

ij
pi P

ij
piz

i�j . Therefore, we have
X

ij

i2X

[z
i
]�(z) =

X

ij

i2X

pi 

X

ij

i2X

piz
i�j



X

i2X

piz
i�j

= z
�j

�(z),

which establishes (86).
For any z > 1 and j 2 X , we have

P
i�j

pi P
i�j

piz
i�j . Therefore, we have

X

i�j

i2X

[z
i
]�(z) =

X

i�j

i2X

pi 

X

i�j

i2X

piz
i�j



X

i2X

piz
i�j

= z
�j

�(z),

which establishes (87). ⇤
With the three facts of generating functions stated above,

we are now ready to finish the proof of Lemma 5. For any
⇡ 2 Sn,ñ and any z1 2 (0, 1), we have

P (�⇡(G1, G2)  0)

=

X

d0

[z
d
]A(p, q, z)

 A(p, q, z1) (88)

 A1(p, z)
t
u
1A1(q, z)

t
a
1

A2(p, z)

tu�tu1
2 A2(q, z)

nm�ta1
2 (89)

 A2(p, z)

tu�tu1
2 A2(q, z)

nm�ta1
2 . (90)

In (88), we set z 2 (0, 1), and this upper bound follows from
Fact 3. (89) follows from the decomposition on A(p, q, z)

stated in Fact 1. Equation (90) follows since A1(p, z) =

A1(q, z) = 1 according to their expression in (80) and (81).
To obtain a tight bound, we then search for z 2 (0, 1) that
achieves the minimum of (90). Following the definition of
A2(p, z) in (82) and using the inequality a/x + bx � 2

p
ab,

we have

A2(p, z) = 1 + 2p00p11(z
2w1 � 1) + 2p10p01(z

�2w1 � 1)

� 1� 2p00p11 � 2p10p01 + 4
p

p00p11p10p01

= 1� 2(
p

p00p11 �
p

p10p01)
2 , 1� 2 u. (91)

Here the equality holds if and only if z
2w1 =

q
p10p01
p00p11

. Recall

that w1 = log

⇣
p11p00
p10p01

⌘
. Therefore, A1(p, z) achieves the

minimum when z = e
�1/4. Similarly, we have

A2(q, z) = 1 + 2q00q11(z
2w2 � 1) + 2q10q01(z

�2w2 � 1)

� 1� 2q00q11 � 2q10q01 + 4
p

q00q11q10q01

= 1� 2(
p

q00q11 �
p

q10q01)
2 , 1� 2 a. (92)

Here the equality holds if and only if z
2w2 =

q
q10q01
q00q11

.

With w2 = log

⇣
q11q00
q10q01

⌘
, we have that A2(q, z) achieves

the minimum when z = e
�1/4. Therefore, z = e

�1/4

minimizes (90) and we have

P (�⇡(G1, G2)  0)

 (1� 2 u)

tu�tu1
2 (1� 2 a)

mn�ta1
2

 (1� 2 u)
ñ(2n�ñ�2)

4 (1� 2 a)
ñm
2 (93)

 (1� 2 u)
ñ(n�2)

4 (1� 2 a)
ñm
2 . (94)

In (93), we use the following relations between the number of
fixed vertex pairs t

u

1
, t

a

1
and number of fixed vertices ñ

✓
n� ñ

2

◆
 t

u

1


✓
n� ñ

2

◆
+

ñ

2
, (95)

t
a

1
= (n� ñ)m.

In the given upper bound of t
u

1
,
�
n�ñ

2

�
corresponds to the

number of user-user vertex pairs whose two vertices are both
fixed under ⇡, and ñ

2
is the upper bound of user-user vertex

pairs whose two vertices are swapped under ⇡. In (94), we use
the fact that ñ  n. ⇤

VII. PROOF OF ACHIEVABILITY IN THE SPARSE REGIME

In this section, we prove Theorem 2, which characterizes
the achievable region when the user-user connection is sparse
in the sense that p11 = O(

log n

n
). We use R to denote the

number of user-user edges in the intersection graph and it
follows a binomial distribution Bin(t

u
, p11). In the sparse

regime where p11 = O(
log n

n
), the achievability proof here

is different from what we did in Section VI. The reason
for applying a different proof technique is that, in this
sparse regime, the union bound we applied in Section VI
on P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0) becomes very loose.
To elaborate on this point, notice that the error of union
bound comes from counting the intersection events multiple
times. Therefore, if the probability of such intersection events
becomes larger, then the union bound will be looser. In our
problem, our event space contains sets of possible realizations
on (G1, G2) and an example of the aforementioned intersec-
tion events is {R = 0} which lays in the intersection of
{�⇡(G1, G2)  0} for all ⇡ 2 Sn. Moreover, other events
where R is small are also in the intersection of {�⇡(G1, G2) 

0} for some ⇡ 2 Sn and the number of such permutations
(equivalently the times of repenting when apply union bound)
increases as R gets smaller. As a result, if p11 becomes
relatively small, then the probability that R is small will be
large and thus union bound will be loose.

To overcome the problem of the loose union bound in the
sparse regime, we apply a truncated union bound. We first
expand the probability we want to bound as follows

P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0)

=

X

r�0

P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0|R = r)P(R = r).

We then apply the union bound on the conditional prob-
ability P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0|R = r) . As we
discussed before, the error of applying union bound directly
should be a function on r. Therefore, for some small r, the
union bound on P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0|R = r)

is very loose while for the other r, the union bound is
relatively tight. Therefore, we truncate the union bound on the
conditional probability by taking the minimum with 1, which
is an upper bound for any probability

P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0|R = r)
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= min{1,

X

⇡2Sn\{⇡id}

P (�⇡(G1, G2)  0|R = r)}.

Through such truncating, we avoid adopting the union bound
when it is too loose and obtain a tighter bound. For example,
given that R = 0, we have P (�⇡(G1, G2)  0|R = 0) =

1 for all ⇡ 2 Sn. Thus, by using the truncated union
bound, we obtain 1 as a the upper bound instead of
(n! � 1). Overall, the key idea of our proof is first derive
P (�⇡(G1, G2)  0|R = r) as a function of r and then apply
the truncated union bound according to how large this con-
ditional probability is. This idea is inspired by [9] and is
extended to the attributed Erdős–Rényi pair model. We restate
the theorem to prove as follows.

Theorem 11 (Achievability in Sparse Region): Consider
the attributed Erdős–Rényi pair G(n, p;m, q). If

p11 = O

⇣
log n

n

⌘
, (7)

p10 + p01 = O

⇣
1

log n

⌘
, (8)

p10p01

p11p00

= O

⇣
1

(log n)3

⌘
, (9)

np11 + m a � log n = !(1), (10)

then the MAP estimator achieves exact alignment w.h.p.
Proof: [Proof of Theorem 2] We discuss two regimes

p11 = O(
1

n
) and !(

1

n
)  p11  ⇥(

log n

n
).

When p11 = O(
1

n
), we have n u  np11 = O(1). Thus,

the sufficient condition (6) for exact alignment in Theorem 1
n u
2

+ m a � log n = !(1)

is satisfied when condition (10)

np11 + m a � log n = !(1)

is satisfied. By Theorem 1, exact alignment is achievable w.h.p.
Now suppose !(

1

n
)  p11  ⇥(

log n

n
). Note that the number

of edges in the intersection graph of G1 and G2 has the
following equivalent representation

R = µ11(G1, G2) =

X

e2Eu

1{G1(e) = 1, G2(e) = 1}.

Then, R ⇠ Bin(t
u
, p11) and E[R] = t

u
p11 =

�
n

2

�
p11 = !(n).

By the Chebyshev’s inequality, for any constant ✏ > 0,

P(|R� E[R]| � ✏E[R]) 
Var(R)

✏2E[R]2
=

1� p11

✏2

1

E[R]
= o

✓
1

n

◆
.

In the following, we upper bound the probability of error by
discussing two cases: when R  (1 + ✏)E[R] and when R >

(1 + ✏)E[R]. We have

P (9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0)

=

t
uX

r=0

P (9⇡ 2 Sn\{⇡id}, �⇡(G1, G2)  0|R = r)P(R = r)



X

r(1+✏)E[R]

P (9⇡ 2 Sn\{⇡id}, �⇡(G1, G2)  0|R = r) P(R = r)

+ P (|R� E[R]| > ✏E[R])

=

X

r(1+✏)E[R]

P (9⇡ 2 Sn\{⇡id}, �⇡(G1, G2)  0|R = r) P(R = r)

+ o(1) (96)
Lemma 6



X

r(1+✏)E[R]

3n
2
z
2

6
P(R = r) + o(1) (97)

=

X

r(1+✏)E[R]

3n
2
z
2

6

✓
t
u

r

◆
p

r

11
(1� p11)

t
u
�r

+ o(1)

= 3n
2
(1� 2 a)

m

t
uX

r=0

✓
t
u

r

◆
p

r

11
e
�

4r
n (1� p11)

t
u
�r

+ o(1)

= 3n
2
(1� 2 a)

m

⇣
p11e

�
4
n + 1� p11

⌘t
u

+ o(1) (98)

 3n
2
(1� 2 a)

m
�
1�

4

n
p11

�tu
+ o(1). (99)

Here (96) follows from the Chebyshev’s inequality above.
In (97), z6 = exp{�

2r

n
+

m

2
log (1� 2 a)+O(1)}. This step

will be justified by Lemma 6, which is the major technical step
in establishing the error bound. To apply Lemma 6, we need
the conditions (7) (8) (9) and r = O(E[R]) = O(n log n) to
hold and we will explain the reason in the proof of Lemma 6.
Equation (98) follows from the binomial formula and (99)
follows from the inequality e

x
� 1  x. Taking the negative

logarithm of the first term in (99), we have

� log

⇣
3n

2
(1� 2 a)

m
�
1�

4

n
p11

�tu⌘

= �2 log n�m log (1� 2 a)� t
u
log
�
1�

4p11
n

�
+ O(1)

� �2 log n + 2m a + t
u
4p11

n
+ O(1) (100)

= �2 log n + 2m a + 2np11 + O(1) (101)
= !(1). (102)

Here, we have (100) follows from the inequality log (1 + x) 

x for x > �1. We get equation (101) by plugging in
t
u

=
�
n

2

�
. Equation (102) follows from the assumption (10)

in Theorem 2. Therefore, we have (99) converges to 0 and so
does the error probability. ⇤

Lemma 6: Let (G1, G2) ⇠ G(n,p;m, q) and R =P
e2Eu

1{G1(e) = 1, G2(e) = 1}. If p satisfies constraints (7)
(8) (9), and r = O(n log n), then

P(9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0 | R = r)  3n
2
z
2

6
,

where z6 = exp{�
2r

n
+

m

2
log (1� 2 a) + O(1)}.

Proof: We will establish the above upper bound in three
steps. We denote the set of vertex pairs that are moving under
permutation ⇡E as Em = {e 2 E : ⇡

E
(e) 6= e}. Let

R̃ =

X

e2Em\Eu

1{G1(e) = 1, G2(e) = 1}

represent the number of co-occurred user-user edges in Em

of G1 ^ G2. In Step 1, we apply the method of generating
functions to get an upper bound on P(�⇡(G1, G2)  0 |

R̃ = r̃). The reason for conditioning on R̃ first is that
the corresponding generating function only involves cycles
of length l � 2 and its upper bound is easier to derive
compared with the probability conditioned on R. In Step 2,
we upper bound P(�⇡(G1, G2)  0 | R = r) using result
from Step 1 and properties of the Hypergeometric distribution.
In Step 3, we upper bound P(9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2) 

0 | R = r) using the truncated union bound.
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Step 1: We prove that for any ⇡ 2 Sn,ñ, r̃ = O(
t̃u log n

n
),

and z3 = (1� 2 a)
m
2 ,

P
⇣
�⇡(G1, G2)  0 | R̃ = r̃

⌘
 z

ñ

3
z

r̃

4
z

ñ

5
(103)

for some z4 = O(
1

log n
) and some z5 = O(1).

For the induced subgraph pair on Em ⇥ Em, define the
generating function as

Ã(x,y, z) =

X

g2{0,1}Em

X

h2{0,1}Em

z
�⇡(g,h)xµ(g,h)y⌫(g,h)

.

(104)

Recall for g, h 2 {0, 1}
Em , the expression for the extended

�⇡(g, h), µ(g, h) and ⌫(g, h) in (74), (75) and (76). We have

�⇡(g, h) = w1

X

e2Em\Eu

�
1{g(e) 6= h(⇡

E
(e))}� 1{g(e) 6= h(e)}

�

+ w2

X

e2Em\Ea

�
1{g(e) 6= h(⇡

E
(e))}� 1{g(e) 6= h(e)}

�
.

For the 2⇥ 2 matrices µ(g, h) and ⌫(g, h), their entries µi,j

and ⌫i,j are

µij = µij(g, h) =

X

e2Em\Eu

1{g(e) = i, h(e) = j},

⌫ij = ⌫ij(g, h) =

X

e2Em\Ea

1{g(e) = i, h(e) = j}.

Moreover, according to the decomposition of generating func-
tion in Fact 1 and using the fact that Em only contains orbits
of size larger than 1, we obtain

Ã(x,y, z) =

Y

l�2

Al(x, z)
t
u
l

Y

l�2

Al(y, z)
t
a
l .

where t
u

l
is the number of user-user orbits of size l and t

a

l
is

the number of user-attribute orbits of size l.
Now, by setting

x = x11 ,
✓

p00 p01

p10 x11p11

◆

and y = q, the generating function Ã(x11, q, z) contains only
two formal variables x11 and z. Recall the expression of Ã
in (104). For each g, h 2 {0, 1}

Em , the term in the summation
of Ã(x11, q, z) can be written as

z
�⇡(g,h)x11

µ(g,h)q⌫(g,h)

= z
�⇡(g,h)

x
µ11(g,h)

11
pµ(g,h)q⌫(g,h)

= P((G
Em
1

, G
Em
2

) = (g, h)) z
�⇡(g,h)

x
µ11(g,h)

11
,

where we use G
Em
1

to denote the component of G1 that only
concerns the vertex pair set Em and thus the support of G

Em
1

is {0, 1}
Em . The event {(GEm

1
, G

Em
2

) = (g, h)} is a collection
of attributed graph pairs (g1, g2) each of which have exactly
the same edges in the vertex pair set Em as (g, h).

Notice that the fixed vertex pairs E \ E
m do not have an

influence on �(G1, G2). The event {R̃ = r̃, �⇡(G1, G2) =

d} is a collection of attributed graph pairs (g1, g2) such that
µ11(g

Em
1

, g
Em
2

) = r̃ and �⇡(gEm
1

, g
Em
2

) = d. Then by summing
over all possible g, h 2 {0, 1}

Em , we have

P(�⇡(G1, G2) = d, R̃ = r̃) = [z
d
x

r̃

11
]Ã(x11,y, z).

Thus, we can write

P
⇣
�⇡(G1, G2)  0, R̃ = r̃

⌘

=

X

d0

[z
d
x

r̃

11
]Ã(x11, q, z)

=

X

d0

[z
d
x

r̃

11
]

Y

l�2

Al(x11, z)
t
u
l Al(q, z)

t
a
l

 (x11)
�r̃
X

d0

[z
d
]

Y

l�2

Al(x11, z)
t
u
l Al(q, z)

t
a
l (105)

 (x11)
�r̃
Y

l�2

Al(x11, z)
t
u
l Al(q, z)

t
a
l (106)

 (x11)
�r̃
A2(x11, z)

t̃u
2 A2(q, z)

mñ
2 . (107)

In (105), we set x11 > 0 and the inequality follows from (85)
in Fact 3. In (106), we set z 2 (0, 1) and this inequality follows
from (86) Fact 3. Inequality in (107) follows from Fact 2,
where

t̃
u

=

X

l�2

t
u

l
l = |Em \ Eu|

is the number of moving user-user pairs and

t̃
a

=

X

l�2

t
a

l
l = |Em \ Ea| = ñm

is the number of moving user-attribute pairs.
Next, let us lower bound P(R̃ = r̃). Note that R̃ ⇠

Bin(t̃
u
, p11). We have

P(R̃ = r̃) =

✓
t̃
u

r̃

◆
p

r̃

11
(1� p11)

t̃
u
�r̃

�

✓
t̃
u
p11

r̃(1� p11)

◆r̃

(1� p11)
t̃
u
, (108)

where equation (108) follows since
�
n

k

�
� (n/k)

k for any
nonnegative integers k  n.

Now we combine the bounds in (107) and (108) to upper
bound P

⇣
�⇡(G1, G2)  0 | R̃ = r̃

⌘
. Define p

0

ij
, pij

1�p11
for

i, j 2 {0, 1}. We have

P
⇣
�⇡(G1, G2)  0 | R̃ = r̃

⌘
=

P(�⇡(G1, G2)  0, R̃ = r̃)

P(R̃ = r̃)

 A2(q, z)
mñ
2

✓
r̃

x11p
0
11

t̃u

◆r̃ ✓
A2(x11, z)

(1� p11)
2

◆t̃
u
/2

. (109)

For the first term, similar to what we did in (92), we set z =

e
�1/4, which satisfies the condition z 2 (0, 1) in Fact 3. Recall

the expression of A2(y, z) in (83), we have

A2(q, z)
mñ
2

=
�
1 + 2q00q11(z

2w2 � 1) + 2q10q01(z
�2w2 + 1)

�mñ
2

(110)

= (1� 2q00q11 � 2q10q01 + 4
p

q00q11q10q01)
mñ
2 (111)

=
�
1� 2(

p
q11q00 �

p
q10q01)

2
�mñ

2

= (1� 2 a)
mñ
2

, z
ñ

3
. (112)
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where (110) follows since q00 +q01 +q10 +q11 = 1 and (111)
follows by plugging in z = e

�1/4 and w2 = log

⇣
q11q00
q10q01

⌘
. For

the second term in (109), we set

x11 =
r̃ log n + p11t̃

u

p0
11

t̃u
, (113)

which is positive. Then, we have
✓

r̃

x11p
0
11

t̃u

◆r̃

=

✓
r̃

r̃ log n + p11t̃
u

◆r̃



✓
1

log n

◆r̃

. (114)

For the third term in (109), using equation (82) with z =

e
�1/4, we have

A2(x11, z)

(1� p11)
2

=
(1� p11 + x11p11)

2

(1� p11)
2

+

2x11p11p00(

q
p10p01
p11p00

� 1)

(1� p11)
2

+

2p10p01(

q
p00p11
p10p01

� 1)

(1� p11)
2

= (1 + p
0

11
x11)

2
� 2x11p

0

11
p
0

00
� 2p

0

10
p
0

01

+ 2(x11 + 1)

p
p0
11

p0
00

p0
10

p0
01

 1 + (p
0

11
x11)

2
+ 2p

0

11
x11(p

0

10
+ p

0

01
)

+ 2(x11 + 1)

p
p0
11

p0
00

p0
10

p0
01

,

where the last inequality follows since 1�p
0
00

= p
0
10

+p
0
01

and

�2p
0
10

p
0
01
 0. Taking logarithm of

⇣
A2(x11,z)

(1�p11)2

⌘t̃
u
/2

, we get

t̃
u

2
log

✓
A2(x11, z)

(1� p11)
2

◆
(115)


1

2
t̃
u
(p
0

11
x11)

2
+ t̃

u
p
0

11
x11(p

0

10
+ p

0

01
)

+ t̃
u
(x11 + 1)

p
p0
11

p0
00

p0
10

p0
01

, (116)

where (116) follows from the inequality log(1 + x)  x. Let
us now bound the three terms in (116).

• For the first term, we have

t̃
u
(p
0

11
x11)

2

= t̃
u

✓
r̃ log n

t̃u
+ p11

◆2

=
r̃
2
(log n)

2

t̃u
+ 2r̃(log n)p11 + t̃

u
p
2

11

= O

✓
r̃(log n)

3

n

◆
+ 2r̃(log n)p11 + t̃

u
p
2

11
(117)

= O

✓
r̃(log n)

3

n
+

r̃(log n)
2

n
+

ñ(log n)
2

n

◆
(118)

= o(r̃ + ñ),

where (117) follows from the assumption r̃ = O(
t̃
u

log n

n
)

in (103) and (118) follows since p11 = O(
log n

n
) and

t̃
u
 ñn.

• For the second term in (116), we have

t̃
u
p
0

11
x11(p

0

10
+ p

0

01
)

= (r̃ log n + t̃
u
p11)(p

0

10
+ p

0

01
)


r̃(p10 + p01) log n + ñnp11(p10 + p01)

1� p11

(119)

= O(r̃ + ñ), (120)

where (119) follows from t̃
u
 ñn and (120) follows

since p01+p10 = O(
1

log n
), p11 = O(

log n

n
), and 1�p11 =

⇥(1).

• For the third term in (116), we have

t̃
u
(x11 + 1)

p
p0
11

p0
00

p0
10

p0
01

= t̃
u

✓
r̃ log n + p11t̃

u

p0
11

t̃u
+ 1

◆p
p0
11

p0
00

p0
10

p0
01

= (r̃ log n + p11t̃
u

+ p
0

11
t̃
u
)p
0

00

r
p10p01

p11p00

 (r̃ log n + p11nñ + p
0

11
nñ)p

0

00

r
p10p01

p11p00

(121)

= o(r̃ + ñ). (122)

Here (121) follows since t̃
u
 ñn. (122) follows since

p
0
11

= O(p11) = O

⇣
log n

n

⌘
, p
0
00

= O(1), and p10p01
p11p00

=

O

⇣
1

(log n)3

⌘
.

In summary, the third term of (109) is upper bounded as
✓
A2(x11, z)

(1� p11)
2

◆t̃
u
/2

 exp{O(r̃ + ñ)}. (123)

Finally, combining (112) (114) (123), we have

P
⇣
�⇡(G1, G2)  0 | R̃ = r̃

⌘

 (1� 2 a)
mñ
2

✓
1

log n

◆r̃

exp{O(r̃ + ñ)}

 (1� 2 a)
mñ
2

✓
e
O(1)

log n

◆r̃ ⇣
e
O(1)

⌘ñ

= z
ñ

3
z

r̃

4
z

ñ

5

for some z4 = O(
1

log n
) and z5 = O(1).

Step 2: We will prove that for any ⇡ 2 Sn,ñ and r =

O(n log n),

P(�⇡(G1, G2)  0 | R = r)  z
ñ

6
(124)

for some z6 = exp{�
2r

n
+

m

2
log(1� 2 a) + O(1)}.

In this step, we will compute P(�⇡(G1, G2)  0|R = r)

through P(�⇡(G1, G2)  0|R̃ = r̃), which involves using
properties of a Hypergeometric distribution.

Recall a Hypergeometric distribution, denoted as
Hyp(n, N, K), is the probability distribution of the number
of marked elements out of the n elements we draw without
replacement from a set of size N with K marked elements.
Let �Hyp(z) be the probability generating function for
Hyp(n, N, K) and �Bin(z) be the probability generating
function for a binomial distribution Bin(n,

K

N
). A few useful

properties of the two distributions are as follows.
• The mean of Hyp(n, N, K) is nK/N .
• For all n, N, K 2 N and z > 0, we have �Hyp(z) 

�Bin(z) [27].
• �Bin(z) =

�
1 +

K

N
(z � 1)

�n.
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In our problem, we are interested in the random variable
R̃|R = r. We treat the set of moving user-user vertex pairs
Eu \ Em as a group of marked elements in Eu. From Eu,
we consider drawing r vertex pairs and creating co-occurred
edges for each chosen vertex pair. Along this line, the random
variable R̃|R = r, which is the number of co-occurred edges in
Em\Eu, represents the number of marked elements out of the r

chosen elements and it follows a Hypergeometric distribution
Hyp(r, t

u
, t̃

u
). From this point and on, we always consider

generating functions �Hyp(z) and �Bin(z) with parameters
n = r, N = t

u, K = t̃
u. Moreover, from [9, Lemma IV.5],

we have the following upper bound on �Hyp(z) for any
z 2 (0, 1)

�Hyp(z)  exp

n
rñ

n
(�2 +

e

n�1
+ 2ez)

o
. (125)

Now, we are ready for proving (124). We first write

P(�⇡(G1, G2)  0 | R = r)

= P(�⇡(G1, G2)  0, R̃  r̃
⇤
| R = r)

+ P(�⇡(G1, G2)  0, R̃ > r̃
⇤
| R = r). (126)

Here we set r̃
⇤

= CE[R̃ | R = r] = C
rt̃

u

tu
, where C > 0 is

some positive constant to be specified later. Note that t
u

=�
n

2

�
and r = O(n log n) from the assumption, then we have

r̃
⇤

= O(
t̃
u

log n

n
).

• For the first term in (126), we have

P(�⇡(G1, G2)  0, R̃  r̃
⇤
| R = r)

=

X

r̃r̃⇤

P(R̃ = r̃ | R = r) P(�⇡(G1, G2)  0 | R̃ = r̃)

(127)



X

r̃r̃⇤

P(R̃ = r̃ | R = r)z
ñ

3
z

r̃

4
z

ñ

5
(128)

 z
ñ

3
z

ñ

5

nX

r̃=0

P(R̃ = r̃ | R = r)z
r̃

4

= z
ñ

3
z

ñ

5
�Hyp(z4) (129)

 z
ñ

3
z

ñ

5
exp

n
ñr

n
(�2 +

e

n�1
+ 2ez4)

o
(130)

= z
ñ

3
(e

O(1)
)
ñ

exp

n
�

2ñr

n
+

eñr

n(n�1)
+ O(

1

log n
)

ñr

n

o

(131)
 z

ñ

3
exp

�
ñ
�
�

2r

n
+ O(1)

� 
(132)

In (127), we use the conditional independence of R and
�⇡(G1, G2) given R̃, which can be proved as follows

P(�⇡(G1, G2)  0|R̃ = r̃, R = r)

=
P(�⇡(G1, G2)  0, R̃ = r̃, R = r)

P(R̃ = r̃, R = r)

=
P(�⇡(G1, G2)  0, R̃ = r̃, R� R̃ = r � r̃)

P(R̃ = r̃, R� R̃ = r � r̃)

=
P(�⇡(G1, G2)  0, R̃ = r̃)P(R� R̃ = r � r̃)

P(R̃ = r̃)P(R� R̃ = r � r̃)

(133)
= P((�⇡(G1, G2)  0|R̃ = r̃),

where (133) follows from the fact that �⇡(G1, G2) and
R̃ are determined by Em while R � R̃ is determined
by those fixed vertex pairs. In (128), we have r̃ =

O(
t̃
u

log n

n
) and this inequality follows from (103) from

Step 1. Equation (129) follows from the definition of the
probability generating function for Hyp(r, t

u
, t̃u). (130)

follows form the conclusion about probability generating
function of the hypergeometric distribution in (125) with
z4 2 (0, 1). (131) is true since z4 = O

⇣
1

log n

⌘
and

z5 = O(1). (132) is true since r = O (nlog n).

• For the second term of (126), we have

P(�⇡(G1, G2)  0, R̃ > r̃
⇤
| R = r)

=

X

r̃>r̃⇤

P(�⇡(G1, G2)  0, R̃ = r̃ | R = r)

=

X

r̃>r̃⇤

P(�⇡(G1, G2)  0 | R̃ = r̃)P(R̃ = r̃ | R = r)

(134)
 max

0r̃n

{P(�⇡(G1, G2)  0|R̃ = r̃)}P(R̃ > r̃
⇤
|R = r).

Here (134) follows from the conditional indepen-
dence of �⇡(G1, G2) and R given R̃. To find this
maximum probability, we consider the extreme case.
Recall that �⇡ = w1(�

u
(G1,⇡(G2)) � �

u
(G1, G2)) +

w2(�
a
(G1,⇡(G2)) � �

a
(G1, G2)). We have that

w2(�
a
(G1,⇡(G2))��

a
(G1, G2)) is independent of R̃.

From the upper bound on generating function in (107),
we consider ⇡

E consisting of only 2-cycles. Since
�

u
(G1,⇡(G2)) � �

u
(G1, G2) > 0 only if there

exist user-user vertex pairs such that (G1(e), G2(e)) =

(1, 1) and (G1(⇡
E
(e))G2(⇡

E
(e))) = (0, 0), we have

�
u
(G1,⇡(G2)) � �

u
(G1, G2)  0 with probability

1 given R̃ = 0. Therefore, given R̃ = 0 the probability
that �⇡  0 is maximized. We have

max
0r̃n

{P(�⇡(G1, G2)  0 | R̃ = r̃)}

 P(�⇡(G1, G2)  0 | R̃ = 0)

 z
ñ

3
z

ñ

5
, (135)

where (135) follows from (103) in Step 1 with r̃ = 0.
Now we get

P(�⇡(G1, G2)  0, R̃ > r̃
⇤
| R = r)

 z
ñ

3
z

ñ

5
P(R̃ > r̃

⇤
| R = r)

= z
ñ

3
z

ñ

5

X

i>r̃⇤

[z
i
]�Hyp(z) (136)

 z
ñ

3
z

ñ

5
z
�r̃

⇤

�Hyp(z) (137)

 z
ñ

3
z

ñ

5
z
�r̃

⇤

�Bin(z) (138)

= z
ñ

3
z

ñ

5
z
�r̃

⇤
⇣
1 +

t̃
u

tu
(z � 1)

⌘r

(139)

 z
ñ

3
z

ñ

5
z
�r̃

⇤

exp

n
rt̃

u

tu
(z � 1)

o
(140)

= z
ñ

3
z

ñ

5
exp

n
�r̃

⇤
+

rt̃
u

tu
(e� 1)

o
(141)

= z
ñ

3
z

ñ

5
exp

n
rt̃

u

tu
(�C � 1 + e)

o
(142)
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 z
ñ

3
z

ñ

5
exp

n
rñ(n�2)

n(n�1)
(�C � 1 + e)

o
(143)

 z
ñ

3
exp

�
ñ
�

r

n
(�C � 1 + e) + O(1)

� 
(144)

= o
�
z

ñ

3
exp

�
ñ
�
�

2r

n
+ O(1)

� �
(145)

In (136), �Hyp(z) is a probability generating function for
Hyp(r, t

u
, t̃

u
). In (137), we set z > 1 and the inequality

follows from (87) in Fact 3. In (138), �Bin(z) is a
probability generating function for Bin(r,

t̃
u

tu
) and this

inequality follows from the property of a Hypergeometric
distribution. (139) follows from the definition of �Bin(z).
(140) follows form the inequality 1 + x  e

x. In (141),
we set z = e. In (142), we plug in r̃

⇤
= C

rt̃
u

tu
where

C is larger than (e � 1). In (143), we use the relation
t̃
u
�

ñ(n�2)

2
from (94) and t

u
=
�
n

2

�
. In (144), we plug

in z5 = O(1). (145) is true because we can always
find C > e + 1 such that (144) is exponentially smaller
than (132).

We conclude that the second term of (126) is negligible
compared with the upper bound of the first term given in (132).
Combining the two terms, (126) can be bounded as

P(�⇡(G1, G2)  0 | R = r)

 exp
�
ñ
�
�

2r

n
+

m

2
log(1� 2 a) + O(1)

� 

= z
ñ

6
.

Step 3: We now establish the desired error bound

P(9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0 | R = r)  3n
2
z
2

6
,

where z6 = exp{�
2r

n
+

m

2
log(1� 2 a) + O(1)}.

When nz6 > 2/3, we have

P(9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0 | R = r)  1  3n
2
z
2

6
.

Now assume that nz6  2/3. We can bound

P(9⇡ 2 Sn \ {⇡id}, �⇡(G1, G2)  0 | R = r)



nX

ñ=2

X

⇡2Sn,ñ

P(�⇡(G1, G2)  0 | R = r) (146)



nX

ñ=2

|Sn,ñ| max
⇡2Sn,ñ

{P(�⇡(G1, G2)  0 | R = r)}



nX

ñ=2

|Sn,ñ|z
ñ

6
(147)



nX

ñ=2

n
ñ
z

ñ

6
(148)


(nz6)

2

1� nz6

 3n
2
z
2

6
, (149)

where (146) follows from the union bound, (147) follows from
inequality (124) proved in Step 2, (148) follows since |Sn,ñ| 

n
ñ, and (149) holds since nz6  2/3.
In summary, 3n

2
z
2

6
is always an upper bound on the

conditional probability. This completes the proof of Lemma 6.
⇤

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the attributed Erdős–Rényi pair
model to study the effect of publicly available side information
for graph alignment. We established information-theoretic lim-
its for exact alignment, including achievability and converse
conditions that match for a certain range of parameters. These
conditions can be used to quantify the effect of side infor-
mation. We also specialized our results to three well-studied
graph alignment models for comparison.

There are many more interesting questions to ask about
the attributed graph alignment problem. Here we give some
example directions. As discussed in Section III, our achiev-
ability conditions and converse conditions do not match in
the most general scenario. We conjecture that the converse
conditions can be potentially improved, especially given the
recent developments on tighter converse conditions for the
Erdős–Rényi pair model in [8]. Moreover, the achievability
results in this work is based on the MAP estimator, which has
no polynomial-time implementation. Therefore, a natural ques-
tion is whether there is any efficient algorithms for attributed
graph alignment, and whether there is any fundamental gap
between the achievable region by efficient algorithms and
the information-theoretic achievable region. This question is
partially answered in the concurrent work [12] by proposing
two efficient algorithms for attributed graph alignment and
analyzing their feasible region. Another direction that is worth
further investigation is graph alignment under more general
attributed graph models. Our model has assumed that the
user-attribute edges are independent of the user-user edges.
However, in the social network example, users attending the
same institute are more likely to be friends than users attending
different institutes. Therefore, it would be interesting to con-
sider graph models in which user-attribute edges are correlated
with user-user edges, and to investigate how the correlation
affects graph alignment. We comment that a starting point can
be the multiplicative attribute graph model proposed in [28],
where the probability of a user-user edge depends on the
product of individual attribute-attribute similarity.

APPENDIX A
MAP ESTIMATOR

In this section, we derive the expression of the MAP for the
attributed Erdős–Rényi graph pair model G(n,p;m, q).

Lemma 7: Let (G1, G
0
2
) be an observable pair generated

from the attributed Erdős–Rényi pair G(n,p;m, q). The MAP
estimator of the permutation ⇧

⇤ based on (G1, G
0
2
) simplifies

to

⇡̂MAP(G1, G
0

2
)

= argmin
⇡2Sn

{w1�
u
(G1,⇡

�1
(G

0

2
)) + w2�

a
(G1,⇡

�1
(G

0

2
))},

where w1 = log

⇣
p11p00
p10p01

⌘
, w2 = log

⇣
q11q00
q10q01

⌘
, and

�
u
(G1,⇡

�1
(G

0

2
)) =

X

(i,j)2Eu

1{G1((i, j)) 6= G
0

2
((⇡(i),⇡(j)))},

�
a
(G1,⇡

�1
(G

0

2
)) =

X

(i,v)2Ea

1{G1((i, v)) 6= G
0

2
((⇡(i), v))}.
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Proof: Let (g1, g
0
2
) be a realization of an observable

pair (G1, G
0
2
) from G(n, p;m, q). Then the posterior of the

permutation ⇧
⇤ can be written as:

P(⇧
⇤

= ⇡|G1 = g1, G
0

2
= g

0

2
)

=
P(G1 = g1, G

0
2

= g
0
2
|⇧
⇤

= ⇡)P(⇧
⇤

= ⇡)

P (G1 = g1, G
0
2

= g0
2
)

/P(G1 = g1, G
0

2
= g

0

2
|⇧
⇤

= ⇡) (150)
=P(G1 = g1, G2 = ⇡

�1
(g
0

2
)) (151)

=

Y

(i,j)2{0,1}2

p
µij(g1,⇡

�1
(g
0

2))

ij
q
⌫ij(g1,⇡

�1
(g
0

2))

ij
. (152)

Here equation (150) follows from the fact that ⇧
⇤ is uniformly

drawn from Sn and P(G1 = g1, G
0
2

= g
0
2
) does not depend

on ⇡. Equation (151) is due to the independence between ⇧
⇤

and (G1, G2).
To further simplify equation (152), note that the total

number of edges in a graph is invariant under any permu-
tation. We define �

u
(G1) as the total number of user-user

edges in graph G1 and �
u
(⇡
�1

(G
0
2
)) for graph ⇡

�1
(G

0
2
).

Similarly, we define �
a
(G1) and �

a
(⇡
�1

(G
0
2
)) as the total

number of user-attribute edges for graph G1 and ⇡
�1

(G
0
2
),

respectively. Recall our definitions on Hamming distance
�

u
(G1,⇡

�1
(G

0
2
)) and µ(G1,⇡

�1
(G

0
2
)), and notice that

�
u
(G1,⇡

�1
(G

0
2
)) = µ10+µ01. Moreover, we have �u

(G1) =

µ11 + µ10 and �
u
(G2) = �

u
(⇡
�1

(G
0
2
)) = µ11 + µ01. Then,

for the user-user set Eu, we have

µ11 =
�

u
(G1) + �

u
(⇡
�1

(G
0
2
))

2
�

�
u
(G1,⇡

�1
(G

0
2
))

2

µ10 =
�

u
(G1)� �

u
(⇡
�1

(G
0
2
))

2
+

�
u
(G1,⇡

�1
(G

0
2
))

2

µ01 =
�

u
(⇡
�1

(G
0
2
))� �

u
(G1)

2
+

�
u
(G1,⇡

�1
(G

0
2
))

2

µ00 =

✓
n

2

◆
�
�

u
(G1) + �

u
(⇡
�1

(G
0
2
))

2
�

�
u
(G1,⇡

�1
(G

0
2
))

2
.

Similarly, for the user-attribute set Ea, we have
�

a
(G1,⇡

�1
(G

0
2
)) = ⌫10 + ⌫01, �

a
(G1) = ⌫11 + ⌫10

and �
a
(G2) = �

a
(⇡
�1

(G
0
2
)) = ⌫11 + ⌫01. Therefore, we get

the following.

⌫11 =
�

a
(G1) + �

a
(⇡
�1

(G
0
2
))

2
�

�
a
(G1,⇡

�1
(G

0
2
))

2

⌫10 =
�

a
(G1)� �

a
(⇡
�1

(G
0
2
))

2
+

�
a
(G1,⇡

�1
(G

0
2
))

2

⌫01 =
�

a
(⇡
�1

(G
0
2
))� �

a
(G1)

2
+

�
a
(G1,⇡

�1
(G

0
2
))

2

⌫00 = nm�
�

a
(G1) + �

a
(⇡
�1

(G
0
2
))

2
�

�
a
(G1,⇡

�1
(G

0
2
))

2
.

Since �
u
(G1),�

u
(⇡
�1

(G
0
2
)),�

a
(G1), and �

a
(⇡
�1

(G
0
2
)) do

not depend on ⇡, we can further simplify the posterior as
follows

P(⇧
⇤

= ⇡|G1 = G1, G
0

2
= G

0

2
)

/

Y

(i,j)2{0,1}2

p
µij(G1,⇡

�1
(G

0

2))

ij
q
⌫ij(G1,⇡

�1
(G

0

2))

ij

/

✓
p11p00

p10p01

◆��u(G1,⇡�1(G0
2))

2
✓

q11q00

q10q01

◆��a(G1,⇡�1(G0
2))

2

(153)

= exp

⇢
�w1

�
u
(G1,⇡

�1
(G

0
2
))

2
� w2

�
a
(G1,⇡

�1
(G

0
2
))

2

�
,

(154)

where w1 , log

⇣
p11p00
p10p01

⌘
and w2 , log

⇣
q11q00
q10q01

⌘
. Note that

w1 > 0 and w2 > 0 since we assume that the edges of G1 and
G2 are positively correlated. Therefore, of all the permuta-
tions in Sn, the one that minimizes the weighted Hamming
distance w1�

u
(G1,⇡

�1
(G

0
2
))+w2�

a
(G1,⇡

�1
(G

0
2
)) achieves

the maximum posterior probability. ⇤

APPENDIX B
PROOF OF LEMMA 1

Recall that when we specialize the attributed Erdős–Rényi
pair model by setting p = q, we can treat the m attributes as
m seeds. The only difference between the G(n, p;m, p) model
and the seeded model G(n, m,p) is that there are no edges
between seeds in the specialized model, but those edges exist
in the seeded model. Here, we show that this distinction has no
influence on the information-theoretic limit of exact alignment.
To see this, we prove that the optimal estimator for the seeded
Erdős–Rényi pair—the MAP estimator—also simplifies to
minimizing the Hamming distance of the user-user edges and
user-seed edges.

Lemma 8: Let (G1, G
0
2
) be a pair of graphs generated from

the seeded Erdős–Rényi pair G(n, m,p). The MAP estimator
of the permutation ⇧

⇤ based on (G1, G
0
2
) simplifies to

⇡̂MAP(G1, G
0

2
)

= argmin
⇡2Sn

{�
u
(G1,⇡

�1
(G

0

2
)) + �

a
(G1,⇡

�1
(G

0

2
))},

where

�
u
(G1,⇡

�1
(G

0

2
)) =

X

(i,j)2Eu

1{G1((i, j)) 6= G
0

2
((⇡(i),⇡(j)))},

�
a
(G1,⇡

�1
(G

0

2
)) =

X

(i,v)2Ea

1{G1((i, v)) 6= G
0

2
((⇡(i), v))}.

Proof: To start, we have the posterior of the underlying
permutation.

P(⇧
⇤

= ⇡|G1 = g1, G
0

2
= g

0

2
)

=
P(G1 = g1, G

0
2

= g
0
2
|⇧
⇤

= ⇡)P(⇧
⇤

= ⇡)

P (G1 = g1, G
0
2

= g0
2
)

/ P(G1 = g1, G
0

2
= g

0

2
|⇧
⇤

= ⇡) (155)
= P(G1 = g1, G2 = ⇡

�1
(g
0

2
)). (156)

Here (155) follows since ⇧
⇤ is uniformly drawn. (156) follows

since ⇧
⇤ is independent of G1 and G2. For ease of notation,

we use g
⇡
2

to denote ⇡�1
(g
0
2
). Then according to the seeded

graph model in Section II, we have

P(G1 = g1, G2 = g
⇡

2
)

=p
µ11(g1,g

⇡
2 )

11
p

µ00(g1,g
⇡
2 )

00
p

µ10(g1,g
⇡
2 )

10
p

µ01(g1,g
⇡
2 )

01
. (157)

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 20:53:16 UTC from IEEE Xplore.  Restrictions apply. 



5930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

In (157), we define

µ11(g1, g
⇡

2
) ,

X

i,j2Vu0

1⇢
i
g1
⇠j,i

g⇡
2
⇠ j

� +

X

i,j2Vs

1⇢
i
g1
⇠j,i

g⇡
2
⇠ j

�

+

X

i2Vu0 ,j2Vs

1⇢
i
g1
⇠j,i

g⇡
2
⇠ j

� +

X

i2Vs,j2Vu0

1⇢
i
g1
⇠j,i

g⇡
2
⇠ j

�

µ10(g1, g
⇡

2
) ,

X

i,j2Vu0

1(
i
g1
⇠j,i

g⇡
2
6⇠ j

) +

X

i,j2Vs

1(
i
g1
⇠j,i

g⇡
2
6⇠ j

)

+

X

i2Vu0 ,j2Vs

1(
i
g1
⇠j,i

g⇡
2
6⇠ j

) +

X

i2Vs,j2Vu0

1(
i
g1
⇠j,i

g⇡
2
6⇠ j

)

µ01(g1, g
⇡

2
) ,

X

i,j2Vu0

1⇢
i

g1
6⇠j,i

g⇡
2
⇠ j

� +

X

i,j2Vs

1⇢
i

g1
6⇠j,i

g⇡
2
⇠ j

�

+

X

i2Vu0 ,j2Vs

1⇢
i
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6⇠j,i

g⇡
2
⇠ j

� +

X

i2Vs,j2Vu0
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i
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6⇠j,i
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⇠ j

�

µ00(g1, g
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) ,

X
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1(
i
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g⇡
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6⇠ j

) +

X

i,j2Vs

1(
i
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2
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+

X
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i
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X
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i
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6⇠j,i

g⇡
2
6⇠ j

).

where Vu
0 , Vu \V

s is the set of unmatched user vertices and
V

s is the set of seed vertices. Notice that the term summing
seed-seed edges is always the same for every ⇡ 2 Su since
we only permute user vertices. Here, we define

µ
0

11
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2
) ,

X

i,j2Vu0

1⇢
i
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⇠j,i
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2
⇠ j
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+

X
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�
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⇡
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)

+

X

i2Vu0 ,j2Vs

1(
i
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2
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i
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2
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µ
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2
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i
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6⇠j,i
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2
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+

X
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1⇢
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6⇠j,i
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� +

X
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2
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�

µ
0

00
(g1, g

⇡

2
) ,

X

i,j2Vu0

1(
i

g1
6⇠j,i

g⇡
2
6⇠ j

)

+

X

i2Vu0 ,j2Vs

1(
i

g1
6⇠j,i
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2
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) +

X
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i
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6⇠j,i

g⇡
2
6⇠ j
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We therefore have

P(G1 = g1, G2 = g
⇡

2
)

/ p
µ
0

11(g1,g
⇡
2 )

11
p

µ
0

00(g1,g
⇡
2 )

00
p

µ
0

10(g1,g
⇡
2 )

10
p

µ
0

01(g1,g
⇡
2 )

01
(158)

So far the MAP estimator we derived here is exactly the
same as the estimator for attributed graph alignment. Applying

Lemma 4, we then get

⇡̂MAP(g1, g
0

2
) = argmin

⇡2Su

{µ
0

10
(g1, g

⇡

2
) + µ

0

01
(g1, g

⇡

2
)}.

⇤

APPENDIX C
PROOF OF LEMMA 2

Lemma 9: Let (G1, G2) be an attributed Erdős–Rényi pair
G(n,p;m, q). Given |Aut(G1^G2)|, the probability that MAP
estimator succeeds is at most 1

|Aut(G1^G2)|
.

Proof: We assume without loss of generality that the
true underlying permutation ⇧

⇤ us the identity permutation,
i.e., G2 = G

0
2
. Recall that from Lemma 4 we have

⇡̂MAP(G1, G
0

2
)

= argmin
⇡2Sn

{w1�
u
(G1,⇡

�1
(G

0

2
)) + w2�

a
(G1,⇡

�1
(G

0

2
))},

where w1 = log

⇣
p11p00
p10p01

⌘
, w2 = log

⇣
q11q00
q10q01

⌘
, and

�
u
(G1,⇡

�1
(G

0

2
)) =

X

(i,j)2Eu

1{G1((i, j)) 6= G
0

2
((⇡(i),⇡(j)))},

�
a
(G1,⇡

�1
(G

0

2
)) =

X

(i,v)2Ea

1{G1((i, v)) 6= G
0

2
((⇡(i), v))}.

It suffices to show that for any � 2 Aut(G1 ^ G2),
we have �

u
(G1, G2) = �

u
(G1,�(G2)) and �

a
(G1, G2) =

�
a
(G1,�(G2)). This would imply that permutation �

�1 has
the same posterior as the identity permutation, and thus the
estimator cannot do better than a random guess between these
permutations.

We firstly show that �
u
(G1, G2) = �

u
(G1,�(G2)). Con-

sider a user pair (i, j) 2 Eu. Suppose that G1(i, j) =

G2(i, j) = 1, i.e., (G1 ^ G2)(i, j) = 1. Because
� 2 Aut(G1 ^ G2), we know that G1(�(i),�(j)) =

G2(�(i),�(j)) = 1. So the contribution of (i, j) to
�

u
(G1, G2) and �

u
(G1,�(G2)) are both zero. Next we con-

sider the case of (G1 ^G2)(i, j) = 0. This includes subcases
of G1(i, j) = 0, G2(i, j) = 1 and G1(i, j) = 1, G2(i, j) =

0 and G1(i, j) = 0, G2(i, j) = 0. Let Su denote the edge
orbit in the permutation �

E that contains (i, j). Because
� 2 Aut(G1 ^ G2), we know that (G1 ^ G2)(e) = 0 for
each e 2 Su. Note that the contribution of e to �

u
(G1, G2)

is one if G1(e) = 0, G2(e) = 1 or G1(e) = 1, G2(e) =

0 and the contribution is zero if G1(e) = 0, G2(e) = 0.
Therefore, the total contribution of the orbit Su to �

u
(G1, G2)

is given by the total number of edges in G1 and G2 on the
orbit Su. Similarly, the contribution of Su to �

u
(G1,�(G2))

is the same. Thus, we have �
u
(G1, G2) = �

u
(G1,�(G2)).

Secondly, we show that �
a
(G1, G2) = �

a
(G1,�(G2)).

Consider a user-attribute pair (i, a) 2 Ea. Then if (G1 ^

G2)(i, a) = 1, we have G1(i, a) = G2(i, a) = G1(�(i), a) =

G2(�(i), a) = 1. So the contribution of (i, a) to �
a
(G1, G2)

and �
a
(G1,�(G2)) are both zero. Next, suppose (G1 ^

G2)(i, a) = 0. Let Sa denote the edge orbit that contains (i, a).
It is not hard to see that the contribution of the user-attribute
pairs in Sa to �

a
(G1, G2) equals to the total number of edges
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in G1 and G2 on Sa, and its contribution of �
a
(G1,�(G2))

is the same. So we have �
a
(G1, G2) = �

a
(G1,�(G2)).

⇤

APPENDIX D
PROOF OF FACT 1

Fact 4: The generating function A(x,y, z) of permutation
⇡ can be decomposed into

A(x,y, z) =

Y

l�1

Al(x, z)
t
u
l Al(y, z)

t
a
l ,

where t
u

l
is the number of user-user orbits of size l, t

a

l
is the

number of user-attribute orbits of size l.
Proof: Recall the definition of A(x,y, z) for a given ⇡

A(x,y, z) =

X

g2{0,1}E

X

h2{0,1}E

z
�⇡(g,h)xµ(g,h)y⌫(g,h)

.

According to the cycle decomposition on ⇡
E , we write E =

[i�1Oi, where use Oi is the ith orbit and there are N orbits
in total. Then we have the following.

A(x,y, z)

=

X

g2{0,1}E

X

h2{0,1}E

z
�⇡(g,h)xµ(g,h)y⌫(g,h)

=

X

g2{0,1}E

X

h2{0,1}E

Y

e2E

z
�⇡(ge,he)xµ(ge,he)y⌫(ge,he) (159)

=

X

g2{0,1}E

X

h2{0,1}E

NY

i=1

f(gOi , hOi) (160)

=

X

gO12{0,1}
O1

X

hO12{0,1}O1

. . .

X

hON
2{0,1}ON

NY

i=1

f(gOi , hOi)

(161)

=

NY

i=1

0

@
X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

f(gOi , hOi)

1

A (162)

=

NY

i=1

AOi(x,y, z) (163)

=

Y

l�1

Al(x, z
w1)

t
u
l Al(y, z

w2)
t
a
l . (164)

Here we use gE0 to denote a subset of g that contains only
vertex pairs in E 0 and hE0 to denote a subset of h that contains
only vertex pairs in E

0, where E
0 can be any set of vertex

pairs. In (159), ge (resp. he) represent a subset of g (resp. h)
that contains a single vertex pair e. In (160), gOi (resp. hOi)
represents the subset of g (resp. h) that contains only vertex
pairs in the orbit Oi. We define f(gOi , hOi) as a function of
gOi and hOi where f(gOi , hOi) =

Q
e2Oi

z
�⇡(ge,he)xµ(ge,he)

if Oi only contains user-user pairs, and f(gOi , hOi) =Q
e2Oi

z
�⇡(ge,he)y⌫(ge,he) if Oi only contains user-attribute

pairs. Equation (161) follows because Oi’s are disjoint and

their union is E . Note that f(gOi , hOi) only concerns ver-
tex pairs in the cycle Oi since for e 2 Oi we have
⇡
E
(e) 2 Oi. Then, (162) follows because f(gOi , hOi)’s

are independent functions. In (163), we use AOi(x,y, z)

to denote the generating function for the orbit Oi where
AOi(x,y, z) = AOi(x, z) if Oi contains user-user vertex
pairs; AOi(x,y, z) = AOi(y, z) if Oi contains user-attribute
vertex pairs. To see why this equation follows, note that if Oi

contains only user-user vertex pairs, then
X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

f(gOi , hOi)

=

X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

Y

e2Oi

z
�⇡(ge,he)xµ(ge,he)

=

X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

z
�⇡(gOi ,hOi )xµ(gOi ,hOi )

= AOi(x, z).

If Oi contains only user-attribute vertex pairs, then
X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

f(gOi , hOi)

=

X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

Y

e2Oi

z
�⇡(ge,he)y⌫(ge,he)

=

X

gOi2{0,1}Oi

X

hOi2{0,1}Oi

z
�⇡(gOi ,hOi )y⌫(gOi ,hOi )

= AOi(y, z).

In (164), we apply the fact that orbits of the same size have
the same generating function. ⇤

APPENDIX E
A USEFUL FACT FOR COROLLARIES 1 AND 2

Fact 5: Consider the subsampling representation of the
graph parameters
✓

p11 p10

p01 p00

◆

=

✓
psu,1su,2 psu,1(1� su,2)

p(1� su,1)su,2 p(1� su,1)(1� su,2) + 1� p

◆
,

If 1 � p = ⇥(1), then we have  u = ⇥(p11) and  u =

p11�⇥(p11p
1/2

). The statement holds if we exchange p to q.
Proof: To see  u = ⇥(p11), we write  u using

parameters from the subsampling model and we have

 u = (
p

p11p00 �
p

p10p01)
2

= (

q
p11((1� p) + p(1� su,1)(1� su,2))

�

q
p2su,1su,2(1� su,1)(1� su,2))

2

= (1� p)p11

·

✓q
1 +

p(1�su,1)(1�su,2)

1�p
�

q
p(1�su,1)(1�su,2)

1�p

◆2

=
(1� p)p11✓q

1 +
p(1�su,1)(1�su,2)

1�p
+

q
p(1�su,1)(1�su,2)

1�p

◆2
.

(165)
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In (165), we have that (1 � p) = ⇥(1) and
1r

1+
p(1�su,1)(1�su,2)

1�p +

r
p(1�su,1)(1�su,2)

1�p

= ⇥(1). Therefore,

 u = ⇥(p11).
To see  u = p11 �⇥(p

3/2

11
), we take

 u = (
p

p11p00 �
p

p10p01)
2

= p11p00 + p10p01 � 2
p

p11p00p10p01

= p11((1� p) + p(1� su,1)(1� su,2))

+ p
2
su,1su,2(1� su,1)(1� su,2)

�

q
p2

11
((1� p) + p(1� su,1)(1� su,2))p(1� su,1)(1� su,2)

= p11 �O(p11p
1/2

).

⇤

APPENDIX F
PROOF OF COROLLARY 1

A. Achievability
In this proof, we first show that, under the assumptions on

the user-user edges in condition (12) and (14), the achievability
result becomes

np11 + m a � log n = !(1).

Next, we apply conditions (13) and (15) to bound difference
between q11 and  a, and complete the proof.

For the user-user edge part, we check the two regimes
p11 = !(

log n

n
) and p11 = O(

log n

n
) separately. If p11 =

!(
log n

n
), then with the assumption on the user-user edge

density (12), we also have  u = !(
log n

n
) because  u =

⇥(p11) (see Fact 5 in Appendix E). Therefore exact alignment
is achievable according to Theorem 1: n u

2
+ m a � log n =

!(log n) + m a � log n = !(1). Now we check the case
when p11 = O(

log n

n
). We will see that all the conditions in

Theorem 2 are satisfied. Notice that p10 = psu,1(1� su,2) 

psu,1 =
p11
su,2

and p01 = psu,2(1 � su,1)  psu,2 =
p11
su,1

.

Under assumption (14), we know that su,1 = ⌦(
(log n)

4

n
)

and su,2 = ⌦(
(log n)

4

n
). Because p11 = O(

log n

n
), we have

p01 = O(
1

log n
) and p10 = O(

1

log n
). Moreover, note that

p10p01

p00p11

= O

✓
p
2
su,1su,2(1� su,1)(1� su,2)

psu,1su,2

◆
= O(p).

Because psu,1su,2 = O

⇣
log n

n

⌘
and su,1su,2 = ⌦

⇣
(log n)

4

n

⌘
,

we have p = O

⇣
1

(log n)3

⌘
. Then it follows that the sparsity

conditions in Theorem 2 (7), (8) and (9) are all satisfied.
Therefore, we just need np11+m a�log n = !(1) to guaran-
tee that exact alignment is achievable. Combining the two case,
we come to the conclusion that, under the assumptions (12)
(14), the achievability results in Theorem 1 and Theorem 2
simplifies to

np11 + m a � log n = !(1). (166)

From the above discussion, we further simplify the achiev-
ability results so that it depends only on np11 and mq11,
which are the two only parameters in the converse bound. Then

we can show in what regime the achievability and converse
are tight (up to ±!(1)). From the achievability in last step:
np11 + m a � log n = !(1), we then need to determine the
difference between m a and mq11. Firstly, consider the case
when mq11 = !(log n). In this case, we immediately have that
np11 + m a � log n = !(1) because  a = ⇥(q11) by Fact 5.
Now, consider the case when mq11 = O(log n). Suppose
np11 + mq11 � log n = !(1) implies mq11q

1/2
= O(1), then

it implies np11 +m a� log n = !(1) as well. This is because
mq11 �m a = O(mq11q

1/2
). Therefore, we need to find the

condition for np11+mq11�log n = !(1) to imply mq11q
1/2

=

O(1). Because mq11 = mqsa,1sa,2 = O(log n), we have

mq11q
1/2

= mq11

⇣
mq11

msa,1sa,2

⌘1/2

= O

⇣
(log n)

3/2

(msa,1sa,2)1/2

⌘
. Con-

dition (15) implies that msa,1sa,2 = ⌦((log n)
3
), so we have

that mq11q
1/2

= O(1), which completes the proof.

B. Converse
In this proof, we will show that

np11 + mq11 � log n ! �1

implies condition (11) in Theorem 3. Note that � log(x
2

+

(1� x)
2
) � 2x for any x 2 [0, 1]. Therefore, we have

� n log(p
2

11
+ (1� p11)

2
)�m log(q

2

11
+ (1� q11)

2
)

 2np11 + 2mq11  2 log n� !(1),

which completes the proof.

APPENDIX G
PROOF OF COROLLARY 2

A. Proof for the Achievability Condition (41)
Recall that from (166) in the proof of Corollary 1, we have,

under assumptions (12) and (14), our achievability results
(Theorem 1 and Theorem 2) simplify to the following
condition

np11 + m a � log n +1,

where  a � q11 = O(q11q
1/2

).
Now, in the seeded Erdős–Rényi setting, we have p =

q. Because condition (31) implies conditions (12) and (14),
we obtain the following achievability for seeded alignment

np11 + m u � log n + !(1), (167)

where  u � p11 = O(p11p
1/2

).
For the above achievability condition (167), we show that

it is equivalent to

(n + m)p11 � log n + !(1) (168)

by comparing them in the following three regimes.
1) For the regime (n+m)p11 = !(log n), we show that it is

strictly contained in both (167) and (168). We can easily
see that (n + m)p11 = !(log n) satisfy condition (168).
For condition (167), recall that we have  u = ⇥(p11)

from Fact 5 (cf. Appendix E). Thus, we also have (n +

m)p11 = !(log n) satisfy condition (168).
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2) In the regime (n + m)p11 = ⇥(log n), we have

mp11p
1/2

= O

 
mp11

✓
log n

(m + n)s2

◆1/2
!

= O

 
log n

✓
log n

ns2

◆1/2
!

= O

✓
(log n)

3/2

(log n)2

◆

= O(1),

where the penultimate equality follows by assump-
tion (14). For the condition (167), we have m u =

mp11 � O(mp11p
1/2

) = mp11 � O(1). Therefore, con-
dition (167) can be simplified to np11 + mp11 � log n +

!(1), which is exactly condition (168).
3) For the regime (n+m)p11 = o(log n), it is not contained

by neither (167) nor (168).

B. Proof for the Converse Condition (42)
From Theorem 3, we have the converse condition for

attributed Erdős–Rényi alignment

np11 + mq11  log n� !(1).

Now, in the seeded Erdős–Rényi setting, we have p = q and
we directly obtain the following converse for seeded alignment

(n + m)p11  log n� !(1). (169)
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