
3622 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

On the Feasible Region of Efficient Algorithms for
Attributed Graph Alignment

Ziao Wang , Graduate Student Member, IEEE, Ning Zhang, Weina Wang , Member, IEEE,
and Lele Wang , Member, IEEE

Abstract— Graph alignment aims at finding the vertex corre-

spondence between two correlated graphs, a task that frequently

occurs in graph mining applications such as social network analy-

sis. Attributed graph alignment is a variant of graph alignment,

in which publicly available side information or attributes are

exploited to assist graph alignment. Existing studies on attributed

graph alignment focus on either theoretical performance without

computational constraints or empirical performance of efficient

algorithms. This motivates us to investigate efficient algorithms

with theoretical performance guarantee. In this paper, we propose

two polynomial-time algorithms that exactly recover the vertex

correspondence with high probability. The feasible region of the

proposed algorithms is near optimal compared to the information-

theoretic limits. When specialized to the seeded graph alignment

problem under the seeded Erdős–Rényi graph pair model, the

proposed algorithms extends the best known feasible region for

exact alignment by polynomial-time algorithms.

Index Terms— Graph theory, statistics, inference algorithms.

I. INTRODUCTION

T
HE graph alignment problem, also referred to as the
graph matching or noisy graph isomorphism problem,

is the problem of finding the correspondence between the
vertices of two correlated graphs. This problem has been
given increasing attention for its applications in social network
de-anonymization. For instance, datasets of social networks
are typically anonymized for privacy protection. However,
an attacker may be able to de-anonymize the dataset by
aligning its user-user connection graph with that of publicly

Manuscript received 16 March 2023; revised 16 December 2023;
accepted 22 December 2023. Date of publication 8 January 2024; date of
current version 23 April 2024. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC) Discov-
ery under Grant RGPIN-2019-05448, in part by the NSERC Collaborative
Research and Development under Grant CRDPJ 54367619, and in part by NSF
under Grant CNS-2007733. An earlier version of this paper was presented in
part at the 2022 IEEE International Symposium on Information Theory [DOI:
10.1109/ISIT50566.2022.9834398]. (Corresponding author: Ziao Wang.)

Ziao Wang and Lele Wang are with the Department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver,
BC V6T 1Z4, Canada (e-mail: ziaow@ece.ubc.ca; lelewang@ece.ubc.ca).

Ning Zhang was with the Department of Electrical and Computer Engineer-
ing, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
She is now with the Department of Statistics, University of Oxford, OX1 3LB
Oxford, U.K. (e-mail: ning.zhang@stats.ox.ac.uk).

Weina Wang is with the Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213 USA (e-mail: weinaw@cs.cmu.edu).

Communicated by L. Lai, Associate Editor for Signal Processing and Source
Coding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2024.3351107.

Digital Object Identifier 10.1109/TIT.2024.3351107

available data. Attributed graph alignment is a variant of graph
alignment in which side information, referred to as attributes of
vertices, is also publicly available in addition to the user-user
connection information. This variant is motivated by the fact
that there might exist publicly available attribute information
in social networks. For example, the anonymized network
Netflix has users’ movie-watching history and ratings publicly
available. Moreover, the examination of the proposed model
provides both achievability and converse results for various
well-known variations of the Erdős–Rényi graph alignment
problems. These variations include the traditional graph align-
ment problem without attributes, the seeded graph alignment
problem, and the bipartite alignment problem. Consequently,
the study of attributed graph alignment introduces a novel per-
spective for investigating these problems within an integrated
framework.

In this paper, we focus on the attributed graph align-
ment problem under the attributed Erdős–Rényi pair model
G(n, p, su;m, q, sa), first proposed in [1]. In this model, a base
graph G is generated on the vertex set [n+m] where the ver-
tices from the set [n] represent users and the rest of the vertices
represent attributes. Between each pair of users, an edge is
generated independently and identically with probability p to
represent their connection. For each user-attribute pair, an edge
is generated independently and identically with probability q

to represent their association. Note that there are no edges
between attributes. The graph G is then independently subsam-
pled to two graphs G1 and G2, where each user-user edge is
subsampled with probability su and each user-attribute edge is
subsampled with probability sa. To model the anonymization
procedure, a random permutation ⇧⇤ chosen uniformly at ran-
dom is applied to the users in G2 to generate an anonymized
version G

0
2. Our goal in this model is to achieve exact

alignment, i.e., to exactly recover the permutation ⇧⇤ using
G1 and G

0
2.

For the attributed graph alignment problem, and the graph
alignment problem in general, two often asked questions are
the following. First, for what region of graph statistics is exact
alignment feasible with unlimited computational power? This
region is usually referred to as the information-theoretically
feasible region or the information-theoretic limits. Second, for
what region of graph statistics is exact alignment feasible with
polynomial-time algorithms? This region is usually referred to
as the feasible region of polynomial-time algorithms. Charac-
terizing these two feasible regions and their relationship is of

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1879-6559
https://orcid.org/0000-0001-6808-0156
https://orcid.org/0000-0002-4077-433X

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3623

Fig. 1. Comparison between the feasible regions of the proposed algorithms
and the information-theoretic limits: the shaded area (1 + 2 + 3) represents
the information-theoretically feasible region given in [1]; area 2 is the
feasible region for Algorithm ATTRRICH and area 3 is the feasible region for
Algorithm ATTRSPARSE; area 4 is the information-theoretically infeasible
region given in [1].

utmost importance to developing a fundamental understanding
of the graph alignment problem.

There has been extensive studies on these two questions
under the Erdős–Rényi pair model without attributes. A line of
research focuses on the information-theoretic limits of exact
alignment [2], [3], [4], [5]. Roughly speaking, it is shown
that exact alignment is information-theoretically feasible when
the intersection graph is dense enough. A sharp threshold of
exact alignment has been established, while there still exists
some gap between the converse and the achievability results.
Another line of research focuses on polynomial-time algo-
rithms for exact alignment [6], [7], [8], [9], [10]. Compared to
the information-theoretic limits, the existing polynomial-time
algorithms further require higher edge correlation between the
pair of graphs to achieve exact alignment. The question of
whether there exists polynomial-time algorithms that achieve
the known information-theoretic limits is still left open.

For the attributed graph alignment problem, the
information-theoretic limit has been studied in [1], where
the feasible region (achievability results) and infeasible
region (converse results) are characterized with a gap in
between in some regimes. However, the feasible region of
polynomial-time algorithms for attributed graph alignment
has not been studied before, and it is the focus of this
paper. In this work, we propose two polynomial-time
algorithms for attributed graph alignment and characterize
their feasible regions. The two algorithms are designed
for two different regimes of parameters based on the
richness of attribute information: the algorithm ATTRRICH
is designed for the regime where mqs

2
a = ⌦(log n),

referred to as the attribute-information rich regime; and the
algorithm ATTRSPARSE is designed for the regime where
mqs

2
a = o(log n), referred to as the attribute-information

sparse regime. In both algorithms, we first explore the
user-attribute connections to align a set of anchor users, and
then utilize the user-user connections to the anchors to align
the rest of users. Due to the regime difference, ATTRRICH is

able to generate a much larger set of anchors in the first step
than ATTRSPARSE. Therefore, ATTRRICH and ATTRSPARSE
make use of the anchors differently in the second step:
ATTRRICH explores one-hop user-user connections to align
the rest of users, while ATTRSPARSE explores one-hop or
multiple-hop user-user connections to align the rest of users
depending on the sparsity of user-user connections. This idea
of matching vertices based on common neighbor witnesses
has been explored to construct efficient graph alignment
algorithms under the context of seeded graph alignment [11],
[12], [13], [14]. In this work, we employ this idea in a
two-step procedure under the setting of attributed graphs, and
analyze its performance through a careful treatment of the
dependency between the two steps.

Our characterizations of the feasible regions of ATTRRICH
and ATTRSPARSE are illustrated in Figure 1 as areas 2
and 3 , respectively. The information-theoretically feasible and
infeasible regions given in [1] are also illustrated in the figure
for comparison. We can see that there is a gap between the
feasible region achieved by ATTRRICH and ATTRSPARSE and
the known information-theoretically feasible region. It is left
open whether this gap is a fundamental limit of polynomial-
time algorithms1

In addition, we specialize the feasible region of the pro-
posed algorithms to the context of the seeded Erdős–Rényi
graph alignment problem, and demonstrate that the specialized
feasible region includes certain range of parameters that is not
known to be achievable in the literature.

Our results reveal that attributes possibly facilitate graph
alignment in a much more significant way when computational
efficiency is a priority. We demonstrate this possible impact of
attributes under the sparse regime np = ⇥(log n) in Figure 2.
In Figure 2a, we let mqs

2
a = 0 so there is no information from

the attributes, which is equivalent to the graph alignment prob-
lem without attributes; in Figure 2b, we let mqs

2
a = 0.1 log n.

We keep p = o(1), and assume the value of npsu/ log n can be
an arbitrarily large constant but not tending to infinity in both
settings for ease of comparison. Comparing these two figures,
we can see that when mqs

2
a increases from 0 to 0.1 log n, the

information-theoretic limits in terms of user-user parameters
(n, p and su) improve a bit as expected. However, a more
fundamental improvement is in the feasible region achievable
by polynomial-time algorithms. In Figure 2a, the green region
above su =

p
↵ is achievable by a polynomial-time algorithm

proposed in [10], where ↵ ⇡ 0.338 is known as the Otter’s
constant. The red region below su =

p
↵ is not known to

be achievable by any polynomial-time algorithms. Moreover,
in [18], this red region is conjectured to be infeasible by any
polynomial-time algorithm.2 In comparison, in Figure 2b, the

1We comment that in the line of work [15], [16], [17], the authors have
explored efficient algorithms for a closely-related problem known as attributed
network alignment. In this problem, attributes are attached to both vertices
and edges, in contrast to the exclusive association with vertices in attributed
graph alignment. The focus in this line of work is the empirical performance
rather than the theoretical feasible region.

2We note that the conjecture presented in [18] pertains to the sparse regime
where np = ⇥(log n). In contrast, for the dense regime, it is conjectured
in [19] that no polynomial-time algorithm can achieve exact alignment if
su  1/polylog(n).

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3624 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

green region above the information theoretic limit, which is
presented as the dotted curve, is achievable by our proposed
polynomial-time algorithm ATTRRICH (assuming q = o(1)
and sa = ⇥(1)). Therefore, if

p
↵ is indeed the right threshold

between achievable and impossible under polynomial-time
algorithms for graph alignment without attributes in the sparse
regime, a small amount of attribute information lowers this
threshold to an arbitrarily small constant.

II. MODEL

In this section, we describe a random process that gener-
ates a pair of correlated graphs, which we refer to as the
attributed Erdős–Rényi pair model G(n, p, su;m, q, sa). Under
this model, we define the exact alignment problem.

A. Base Graph Generation
We first generate a base graph G, whose vertex set V(G)

consists of two disjoint sets, the user vertex set Vu =
{1, 2, . . . , n} and the attribute vertex set Va = {n + 1, n +
2, . . . , n + m}. There are two types of edges in the base
graph G, the user-user edges (edges connecting a pair of users)
and the user-attribute edges (edges connecting a user vertex
and an attribute vertex). The user-user edges are generated
independently and identically with probability p, and the
user-attribute edges are generated independently and identi-
cally with probability q. Throughout this paper, we assume
that p = o(1) and q = o(1). We write i

G⇠ j if vertices i and
j are connected in graph G.

B. Edge Subsampling
From the base graph G, we obtain two correlated graphs

G1 and G2 by subsampling the edges in G independently.
More specifically, we get G1 and G2 by independently
including each user-user edge in G with probability su and
independently including each user-attribute edge with proba-
bility sa. Throughout this paper, we assume that su = ⇥(1)
and sa = ⇥(1).

C. Anonymization
From the G2 generated as above, we get an anonymized

graph G
0
2 by applying an unknown permutation ⇧⇤ on the user

vertices of G2, where ⇧⇤ is drawn uniformly at random from
the set of all possible permutations on Vu. We use Vu

2 to denote
the user vertex set of G

0
2 and use Vu

1 to denote the user vertex
set of G1. Finally, we remark that this subsampling process is
a special case of an earlier described attributed Erdős–Rényi
pair model in [1].

D. Exact Alignment
Given an observable pair (G1, G

0
2), our goal is to recover

the unknown permutation ⇧⇤, which allows us to recover
the original labels of user vertices in the anonymized graph
G
0
2. We say exact alignment is achieved with high probability

(w.h.p.) if limn!1 P(⇧̂ 6= ⇧⇤) = 0. It is worth mentioning
that P(⇧̂ 6= ⇧⇤) = P(⇧̂ 6= ⇧⇤|⇧⇤ = ⇡id) due to the symmetry
among user vertices. Thus, we later assume without loss of
generality that the underlying true permutation is the identity
permutation.

E. Related Random Graph Models
A closely related graph generation model is the correlated

stochastic block model [20], [21], [22]. In this model, the
base graph G is instead generated from the stochastic block
model, where vertices are grouped into latent blocks, and
edges are formed between blocks with specific probabili-
ties, capturing the underlying community structure in the
network. The base graph G is then subsampled into the
two generated graphs G1 and G2. In the proposed attributed
Erdős–Rényi graph pair models, users and attributes can
be viewed as two communities in the correlated stochastic
block model. However, a key distinction lies in the fact that
the attributed Erdős–Rényi graph pair model specifies the
correspondence between attributes in the two graphs, whereas
the correlated stochastic block model does not disclose such
information.

Another well-studied graph alignment model with side
information is the seeded Erdős–Rényi graph pair model [11],
[12], [13], [14], where we have access to part of the true
correspondence between user vertices. To make a comparison
between the seeded Erdős–Rényi graph pair model and the
proposed model, here we describe the seeded Erdős–Rényi
pair model G(N,↵, p, s) in detail. We first sample a base
graph G from the Erdős–Rényi graph on N vertices with
edge probability p. Then two correlated copies G1 and G2 are
obtained by independently subsampling the edges in the base
graph where each edge is preserved with probability s. The
anonymized graph G

0
2 is obtained by applying an unknown

permutation ⇧⇤ on G2, where ⇧⇤ is drawn uniformly at
random. Let V(G1) and V(G0

2) denote the vertex sets of
G1 and G

0
2 respectively. Then, a subset Vs ⇢ V(G1) of

size bN↵c is chosen uniformly at random and we define
the vertex pairs I0 = {(v1,⇧⇤(v1)) : v1 2 Vs} as the
seed set. The graph pair (G1, G

0
2) together with the seed

set I0 are given and the goal of the exact alignment is
to recover the underlying permutation for the remaining
vertices w.h.p.

Comparing the seeded Erdős–Rényi pair model and the
attributed Erdős–Rényi pair model, we can see that the seed
set and the attribute set both provide side information to
assist the alignment of the remaining vertices. Nevertheless,
there are two main differences between the two models. First,
in the attributed Erdős–Rényi pair model, we allow different
edge probabilities and subsampling probabilities for user-user
edges and user-attribute edges, whereas in the seeded Erdős–
Rényi pair model, the edge probability is identical for all
edges and so is the subsampling probability. Second, while
there are edges between seeds in seeded Erdős–Rényi pair
model, there are no attribute-attribute edges in the attributed
Erdős–Rényi pair model. However, it can be shown that
the existence of edges between seeds has no influence on
the information-theoretic limits for exact alignment in the
seeded Erdős–Rényi pair model (see Lemma 1 in [23]). This
further suggests that regarding the task of exact alignment,
the information-theoretic limits on attributed graph alignment
recover the information-theoretic limits on seeded Erdős–
Rényi graph alignment if we specialize p = q and su = sa in
the attributed Erdős–Rényi pair model G(n, p, su;m, q, sa).

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3625

Fig. 2. Comparison between feasible regions of polynomial-time algorithms when mqs2
a = 0 and when mqs2

a = 0.1 log n. Subgraph (a) captures the case
when mqs2

a = 0. The green region is known to be feasible by a polynomial-time algorithm in [10], while no polynomial-time algorithms are known to be
feasible in the red region. Subgraph (b) captures the case when mqs2

a = 0.1 log n. The green region is feasible by the proposed algorithm ATTRRICH.

Fig. 3. An illustration of attributed Erdős–Rényi pair model. We first sample
a base graph G. Then we get G1 and G2 through edge subsampling G. The
anonymized graph G0

2 is obtained through apply the permutation ⇧⇤ on the
user vertex set of G2.

F. Other Notation
Our algorithms rely on exploring the neighborhood simi-

larity of user vertices in G1 and G
0
2. Here we introduce our

notation of local neighborhoods. We define N a
1(i) , {j 2 Va

1 :
i

G1⇠ j} as the set of attribute neighbors of a user vertex i in

G1 and N a
2(i) , {j 2 Va

2 : i
G0

2⇠ j} as the set of attribute
neighbors of a user vertex i in G

0
2. For two user vertices

i and j in the same graph, let d(i, j) be the length of the
shortest path connecting i and j via user-user edges. For a
user vertex i 2 Vu

1 , we define the set of l-hop user neighbors
of vertex i as N u

1 (i, l) , {j 2 Vu
1 : d(i, j)  l} for any

positive integer l. By convention, when l = 1, we simply
write N u

1 (i) ⌘ N u
1 (i, 1). The quantities N u

2 (i, l) and N u
2 (i)

are defined similarly for user vertices in G
0
2.

Reminder of the Landau notation.
Notation Definition

f(n) = !(g(n)) lim
n!1

|f(n)|
g(n) = 1

f(n) = o(g(n)) lim
n!1

|f(n)|
g(n) = 0

f(n) = O(g(n)) lim sup
n!1

|f(n)|
g(n) < 1

f(n) = ⌦(g(n)) lim inf
n!1

|f(n)|
g(n) > 0

f(n) = ⇥(g(n)) f(n) = O(g(n)) and f(n) = ⌦(g(n))

III. MAIN RESULTS

In this section, we propose two polynomial-time algorithms
for the attributed graph alignment problem. Their feasible
regions are characterized in the following two theorems.

Theorem 1: Consider the attributed Erdős–Rényi pair
G(n, p, su;m, q, sa) with p = o(1), q = o(1), su = ⇥(1),
and sa = ⇥(1). Assume that

mqs
2
a = ⌦(log n) (1)

and that there exists some constant ✏ > 0 such that

mqs
2
a + nps

2
u � (1 + ✏) log n. (2)

Then there exists a polynomial-time algorithm, namely,
Algorithm ATTRRICH with the parameters chosen in (8)
and (9), that achieves exact alignment w.h.p.

Theorem 2: Consider the attributed Erdős–Rényi pair
G(n, p, su;m, q, sa) with p = o(1), q = o(1), su = ⇥(1),
and sa = ⇥(1). Assume that

mqs
2
a = o(log n), (3)

nps
2
u � log n ! +1, (4)

and that there exists some constant ⌧ > 0 such that

mqs
2
a �

2 log n

⌧ log 1
q

. (5)

Then there exists a polynomial-time algorithm, namely,
Algorithm ATTRSPARSE with the parameters chosen
in (11), (12) and (13), that achieves exact alignment w.h.p.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3626 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

The proofs of Theorems 1 and 2 are deferred to Sec-
tions V and VI respectively.

A. Algorithm ATTRRICH

In this subsection, we propose the first algorithm that
leads to the achievable region in Theorem 1. This algorithm
is designed for the attribute-information rich regime, hence
named ATTRRICH.

• Input: The graph pair (G1, G
0
2) and thresholds x and y.

• Step 1: Align through attribute neighbors. In this step,
we only consider the edge connections between users and
attributes, and use these information to find the matching
for a set of vertices which will be later referred to as
anchors. For each pair of users i 2 Vu

1 and j 2 Vu
2 ,

compute the number of common attribute neighbors

Cij , |N a
1(i) \N a

2(j)|. (6)

If Cij > x, add (i, j) into S1. We refer to vertex pairs in
the set S1 as anchor. If there exists conflicting pairs in S1,
i.e., two distinct pairs (i1, j1) and (i2, j2) with i1 = i2 or
j1 = j2, set S1 = ; and declare failure. Otherwise, set
⇡̂(i) = j for all pairs (i, j) 2 S1.

• Step 2: Align through user neighbors. In the previ-
ous step, we have aligned the anchors using the edges
between users and attributes. In this step, we will align
the non-anchor vertices by their edge connections to the
anchors. Let

U1 , {i 2 Vu
1 : (i, j) 62 S1,8j 2 Vu

2}

denote the set of all unmatched vertices in G1 and let

U2 , {j 2 Vu
2 : (i, j) 62 S1,8i 2 Vu

1}

denote the set of all unmatched vertices in G2. For each
unmatched pair i 2 U1 and j 2 U2, consider the user
neighbors of i and the user neighbors of j that are
matched as pairs in S1, and compute the number of such
matched pairs for (i, j)

Wij ,
X

k2N u
1(i),l2N u

2(j)

{(k,l)2S1}. (7)

For each i 2 U1, if Wij > y|S1| for a unique j 2 U2,
set ⇡̂(i) = j. Otherwise, declare failure. If ⇡̂ is not a
bijection from Vu

1 to Vu
2 , declare failure.

• Output: The estimated permutation ⇡̂.
In this algorithm, there are two threshold parameters x and

y. In the following analysis, we choose

x = (1� �x)mqs
2
a , (8)

where 1 � �x = �x

log 1
q

with constant �x � max{1,
3 log n
mqs2

a
},

and

y = (1� �y)ps
2
u , (9)

where 1� �y = �y

log 1
p

with constant �y � 2.
Remark 1 (Complexity of Algorithm ATTRRICH): In

Algorithm ATTRRICH, the time complexity for computing
Cij for all pairs (i, j) 2 Vu

1 ⇥ Vu
2 is O(n2

m) since there are

n
2 pairs and for each pair, there are m attributes to consider.

Similarly, the time complexity for computing Wij for all pairs
(i, j) 2 U1 ⇥ U2 is at most O(n3). Therefore, if m = !(n),
the time complexity of Algorithm ATTRRICH is O(n2

m) and
if m = O(n), the time complexity of Algorithm ATTRRICH
is O(n3).

B. Algorithm ATTRSPARSE

In this subsection, we propose the second algorithm that
leads to the achievable region in Theorem 2. This algorithm
is designed for the attribute-information sparse regime, hence
named ATTRSPARSE. In Step 2 of this algorithm, we consider
two different cases. In the case when the user-user connection
is dense, we perform a similar process as in Step 2 of
Algorithm ATTRRICH. In the case when the user-user connec-
tions is sparse, we call a seeded alignment algorithm proposed
in [13], which is restated in Subsection III-C.

• Input: The graph pair (G1, G
0
2), three thresholds y, z and

⌘, an integer l, and the model parameters n and p.
• Step 1: Align through attribute neighbors. Similar to

Step 1 of Algorithm ATTRRICH, for each pair of users
i 2 Vu

1 and j 2 Vu
2 , we compute the quantity

Cij = |N a
1(i) \N a

2(j)|. (10)

Unlike Step 1 of Algorithm ATTRRICH, we create an
anchor set using a different threshold z. If Cij > z, add
(i, j) into S2. We refer to vertex pairs in the set S2 as
anchors. If there exists conflicting pairs in S2, i.e., two
distinct pairs (i1, j1) and (i2, j2) with i1 = i2 or j1 = j2,
set S2 = ; and declare failure.

• Step 2: Align through user-user edges.

– If np > n
1/7, we perform the similar process as in

Step 2 of Algorithm ATTRRICH to align the non-
anchor vertices. Define

U3 , {i 2 Vu
1 : (i, j) 62 S2,8j 2 Vu

2}

and
U4 , {j 2 Vu

2 : (i, j) 62 S2,8i 2 Vu
1}.

For each unmatched pair i 2 U3 and j 2 U4, compute
Wij as defined in (7). For each i 2 U3, if Wij > y|S2|
for a unique j 2 U4, set ⇡̂(i) = j. Otherwise, declare
failure. If ⇡̂ is not a bijection from Vu

1 to Vu
2 , declare

failure.
– If np  n

1/7, run Algorithm III-C with the induced
subgraphs on user vertices Vu

1 and Vu
2 , the seed set

I0 = S2, and parameters l and ⌘.
• Output: The estimated permutation ⇡̂.

In this algorithm, there are four parameters y, z, l and ⌘ that
we can choose. In the following analysis, we choose y to be
the same value as in (9),

z = (1 + ⌧)mqs
2
a (11)

(cf. the same ⌧ as in Theorem 2),

l =
�

(6/7) log n

log(np)

⌫
, (12)

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3627

and

⌘ = 42l+2
n
�2/7

. (13)

Remark 2 (Complexity of Algorithm ATTRSPARSE): In
Algorithm ATTRSPARSE, the time complexity for computing
Cij for all pairs (i, j) 2 Vu

1 ⇥ Vu
2 is O(n2

m) since there
are n

2 pairs and for each pair, there are m attributes to
consider. The time complexity of computing Wij for all pairs
(i, j) 2 U3 ⇥ U4 is O(n3) and that of Algorithm III-C is
O(n37/7) as given in [13], which can be improved with better
data structures. Therefore, if np > n

1/7, the complexity of
Algorithm ATTRSPARSE is O(n2

m + n
3); Otherwise its

complexity is O(n2
m + n

37/7).

C. Seeded Alignment in the Sparse Regime [13, Algorithm 3]
Except for the two graphs G1 and G

0
2, this algorithm takes

a seed set I0 as input. The seed set I0 consists of vertex pairs
(i, j) such that ⇡

⇤(i) = j. The algorithm utilizes this seed set
to align the rest of vertices.

• Input: The graph pair (G1, G
0
2), the seed set I0, a thresh-

old ⌘, and an integer l.
• Align high-degree vertices. Let

J1 , {i 2 V(G1) : (i, j) /2 I0,8j 2 V(G0
2)},

and

J2 , {j 2 V(G0
2) : (i, j) /2 I0,8i 2 V(G1)}.

For each pair of unseeded vertices u 2 J1 and v 2 J2,
and for each pair of their neighbors i 2 N u

1 (u)\{u} and
j 2 N u

2 (v) \ {v}, compute

�
u,v
i,j = min

x2V(G1),y2V(G0
2)
{|{(k1, k2) 2 I0 :

k1 2 N u
G1\{u,x}(i, l), k2 2 N u

G0
2\{v,y}(j, l)}|},

where N u
G\S(i1, l) denotes the set of user vertices i2 such

that d(i1, i2)  l in the induced subgraph G with the set
of vertices S removed. Let

Zu,v =
X

i2Nu
1 (u)\{u}

X

j2Nu
2 (v)\{v}

{�u,v
i,j �⌘|I0|}.

If Zu,v � log n/ log log n � 1, add (u, v) into set T .
Add all the vertex pairs from I0 to T . If there exists
conflicting pairs in T , i.e., two distinct pairs (i1, j1) and
(i2, j2) with i1 = i2 or j1 = j2, set T = ; and declare
failure.

• Align low-degree vertices. Let

J3 , {i 2 V(G1) : (i, j) /2 T ,8j 2 V(G0
2)},

and

J4 , {j 2 V(G0
2) : (i, j) /2 T ,8i 2 V(G1)}.

For all pairs of unmatched vertices i1 2 J3 and i2 2 J4,
if i1 is adjacent to a user vertex j1 in G1 and i2 is adjacent
to a user vertex j2 in G

0
2 such that (j1, j2) 2 T , then set

⇡̂(i1) = i2.
• Finalize and output: For each vertex pair (i, j) 2 T ,

set ⇡̂(i) = j. If ⇡̂ is a bijection from V(G1) to V(G0
2),

output ⇡̂, otherwise declare failure.

IV. DISCUSSION

In this section, we compare the feasible region in Theo-
rems 1 and 2 to existing works. In Section IV-A, we compare
the feasible region with the information-theoretic limits in [1].
It is shown that there still exists a gap between the feasible
region of the proposed algorithms and the information-
theoretic limit. In Section IV-B, we specialize the feasible
region of the proposed algorithm to the context of seeded
graph alignment problem, and compare the specialized feasi-
ble region to the information-theoretic limits as well as the
best-known feasible regions by polynomial-time algorithms
for exact alignment in literature given in [13] and [14]. It is
shown that while having a gap to the information-theoretic
limit, the proposed Algorithms ATTRRICH and ATTRSPARSE
achieves exact recovery in certain range of parameters
that is unknown to be feasible by any existing efficient
algorithms. In Section IV-C, we consider the bipartite align-
ment problem which is another special case. We show that
the proposed Algorithm ATTRRICH provides an alternative
polynomial-time algorithm to the theoretically optimal Hun-
garian Algorithm [24], with a slightly lower complexity.

A. Comparison to the Information Theoretic Limits
The information-theoretic limits of attributed graph align-

ment were established in [1]. The version for the subsampling
model is stated as follows.

Theorem 3 (Theorem 1 in [1]): Consider the attributed
graph pair G(n, p, su;m, q, sa) with 1 � p = ⇥(1), 1 � q =
⇥(1), su = ⇥(1), and sa = ⇥(1).

Achievability: In the regime where q = O

⇣
1

(log n)2

⌘
, if

nps
2
u + mqs

2
a � log n + !(1),

then exact alignment is achievable w.h.p.
In the regime where q = !

⇣
1

(log n)2

⌘
, if

nps
2
u + mqs

2
a � an � log n + !(1),

where an , m

⇣p
qs2

a(1� q + q(1� sa)2)� qsa(1� sa)
⌘2
�

mqs
2
a = O(mq

3/2),
then exact alignment is achievable w.h.p.
Converse: If

nps
2
u + mqs

2
a  log n� !(1),

then no algorithm achieves exact alignment w.h.p.
From Theorem 3 we can see that when q = !

⇣
1

(log n)2

⌘
,

the achievability and converse differ by at most some constant
times mq

3/2; when q = O

⇣
1

(log n)2

⌘
, the achievability and

converse are tight, because in this regime we have mq
3/2 =

!(1). We visualize the information-theoretic limits and the
computation feasible regions in Fig. 1.

B. Specialization to the Seeded Erdős–Rényi Graph
Alignment

In this subsection, we specialize the feasible region of
proposed algorithm to the seeded Erdős–Rényi graph align-
ment problem, and compare the feasible region with that of

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3628 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

the existing algorithms. Consider an attributed Erdős–Rényi
graph pair (G1, G

0
2) ⇠ G(n, p, su;m, q, sa) with p = q and

sa = su , s. Then these m attributes can be viewed as m

seeds and (G1, G
0
2) can be viewed as a graph pair generated

from a seeded Erdős–Rényi pair model G(n + m,
m

m+n , p, s),
and the edges between the these m vertices are all removed.3
For simplicity, we write

N , m + n and ↵ , m
m+n

later on. In our comparisons, we always assume that (1 �
↵)N = !(1), s = ⇥(1) and p = o(1).

We first specialize the feasible regions of Algorithm
ATTRRICH in Theorem 1 and Algorithm ATTRSPARSE in
Theorem 2 to the seeded graph alignment problem.

Corollary 1 (Feasible region of Algorithm ATTRRICH):
Consider the seeded graph pair G(N,↵, p, s) with p = o(1),
s = ⇥(1) and (1� ↵)N = !(1). Assume that

↵Nps
2 = ⌦(log((1� ↵)N)) (14)

and that there exists some constant ✏ > 0 such that

Nps
2 � (1 + ✏) log((1� ↵)N). (15)

Then there exists a polynomial time algorithm, namely,
Algorithm ATTRRICH with parameters

x = (1� �x)↵Nps
2 and y = (1� �y)ps

2

that achieves exact alignment w.h.p. Here, 1��x = �x

log 1
p

with

constant �x � max{1,
3 log(1�↵)N

↵Nps2 } and 1� �y = �y

log 1
p

with
constant �y � 2.

Corollary 2 (Feasible region of Algorithm ATTRSPARSE):
Consider the seeded graph pair G(N,↵, p, s) with p = o(1),
s = ⇥(1) and (1� ↵)N = !(1). Assume that

↵Nps
2 = o(log((1� ↵)N)), (16)

(1� ↵)Nps
2 � log((1� ↵)N) � !(1), (17)

and that there exists some constant ⌧ > 0 such that

↵Nps
2 � 2 log((1� ↵)N)

⌧ log 1
p

. (18)

Then there exists a polynomial time algorithm, namely,
Algorithm ATTRSPARSE with parameters

z = (1 + ⌧)↵Nps
2
,

L =
�

(6/7) log(1� ↵)N
log(1� ↵)Np

⌫
,

and

⌘ = 42l+2((1� ↵)N)�2/7
,

that achieves exact alignment w.h.p.
Remark 3: As expected, the feasible region of proposed

algorithms ATTRRICH and ATTRSPARSE is a strict subset
of the information-theoretic feasible region established in [1].
We postpone the detailed comparison to Section VIII-A.

3The information theoretic limit of exact alignment in the seeded graph
alignment problem remains the same after removing the edges between
attributes (see Lemma 1 in [23]).

Now we compare the proposed algorithms to the best known
polynomial-time algorithms in the literature [13] and [14].
The comparison of their feasible regions is summarized in
the following theorem, the proof of which is postponed to
Section VIII-B.

Theorem 4 (Comparison of polynomial-time algorithms):
Consider the seeded Erdős–Rényi pair model G(N, ↵, p, s)
with p = o(1), s = ⇥(1) and (1� ↵)N = !(1). Assume that
parameters N,↵, p, and s satisfy any of the following four
sets of conditions:

1

8
>><

>>:

p log N log
⇣

1
p

⌘
= !(1),

↵ = ⌦
⇣

log((1�↵)N)
Nps2 log 1

p

⌘
,

↵ <
2 log N
NI(p,s) ;

or

2

8
>>>>>><

>>>>>>:

p log N log
⇣

1
p

⌘
= O(1),

p log N log2
⇣

1
p

⌘
= !(1),

↵ = ⌦
⇣

log((1�↵)N)
Nps2 log 1

p

⌘
,

↵ = O

⇣
1

NI2(p,s)

⌘
;

or

3

8
>>>>><

>>>>>:

p log N log2
⇣

1
p

⌘
= O(1),

Np >
sN1/2

16(2�s)2 ,

↵ = ⌦
⇣

log((1�↵)N)
Nps2 log 1

p

⌘
,

↵ <
300 log N

Nps2 ;

or

4

8
><

>:

N = ⌦(((1� ↵)N)1+✏),
Nps

2 � log N = O(1),
Nps

2 � (1 + ✏) log((1� ↵)N)

for some positive constant ✏. Then the proposed algorithms
achieve exact alignment w.h.p., while none the of existing
algorithms in [13] ad [14] is known to achieve exact alignment
w.h.p. On the other hand, when

log N + !(1)
s2

 Np  sN
1/2

16(2� s)2
,

the feasible region of the proposed algorithms is a strict subset
of that in [13].

Remark 4: The polynomial-time algorithms for graph
alignment under the unseeded Erdős–Rényi graph pair model
proposed in [9] and [10] trivially imply polynomial-time
algorithm for seeded graph alignment. However, the feasible
regions of algorithms in [9] and [10] both require additional
conditions on the subsampling probability s. Therefore, we do
not include them to the comparison in this section.

Remark 5: As shown in Corollaries 1 and 2, the two
proposed algorithms achieve exact alignment in two mutually
exclusive regimes. Theorem 4 summarizes the comparison
between the union of the feasible regions of the two proposed
algorithms and the union of the feasible regions in [13]
and [14]. Regions 1 , 2 , and 3 in Theorem 4 correspond

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3629

Fig. 4. Comparison of the feasible region of Corollaries 1 and 2 to the feasible
region in [13] and [14]. On the top-left corner and bottom-right corner, the
two blue regions are feasible for the proposed algorithms but not for any
existing works. The red region is feasible for existing works, but not for the
proposed algorithms. The green region is the overlap of our feasible region
with the feasible region in the existing works.

to the top left blue area in Fig. 4. Region 4 in Theorem 4
corresponds to the bottom right blue area in Fig. 4.

As stated in Theorem 4, Corollaries 1 and 2 introduce some
new feasible region in the regime Np >

s
16(2�s)2 N

1/2 (the
top-left blue corner in Fig. 4). To understand the improvement
over the feasible region in [13], recall that the proposed
algorithms in this work align vertices two steps: initially
aligning a group of anchor vertices by exploring the seeds
within their one-hop neighborhood, and subsequently aligning
the remaining unmatched vertices with the assistance of the
anchors in their respective one-hop neighborhood. In contrast,
the algorithm proposed in [13] for this scenario aligns all
vertices by exploring the one-hop seed neighbors of the non-
seed vertices, which closely resembles the first step of the
proposed algorithms. This is why the proposed algorithms
expand the feasible region introduced in [13]. To grasp the
improvements made over the feasible region in [14], note that
the algorithm introduced in [14] performs a similar two-step
process as the algorithms in this work. The primary distinction
lies in the second step of matching. In [14], the matched
vertices from the first step, along with the seeds, act as anchors
in the second step. In contrast, our proposed algorithms utilize
only the matched vertices from the first step as anchors.
We comment that the improvement of the proposed algorithms
over the algorithm in [14] mainly comes from the tightness of
analysis.

For completeness of the comparison, we restate the feasible
regions of algorithms in [13] and [14] as follows.

Theorem 5 (Theorem 4 in [13]): Consider the seeded
Erdős–Rényi pair model G(N,↵, p, s). Suppose Np can be
written as Np = bN

a for some constants a and b such that

0 < a  1 and 0 < b  s
16(2�s)2 .

Assume that

↵ � 300 log N

(Nps2)b1/ac . (19)

Then there exists a polynomial-time algorithm, namely,
Algorithm 2 in [13], that achieves exact alignment w.h.p.
Moreover, the algorithm runs in O(N3) time.

Theorem 6 (Theorem 3 in [13]): Consider the seeded
Erdős–Rényi pair model G(N,↵, p, s) with Np  N

� for a
fixed constant � < 1/6, and s = ⇥(1). Assume that

Nps
2 � log N + !(1) (20)

and

↵ � N
�1+3�

. (21)

Then Algorithm III-C with the parameters

l =
�

(6/7) log N

log(Np)

⌫
and ⌘ = 42l+2

N
�2/7

achieves exact alignment w.h.p. Moreover, the algorithm runs
in O(n5+2�) time.

Theorem 7 (Theorem 2 in [14]): Consider the seeded
Erdős–Rényi pair model G(N,↵, p, s) with p = o(1) and
s = ⇥(1). Assume that

↵ = !

✓
1

NI(p, s)2

◆
(22)

and

↵ � 2 log N

NI(p, s)
, (23)

where I(p, s) , 2ps log 1
ps +(2�2ps) log 1

1�ps +ps
2 log ps

2+
2ps(1�s) log(ps�ps

2)+(1+ps
2�2ps) log(1+ps

2�2ps) =
(1 + o(1))s2

p log 1
p denotes the mutual information between

a pair of correlated edges in G1 and G
0
2. Then there exists

a polynomial-time algorithm, namely, the TMS algorithm
in [14], that achieves exact alignment w.h.p.

C. Specialization to the Bipartite Alignment
Consider an attributed Erdős–Rényi graph pair (G1, G2) ⇠

G(n, p, su;m, q, sa) with p = 0 or su = 0. Then G1 and
G2 reduce to two bipartite graphs with edges connected only
between users and attributes. In this special case, condi-
tions (1) and (2) reduce to a single condition: If there exists
some positive constant ✏ > 0 such that

mqs
2
a � (1 + ✏) log n, (24)

then Algorithm ATTRRICH achieves exact alignment w.h.p.
In contrast, Corollary 1 in [1] implies that the maximum
likelihood estimator exactly recovers ⇡

⇤ w.h.p if

mqs
2
a � log n + !(1). (25)

Moreover, the maximum likelihood estimator can be computed
in polynomial time by first computing the similarity score for
each pair of vertices (u, v) 2 Vu

1 ⇥ Vu
2 as Zu,v = |N a

1(u) \
N a

2(v)| and then solving the balanced assignment problem
using the famous Hungarian Algorithm first proposed in [24].
From conditions (24) and (25), we can see that the feasible
region of Algorithm ATTRRICH is completely covered by the
feasible region of the Hungarian Algorithm. By the above
argument, the maximum likelihood estimator requires O(n2

m)

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3630 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

time complexity to compute the similarity score for all pairs
of vertices and the Hungarian Algorithm can be implemented
with O(n3) time complexity [25]. Therefore, if m = !(n),
the time complexity of the maximum likelihood estimator
is O(n2

m) and if m = O(n), the time complexity of the
maximum likelihood estimator is O(n3). In comparison, the
time complexity of Algorithm ATTRRICH in this special case
is always O(n2

m).

V. PROOF OF THEOREM 1

Recall that our algorithm consists of the following two
steps: Step 1 (Align through attribute neighbors) produces a
set S1 that we refer to as the set of anchor pairs based on
the Cij defined in (6); Step 2 (Align through user neighbors)
aligns the remaining vertices based on the Wij defined in (7).
Moreover, recall that we assume without generality that the
true underlying permutation ⇡

⇤ is the identity permutation.
Our proof of Theorem 1 analyzes the following corresponding
error events.
• Step 1 Error Event. Define

E1 , {9(i, j) 2 Vu
1 ⇥ Vu

2 s.t. i 6= j and Cij > x}.

The event Ec
1 guarantees that the anchor set found in the

first step only contains correctly matched pairs.
• Step 2 Error Events. Define

E2 , {9(i, i) 2 U1 ⇥ U2 s.t. Wii  y|S1|}

and

E3 , {9(i, j) 2 U1 ⇥ U2 s.t. i 6= j and Wij > y|S1|}.

In the special case that U1⇥U2 = ;, i.e., all the vertices are
matched in Step 1, we set events E2 and E3 to be empty by
convention and thus P(E2) = P(E3) = 0. In the case that
U1 ⇥ U2 6= ;, event Ec

2 \ Ec
3 corresponds to the event that

all non-anchor vertices are correctly matched through their
user neighbors.
We first show that Ec

1\Ec
2\Ec

3 implies that Algorithm ATTR-
RICH does not declare failure and it outputs ⇡̂ = ⇡

⇤. Under
event Ec

1 , it follows that there exists no conflicting pairs in S1,
so Algorithm ATTRRICH does not declare failure at Step 1 and
for each vertex i 2 Vu

1 \ U1, we have ⇡̂(i) = i. Furthermore,
Ec
1 implies that U1 = U2. Now we consider two different cases

to complete the proof.
• U1 = U2 = ;: In this case, all the vertices are cor-

rectly aligned through attribute neighbors. Therefore,
Algorithm ATTRRICH terminates at Step 1 and outputs
⇡̂ = ⇡

⇤.
• U1 = U2 6= ;: In this case, not all the vertices are aligned

through attribute neighbors. Then event Ec
2 \ Ec

3 guarantees
that for each i 2 U1, we have

Wii > (1� �y)|S1|ps
2
u

and
Wij  (1� �y)|S1|ps

2
u,8j 2 U2, i 6= j.

Thus, the algorithm does not declare failure at Step 2 and
we have for each i 2 U1, ⇡̂(i) = i. Finally, it follows that
⇡̂ is a bijection and ⇡̂ = ⇡

⇤.
Next, to prove Theorem 1, it suffices to show that P(Ec

1 \
Ec
2 \ Ec

3) = 1 � o(1). However, both events E2 and E3 are
based on two random sets U1 and U2. If we apply the union
bound to upper bound the probability of E2 and E3 without
any restriction on the size of U1 and U2, the bound will
be very loose. Our key idea of the proof is to analyze the
error events of Step 2 by conditioning on a carefully chosen
event. Specifically, let the set of vertex pairs correctly matched
through attribute neighbors be denoted as

S 01 = {(i, i) 2 Vu
1 ⇥ Vu

2 s.t. Cii > x}.

Note that S 01 ✓ S1 since S 01 only counts the correctly matched
pairs. Then we consider the following auxiliary event:

A , {n� |S 01| < n
c},

where c , max
n

1� mqs2
a

(1+✏/2) log n , 0
o

(cf. the constant ✏ in
Theorem 1). To prove that P(Ec

1 \Ec
2 \Ec

3) = 1�o(1), it then
suffices to prove that P(A\Ec

1\Ec
2\Ec

3) = 1�o(1). Notice that
event Ec

1 guarantees that the anchor set found in the first step
only contains correctly matched pairs. It follows that event Ec

1

implies S1 = S 01. Therefore, event A\ Ec
1 restricts the size of

the set U1⇥U2, so we can apply a much tighter union bound
to upper bound the probability of E2 and E3 if we condition
on the event A \ Ec

1 .
We now analyze P(A \ Ec

1 \ Ec
2 \ Ec

3). Note that

P(A \ Ec
1 \ Ec

2 \ Ec
3)

= P(A \ Ec
1)P(Ec

2 \ Ec
3 |A \ Ec

1)
= (1� P(Ac [E1))(1� P(E2 [E3|A \ Ec

1))
� (1� P(Ac)�P(E1))(1�P(E2|A \ Ec

1)�P(E3|A \ Ec
1)).
(26)

where (26) follows by the union bound. With Lemmas 1–4
below, it is easy to see that P(A \ Ec

1 \ Ec
2 \ Ec

3) = 1� o(1).
Lemma 1: Consider G(n, p, su;m, q, sa) with q = o(1) and

sa = ⇥(1). Assume that

mqs
2
a = ⌦(log n).

Then P(E1) = o(n�1/2).
Lemma 2: Consider G(n, p, su;m, q, sa) with q = o(1) and

sa = ⇥(1). Assume that

mqs
2
a = ⌦(log n).

Then P(A) = 1� o(1).
Lemma 3: Consider G(n, p, su;m, q, sa) with p = o(1) and

su = ⇥(1). Assume there exists some constant ✏ > 0 such that

mqs
2
a + nps

2
u � (1 + ✏) log n, (27)

mqs
2
a = ⌦(log n). (28)

Then P(E2|A \ Ec
1) = n

�⇥(1).
Lemma 4: Consider G(n, p, su;m, q, sa) with p = o(1) and

su = ⇥(1). Assume there exists some constant ✏ > 0 such that

mqs
2
a + nps

2
u � (1 + ✏) log n, (29)

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3631

mqs
2
a = ⌦(log n). (30)

Then P(E3|A \ Ec
1) = n

�⇥(1).

VI. PROOF OF THEOREM 2

Recall that Algorithm ATTRSPARSE consists of the follow-
ing two steps: In Step 1 (Align through attribute neighbors),
the algorithm produces a set S2, which we refer to as the
set of anchor pairs based on Cij defined in (6); In Step 2
(Align through user neighbors), the algorithm performs two
different processes depending on the sparsity of the user-user
connections. In case when the user-user connection is sparse
np  n

1/7, the algorithm treats the anchors found in Step 1 as
seeds and runs Algorithm III-C. In case the user-user connec-
tion is dense np > n

1/7, the algorithm explores the anchor
vertices in the one-hop neighborhood of each non-anchor user
vertex to align them. To prove Theorem 2, we first consider
two error events associated with Step 1, and then we separately
consider the two different cases for Step 2.

Define

E4 , {9(i, j) 2 Vu
1 ⇥ Vu

2 s.t. i 6= j and Cij � z}.

Event Ec
4 guarantees the anchors found in Step 1 only contain

correctly matched pairs. Let

S 02 = {(i, i) 2 Vu
1 ⇥ Vu

2 s.t. Cii � z}

and define
E5 , {|S 02| < n

7/8}.

Event Ec
4 \Ec

5 guarantees the size of anchor set is large. Given
Ec
4\Ec

5 , we first show that algorithm ATTRSPARSE outputs the
correct permutation w.h.p., i.e, P(⇧̂ 6= ⇧⇤|Ec

4 \ Ec
5) = o(1).

We consider two different cases for np.
• np  n

1/7. Recall that in this regime of np, Algorithm III-C
is applied in Step 2. Notice that the choice of set S2 only
depends on the user-attribute edges, so it is independent of
all user-user edges. Therefore, by symmetry, when we run
Algorithm III-C, we can view the seed set I0 as a set chosen
uniformly at random over all subsets with size |I0| and thus
Theorem 6 can directly be applied. So it suffices to show
that the conditions in Theorem 6 are satisfied under event
Ec
4 \ Ec

5 . Event Ec
4 implies that I0 = S2 = S 02 and event Ec

5

implies that |I0| � n
7/8. Moreover, because we assume that

nps
2
u � log n = !(1), we have P(⇧̂ 6= ⇧⇤|Ec

4 \ Ec
5) = o(1)

by Theorem 6 with � = 1/7.
• np > n

1/7. Recall that in this regime of np, we perform
a similar process as Step 2 of Algorithm ATTRRICH.
We align the non-anchor vertices by exploring the anchors
in their one-hop neighborhood. Similarly to the analysis for
Theorem 1, we define two error events associated with this
steps. Define

E6 , {9(i, i) 2 U3 ⇥ U4 s.t. Wii  y|S2|}

and

E7 , {9(i, j) 2 U3 ⇥ U4 s.t. i 6= j and Wij > y|S2|}.

From the proof of Theorem 1, we know that {⇧̂ 6= ⇧⇤|Ec
4 \

Ec
5} ⇢ {Ec

6 \ Ec
7 |Ec

4 \ Ec
5}. Therefore, we have

P(⇧̂ 6= ⇧⇤|Ec
4 \ Ec

5)  P(E6 [E7|Ec
4 \ Ec

5)
 P(E6|Ec

4 \ Ec
5) + P(E7|Ec

4 \ Ec
5).

The statement P(⇧̂ 6= ⇧⇤|Ec
4 \Ec

5) = o(1) follows from the
Lemma below.
Lemma 5: Consider G(n, p, su;m, q, sa) with p = o(1) and
su = ⇥(1). Suppose that np > n

1/7. Then we have

P(E6|Ec
4 \ Ec

5) = n
�⇥(1)

.

Lemma 6: Consider G(n, p, su;m, q, sa) with p = o(1) and
su = ⇥(1). Suppose that np > n

1/7. Then we have

P(E7|Ec
4 \ Ec

5) = n
�⇥(1)

.

Finally, we have

P(⇧̂ 6= ⇧⇤) = P(⇧̂ 6= ⇧⇤, Ec
4 \ Ec

5) + P(⇧̂ 6= ⇧⇤, E4 [E5)

 P(⇧̂ 6= ⇧⇤|Ec
4 \ Ec

5) + P(E4 [E5)
 o(1) + P(E4) + P(E5).

With Lemmas 7 and 8 below, it is easy to see that P(⇧̂ 6=
⇧⇤) = o(1).

Lemma 7: Consider G(n, p, su;m, q, sa) with q = o(1) and
sa = ⇥(1). Assume that there exists some constant ⌧ > 0 such
that

mqs
2
a �

2 log n

⌧ log 1
q

. (31)

Then P(E4) = o(1).
Lemma 8: Consider G(n, p, su;m, q, sa) with q = o(1) and

sa = ⇥(1). Assume that

mqs
2
a = o(log n).

Then P(E5) = o(1).

VII. PROOF OF LEMMAS

In this section, we prove the lemmas stated in the proofs
of Theorems 1 and 2. To this end, we first state two technical
lemmas that bound the binomial tail probability.

Lemma 9 (Theorem 1 in [26]): Let X ⇠ Binom(n, ✓).
Then we have:

• P(X � n✓ + �)  exp
�
�nDKL

�
✓ + �

n ||✓
��

for 0 <

� < n� n✓;
• P(X  n✓ � �)  exp

�
�nDKL

�
✓ � �

n ||✓
��

for 0 <

� < n✓,
where DKL(x||y) , x log x

y + (1 � x) log 1�x
1�y denotes the

Kullback–Leibler divergence between Bern(x) and Bern(y).
Lemma 10 (Lemma 4.7.2 in [27]): Let X ⇠ Binom(n, ✓).

Then we have

P(X � �) � 1p
8�(1� �/n)

exp
�
�nDKL

�
�
n

����✓
�

for any n✓ < �  n.
The following lemma gives an approximation for the

Kullback–Leibler divergence term in Lemmas 9 and 10.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3632 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

Lemma 11 (Approximation of KL-Divergence): Assume
that ✓ = o(1), s = ⇥(1), and � = ⇥(1). Then we have

DKL

✓
�

log 1/✓
✓s

2

����

����✓s
2

◆
= ✓s

2 + o(✓), (32)

DKL

✓
�

log 1/✓
✓s

2

����

����✓
2
s
2

◆
= �✓s

2 + o(✓). (33)

With the three technical lemmas above, we are ready to
prove Lemmas 1-8.

A. Proof of Lemma 1
Recall that we defined error event E1 , {9(i, j) 2 Vu

1 ⇥
Vu

2 s.t. i 6= j and Cij > x}. Here we prove P(E1) = o(n�1/2)
under the assumption that mqs

2
a = ⌦(log n). To bound the

probability of E1, we first consider distribution of random
variable Cij . For two different vertices i 2 Vu

1 and j 2 Vu
2

such that i 6= j, it follows from the definition of the model
G(n, p, su;m, q, sa) that Cij ⇠ Binom(m, q

2
s
2
a). Moreover,

notice that

x =
�x

log 1
q

mqs
2
a = !(mq

2
s
2
a) = !(E[Cij]),

because �x = ⇥(1) and q = o(1). Now, we can upper bound
the probability of error event E1 as

P(E1) = P{9(i, j) 2 Vu
1 ⇥ Vu

2 : i 6= j and Cij > x}
 (n2 � n)P (C12 > x) (34)
 n

2 exp
�
�mDKL

�
x
m

����q2
s
2
a

��
(35)

= n
2 exp

�mDKL

�x

log 1
q

qs
2
a

����

����q
2
s
2
a

!!

= n
2 exp(�m(�xqs

2
a + o(q))) (36)

= exp(2 log n�m(�xqs
2
a + o(q)))

= o(n�1/2), (37)

where (34) follows from the union bound, (35) follows from
Lemma 9, (36) follows from Lemma 11 and (37) follows since
constant �x � 3 log n

mqs2
a

.

B. Proof of Lemma 2
Recall that we defined auxiliary event A , {n�|S 01| < n

c},
where S 01 = {(i, i) 2 Vu

1 ⇥ Vu
2 s.t. Cii > x}. Here we prove

P(A) = 1�o(1) under the assumption that mqs
2
a = ⌦(log n).

To show this, we first consider the distribution of random
variable Cii and upper bound the probability of event {Cii 
x}. For each vertex i 2 Vu

1 , it follows from the definition
of the model G(n, p, su;m, q, sa) that Cii ⇠ Binom(m, qs

2
a).

Notice that

x =
�x

log 1
q

mqs
2
a = o(mqs

2
a) = o(E[Cii]),

because q = o(1) and �x = ⇥(1). We can upper bound the
probability of the tail event {Cii  x} using Lemma 9:

P(Cii  x)  exp
⇣
�mDKL

⇣
x

m
||qs2

a

⌘⌘

= exp

�mDKL

�x

log 1
q

qs
2
a||qs2

a

!!

= exp
�
�m

�
qs

2
a + o(q)

��
, (38)

where (38) follows from Lemma 11. For simplicity, we denote
exp

⇣
�mDKL

⇣
�x

log 1
q
qs

2
a||qs2

a

⌘⌘
by � from this point. By (38)

and the assumption that mqs
2
a = ⌦(log n), we have � = o(1).

Furthermore, notice that for each different i 2 Vu
1 , the ran-

dom variable Cii are independent and identically distributed.
Therefore, the number of vertices i 2 Vu

1 with Cii  x is
distributed according to the Binomial distribution

n� |S 01| ⇠ Binom(n,P(Cii  x)).

By the upper bound (38), for any positive number z, we have

P(n� |S 01| � z)  P (Binom (n, �) � z) . (39)

Recall that c , max
n

1� mqs2
a

(1+✏/2) log n , 0
o

, where ✏ is a
positive constant. We have

n
c�1

�
� n

� mqs2a
(1+✏/2) log n exp

mDKL

�x

log 1
q

qs
2
a||qs2

a

!!

= exp
✓
� mqs

2
a

1 + ✏/2
+ mqs

2
a + o(mq)

◆
(40)

= !(1), (41)

where (40) follows from (38), and (41) follows since mqs
2
a =

⌦(log n). Finally, we can upper bound the probability of event
Ac as

P(Ac)
= P(n� |S 01| � n

c)
 P (Binom (n, �) � n

c) (42)
 exp(�nDKL(nc�1||�)) (43)

= exp
⇣
�n

⇣
n

c�1 log nc�1

� + (1� n
c�1) log 1�nc�1

1��

⌘⌘

= exp
✓
� n

✓
n

c�1 log nc�1

�

+ (1� n
c�1)��nc�1

1�� (1 + o(1))
◆◆

(44)

= exp
�
�n
�
!(nc�1)� n

c�1(1 + o(1))
��

(45)
= exp

�
�n · !(nc�1)

�

= o(1), (46)

where (42) follows from (39), (43) follows from
Lemma 9, (44) follow from the Taylor expansion of
the function log x and the fact that n

c�1 = o(1) and
� = o(1), (45) follows since n

c�1 = !(�) and finally, (46)
follows from the fact that c � 0.

C. Proof of Lemma 3
Here we prove that the conditions (27) and (28) imply

P(E2|A \ Ec
1) = n

�⇥(1). Recall that we defined events

E2 = {9(i, i) 2 U1 ⇥ U2 : Wii  y|S1|},
A = {n� |S 01| < n

c},
E1 = {9(i, j) 2 Vu

1 ⇥ Vu
2 s.t. i 6= j and Cij > x}.

To analyze the conditional event E2|A\Ec
1 , first notice that Ec

1

implies that only identical pairs are in the anchor set, i.e., U1 =

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3633

U2. Thus, we obtain a simplified expression of the conditional
event as

E2|A \ Ec
1 = {9i 2 U1 : Wii  y|S1|} | A \ Ec

1 .

The condition on the auxiliary event A further implies that
the number of identical pairs that are not discovered in the
anchor set is at most n

c, i.e., |U1| < n
c. Here, recall that

c = max
n

1� mqs2
a

(1+✏/2) log n , 0
o

. We note that c = 0 implies
that the unmatched users set U1 = ;, which is taken care of
by a separate analysis in the proof of Theorem 1. For the
remaining analysis in this Lemma, we only consider the case
where U1 6= ;, and consequently we have c = 1� mqs2

a
(1+✏/2) log n .

Applying the union bound on the conditional error event,
we have

P(E2|A \ Ec
1) = P(9i 2 U1, Wii  y|S1| | A \ Ec

1)

=
ncX

k=0

P(9i 2 U1, Wii  y|S1| | |U1| = k, Ec
1)

· P(|U1| = k | A \ Ec
1) (47)


ncX

k=0

kP(W11  y|S1| | |U1| = k, Ec
1)P(|U1| = k | A \ Ec

1)

(48)
 max

k2[0,nc]
{kP(W11  y|S1| | |U1| = k, Ec

1)}. (49)

In (47), we have n
c as the upper limit in the summation

because of conditioning on A. Equation (48) follows from
the union bound.

Next, we upper bound P(W11  y|S1| | |U1| = k, Ec
1).

Recall
W11 =

X

v2N u
1(1),u2N u

2(1)

{(v,u)2S1}

counts the number of aligned anchor neighbors of a user
vertex. To see the conditional distribution of W11, notice that
conditioned on events Ec

1 and |U1| = k, the whole anchor set
S1 only contains identical pairs and is of size n � k. Thus,
we get the following simpler expression

W11 | {|U1| = k, Ec
1} =

X

v2N u
1(1),v2N u

2(1)

{(v,v)2S1}

=
X

(v,v)2S1

{v 2 N u
1 (1), v 2 N u

2 (1)}.

Here this random variable W11 | {|U1| = k, Ec
1} is the sum-

mation of |S1| = n�k independent and identically distributed
Bernoulli random variables. Each Bernoulli random variable
takes value 1 when a pair of anchor vertices connect to vertex
1 in both G1 and G2, and this happens with probability ps

2
u.

We therefore have W11 | {|U1| = k, Ec
1} ⇠ Binom(n�k, ps

2
u).

To upper bound the probability P(W11  y|S1| | |U1| = k, Ec
1)

in (49), we use the Chernoff bound from Lemma 9 and get

P(W11  y|S1| | |U1| = k, Ec
1)

 exp
⇢
�(n� k)DKL

✓
�y

log 1/p
ps

2
u||ps

2
u

◆�
. (50)

Plugging (50) into the previous (49), we finally have

P(E2|A \ Ec
1)

 max
k2[0,nc]

⇢
k exp{�(n� k)DKL

✓
�y

log 1/p
ps

2
u||ps

2
u

◆�

= n
c exp

⇢
�(n� n

c)DKL

✓
�y

log 1/p
ps

2
u||ps

2
u

◆�

= exp{c log n� (n� n
c)(ps

2
u + o(ps

2
u))} (51)

 exp
⇢

log n� mqs
2
a

(1 + ✏/2)
� nps

2
u + o(np)

�
(52)

 exp
⇢

log n� mqs
2
a + nps

2
u

(1 + ✏/2)

�
(53)

 exp
⇢
� ✏/2

1 + ✏/2
log n

�
(54)

= n
�⇥(1)

.

Here (51) follows from the KL-divergence approximation (32)
in Lemma 11. We get (52) by plugging in c = 1 �

mqs2
a

(1+✏/2) log n and applying assumption (28) mqs
2
a = ⌦(log n).

Equation (53) follows because o(np)  ✏/2
1+✏/2nps

2
u = ⇥(np).

Equation (54) follows from the condition (27), which requires
that mqs

2
a + nps

2
u � (1 + ✏) log n for a constant ✏.

D. Proof of Lemma 4
Here we prove that conditions (29) and (30) imply P(E3|A\

Ec
1) = n

�⇥(1). The conditioned events here are exactly the
same as those of Lemma 3, and we use a similar proof strategy.
Recall that we defined the event

E3 , {9(i, j) 2 U1 ⇥ U2 s.t. i 6= j and Wij > y|S1|}.

To analyze the conditional event E3|A\Ec
1 , we reuse the same

observation from the proof of Lemma 3, that only identical
pairs are in the anchor set. Thus, we are able to simplify the
expression as

E3 | A \ Ec
1 = {9i, j 2 U1, i 6= j : Wij > y|S1|} | A \ Ec

1 ,

where the number of unaligned identical pairs |U1| < n
c. Here,

we also have c = 1� mqs2
a

(1+✏/2) log n , because c = 0 implies that
the unmatched users set U1 = ;, which is taken care of by a
separate analysis in the proof of Theorem 1.

Applying the union bound on the conditional error event,
we get

P(E3|A \ Ec
1) = P(9i, j 2 U1, i 6= j,Wij > y|S1| | A \ Ec

1)

=
ncX

k=0

P(9i, j 2 U1, i 6= j,Wij > y|S1| | |U1| = k, Ec
1)

⇥ P(|U1| = k | A \ Ec
1)


ncX

k=0

k
2P(W12 > y|S1| | |U1| = k, Ec

1)P(|U1| = k | A \ Ec
1)

(55)
 max

k2[0,nc]
{k2P(W12 > y|S1| | |U1| = k, Ec

1)}. (56)

Here we further upper bound P(W12 > y|S1| |
|U1| = k, Ec

1) in (56). Recall that

W12 =
X

v2N u
1(1),u2N u

2(2)

{(v,u)2S1},

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3634 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

represents the number of aligned anchor neighbors of user
vertex 1 in G1 and user vertex 2 in G2, Notice that conditioned
on events Ec

1 and |U1| = k, the anchor set S1 only contains
identical pairs and is of size n�k. Thus, we get the following
simpler expression

W12 | {|U1| = k, Ec
1} =

X

v2N u
1(1),v2N u

2(2)

{(v,v)2S1}

=
X

(v,v)2S1

{v 2 N u
1 (1), v 2 N u

2 (2)}

Here the random variable W12 | {|U1| = k, Ec
1} is the summa-

tion of n�k independent and identically distributed Bernoulli
random variables. Each Bernoulli random variable takes value
1 when a pair of anchor vertices in S1 connect to vertex
1 in G1 and vertex 2 in G2 and this happens with probability
p
2
s
2
u. Therefore, we have W12|{|U1| = k, Ec

1} ⇠ Binom(n�
k, p

2
s
2
u). We then apply Chernoff bound in Lemma 9 and get

P(W12 > y|S1| | |U1| = k, Ec
1)

 exp
⇢
�(n� k)DKL

✓
�y

log 1/p
ps

2
u||p2

s
2
u

◆�
(57)

Plugging (57) into (56), we have

P(E3|A \ Ec
1)

 max
k2[0,nc]

⇢
k

2 exp{�(n� k)DKL

✓
�y

log 1/p
ps

2
u||p2

s
2
u

◆�

= n
2c exp

⇢
�(n� n

c)DKL

✓
�y

log 1/p
ps

2
u||p2

s
2
u

◆�

 exp{2c log n� (n� n
c)(�yps

2
u + o(p))} (58)

 exp
⇢

2 log n� 2mqs
2
a

1 + ✏/2
��ynps

2
u + o(pn)

�
(59)

 exp
⇢

2 log n� 2mqs
2
a + 2nps

2
u

1 + ✏/2

�
(60)

 exp
⇢
� ✏

1 + ✏/2
log n

�
(61)

= n
�⇥(1)

. (62)

Here (58) follows from the KL-divergence approximation
formula (33) in Lemma 11. We get (59) by plugging
in c = 1 � mqs2

a
(1+✏/2) log n and applying assumption (30)

mqs
2
a = ⌦(log n). Equation (60) follows from the fact that

o(np)  ✏/2�y

1+✏/2 nps
2
u = ⇥(np), and condition that �y � 2.

Equation (61) follows from the condition (29).

E. Proof of Lemma 5
Recall that we defined events

E4 = {9(i, j) 2 Vu
1 ⇥ Vu

2 s.t. i 6= j and Cij � z},
E5 = {|S 02| < n

7/8},
E6 = {9(i, i) 2 U3 ⇥ U4 s.t. Wii  y|S2|}.

Here we prove that P(E6|Ec
4\Ec

5) = o(1) under the assumption
that np > n

1/7. By the analogous argument as for equa-
tions (49) and (50) respectively, we have that

P(E6|Ec
4 \ Ec

5)

 max
k2[0,n�n7/8]

{kP(W11  y|S2| | |U3| = k, Ec
4)}, (63)

and

P(W11  y|S2| | |U3| = k, Ec
4)

 exp
⇢
�(n� k)DKL

✓
�y

log 1/p
ps

2
u||ps

2
u

◆�
. (64)

Finally, plugging equation (64) into equation (63) gives

P(E6|Ec
4 \ Ec

5)

 max
k2[0,n�n7/8]

n
k exp

n
�(n� k)DKL

⇣
�y

log 1/pps
2
u||ps

2
u

⌘oo

 n exp
⇣
�n

7/8
DKL

⇣
�y

log 1/pps
2
u||ps

2
u

⌘⌘

 exp(log n� n
7/8(ps

2
u + o(ps

2
u))) (65)

= n
�⇥(1)

, (66)

where (65) follows from the KL-divergence approxima-
tion (32) in Lemma 11 and (66) follows because np > n

1/7.

F. Proof of Lemma 6
Recall that we defined event

E7 , {9(i, j) 2 U3 ⇥ U4 s.t. i 6= j and Wij > y|S2|}.

Here we prove that P(E7|Ec
4\Ec

5) = o(1) under the assumption
that np > n

1/7. By the analogous argument as for equa-
tions (56) and (57), we have that

P(E7|Ec
4 \ Ec

5)
 max

k2[0,n�n7/8]
{k2P(W12 > y|S2| | |U3| = k, Ec

4)}, (67)

and

P(W12 > y|S2| | |U3| = k, Ec
4)

 exp
⇢
�(n� k)DKL

✓
�y

log 1/p
ps

2
u||p2

s
2
u

◆�
. (68)

Plugging equation (68) into equation (67) gives

P(E7|Ec
4 \ Ec

5)

 max
k2[0,n�n7/8]

n
k

2 exp
n
�(n�k)DKL

⇣
�y

log 1/pps
2
u||p2

s
2
u

⌘oo

 n
2 exp

⇣
�n

7/8
DKL

⇣
�y

log 1/pps
2
u||p2

s
2
u

⌘⌘

 exp(2 log n� n
7/8(�yps

2
u + o(p)) (69)

= o(1), (70)

where (69) follows from the KL-divergence approximation
formula (33) in Lemma 11 and (70) follows because np >

n
1/7 and �y = ⇥(1).

G. Proof of Lemma 7
Recall that we defined error event E4 , {9(i, j) 2 Vu

1 ⇥
Vu

2 s.t. i 6= j and Cij � z}. Here we prove P(E4) = o(1)
under the assumption that mqs

2
a � 2 log n

⌧ log 1
q

. To bound the
probability of E4, we first consider the distribution of random
variable Cij . For two different vertices i 2 Vu

1 and j 2 Vu
2

such that i 6= j, it follows from the definition of the model

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3635

G(n, p, su;m, q, sa) that Cij ⇠ Binom(m, q
2
s
2
a). Moreover,

notice that

z = (1 + ⌧)mqs
2
a = !(mq

2
s
2
a) = !(E[Cij]),

since q = o(1). Therefore, we can upper bound the probability
of error event E4 as

P(E4)
= P{9(i, j) 2 Vu

1 ⇥ Vu
2 : i 6= j and Cij � z}

 (n2 � n)P (C12 � z) (71)
 n

2 exp
�
�mDKL

�
z
m

����q2
s
2
a
��

(72)
= n

2 exp
�
�mDKL

�
(1 + ⌧)qs2

a ||q2
s
2
a
��

= n
2 exp

✓
�m(1 + ⌧)qs2

a log
1 + ⌧

q

◆

· exp
✓
�m(1� (1 + ⌧)qs2

a) log
1� (1 + ⌧)qs2

a

1� q2s2
a

◆

= n
2 exp

✓
�m(1 + ⌧)qs2

a log
1 + ⌧

q

◆

· exp
✓

(1 + o(1))m(1� (1 + ⌧)qs2
a)

(1 + ⌧)qs2
a � q

2
s
2
a

1� q2s2
a

◆

= n
2 exp

✓
�m(1 + ⌧)qs2

a log
1 + ⌧

q

◆

· exp
�
(1 + o(1))m(1 + ⌧)qs2

a

�

= exp
✓

2 log n�m(1� o(1))(1 + ⌧)qs2
a log

1
q

◆

= exp(�⌦(log n)) (73)

= n
�⌦(1)

,

where (71) follows by the union bound, (72) follows from
Lemma 9, and (73) follows since in (5) we assume that
mq log 1

q ⌧s
2
a � 2 log n and ⌧ = ⇥(1).

H. Proof of Lemma 8
Recall that we defined error event E5 , {|S 02| < n

7/8},
where S 02 = {(i, i) 2 Vu

1 ⇥ Vu
2 s.t. Cii � z}. Here we prove

P(E5) = o(1) under the assumption that mqs
2
a = o(log n).

To show this, we first consider the distribution of random
variable Cii and lower bound the probability of event {Cii �
z}. For each vertex i 2 Vu

1 , it follows from the definition of the
model G(n, p, su;m, q, sa) that Cii ⇠ Binom(m, qs

2
a). Notice

that
z = (1 + ⌧)mqs

2
a > E[Cii].

We can lower bound the probability of the tail event {Cii � z}
using Lemma 10 as

P(Cii � z)

� 1p
8z(1� z/m)

exp
�
�mDKL

�
z
m

����qs2
a

��

� 1p
8z

exp
�
�mDKL

�
(1 + ⌧)qs2

a||qs2
a

��

= exp
✓
�1

2
log(8(1 + ⌧)mqs

2
a)
◆

· exp(�m(1 + ⌧)qs2
a log(1 + ⌧))

· exp
✓
�m(1� (1 + ⌧)qs2

a) log
1� (1 + ⌧)qs2

a

1� qs2
a

◆

= exp
✓
�1

2
log(8(1 + ⌧)mqs

2
a)
◆

· exp(�m(1 + ⌧)qs2
a log(1 + ⌧))

· exp
✓

(1 + o(1))(1� (1 + ⌧)qs2
a)m

⌧qs
2
a

1� qs2
a

◆

= exp
✓
�1

2
log(8(1 + ⌧)mqs

2
a)
◆

· exp(�(1 + o(1))((1 + ⌧) log(1 + ⌧)� ⌧)mqs
2
a)

= exp(�o(log n)) (74)

� n
�1/9

, (75)

where (74) follows since mqs
2
a = o(log n) and that ⌧ = ⇥(1).

Furthermore, notice that for each different i 2 Vu
1 , the random

variable Cii are independent and identically distributed. There-
fore, the number of vertices i 2 Vu

1 with Cii � z is distributed
according to the Binomial distribution

|S 02| ⇠ Binom(n, P(Cii � z)).

By the lower bound (75), for any positive number w, we have

P(|S 02|  w)  P
⇣

Binom
⇣
n, n

�1/9
⌘
 w

⌘
. (76)

Finally we can upper bound the probability of event E5 as

P(E5)
= P(|S 02| < n

7/8)

 P
⇣

Binom
⇣
n, n

�1/9
⌘
 n

7/8
⌘

(77)

 exp
⇣
�nDKL(n�1/8||n�1/9)

⌘
(78)

= exp
⇣
�n · n�1/8 log

⇣
n
�1/72

⌘⌘

· exp
✓
�n

⇣
1� n

�1/8
⌘

log
1� n

�1/8

1� n�1/9

◆

= exp
✓

1
72

n
7/8 log n� (1 + o(1))n8/9

◆

= o(1),

where (77) follows from (76) and (78) follows from Lemma 9.

I. Proof of Lemma 11
(1) Proof for equation (32): From the definition of the

KL-divergence between Bern
⇣

�
log 1/✓ ✓s

2
⌘

and Bern(✓s2),
we have

DKL

⇣
�

log 1/✓ ✓s
2
���
���✓s2

⌘

= �
log 1/✓ ✓s

2 log
⇣

�
log 1/✓

⌘

+
h
1�

⇣
�

log 1/✓

⌘
✓s

2
i
log
✓

1�(�
log 1/✓)✓s2

1�✓s2

◆

= �
log 1/✓ ✓s

2 log
⇣

�
log 1/✓

⌘

+
h
1�

⇣
�

log 1/✓

⌘
✓s

2
i ⇣⇣

1� �
log 1/✓

⌘
✓s2

1�✓s2 + o(✓)
⌘

(79)

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3636 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

Here equation (79) follows from the Taylor series for the
logarithm log(1 + x) = x + o(x) for x = o(1). Within the
terms from (79), we have that � = ⇥(1) and ✓ = o(1),
we thus get �

log 1/✓ = o(1) and
⇣

�
log 1/✓

⌘
log
⇣

�
log 1/✓

⌘
= o(1).

We therefore have

DKL

✓
�

log 1/✓
✓s

2

����

����✓s
2

◆

= o(✓) +
✓

✓s
2

1� ✓s2

◆

= o(✓) + ✓s
2
. (80)

Here, the last equality (80) follows because ✓ = o(1).

(2) Proof for equation (33): From the definition of the
KL-divergence between Bern

⇣
�

log 1/✓ ✓s
2
⌘

and Bern(✓2
s
2),

we have

DKL

⇣
�

log 1/✓ ✓s
2
���
���✓2

s
2
⌘

= �
log 1/✓ ✓s

2 log
✓

�
log 1/✓

✓

◆

+
h
1�

⇣
�

log 1/✓

⌘
✓s

2
i
log
✓

1�(�
log 1/✓)✓s2

1�✓2s2

◆

=
⇣

�
log 1/✓

⌘
✓s

2 log
✓

�
log 1/✓

✓

◆

+
h
1�

⇣
�

log 1/✓

⌘
✓s

2
i✓
� (�

log 1/✓)✓s2�✓2s2

1�✓2s2 + o(✓)
◆

(81)

=
⇣

�
log 1/✓

⌘
✓s

2 log
✓

�
log 1/✓

✓

◆
+ o(✓) (82)

= �✓s
2 log � + log 1/✓ � log log 1/✓

log 1/✓
+ o(✓)

= �✓s
2 + o(✓) (83)

Here (81) follows from the Taylor expansion of log(1 + x).
Equation (82) follows because �

log 1/✓ = o(1). Equation (83)
follows because � = ⇥(1) and log 1/✓ = !(1).

VIII. DETAILED DISCUSSION IN SEEDED ALIGNMENT

In this section, we provide further details on the discussion
in the seeded graph alignment problem in Section IV-B.
We prove Remark 3 and Theorem 4 by comparing the feasible
regions in Corollaries 1 and 2 to the information theoretic
feasible region and the best known feasible region by efficient
algorithms in literature.

A. Comparison to the Information-Theoretic Limits

Let us first compare the feasible region of Algorithms
ATTRRICH and ATTRSPARSE to the information theoretic
limit of seeded alignment. The next corollary follows readily
from Theorem 3.

Corollary 3 (Information-Theoretic Limits on Seeded
Graph Alignment): Consider the seeded Erdős–Rényi pair
model G(N,↵, p, s), with 1 � p = ⇥(1), s = ⇥(1), and
(1� ↵)N = !(1).

Achievability: In the regime where p = O

⇣
1

[log(N(1�↵))]2

⌘
,

if

Nps
2 � log(N(1� ↵)) + !(1), (84)

then exact alignment is achievable w.h.p.
In the regime where p = !

⇣
1

[log(N(1�↵))]2

⌘
, if

Nps
2 � aN � log(N(1� ↵)) + !(1), (85)

where aN , ↵N

⇣p
ps2(1� p + p(1� s)2)� ps(1� s)

⌘2
�

N↵ps
2 = O(N↵p

3/2), then exact alignment is achievable
w.h.p.

Converse: If

Nps
2  log(N(1� ↵))� !(1),

then no algorithm achieves exact alignment w.h.p.
To compare the feasible region of Corollary 3 to the feasible

regions of Corollaries 1 and 2, we consider two different
regimes for p.

1) p = O

⇣
1

[log(N(1�↵))]2

⌘
. In this regime, the feasible

region in Corollary 3 is given by condition (84): Nps
2 �

log(N(1 � ↵)) + !(1). In Corollary 1, condition (15)
requires that Nps

2 � (1 + ✏) log((1 � ↵)N). Since
we assume that n = (1 � ↵)N = !(1), we can see
that condition (15) implies condition (84). Therefore, the
feasible region in Corollary 1 is a subset of the feasible
region in Corollary 3.
Similarly, in Corollary 2, condition (17) can be written
as Nps

2 � log((1�↵)N)+!(1)
1�↵ , which also implies condi-

tion (84) since 1� ↵ < 1. Therefore, the feasible region
in Corollary 2 is also a subset of the feasible region in
Corollary 3.

2) p = !

⇣
1

[log(N(1�↵))]2

⌘
. In this regime, the feasible

region in Corollary 3 is given by condition (85): Nps
2 �

log(N(1 � ↵)) + aN + !(1). Since s = ⇥(1) and p =
!

⇣
1

[log(N(1�↵))]2

⌘
, it follows that Nps

2 = !(log(N(1�
↵))). Moreover, since p = o(1) and aN = O(N↵p

3/2),
we have Nps

2 = !(aN). Therefore, condition (85) is
satisfied and thus Corollary 3 applies in this regime
while Corollaries 1 and 2 requires further conditions to
apply. Therefore, the feasible regions in Corollaries 1
and 2 are both subsets of the feasible region in Corol-
lary 3.

B. Comparison to Existing Efficient Algorithms

In this subsection, we prove Theorem 4 by thoroughly
comparing the feasible region of the proposed algorithms
in Corollaries 1 and 2 to that of the existing algorithms in
Theorems 5, 6 and 7. We discuss three regimes for m.

Case 1: m = o(n). Recall that ↵ , m
m+n . Therefore,

we have ↵ = o(1) in this regime. For the discussion in this
regime, we first show that both Corollaries 1 and 2 apply in
this regime.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3637

We then show that the feasible region in Corollaries 1
and 2 extends the feasible region for exact alignment in
Theorems 5, 6 and 7.

To see Corollary 1 applies in this regime, note that when
↵ = o(1), condition (14) ↵Nps

2 = ⌦(log((1 � ↵)N))
implies condition (15) Nps

2 � (1 + ✏) log((1 � ↵)N).
Therefore, the feasible region in Corollary 1 simplifies to
condition (14), which is non-empty when p, s and ↵ are large
enough. To see Corollary 2 applies in this regime, we notice
that conditions (16) ↵Nps

2 = o(log((1 � ↵)N)) and (17)
(1 � ↵)Nps

2 � log((1 � ↵)N) � !(1) together imply that
↵ = o(1) which is exactly the case in this regime.

Now we move on to compare
the feasible region in Corollaries 1 and 2 to that in Theo-

rems 5, 6 and 7. We consider three different regimes for Np.
Case 1.1: Np  N

1/7.
For this regime of Np, both Theorems 5 and 6 apply. We

will show that the feasible regions in Corollaries 1 and 2 are
covered by the feasible region in Theorem 6 to illustrate that
the proposed algorithms do not introduce any new feasible
region in this regime. In this and all later cases, we always set
� = 1/7 when we apply Theorem 6.

We first argue that the feasible region in Corollary 1 is a
subset of that in Theorem 6. This is because condition (14)
↵ = ⌦(log((1�↵)N)

Nps2) implies condition (21) ↵ � N
�4/7

under the assumption that ↵ = o(1) and Np  N
1/7,

and condition (15) Nps
2 � (1 + ✏) log((1 � ↵)N) implies

condition (20) Nps
2 � log N + !(1) under the assumption

that ↵ = o(1).
Now we move on to show that the feasible region in

Corollary 2 is also a subset of that in Theorem 6. This is
because conditions (17) (1�↵)Nps

2� log((1�↵)N) � !(1)
and (18) ↵Nps

2 � 2 log((1�↵)N)
⌧ log 1

p
together imply condition (21)

↵ � N
�4/7 under the assumption that ↵ = o(1) and Np 

N
1/7, and condition (17) (1�↵)Nps

2�log((1�↵)N) � !(1)
implies condition (20) Nps

2 � log N + !(1) under the
assumption that ↵ = o(1).

Case 1.2: N
1/7

< Np  s
16(2�s)2 N

1/2. In this case, both
Theorems 5 and 6 apply. We will show that the feasible regions
in Corollaries 1 and 2 are covered by the feasible region in
Theorem 5 to illustrate that the proposed algorithms do not
introduce any new feasible region in this regime.

Firstly, we argue that the feasible region in Corollary 1 is a
subset of that in Theorem 5. Note that because N

1/7
< Np 

s
16(2�s)2 N

1/2, we can write Np = bN
a for some a and b

such that a, b = ⇥(1) and
0 < a  1

2 and 0 < b  s
16(2�s)2 . Because a  1

2 ,
we have b1/ac � 2. Then the statement follows because con-
dition (14) ↵Nps

2 = ⌦(log((1�↵)N)) implies condition (19)
↵ � 300 log N

(Nps2)b1/ac under the assumption that ↵ = o(1).
Now we move on to show that the feasible region in Corol-

lary 2 is also covered by the feasible region in Theorem 5.
This is because again we have b1/ac � 2 and it follows
that conditions (17) (1 � ↵)Nps

2 � log((1 � ↵)N) � !(1)
and (18) ↵Nps

2 � 2 log((1�↵)N)
⌧ log 1

p
together imply condition (19)

↵ � 300 log N
(Nps2)b1/ac under that assumption that ↵ = o(1).

Case 1.3: Np >
s

16(2�s)2 N
1/2. In this regime, Theorem 6

does not apply since Np = ⌦(N1/2). We compare the feasible
regions in Corollaries 1 and 2 to those in Theorems 5 and 7
to show that the proposed algorithms strictly improve the best
known feasible region in this regime.

To compare with the existing results, we first consider the
feasible region achieved by the proposed algorithms. Because
we are in the dense regime Np = ⌦(N1/2), conditions (15)
Nps

2 � (1 + ✏) log((1 � ↵)N) and (17) (1 � ↵)Nps
2 �

log((1 � ↵)N) � !(1) are satisfied. Then conditions for
Corollaries 1 and 2 reduce to constraints on ↵. The constraint
in Corollary 1 is given by (14) ↵Nps

2 = ⌦(log((1� ↵)N)),
and the constraint in Corollary 2 is given by (16) ↵Nps

2 =
o(log((1 � ↵)N)) and (18), which can be written as ↵ =
⌦(log((1�↵)N)

Nps2 log 1
p

). Taking the union of the two constraints on ↵,
the feasible region of the proposed algorithm simplifies to

↵ = ⌦

log((1� ↵)N)

Nps2 log 1
p

!
. (86)

Now, we move on to consider the feasible region in Theo-
rem 5. Because Np >

s
16(2�s)2 N

1/2, if we write Np = bN
a

for some a, b = ⇥(1) and 0 < b  s
16(2�s)2 , we must have

1
2 < a < 1. Therefore, we have b1/ac = 1 in this regime and
the feasible region in Theorem 5

reduces to

↵ � 300 log N

Nps2
. (87)

From the above argument, we see that if condition (86)
is satisfied while condition (87) and at least one of con-
ditions (22) ↵ = !

⇣
1

NI(p,s)2

⌘
and (23) ↵ � 2 log N

NI(p,s) in
Theorem 7 are not, then the proposed algorithms achieve exact
w.h.p. while none of the existing works [13] and [14] do. In the
following, we further consider three sub-cases for p to discuss
which one of conditions (22), (23) and (87) is the bottleneck
condition in the existing works [13] and [14] and to see the
range of ↵ that is feasible by the proposed algorithms while
not by [13] and [14].
• Suppose p log N log 1

p = !(1). In this sub-case, con-
dition (23) ↵ � 2 log N

NI(p,s) implies condition (22) ↵ =
!(1

NI2(p,s)) and condition (87) ↵ � 300 log N
Nps2 implies con-

dition (23). Then the bottleneck condition is condition (23).
Therefore, if condition (86) is satisfied and ↵ <

2 log N
NI(p,s) , the

proposed algorithms achieve exact alignment w.h.p while
the algorithms in [13] and [14] do not. Such ↵ exists
because I(p, s) = (1 + o(1))s2

p log 1
p and thus 2 log N

NI(p,s) =
⇥(log((1�↵)N)

Nps2 log 1
p

).

• Suppose p log N log 1
p = O(1) and p log N log2 1

p = !(1).
In this sub-case, condition (22) ↵ = !(1

NI2(p,s)) implies
condition (23) ↵ � 2 log N

NI(p,s) and condition (87) ↵ � 300 log N
Nps2

implies condition (22). Then the bottleneck condition is
condition (22). Therefore, if condition (86) is satisfied and
↵ = O(1

NI2(p,s)), the proposed algorithms achieve exact
alignment w.h.p while the algorithms in [13] and [14] do

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

3638 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

not. Such ↵ exists because log((1�↵)N)
Nps2 log 1

p
= O(1

NI2(p,s))
under the assumption that p log N log 1

p = O(1).
• Suppose p log N log2 1

p = O(1). In this sub-case, condi-
tion (22) ↵ = !(1

NI2(p,s)) implies condition (23) ↵ �
2 log N
NI(p,s) and condition (22) implies condition (87) ↵ �
300 log N

Nps2 . Then the bottleneck condition is condition (87).
Therefore, if condition (86) is satisfied and ↵ <

300 log N
Nps2 ,

the proposed algorithms achieve exact alignment w.h.p
while the algorithms in [13] and [14] do not. Such ↵ exists
because log((1�↵)N)

Nps2 log 1
p

= o(300 log N
Nps2).

To summarize, in the regime of m = o(n), the proposed
Algorithms ATTRRICH and ATTRSPARSE together strictly
improve the best known feasible region for exact alignment
when Np >

s
16(2�s)2 N

1/2. In the other two regimes for Np,
the feasible region of the proposed algorithms is a strict subset
of that in [13].

Case 2: m = ⌦(n) and m = O(n1+✏0) for some positive
constant ✏

0 that satisfies ✏
0

< ✏ and ✏ � ✏
0 = ⇥(1) (cf. the

constant ✏ in Corollary 1). In this regime, we have ↵ = ⇥(1).
For the discussion in this regime, we first show that Corollary 1
applies in this regime while Corollary 2 does not.

We then show that the feasible region in Corollary 1 is
a subset of the feasible regions in Theorems 5 and 6 from
existing work [13].

Since we have ↵ = ⇥(1), it follows that Nps
2 � (1 +

✏) log((1 � ↵)N) implies ↵Nps
2 = ⌦(log((1 � ↵)N)), i.e.,

condition (15) implies (14). Therefore, the feasible region in
Corollary 1 simplifies to condition (15) which holds true when
p and s are large enough.

As we argued in Case 1, Corollary 2 requires ↵ = o(1),
so Corollary 2 does not apply in this regime.

Now we move on to compare the feasible region in Corol-
lary 1 to that in Theorems 5 and 6. We further consider two
different regimes for Np.

Case 2.1: Np = exp(o(log N)). We can see that Theorem 6
applies in this regime since Np = exp(o(log N))  N

1/7.
Condition (21) ↵ � N

�1+3/7 is satisfied without any fur-
ther assumptions since ↵ = ⇥(1). Moreover, condition (15)
Nps

2 � (1+✏) log((1�↵)N) implies condition (20) Nps
2 �

log N + !(1) under the assumption that m = O(n1+✏0) and
thus the feasible region in Corollary 1 is a subset of the feasible
region in Theorem 6.

Case 2.2: Np = exp(⌦(log N)). Since Np =
exp(⌦(log N)) and we assume that p = o(1), we can write
Np = bN

a, where a, b = ⇥(1), 0 < a  1, and 0 <

b  s
16(2�s)2 . Therefore, Theorem 5 applies in this regime.

Furthermore, condition (19) in Theorem 5 is satisfied since
↵ = ⇥(1) � 300 log N

(Nps2)b1/ac . We can see that all the conditions
in Theorem 5 are satisfied in this regime without any further
assumptions.

For Corollary 1, we have Nps
2 = exp(⌦(log N)) �

(1+ ✏) log((1�↵)N), i.e., condition (15) is satisfied. We can
see that all conditions in Corollary 1 are also satisfied in this
regime without any further assumptions.

To summarize, in the regime m = ⌦(n) and = O(n1+✏0),
the feasible region of the proposed algorithms is a subset of
the feasible region given by existing work [13].

Case 3: m = ⌦(n1+✏). In this regime, we have ↵ = 1 �
o(1). For the same reason as in Case 2, Corollary 1 applies
while Corollary 2 does not.

We will show that the feasible region in Corollary 1 extends
the best known region for exact alignment in Theorems 5, 6
and 7. We discuss two regimes for Np.

Case 3.1: Np = exp(o(log N)). We first point out
that Theorem 7 does not apply in this regime. This is
because I(p, s) = (1 + o(1))s2

p log 1
p and p log 1

p =
exp(o(log N))

N log N
exp(o(log N)) = o(1p

N
), so condition (22) ↵ =

!

⇣
1

NI(p,s)2

⌘
cannot be satisfied.

Therefore, we focus on showing that the feasible region
in Corollary 1 strictly improves in the feasible regions in
Theorem 6. This is because m = ⌦(n1+✏) is equivalent as
N = ⌦(((1 � ↵)N)1+✏), and it follows that condition (20)
Nps

2 � log N + !(1) implies condition (15) Nps
2 � (1 +

✏) log((1 � ↵)N). So in the case when Nps
2 � log N =

O(1) and Nps
2 � (1 + ✏) log((1 � ↵)N) the proposed

Algorithm ATTRRICH achieves exact alignment w.h.p., while
the algorithms in [13] does not.

Case 3.2: Np = exp(⌦(log N)).
This case is included in the feasible region of both Corol-

lary 1 and Theorem 5 for the same reason as in Case 2.
Theorem 7 further requires conditions (22) and (23) to apply
in this regime.

To summarize, in the regime m = ⌦(n1+✏), the proposed
Algorithm ATTRRICH

strictly improves the best known feasible region for exact
alignment in the case when Np = exp(o(log N)). In the case
when Np = exp(⌦(log N)), the feasible region by the pro-
posed algorithms is a subset of that in existing literature [13].

From the above discussion, when specialized to the seeded
Erdős–Rényi graph pair model, the feasible region in Corol-
laries 1 and 2 strictly improves the best known feasible region
in [13] and [14], as shown in the blue area in Fig. 4. We note,
however, that there is also some region that is feasible by
existing results but not feasible by the proposed algorithms in
this paper, as shown in the red area in Fig. 4.

REFERENCES
[1] N. Zhang, W. Wang, and L. Wang, “Attributed graph alignment,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 1829–1834.
[2] P. Pedarsani and M. Grossglauser, “On the privacy of anonymized

networks,” in Proc. 17th ACM SIGKDD Conf. Knowl. Discovery Data
Mining (KDD), Aug. 2011, pp. 1235–1243.

[3] D. Cullina and N. Kiyavash, “Improved achievability and converse
bounds for Erdős–Rényi graph matching,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 44, no. 1, pp. 63–72, Jun. 2016.

[4] D. Cullina and N. Kiyavash, “Exact alignment recovery for correlated
Erdős–Rényi graphs,” 2017, arXiv:1711.06783.

[5] Y. Wu, J. Xu, and S. H. Yu, “Settling the sharp reconstruction thresholds
of random graph matching,” IEEE Trans. Inf. Theory, vol. 68, no. 8,
pp. 5391–5417, Aug. 2022.

[6] O. E. Dai, D. Cullina, N. Kiyavash, and M. Grossglauser, “Analysis
of a canonical labeling algorithm for the alignment of correlated
Erdős–Rényi graphs,” ACM SIGMETRICS Perform. Eval. Rev., vol. 47,
no. 1, pp. 96–97, Dec. 2019.

[7] J. Ding, Z. Ma, Y. Wu, and J. Xu, “Efficient random graph matching
via degree profiles,” Probab. Theory Rel. Fields, vol. 179, nos. 1–2,
pp. 29–115, Feb. 2021.

[8] Z. Fan, C. Mao, Y. Wu, and J. Xu, “Spectral graph matching and
regularized quadratic relaxations: Algorithm and theory,” in Proc. 37th
Int. Conf. Mach. Learn., in Proceedings of Machine Learning Research,
vol. 119, H. D. III and A. Singh, Eds., Jul. 2020, pp. 2985–2995.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ON THE FEASIBLE REGION OF EFFICIENT ALGORITHMS FOR ATTRIBUTED GRAPH ALIGNMENT 3639

[9] C. Mao, M. Rudelson, and K. Tikhomirov, “Exact matching of random
graphs with constant correlation,” Probab. Theory Rel. Fields, vol. 186,
nos. 1–2, pp. 327–389, Jun. 2023.

[10] C. Mao, Y. Wu, J. Xu, and S. H. Yu, “Random graph matching at
Otter’s threshold via counting chandeliers,” in Proc. 55th Annu. ACM
Symp. Theory Comput., 2023, pp. 1345–1356.

[11] N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for
social networks,” Proc. VLDB Endowment, vol. 7, no. 5, pp. 377–388,
Jan. 2014.

[12] L. Yartseva and M. Grossglauser, “On the performance of percolation
graph matching,” in Proc. 1st ACM Conf. Online Social Netw. (COSN).
New York, NY, USA: Association for Computing Machinery, Oct. 2013,
p. 119, doi: 10.1145/2512938.2512952.

[13] E. Mossel and J. Xu, “Seeded graph matching via large neighborhood
statistics,” Random Struct. Algorithms, vol. 57, no. 3, pp. 570–611,
Oct. 2020.

[14] F. Shirani, S. Garg, and E. Erkip, “Seeded graph matching: Efficient
algorithms and theoretical guarantees,” in Proc. 51st Asilomar Conf.
Signals, Syst., Comput., Oct. 2017, pp. 253–257.

[15] S. Zhang and H. Tong, “FINAL: Fast attributed network alignment,” in
Proc. 22nd ACM SIGKDD Conf. Knowl. Discovery Data Mining (KDD).
New York, NY, USA: Association for Computing Machinery, Aug. 2016,
p. 1345.

[16] S. Zhang and H. Tong, “Attributed network alignment: Problem defini-
tions and fast solutions,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 9,
pp. 1680–1692, Sep. 2019.

[17] Q. Zhou, L. Li, X. Wu, N. Cao, L. Ying, and H. Tong, Attent: Active
Attributed Network Alignment. New York, NY, USA: Association for
Computing Machinery, 2021, p. 3896–3906.

[18] S. H. Yu, “Matching in networks: Fundamental limits and efficient
algorithms,” Ph.D. dissertation, Duke Univ., Durham, NC, USA, 2023.

[19] C. Mao, Y. Wu, J. Xu, and S. H. Yu, “Testing network correlation
efficiently via counting trees,” 2021, arXiv:2110.11816.

[20] E. Onaran, S. Garg, and E. Erkip, “Optimal de-anonymization in random
graphs with community structure,” in Proc. 50th Asilomar Conf. Signals,
Syst. Comput., Nov. 2016, pp. 709–713.

[21] D. Cullina, K. Singhal, N. Kiyavash, and P. Mittal, “On the simulta-
neous preservation of privacy and community structure in anonymized
networks,” 2016, arXiv:1603.08028.

[22] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe,
and G. Sapiro, “Graph matching: Relax at your own risk,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 60–73, Jan. 2016.

[23] N. Zhang, Z. Wang, W. Wang, and L. Wang, “Attributed graph align-
ment,” 2021, arXiv:2102.00665.

[24] H. W. Kuhn and B. Yaw, “The Hungarian method for the assign-
ment problem,” Nav. Res. Logist. Quart., vol. 2, nos. 1–2, pp. 83–97,
Mar. 1955.

[25] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” J. Soc. Ind. Appl. Math., vol. 5, no. 1, pp. 32–38, Mar. 1957.
[Online]. Available: http://www.jstor.org/stable/2098689

[26] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, Mar. 1963.

[27] R. B. Ash, Information Theory (Dover Books on Advanced Mathemat-
ics). New York, NY, USA: Dover, 1990.

Ziao Wang (Graduate Student Member, IEEE) received the B.E. degree in
electrical and computer engineering from Nanyang Technological University,
Singapore, in 2019, and the M.A.Sc. degree in electrical and computer
engineering from The University of British Columbia, Vancouver, BC,
Canada, in 2021, where he is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering. His research interests
include information theory and statistical inference on graphs.

Ning Zhang received the bachelor’s degree in physics from Nankai University,
China, in 2019, and the M.A.Sc. degree in electrical and computer engineering
from The University of British Columbia, Vancouver, BC, Canada, in 2022.
She is currently pursuing the D.Phil. degree in computational discovery with
the Department of Statistics, Oxford University. Her research interests include
statistics and computation, with a current focus on the development and
analysis of algorithms for large networks.

Weina Wang (Member, IEEE) received the bachelor’s degree from the
Department of Electronic Engineering, Tsinghua University, in 2009, and
the Ph.D. degree in electrical engineering from Arizona State University in
2016. From 2016 to 2018, she was a joint Post-Doctoral Research Associate
with the Coordinated Science Laboratory, University of Illinois at Urbana–
Champaign, and the School of Electrical, Computer and Energy Engineering,
Arizona State University. She is currently an Assistant Professor with the
Department of Computer Science, Carnegie Mellon University. Her research
interests include applied probability and stochastic systems, with applications
in cloud computing, data centers, and privacy-preserving data analytics. Her
dissertation received the Dean’s Dissertation Award from the Ira A. Fulton
Schools of Engineering, Arizona State University, in 2016. She received
the Kenneth C. Sevcik Outstanding Student Paper Award from the ACM
SIGMETRICS 2016, the Best Paper Award from the ACM MobiHoc 2022,
the NSF CAREER Award in 2022, and the ACM SIGMETRICS Rising Star
Research Award in 2023.

Lele Wang (Member, IEEE) received the B.E. degree from Tsinghua Uni-
versity, China, in 2009, and the Ph.D. degree in communication theory and
systems from the University of California, San Diego, in 2015. She also
attended the Academic Talent Program. From 2015 to 2017, she was a
Post-Doctoral Researcher with Stanford University and Tel Aviv University.
She is currently an Assistant Professor with the Department of Electrical
and Computer Engineering, The University of British Columbia (UBC),
Vancouver, BC, Canada. Before joining UBC, she was an NSF Center
for Science of Information Post-Doctoral Fellow. Her research interests
include information theory, coding theory, communication theory, statistical
inference on graphs, high dimensional statistics, and generative models in
machine learning. She was a recipient of the 2013 UCSD Shannon Memorial
Fellowship, the Qualcomm Innovation Fellowship from 2013 to 2014, and
the 2017 NSF Center for Science of Information Postdoctoral Fellowship.
Her Ph.D. thesis “Channel Coding Techniques for Network Communication”
Won the 2017 IEEE Information Theory Society Thomas M. Cover Disser-
tation Award. She serves as the Vice President for the Canadian Society
of Information Theory from 2022 to 2025, an Associate Editor for the
IEEE TRANSACTIONS ON COMMUNICATIONS from 2023 to 2026, and the
Guest Associate Editor for the IEEE JOURNAL IN SELECTED AREAS ON
INFORMATION THEORY in 2023.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 01,2025 at 21:02:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2512938.2512952

