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ABSTRACT. The resonance varieties are cohomological invariants that are studied in a
variety of topological, combinatorial, and geometric contexts. We discuss their scheme
structure in a general algebraic setting and introduce various properties that ensure the
reducedness of the associated projective resonance scheme. We prove an asymptotic for-
mula for the Hilbert series of the associated Koszul module, then discuss applications
to vector bundles on algebraic curves and to Chen ranks formulas for finitely generated
groups, with special emphasis on Kéhler and right-angled Artin groups.
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1. INTRODUCTION

The concept of resonance initially appeared in topology. For a reasonably nice topological
space X, its resonance variety R(X) is defined as the jump locus

R(X) = {a e H'(X,C) : H'(H*(X,C),8,) # 0}, (1.1)

where §,: H(X,C) — H'"1(X,C) is the differential obtained by left-multiplication by a.
Assuming X is 1-formal in the sense of Sullivan, R(X) is intimately related to the character-
istic variety V(X ) parametrizing rank 1 local systems on X with non-vanishing homology.
More precisely (see [15]), the resonance can be described as the tangent cone to the charac-
teristic variety, that is, R(X) = TCy (V(X )), which links the resonance to the much studied

2020 Mathematics Subject Classification. Primary 14H60, 20J05. Secondary 13F55, 14D06, 14H51,
14M12, 14M15, 16E05, 20F40, 57M07, 57R22.
Key words and phrases. Resonance variety, Koszul module, separable, isotropic, reduced scheme, vector
bundle on a curve, Chen ranks, Kéhler group, right-angled Artin group.
1



2 M. APRODU, G. FARKAS, C. RAICU, AND A. SUCIU

theory of characteristic varieties. A set-theoretic description of R(X) for compact Kéhler
manifolds in terms of irrational pencils has been given by Dimca—Papadima—Suciu [15]. For
complements of hyperplane arrangements a combinatorial (matroidal) description of the
resonance has been found by Falk—Yuzvinsky [17], building on previous work of Libgober—
Yuzvinsky [29] and Falk [16]. A purely algebraic definition of the resonance variety has
been put forward by Papadima—Suciu [37] and linked to the the theory of Koszul modules.
Important applications of this link, including a proof of the Generic Green’s Conjecture for
syzygies of canonical curves in sufficiently high characteristic have been obtained in [2,1].

By its very definition as a jump locus, the resonance R(X) carries a natural scheme
structure that has been however largely ignored for some time. However, even in the much
studied case of hyperplane arrangements, this scheme structure comes to the fore in the
formulation of Suciu’s Conjecture [42] concerning the Chen ranks of the fundamental group
of a hyperplane arrangement, see also [13,41]. We aim to study systematically the scheme-
theoretic properties of resonance varieties in algebraic context, introduce several natural
scheme-theoretic properties that resonance varieties often satisfy and explain how they are
naturally linked to other interesting concepts in the theory of Kahler groups, vector bundles
on algebraic varieties, or geometric group theory.

We begin by recalling the connection between resonance varieties and Koszul modules
following the set-up of [1,2], or [37]. Let V be a finite-dimensional vector space over an
algebraically closed field k of characteristic 0, and let V'V be its k-dual. We let S := Sym(V)
denote the symmetric algebra on V. For a linear subspace K < /\2 V', we define the Koszul
module W(V, K) as the middle homology of the chain complex of graded S-modules

1
K®S 2505, v e 5(1) 2 5(2),

where d: A2V ®S — V ® S(1) is the Koszul differential, given by da(v1 A v2 ® f) =
va @u1 f — vy ®@uaf, whereas §1(v® f) = vf is the multiplication map. Note that W (V, K)
is a graded S-module. Its degree ¢ piece W,(V, K) can be canonically identified with the
homology of the following complex of finite dimensional k-vector spaces,
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The annihilator Ann W (V, K) of the S-module W (V, K) defines a resonance scheme R(V, K),
whose set-theoretic support, also denoted by R(V, K), has been described in [37] as being

R(V,K) := {a € V'V : there exists b€ V¥ such that a A b€ KL\{O}} v {0}, (1.2)

where K is the kernel of the projection /\2VV — K. We consider here the projectivized
resonance scheme,

R(V,K) := Proj(S/Ann W(V,K)).

For a topological space X, we take V := H;(X,C) and we let K < /\2 V be the image of
the map dx: Ha(X,C) — /\2H1(X, C) defined as the dual of the usual cup product map
on H'(X,C). With this notation, we recover the topological resonance R(X) = R(V, K)
as defined in (1.1) and studied in [2,15,37].
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We investigate in what follows the geometry of the resonance schemes and introduce
several concepts inspired by the study of particular cases of resonance varieties in topology
and Hodge theory, which turn out to be often satisfied and which ensure the reducedness of
the projectivized resonance R(V, K). More precisely, in Section 6 we discuss the resonance
varieties associated to vector bundles on curves, in Section 7 we treat the case of Kéhler
groups, whereas Section 8 is devoted to right-angled Artin groups.

1.1. Separable and isotropic resonance. We denote by E := /A V'V the exterior algebra
of V'V and fix a linear subspace V" < VV. We say that VY is isotropic (with respect to
K< A*V)if A’VY < K. The subspace V" is said to be separable (with respect to K) if

Kt n(Vhpe AV, (1.3)

where (V) denotes the ideal of the exterior algebra E which is generated by V. Finally,
V" is strongly isotropic if it is both separable and isotropic, that is, when the following
equality holds
Kt nV'he = NV,

If all the irreducible components of the resonance variety R(V, K) are linear subspaces of
V'V, we say that R(V, K) is separable (respectively, isotropic, or strongly isotropic) if each of
those components of R(V, K) are separable (respectively, isotropic, or strongly isotropic).
We use the same terminology for the Koszul module W (V, K), respectively for the resonance
scheme R(V, K). A characterization of strongly isotropic resonance R(V, K) reminiscent of
Petri type theorems in algebraic geometry is provided in Lemma 3.14.

These definitions, while new in this general algebraic context, are inspired by the study of
the topological resonance. For instance, if X is a complex smooth quasi-projective variety,
then R(X) is linear, but not necessarily isotropic. If the mixed Hodge structure on H'(X,C)
is pure, then R(X) is isotropic, see [15]. The definition of separability and strong isotropicity
of R(V, K) is inspired by the much studied case of hyperplane arrangements [13,41], and it
is one of the points of this paper that reveal the relevance of these conditions for resonance
varieties studied in different geometric contexts.

With this terminology in place, we can state one of our main results:

Theorem 1.1. Let K < /\2 V be a linear subspace, and suppose all irreducible components
of R(V, K) are linear subspaces of V'V
(1) If W(V, K) is separable, then the projectivized resonance scheme R(V, K) is reduced
and its components are disjoint.
(2) If R(V, K) is reduced and isotropic, then it is separable.

Assume now that the resonance R(V, K) is linear and denote by V...,V the (linear)
components of R(V, K). For each 1 < t < k, the inclusion V, € V¥ corresponds to a linear
projection, m: V —» V. Setting K; = (/\27rt)(K) c /\ZVt, we obtain in this way Koszul
modules W(V, K;). As an application of Theorem 1.1, we prove the following result, which
describes the dimensions of the graded pieces of a separable Koszul module.
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Theorem 1.2. Suppose W(V, K) is a separable Koszul module. Then

k
dim W,(V, K) = > dim W, (V, K,),
t=1

for all ¢ > 0.

If the resonance is strongly isotropic, then all the subspaces K; < /\2 V; appearing in
the statement of Theorem 1.2 are trivial. For a vector space U we have the canonical
identification Wy (U,0) = ker{U ® Sym?U — Sym?*! U}, and so dim W, (U,0) = (q+;f§ U).
Therefore, we obtain in this case a simple combinatorial asymptotic formula for the Hilbert

series of W(V, K).

Corollary 1.3. Suppose W(V, K) is a strongly isotropic Koszul module and let us write
R(V,K)=V{ u---0V}. Then for all ¢ » 0

k . T
dim W, (V, K) = Z(q n 1)<q +qd1th>.
t=1

We mention that formulae similar to the one above are obtained in [4] in the monomial
case, using methods specific to square-free monomial ideals, even in the absence of separa-
bility or isotropicity. The intersection point between [4] and Theorem 1.2 is represented by
Proposition 8.3, which gives necessary and sufficient conditions in terms of the associated
graph for the resonance of a monomial subspace K to be isotropic or separable.

1.2. Chen ranks of groups. One of the main applications of this theory is to the compu-
tation of the Chen ranks of large classes of finitely generated groups. Given such a group
G, we denote by G =T'1(G) 2 --- 2T4(G) 2T4+1(G) 2 - - - its lower central series, defined
by I'y11(G) = [T'4(G), G]. ThlS is a normal, central series; the direct sum of its successive
quotients,

(‘D P / I‘q+1 )

=1
acquires the structure of a graded Lie algebra, generated by its degree 1 piece, G/G’, where
G' = [G,G]. Let G/G" be the maximal metabelian quotient of G, where G” = [G',G’].
The Chen ranks of G are defined [13,34,41] as the graded ranks of this (finitely generated)
Lie algebra, that is,

04(G) = rank gr,(G/G") = rank 'y (G/G") /T 441 (G/G"). (1.4)
From the cohomology algebra of GG in low degrees, one can extract the Koszul module
W(G) =W(V,K)
of the group G, by setting V' = H;(G,k) and letting K+ be the kernel of the cup-product
map ug: A?HY(G,k) — H?*(G,k). We let R(G) = R(V, K) be the corresponding reso-

nance variety of the group and R(G) = R(V, K) the corresponding projectivized resonance
scheme.
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As shown e.g. in [34,45], if the group G is 1-formal (that is, its pronilpotent Lie algebra
admits a quadratic presentation), then

0,(G) = dim W,_5(G) (1.5)

for all ¢ = 2. Moreover, as shown in [15], all the components of R(G) are (rationally defined)
linear subspaces of V'V. As an immediate application of Corollary 1.3, we recover the main
result of Cohen and Schenck [13, Theorem A], in a somewhat stronger form.

Corollary 1.4. Let G be a 1-formal group, and assume R(G) is strongly isotropic. Denoting
by V...,V the (linear) components of R(G), we have

04(G) = Zk:(q _1) (q +dimV, — 2>

t=1 q
for all g » 0.

Compared to [13], the assumption that the components of R(G) be projectively disjoint
is no longer needed; indeed, in view of Theorem 1.1, that property follows automatically
from separability. Note also that, thanks to [45], we dropped the assumption that G admit
a commutator-relators finite presentation.

1.3. Resonance for vector bundles on curves. As explained in detail in [3], see also [18,
Theorem 1.7], a major source of resonance varieties is provided by vector bundles in algebraic
geometry. To a vector bundle E on a complex algebraic variety X, one can associate a
Koszul module W (X, E) := W(V,K) and a resonance variety R(X, E) = R(V,K), by
setting V := H°(X, E)" and

Kt = ker{dgz A?*HY(X,E) — HO(X7/\2E)}7

where ds is the natural map defined as follows. To any element s A " € /\2H Y%(X,E), one
associates the section da(s A s') € HY (X , /\2E) whose value at any point x is precisely the
vector s(x) A §'(x) in the fibre E(z) of E over x. In the rank-2 case, dy is the determinant
map and is sometimes denoted in literature by det. It was observed in [3] that R(X, E)
parametrizes subpencils of the vector bundle E, that is, line subbundles A — E such that
h(X, A) > 2. Tt is thus natural to seek to characterize geometrically those vector bundles
FE for which the resonance is strongly isotropic.

For simplicity, we assume X is a smooth algebraic curve and F is a rank 2 stable vector
bundle of degree d on X. Following Drinfeld and Laumon [28], we say that E is very stable
if it has no non-zero nilpotent Higgs fields, that is, the space H%(X,wx ® End(E)) contains
no non-zero nilpotent elements. It has been proven in [38] that E is very stable if and only
if the space H° (X, wx ® End(E)) is closed inside the moduli space Higgsy(2,d) of rank 2
Higgs fields on X. For further connections between very stability and mirror symmetry, see
[23]. Tt turns out that this concept is closely related to the strong isotropicity of R(X, E).

Given a line bundle L on X, let SUx(2,L) be the moduli space of semistable rank 2
vector bundles £ on X with /\2E ~ L. The locus of stable but not very stable bundles on
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X is known to be a divisor in SU x (2, L), see [33]. For a stable vector bundle F € SUx (2, L)
and a positive integer a, we let

WYE) = {A € Pic?(X) : hO(X, A) > 2 and A — E}

a

be the variety of degree a subpencils of E. The following result describes the structure of
resonance varieties of rank 2 vector bundles on curves in terms of linear systems |A|:

Theorem 1.5. Fiz a general curve X of genus g and a line bundle L € Picd(X), where
29+2<d<3g+1. For a general stable rank 2 vector bundle E on X with /\2E ~ [, the
following hold:

(1) If d < 3g + 1, then R(X, E) = {0}.

(2) If d = 3g + 1, then R(X, E) is strongly isotropic and moreover

g+1
R(X,E) = U R.(X, E),

e

a=]

where Rq(X, E) = | J{|A| : Ae WHE)} is a disjoint union of

22a7g72 1
#WL(E) = ot
g+1 \g—a+1l,9g—a+2,2a—g—2

disjoint projective lines.

For a general stable bundle E of degree 3g + 1 with fixed determinant as in part (2),
observe that u(wx ® EY) < g — 1, therefore h'(X, E) = 0 and then by Riemann-Roch we
have that h?(X, E) = g+ 3. The strong isotropicity of R(X, E) implies that the intersection
Pker(dy) n Gra(H%(X, E)) consists of

(29 + 2)! &) g2a—g-2 ( g+1 )
g

deg G 3) = -
8 Cnlg +3) = (g + 2 g+1 \g—a+1l,g—a+22a—g—2

a=[242]

reduced points. Furthermore, when deg(E) > 3¢ + 1, the resonance R(X, F) is no longer
linear, see Remark 6.9. The reason in the statement of Theorem 1.5 we restrict to the case
d = 2g + 2, is that when d < 2g + 2, then h(X, E) < 3 and the statement becomes trivial.
In the particular case a = g + 1 we have a more precise result that holds for every very
stable vector bundle, rather than for a general one.

Corollary 1.6. Let X be a general curve of genus g and let EZ be a very stable vector bundle
of degree 3g + 1. Then Ry1(X, E) consists of 29 disjoint projective lines.

Note that the number of maximal line subbundles of a vector bundle has been the subject
of study in enumerative geometry [27,32] and recently in the context of Tevelev degrees [19].

1.4. Resonance of Kodaira fibrations. A Kodaira fibration is a submersion f: X — B
from a smooth algebraic surface to a smooth projective curve B of genus b > 2, such that all
fibres of f are smooth curves of genus g varying in moduli. Equivalently, f corresponds to a
morphism B — M, into the moduli stack of smooth genus g curves. Kodaira fibrations are
objects of intense study in algebraic geometry [10,26], in the theory of surface bundles [12,



REDUCED RESONANCE SCHEMES AND CHEN RANKS 7

25,11,40], and in geometric group theory [31]. It is an open question posed independently
by Catanese and Salter whether there are algebraic surfaces that admit more than two
Kodaira fibration structures. Our Theorem 1.2 turns out to be useful in this context. We
have the following result describing the resonance of double Kodaira fibrations (for the case
of surfaces admitting a unique Kodaira fibration structure, see Lemma 7.2).

Theorem 1.7. Let X be a compact algebraic surface which admits two independent Kodaira

fibrations, ¥4 — X EiN By and ¥4, — X J2, By. Assume that the product map f =
(fi,f2): X — By x By induces an isomorphism on H'(—,C) and a monomorphism on
H?(—,C). Then
1) The resonance scheme R(X) = ffHY(By,C) U ffH'(By,C) is separable.
1 2
(2) The Chen ranks of m1(X) are given by the following formula, for ¢ > 0,

0, (7T1(X)) 1) <<2b1 +qq — 2) N (2b2 +qq - 2)) B (2b1q+_q2* 3) B <2b2q+_q2 3>'

We explain in Section 7.3 how the hypothesis of Theorem 1.7 are verified for the Atiyah—
Kodaira surfaces constructed in [6,26]; consequently, the theorem provides a formula for
the Chen ranks (in large degrees) of these surfaces. Finally, we also conjecture in §7.3 that
the projective resonance R(G) of any Kéhler group G is reduced and that a “Chen ranks
formula” in the spirit of Theorem 1.2 and generalizing the one in Theorem 1.7 always holds.

In this paper we refrain from studying the Koszul modules and the Chen ranks of hyper-
plane arrangements. They will form the subject of the forthcoming paper [5].
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2. KOSZUL MODULES AND RESONANCE SCHEMES

2.1. Koszul modules. We now recast some of the notions introduced in the previous
section in a more convenient setting, following the approach adopted in [37] and developed
in [2,1,3].

Once again, let V' be a finite-dimensional vector space over an algebraically closed field
k of characteristic 0, and let K < /\2V be a subspace. We also let K+ < /\2 VY be the
subspace of all linear functionals vanishing on K. Unless otherwise specified, all tensor
products will be over k.

Set S := Sym(V). Upon picking a basis for V, this algebra may be identified with the
polynomial ring k[xz1,...,2,], where n = dimV. Let (/\' V®Ss, 5) be the corresponding
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Koszul complex. As already mentioned, the Koszul module W (V, K) is the middle homology
of the chain complex

b2l ks

K®S V®eS(1) -2 S(2). (2.1)

It is readily seen that W (V, K) is the cokernel of the S-linear map
AN VOK)®S5 — AV®S (2.2)

with matrix d3 + ¢ ® idg, where ¢: K — /\2V is the inclusion map. One has an alternate
presentation of W (V, K) as a cokernel of a morphism of graded S-modules:

AV ®S(—1) — (/\QV/K) ®S — W(V,K) — 0 (2.3)

A k-linear map ¢: V — V induces a linear map A%p: A’V — A?V and we let K be
the image of K under this map. Writing S := Sym(V), the map ¢ induces a ring morphism
7m: 8 — S. Denoting by W(V, K) the cokernel of the composed map

AN VOK)®S — NVRS — ATV®S

we obtain a morphism of graded S-modules (which by abuse of notation we also call ¢),

~ o —

0 W(V,K) —s W(V,K). (2.4)

~

Clearly, W(V,K) = W(V, K)®sS. Moreover, if ¢: V — V is surjective, then the morphism
(2.4) is also surjective.

2.2. Koszul modules and differentials. Next, we explain the relationship between Koszul
modules and the sheaf Q = QL of differential forms on the projective space P := P(VV).
Consider the Euler sequence

0— Q2 —>V®O0p(-1) — Op — 0. (2.5)

If p=[f] € P, where 0 # f € V'V, then the restriction of (2.5) to p identifies with

Oﬂker(f)ﬂviﬂkﬂ().

Using the left exactness of the global sections functor, and the fact that W (V,0) = ker(¢;)
(as follows from (2.1)), we obtain from (2.5) that

Wy (V,0) = H*(P,Q(q + 2)). (2.6)

for all ¢ € Z. Using (2.1), we can also write
W,(V,K) = coker{K ® Sym? V. — W,(V, 0)}. (2.7)

The graded S-module W (V, K) induces a coherent sheaf WW(V, K) on the projective space
P =P(V"). We refer to W(V, K), as the Koszul sheaf associated with the pair (V, K).
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From the natural surjection A*V ® Op(—2) — Q, coupled with the inclusion K = A%V,
we obtain a map K ® Op(—2) — 2, which, upon twisting, taking global sections, and using
(2.7) yields the identification

W,(V, K) = coker{HO (P,K ® Op(q)) — H°(P,Q(g+2)) }
for all ¢ € Z. Accordingly, the associated Koszul sheaf can be realized as
WV, K) = coker{K@ Op — Q(z)}, (2.8)

and in particular we have the identification W(V,0) = ©(2) of sheaves on P.

If i: V' < VV is a linear subspace, let 7: V — V be the dual map. Set K = A*r(K).
By the discussion above, we have a surjective morphism of graded S-modules,

 W(V,K) — W(V,K). (2.9)
The morphism 7 from (2.9) corresponds to a surjective morphism of coherent Op-sheaves,

T WV, K) —s i WV, K). (2.10)

2.3. The presentation of the Koszul sheaf. Let P = P(VV) — P = P(VV) be the
inclusion map and let p be a point in P. Write p = [e1] for 0 # e; € V" and complete
{e1} to bases of VY and VV. We let X1,...,X,, denote the homogeneous coordinates on
P corresponding to the choice of basis for V'V, and we let z; := X;/X; denote the local
coordinates at the point p. Letting A = Op 4, denote the local ring of P at p, we have

A =k[za,...,zn]|m, (2.11)

where m = (z3,...,x,). Using (2.5), we have that the stalk of  at p can be described as
Q=P A dvj, (2.12)
j=2

where dv; := vj — x; - v1. Here we identify v; and v; ® X% eV®O0p,(—1).

Proposition 2.1. When viewed as an A-module, the stalk of the Koszul sheaf W = WV, K)
at the point p € P has presentation

K®A 150, 2 W,, (2.13)

where 0 is the restriction to K ® A of the A-linear map 05 : /\2V®A — Q, by

do(vs Avy) =g - dog — g - dvg  for 2

2.14
02(v1 A vy) = duy for 2 ( )
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Proof. The Koszul differential dy: A*V®S — V ® S yields a map d2: A’V A - V® A,
which in turn restricts to a map 0: K ® A — §2,. We then obtain the commuting diagram

KQA—250, s W,
j ‘ / (2.15)

AVRA -,
and it is now readily verified that the map ¢ has the desired form. (|

By abuse of notation, we will write dv; for the element of W, which is the image under
v of the corresponding element dv; € €2,,.

2.4. Resonance varieties and schemes. It has been proven in [37] that the set-theoretic
support of the S-module W (V| K) is given by the resonance,

R(V,K) = {a € V'V : there exists b e V' such that a A b e KL\{O}} v {0}.

where K+ < A? VY. In other words, for a given K € A*V we have that W,(V, K) = 0 for
g » 0 if and only if R(V, K) = 0. The annihilator of the Koszul module W (V, K), which
we denote by I(V, K), is a homogeneous ideal in S. We let

R(V,K) = Spec(S/I(V,K)) (2.16)

denote the affine resonance scheme, which is the scheme-theoretic support of W(V, K)
inside VY. Since this is the only scheme structure we will use, there is no ambiguity in
using the same notation for the scheme R(V, K) and its underlying variety.

Remark 2.2. There is another possible scheme structure on R(V, K), given by the Fitting
ideal Fittg W (V, K). However, the scheme structure given by the annihilator I(V, K) is the
minimal one, and is invariant under closed embeddings of ambient affine spaces. This prop-
erty of the annihilator support will be used in the proof of Theorem 4.5. For a comparison
of these two scheme structures in the case of right-angled Artin groups, see Example 8.6.

The scheme-theoretic support of the Koszul sheaf W(V, K) defined in (2.8) is called the
projective resonance scheme, and is denoted by

R(V,K) = Proj(S/I(V,K)) . (2.17)

Using the same convention as above, we will denote the underlying projective resonance
variety by R(V, K), although our main interest is in the scheme structure.

We isolate here and in the later sections certain desirable properties of the resonance
schemes and their underlying varieties that arose from the study of resonance varieties of
complements of hyperplane arrangements.

Definition 2.3. We say that the resonance of (V, K) is linear if R(V,K) is a union of
linear subspaces of V'V. Furthermore, we say that R(V, K) is projectively disjoint if the
irreducible components of R(V, K) are pairwise disjoint. Finally, we say that the resonance
is projectively reduced if R(V, K) is a reduced scheme.
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Remark 2.4. If R(V, K) is a finite union of lines, then these lines are necessarily projec-
tively disjoint.

2.5. Projective geometry interpretation of resonance. The projectivized resonance
has a simple description in terms of projective geometry, using the incidence variety of the
Grassmannian. Let G := Grg(V") be the Grassmannian of 2-planes in V'V, viewed as a
subset of P( /\2 VV) via the Pliicker embedding. Consider the diagram

Pbra

PxG > =

pry

G « P(A*VY),
(2.18)

P

where = = {(p, LyePxG:pe L} is the incidence variety and pr; and pr, are the
two projections as in (2.18). The natural bijection between the points of G and the set
of lines in P is given by the correspondence pr; o pry ! which maps a point [a A b] € G
to the line Ly, in P passing through [a] and [b]. The inverse of this map is given by
Lay — pray(pri—Y([a]) » pri~1([b])). The next lemma readily follows.

Lemma 2.5. Set-theoretically, the projective resonance variety is given by

R(V,K) = pr; (pra (G n PK™1)). (2.19)
Moreover, the following inclusion holds
G nPK"  pry(pri {(R(V, K))). (2.20)

In the particular case of hyperplane arrangements, the equality (2.19) was previously
established by Lima-Filho and Schenck in [30, Proposition 2.1]. As illustrated in Example
3.4 below, the inclusion (2.20) is not an equality in general.

Since the projection pr, realizes = as the projectivization of the universal rank-two bundle
on the Grassmannian, the projectivized resonance is covered by lines. More precisely, if
[a] € R(V,K) and 0 # a A b € K, then the line Ly, joining [a] and [b] is included in
R(V,K). Note that a point in the resonance may be contained in a higher-dimensional
linear subspace of R(V, K). Specifically, if [a] € R(V, K), then

Hy,={[b]eP:anbe K} (2.21)

is a linear subspace of P of dimension at least one and completely contained in R(V, K).

The projective geometry description of resonance yields plenty of examples of projective
varieties that are not resonance varieties.

Example 2.6. Even among varieties covered by lines, there are simple examples that are
not resonance varieties. Let I' = {p1,...,pm} S G be a set of points that are not contained
in any hyperplane of P(A% V). Then the set X := pr; opry *(') is the union of m disjoint
lines, X = Ly u -+ u Ly,. Suppose X = R(V, K), for some subspace K < /\2 V. By the
above discussion, for any [a] € R(V, K), the linear subspace H, is contained in R(V, K).
It follows that for any j and any [a],[b] € L; we have a A b € K1, which implies that
I' = G n PK", which is a contradiction. Hence, X is not a resonance variety.
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Remark 2.7. The above situation is in stark contrast with what happens for the closely
related characteristic varieties. For instance, given any integrally defined hypersurface
Y < (C*)™, there exists a finitely presented group G with H;(G,Z) = Z" for which the
characteristic variety V(G) = {p € Hom(G,C*¥) : Hi(G,C,) # 0} is isomorphic to ¥ u {1};
see [44, Lemma 10.3].

3. ISOTROPIC AND SEPARABLE SUBSPACES OF RESONANCE
Recall that V is a finite-dimensional vector space and K < A®V is a linear subspace.

Definition 3.1. A linear subspace V' < V'V is said to be isotropic (with respect to K) if
AV < Kt

The isotropicity property can be described by passing to the quotient. If 7: V — V is the
corresponding projection, recalling that K is the kernel of the projection /\2Vv — KV,
setting K := A%(m)(K) we observe that V" is isotropic if and only if K = 0.

Definition 3.2. We say that the resonance variety R(V, K) is isotropic if it is linear and
each of its irreducible components is isotropic.

By definition, any isotropic subspace V' < V¥ is automatically contained in the reso-
nance variety R(V, K). Moreover, R(V, K) is a union of isotropic lines; more precisely,

R(V,K) = U Lap. (3.1)
a,beVV:ianbe K+

Example 3.3. Assume V¥ = {eq,...,e,) and set K+ = (e A ea) € A2V, Then clearly
R(V,K) = {e1, e2), which is isotropic.

On the other hand, a linear component of the resonance variety is not necessarily isotropic,
as shown by the following example.

Example 3.4. Consider a subspace K < /\2V of dimension m, where 1 < m < n — 2
and n = dim V. Since the sheaf (5 (2) has rank n — 1, formula (2.8) implies that R(V, K)
coincides with V'V. However, R(V, K) is not isotropic, as K L is a proper subspace of /\2 V.

Remark 3.5. Another instance when the resonance coincides with the ambient space is
when V decomposes as a non-trivial direct sum of k-vector subspaces, V = U; @ Us,, so that
UY AUy € K*. Then it follows that R(V, K) = V'V, see [35, Lemma 5.2].

For the next definition, let £ :== /A V'V be the exterior algebra on the dual vector space
V'V, and write (U)g for the ideal in E generated by a subset U < E.

Definition 3.6. A linear space V' < V'V is separable (with respect to K < /\2V) if
Kt nVhpe ANV, (3.2)
We say that V' is strongly isotropic if it is separable and isotropic, that is,

K+ n Vg =NV,
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We say that the resonance variety R(V, K) is separable if it is linear and each of its
irreducible components is separable. Likewise, the resonance is strongly isotropic if it is
isotropic and separable.

Example 3.7. If K+ = 0, then any subspace is separable with respect to K. At the other
end of the spectrum, if K- = /\QVV, then the only separable subspace is the trivial one.

The next example will be used in the proof of Theorem 4.5.

Example 3.8. Suppose R(V, K) = V. Then the resonance variety is separable. Moreover,
the scheme structure is clearly reduced. If R(V,K) = {0}, then the resonance variety is
automatically separable. The scheme structure is not necessarily reduced; however, the
projectivized resonance is empty, and thus reduced.

Example 3.9. An example of non-separable resonance is obtained if V'V = {(e1, e, €3,€4)

and K+ = {e; A eg,e1 A e3+ex Aeq). Then R(V, K) = (e, e2), which is not separable.

As shown in the next example, separable subspaces are not necessarily contained in the
resonarnce.

Example 3.10. Take again V'V = (e1,ea,e3,e4) and K+ = {e1 A ea + e3 A eq). Then the
subspace V' = (e, es) is separable, yet R(V, K) = {0}.

3.1. A local view of separability. If n = dimV and 7 = dim V, fix a basis (e1, ..., e,) of
V'V such that (eq,...,eq) is a basis for V"'. Set U := ker {m: V > V}. Letting (v1,...,vn)
denote the dual basis of V', we obtain a direct-sum decomposition,

ANV=LOM®a@H, (3.3)
where
L:<vs/\vt:s,t<ﬁ>;/\27,
M={vsrv:s<mandt>n)=V®U, (3.4)
H=<vs/\vt:s,t>ﬁ>;/\2U.
Observe that
MY = (N VY VD) NV (3.5)
Consider now the map A%m: A’V — A?V. Then ker (/\27r) Y = A?VY/A?V", and hence
MY < ker (A*r)”, inducing a surjection 7: ker(A*r) — M. Let
pa: Ko ker(/\27r) — M (3.6)

be the restriction of 7 to the subspace K mker( /\27r). The next lemma provides a convenient

local criterion for verifying the separability of V', that we will often use for concrete
applications.

Lemma 3.11. With notation as above,
(1) coker(par) = ((K* 0 (V")p)/(K- n ANV

\4
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(2) The subspace VY c VY is separable if and only if the map pas is surjective.
Proof. The exact sequence
0— Kmker(/\27r) — K — AV
gives rise by dualizing to the exact sequence
KA ANV — AV — KY — (K nker(A*1))Y — 0, (3.7)

from which we infer that the kernel of the map K — (K n ker(A?7))Y is equal to
A2V (KL~ A?VY). Consider now the diagram

0 0 0
{ { {

0— KL A2V s A2V ——— N2V KA NV —0
! + !

00— K- nVg—— s NV AV ) ——— KV
+ 1 )

0— (KL A TR /(KL A A2TY) y MY — M (K A ker(A2m))Y
; ; ;

(3.8)

By (3.5), the middle column is exact; the left column and the top row are clearly exact;
finally, the middle row is also exact. Thus, the bottom row is also exact and the diagram
commutes, by the Snake Lemma. Dualizing the bottom row in diagram (3.8) yields the first
claim. The second claim now follows from claim (1) and Definition 3.6. O

When V'’ is isotropic with respect to K, the above separability criterion simplifies. First
observe that V" is isotropic if and only if K < ker(/\? 7). We then have the following:

Corollary 3.12. An isotropic subspace V' < V'V is separable if and only if the map
py: K — M given by (5.6) is surjective.

We refer to Lemma 3.14 below for a dual version of Corollary 3.12. With the help of
diagram (2.18), we now obtain the following projective-geometric interpretation of separa-
bility.

Lemma 3.13. Let V'~ S V'V be a linear subspace and denote by P < P the associated
projective subspace. Then V' is separable if and only if

Span(pry pr; ' (P)) n P(K*) < P(/\ZVV). (3.9)

Proof. Note that the projective subspace Span(pry prfl(ﬁ)) - P(/\2VV) spanned by

pry prl_l(F) is the projectivization of the space of quadrics in the exterior ideal (V).
The claim follows. O



REDUCED RESONANCE SCHEMES AND CHEN RANKS 15

Lemma 3.11 provides useful information regarding the restriction of the Koszul sheaf over
the projectivization P := P(V) of a separable subspace V. Recall that K denotes the image

of K under the projection /\2V —» /\27 and that the conormal bundle Ng P

to ker(m)®Op(—1). We infer that the morphism W(V, K)|g — W(V, K) is an isomorphism
provided (K nker(A*7)) ® Op — ker(m) ® Op(1) is surjective. Given that M is naturally
identified with ker(7) ® V, Lemma 3.11 ensures that if V" is separable, this morphism is
already surjective on global sections, and hence the isomorphism W(V, K)|g = W(V, K)
is guaranteed. In the next section we shall prove a stronger statement, namely, that the
map W(V, K) — W(V, K) is a local isomorphism at any point of P.

is isomorphic

3.2. Strong isotropy via the multiplication map. We now recast Corollary 3.12 in
a setting that will prove to be useful when studying Koszul modules associated to vector
bundles on varieties. Assume V' < V'V is an isotropic subspace, put UY = V'V /VV with
projection map p: VY — UV, and denote by ¢: /\2 VY — KV the dual to the inclusion
map K — /\QV. By the isotropy hypothesis, the map ¢ induces a multiplication map,

M:VV®UV — KV,

by setting /,L(a ® p(B)) = ¢(a A B). Note that absent the isotropy condition, p is not
well-defined. With the notation from the previous sections, under the natural identification
M =~V ®U, the map p is dual to pas. The following result which can be deduced from
Lemma 3.11. For the convenience of the reader, we also give here a self-contained proof.

Lemma 3.14. The subspace V' is strongly isotropic if and only if p is injective.

Proof. Assume first that g is injective. Let w = Yoy A i € K+ n(V)p, with oy € V'
linearly independent. Set b; := p(B;). Since ¢(w) = 0, it follows that u(>.a; ® b;) = 0,
which implies >’ a; ® b; = 0. Since «; are linearly independent, the elements b; all vanish,
hence 8; € V" for all 7. In particular, we A?V".

Conversely, if V" is strongly isotropic, choose w = > a;®b; € ker(p) with a; € V" linearly
independent. Lifting each b; to §; € V', we obtain an element w = 3 o A 3; € ker(¢) = K*.
Since w belongs also to (V') and since V' is isotropic, it follows that w € /\2 VY, and
hence w = > o} A B} with o, 5 € V. Since p(8;) = 0, we have that w = 0. O

This form of Corollary 3.12 is particularly useful in the case of vector bundles. We refer
to Section 6 for a more detailed discussion.

4. KOSZUL MODULES WITH SEPARABLE RESONANCE

Our goal in this section is to study those Koszul modules whose resonance varieties are
separable, and to prove Theorem 1.1, part (1) and Theorem 1.2 from the Introduction.

4.1. Bases in K with respect to separable subspaces. As usual, let V' be a finite-
dimensional vector space and let K < /\2V be a subspace. The next lemma provides explicit
bases in K, related to a given separable linear subspace VY < VY. Let /\2 V=LOM®H
be the direct-sum decomposition given by (3.4).
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Lemma 4.1. Let V' be a separable subspace of V¥ with respect to K. There exists then
a basis of K of the form {ass : s <@, t > 70} u{p,...,0n}, where N is a non-negative
integer, such that, for each s <m,t>mn, and 1 < j < N, we have

Qst = Vs N Ut + hs,tv ﬁj = Ej + hj, (41)

for some collection of elements ; € L and hst,h; € H.

Proof. By Lemma 3.11, the map pjs is surjective. Hence, we can lift each vs A v, € M to
an element o, € K n (M @ H). We write agy = vs A v + hgy, where hgy € H. If we take
(B1,-..,08N) to be a basis of an algebraic complement of K n (M @ H) in K, the elements
B;j have the desired form, namely, 8; = ¢; + h;, for some ¢; € L and h; € H. O

Note that for some of the elements ; in the above lemma (e.g., those contained in the
kernel of pys from (3.6)), the corresponding element /; is zero.

4.2. Koszul sheaves and separable components. Consider the map of Koszul modules
m: W(V,K) - W(V,K) from (2.9) and the corresponding map of Koszul sheaves,

T W(V,K) — W(V,K). (4.2)

We write W = W(V, K) and W = W(V,K), and we let P = P(V") — P = P(V") be
the inclusion map. Fix a point p € P. Write p = [e1] for 0 # €1 € V" and complete {e;}
to bases of V'~ and V'V as before. By Proposition 2.1, the stalk of W at p has presentation

K®A N Q, AN W, — 0, where 0 is the restriction to K ® A of the map defined on
AV ® A by (2.14).

Assume now that V" is a separable subspace of V¥ with respect to K, and consider the
basis of K obtained in Lemma 4.1.

Lemma 4.2. Fort=n+1,...,n, we have that dv; = 0 in W),

Proof. We let M < W, denote the A-submodule generated by dvpti,...,dv,. To prove
that M = 0, it suffices by Nakayama’s lemma to show that M < m - M. We note that by
(3.3) and (2.14) we have that

v(o(h)) em- M forall he H. (4.3)

Since

0 =v(d(a1y)) = v(02(any)) = v(dv) +v(02(h1y)),
it follows that dv; e m - M for t =7+ 1,...,n, showing that M < m - M and concluding
the proof. 0

Combining Lemma 4.2 with the following result will allow us to conclude that locally at
p, the Koszul sheaf W is scheme-theoretically supported on P = P(VV).

Lemma 4.3. We have that x; - dvs = 0 in W, for all2 < s <7n andt > 7.
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Proof. As in the proof of Lemma 4.2, we have that

0=v(d(ast)) = v(zs - dopg — xy - dvg) + v(02(hsyt)). (4.4)
Using (4.3) together with Lemma 4.2 we conclude that v(z; - dvs) = 0, as desired. O

Proposition 4.4. Assumeyviz‘s a separable linear subspace contained in R(V, K). Then
the map m: W(V, K) - W(V, K) induces an isomorphism on stalks at each point p € P.

Proof. If B := A/(z74+1,-..,Ty) denotes the local ring Op,, of P at p, then Lemmas 4.2

and 4.3 show that the map v: €, - W, factors through €, where 2 = Q. We thus obtain
an alternative presentation of W, this time over B, given by

K®B -0, — W,. (4.5)

g)serve that d(vs A vy) = 0 if t > 7, and therefore the map 0 factors through K ® B. Since
W, has presentation

K®B — Q, —» W,, (4.6)

we conclude that the natural map W, — W, is an isomorphism, thereby completing the
proof of Proposition 4.4. O

4.3. Separability and reduced scheme structure. Next, we apply Proposition 4.4 to
obtain a characterization of the separable irreducible components of the resonance scheme.

Theorem 4.5. Each separable irreducible component of R(V,K) is a reduced, isolated
component of projectivized resonance.

Proof. Let P = P(VV) be a separable component of R(V, K) (possibly non-reduced).
Suppose that P intersects some other component ) (not necessarily linear), and let p € Pn@Q
be any point. Using Proposition 4.4, we infer that locally at p the resonance scheme R(V, K)
is a closed subscheme of P = P,.q, which is a contradiction, since Peq does not contain Q.
Therefore, P is an isolated irreducible component, i.e., a connected component of R(V, K).

To prove that the scheme P is reduced, consider any point p € P. Applying Proposi-
tion 4.4 as in the previous paragraph, we deduce that locally at p, the component P is
contained in P = Pieq, and so P = Pieq. ]

A consequence of this theorem proves (in a stronger form) Theorem 1.1, part (1).

Corollary 4.6. If the whole resonance is separable, then it is also projectively disjoint and
reduced.

As we shall show in Example 8.6, the converse of Theorem 4.5 is not necessarily true.
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4.4. Decomposﬂzlon of separable Koszul modules. Suppose R(V,K) is linear, with
components V' ,...,V, . For each 1 < t < k, the inclusion V,” € V¥ corresponds to a
linear projection, m;: V. — V;. We set Kt = (/\th)(K), and obtain in this way Koszul
modules W (V;, K¢), together with natural surjective maps m;: W(V, K) —» W(Vt,Kt) as
n (2.9), as well as corresponding maps of Koszul sheaves, m;: W — W, =: W(V, Ky).

The next theorem proves Theorem 1.2 from the Introduction.

Theorem 4.7. Suppose W(V, K) is a separable Koszul module. Then the morphism
0= (m1,...,m): W(V,K) — @F, WV, Ky), (4.7)
is an isomorphism in sufficiently large degrees.

Proof. Consider the map of sheaves
0= (..., m): W — OF, W, (4.8)

Let p € R(V, K) a point; then p belongs to, say, V; . Since V, is a separable subspace,
Proposition 4.4 implies that 7; is an isomorphism at p. Moreover, outside R(V, K), the
map 7 is also an isomorphism, since the stalks on each side are zero. Corollary 4.6 now
shows that the map II is an isomorphism. Since II is the sheafification of II, it follows that
II is an isomorphism in degrees g » 0. g

5. ISOTROPIC COMPONENTS OF THE RESONANCE

As mentioned in Section 4.3, the projective resonance can be reduced in the absence of
separability. We will show in this section that if the resonance is isotropic, then the two
conditions—projectively reduced and, respectively, separable—are actually equivalent.

Suppose V' < V'V is a linear, irreducible component of R(V, K) which is isotropic, and
let P denote the corresponding linear component of the resonance scheme R(V, K). The
reduced subscheme structure on P is given by P,.q = P, where P = P(V ) The goal of
this section is to analyze the condition that P is reduced. We prove the following theorem.

Theorem 5.1. Suppose that V is an isotropic component of R(V, K), and let P denote the
corresponding component of R(V, K). The following are equivalent:

(1) P is reduced.
(2) P is generically reduced.
(3) V is strongly isotropic.

Proof. 1t is clear that (1) = (2). Since strongly isotropic components are separable, it
follows from Theorem 4.5 that the implication (3) = (1) also holds. The only implication left
to prove is therefore (2) = (3). Let m: V — V be the associated surjective homomorphism.
Recall that V" is isotropic if and only if (A*7)(K) = 0. We then obtain as in (2.9) a
surjective homomorphism of Koszul modules, 7: W (V, K) — W (V,0), and a corresponding
surjection at the level of sheaves, 1: W(V, K) — W(V,0) = Q(2), where Q = Qg is viewed

as a sheaf on P via the closed immersion P — P.
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Suppose now that p = [e1] is a reduced point of P, where 0 # e € V. Upon choosing
bases for V'~ and V'V as in Section 4, consider the decomposition /\2V = LOM@H given by
(3.3) and (3.4), and let pps: K — M denote the restriction to K of the second-component
projection /\2V — M. As shown in Corollary 3.12, condition (3) is equivalent to pys; being
surjective; the remainder of the proof will focus on establishing this surjectivity. Since the
reduced locus of P is non-empty, it is dense in P, and so it is not contained in any other
irreducible component of R(V, K). We will therefore assume that the point p is chosen to
lie only on the component P of R(V, K). It follows that W(V, K) is supported on P locally
at p. We prove the following claim, which is the key technical point of our proof.

Claim. The map 7t: W(V, K) — Q(2) is a local isomorphism at the point p.

Proof of Claim. Since W(V, K) is scheme-theoretically supported on P at p, and since  is

a locally free sheaf on P, we can think of 7t locally at p as a split surjection of sheaves on

P. To conclude, it is then enough to check that it is an isomorphism on the fiber at p.
Recall from (2.8) that W(V,K) = coker{K ® Op —> Q(2)}. We need to prove the

exactness on the fiber at p of the exact sequence
K®0p — Q2) — Q(2) — 0. (5.1)

Exactness on the right follows because P < P is a closed immersion. For the next argument,
which is independent on the earlier choice of bases, we write f = e; € V'V, so that p = [f].
Recalling that V' < V'V, there exists a linear form f: V — k such that f = f ox. The
restriction of (5.1) yields a complex,

K — ker(f) — ker(f),

where the second map is induced by 7, and the first one is induced by the Koszul differential
aAb— f(a)-b— f(b)-a. By duality, its exactness reduces to that of

ker(f)Y — ker(f)Y — KV, (5.2)

where the second is the map v in the commutative diagram:

A A\ T g—

NS

ker(f)"

The exactness of (5.2) amounts to the following statement: if g € V'V has the property that
g A f € K+, then the restriction of g to ker(f) is obtained via composition with 7 from
a linear form on ker(f). This follows if we can prove that g € V" . In view of (2.1), the
condition that g A f € K' implies that <g, f> < R(V, K), which in turn implies that the
line L¢, through p = [f] and [g] lies in R(V, K). Since the only component of R(V, K)
containing p is P, it follows that Ly, < P. In particular, g € V", completing the proof of
the claim. g
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Having established the main claim, we proceed with the proof of the surjectivity of pj;.
We let A = Op,, as in (2.11). Using the presentation of W, from (2.13), the description
(2.12) of the stalk at p of 2, and the analogous description of ,, we derive from the main
claim the existence of an exact sequence

K®A -5 @), A dvj — @ _,B-dv; — 0, (5.4)
where B = A/(z711,...,2n) = Op ,, 0j = 7(v;) € V, and dvj = v; — 2 - 1. Since V' is
isotropic, it follows that K+ 2 LY, and therefore K € M @ H, which yields

ker(pyr) = K n H. (5.5)
If we let m = (z2,...,2,) denote the maximal ideal of A, we infer using (2.14) that 0
sends (K n H)®A into ®_; 1 m-dv;. We then obtain from (5.4) a commutative diagram,

(KnH)®A — P m-dvy —— 0

l o | l (5.6)

KA —— PA-dvj — PB-dv; — 0,
Jj=2 Jj=2

where the vertical maps are inclusions. Using (5.5), we infer that py(K) =~ K/(K n H).
Taking cokernels of the vertical maps in diagram (5.6) gives rise to an exact sequence,

pM(K)®Ai><<—BA~dvj)C—D( @D k'dvj)*)@B-dFj*)O, (5.7)
j=2 j=n+1 j=2

where A/m =~ k. Tensoring over A with A/m? preserves right exactness; therefore, since
k®a A/m? =k and B®a A/m? = B/m?, we obtain a further exact sequence,

pu(K)® A/m? —2 ((—ZBA/mQ-dvj> @< é k~dvj) — ET—)B/m2 dv; — 0. (5.8)

j=n+1 j=2

It follows from (2.14) that py(K) ® (m/m?) < ker (), so (5.8) yields the exact sequence,

pu(K) ® A/m 2 (_(-I—)QA/mZ-dvj> @( @n-) ]k~dvj> — Qﬁ-)B/m?d@ — 0.  (5.9)

j=n+1 j=2
Viewing this as an exact sequence of k-vector spaces, and noting that dimy(A/m?) = n
and dimy(B/m?) = m, we conclude that
dim(py(K))=2mn—1) - n+(n—n)—(n—1)-n=n-(n—n)=dm(M). (5.10)

Since pa(K) € M, this shows that pys is surjective, thus concluding the proof of Theo-
rem 5.1. ([l
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As a consequence of this theorem, we infer that separability is equivalent to reducedness
in the isotropic case, thereby completing the proof of Theorem 1.1, part (2).

Corollary 5.2. Suppose that R(V, K) is isotropic. Then R(V, K) is strongly isotropic if
and only if R(V, K) is reduced.

Proof. If the resonance variety is strongly isotropic, then it is separable, so by Theorem 1.1
part (1), we conclude that R(V, K) is reduced. The converse follows from Theorem 5.1. [J

6. RESONANCE FOR VECTOR BUNDLES ON CURVES

6.1. Vector bundles on projective varieties. In this section we study the scheme-
theoretic properties of resonance varieties associated to vector bundles. We fix a smooth
projective variety X, a vector bundle £ on X and consider the map

dy: N°H(X,E) — H°(X, \’E). (6.1)

Set V = HY(X,E)¥ and K' = ker(dy) < A’VY. Following [3], we consider the
associated Koszul module W (X, F) := W(V, K) and resonance variety R(X, E) = R(V, K).
As pointed out in [3, Proposition 4.2], a section 0 # s € H°(X, E) lies in R(X, E) if an
only it spans a subpencil of E, that is, s € H(X, A) € H°(X, E), where A — FE is a line
subbundle with h°(X, A) > 2. Thus, one is led to describe the resonance variety R(X, E)
in terms of the variety of subpencils of E.

We observe that the projective resonance R(X, E) of a vector bundle enjoys a nice geo-
metric property.

Proposition 6.1. Let E be a vector bundle over a smooth projective variety X. Then

(1) The projective resonance scheme R(X, E) comes equipped with a reqular morphism
x: R(X, E) — Z, where

Z = {A > E: A is a saturated line subbundle of E with h°(X,A) > 2}.

Moreover, all fibres of x are positive dimensional projective spaces.
(2) R(X, E) is linear if and only if Z is finite.

Proof. Given [s] € R(X, E), with 0 # s € H’(X, E), let A be the saturation of the rank
one subsheaf of E generated by s. Since [s] € R(X, E), there exists s’ € HY(X, F) which is
not a scalar multiple of s, with da(s A s’) = 0. This means that s’ is a multiple of s at the
generic point, and therefore s’ defines a section of A, in particular h°(X, A) > 2. We set

x([s]) =[A— E]e Z.

In order to establish (1), it suffices to prove that if ¢; and ¢y are two lines in P =
P(VY) with ¢1 n ¢y = {[s]} and 41,42 < R(X, E), then ¢;,¢ < R(X,E). Each line ¢;
corresponds to a subspace (s, s;y € H’(X, E) that generates a rank-one subsheaf 4; — E
with h%(X, 4;) = 2. In a general fibre E(x) of E the values s(x), s;(x) generate a subspace
of dimension at most one. Therefore, the space spanned by the sections s, s1, sy generates
a rank-one subsheaf A of E, and f1,ls € PHY(X,A) € R(X,E). The sheaf A being
saturated, y1(4) = PHY(X, A) € R(X, E). Part (2) is a direct consequence of (1). O
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6.2. Rank 2 vector bundles on curves. We now specialize to the case when X is a
smooth curve of genus g = 2. For a line bundle L € Pic?(X), let SUx (2, L) be the moduli
space of S-equivalence classes of semistable rank 2 vector bundles F on X with /\2E ~ L. It
is known that SU x (2, L) is a Fano variety of dimension 3¢g — 3, see [39]. We shall undertake
a more systematic study of the geometry of the subpencils of given degree of a rank 2

semistable vector bundle.
For 932 < a < g + 1, we denote by W (X) = {4 € Pic*(X) : h°(X, A) > 2} the Brill-
Noether variety of pencils of degree a on X, see [7, Chapter 4]. If X is a general curve of

genus g, then W}(X) is equidimensional of dimension 2a — g — 2 and the Petri map
pa: HO(X, )@ HO(X,wx ® AY) — H(X,wx) (6.2)

obtained by multiplication of sections is injective for each pencil A € W}(X), see [7, Theo-
rem 1.7] or [21]. For a vector bundle E € SUx (2, L) and a line subbundle A < E (which
by twisting by AY implies that H° (X, E® AV) # 0), we introduce the twisted Petri map,

B=PBpa HH(X,EQAY)®H(X,EY Quxy ® A) — H°(X,wx), (6.3)
obtained by composing the multiplication map of global sections followed by the map in-

duced at the level of global sections by the twist by wx of the trace map F® EY — Ox.
We first describe in terms of extensions when the resonance R(X, F) is strongly isotropic.

Lemma 6.2. Let E be a rank 2 vector bundle on a curve X expressed as an extension
0—A—E-5 LA —0, (6.4)

where A is a pencil on X with h°(X,A) = 2. Let F := |A| be the base locus of A and let
ee€ Extl(L ® AV,A) ~ H° (X7 wx + L — 214)v be the extension class corresponding to E.
Then H°(X,A) € H°(X, E) is not strongly isotropic if and only if there exists a non-zero
element uw e H°(X,L(—2A + F)) such that

u- (HY(X,A) @ H(X,wx ® AY)) C ker(e). (6.5)

Note that in (6.5) the left hand side is viewed as a linear subspace of H?(X,wx + L —2A)
via the multiplication map.

Proof. We apply Lemma 3.14, where with the notations introduced there, VvV = H%( X, E),
V' =HYX,A),U" =j(H"X,E)) < H(X,L®A"), and K" = im(d), with d being the
determinant map given by (6.1). The map

p: HY(X,A)®j(H*(X,E)) — H(X,L)

described in Lemma 3.14 can be viewed as the restriction of the multiplication map of
sections HO(X, A)@ HY(X,L® AV) — H°(X, L). Observe also that H°(X, A) € H°(X, E)
is clearly isotropic, so it remains to determine when it is a separable subspace.

Assume the map g is not injective. If H?(X, A) = (t1,ts), via the Base Point Free Pencil
Trick [7, p. 126], every element in ker(p) is of the form t; ® (t2 - (—u)) + t2 ® (1 - u), where
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0#ue H(X,L —2A+ F). If
m: HO(X,L - A) @ H(X,wx — A) — H°(X,wx + L — 2A)
denotes the multiplication map, then
im{j: HY(E) — HO(L®AV)} - {s e HYL®AY) :m(s® H(wx ® AY)) < ker(e)},

where the extension class e is viewed as an element of H°(X,wy + L —2A)". It follows that
if H°(X, A) is not separable, then im(p4) - (u) € ker(e), and this completes the proof. [

Corollary 6.3. Let E be a rank 2 vector bundle on X as before, such that R(X,E) is
strongly isotropic. If A < E is a subpencil with h°(X, A) = 2, then h°(X,E® AV) = 1.

Proof. We consider an extension such as the one in Lemma 6.2, with h%(X, A) = 2; we may
clearly assume that A is base point free. Assuming h%(X, E® AY) > 2, we obtain the non-
injectivity of the coboundary map 0: H°(X, L — 2A) — H°(X,wx)" obtained by twisting
the extension (6.4) by AY and taking cohomology in the corresponding exact sequence. It
follows that there exists a non-zero element u € H°(X, L — 2A) such that u - H%(X,wx) <
ker(e), where the left hand side is viewed as a subspace of H*(X,wx + L — 2A) via the
multiplication map. Applying Lemma 6.2, this contradicts the fact that H°(X, A) is a
strongly isotropic component of R(X, E). d

Lemma 6.4. Let X be a general curve of genus g and L € Pic*(X) be a line bundle of
degree d < 3g + 1. Then a general vector bundle E € SUx(2,L) carries no line subbundles
A« E satisfying either deg(A) > g +1 or h9(X, A) > 2.

Proof. Suppose we are given an extension 0 - A - F — L® AY — 0, where A is a
line bundle of degree a. Using results of Laumon [28] (see also [27]), the generic bundle
E € SUx(2,L) is very stable in which case the maximal degree of a line subbundle of E
equals [%J — g+ 1. Since d < 3¢g + 1, we quickly obtain a < g + 1.

In order to deal with the second statement we perform a parameter count. Assume that
for every E € SUx (2, L), we have an extension as above with h%(X, A) = r + 1 > 3, that
is, with A € W/ (X). Thus E corresponds to an extension class e € PExt! (L ® AY, A). If
hO(X,2A — L) < 1, then, by Riemann-Roch, h%(X,wyx + L — 24) < g + d — 2a. It follows
that the number of parameters on which vector bundles E appearing as such extensions is
bounded above by

dimPExt' (L® A, A) + dim W) (X)<g—-1+d—2a+g—(r+1)(g—a+r)
= 1+(a—g-—V)r+g—a+d

If, on the other hand, h%(X,2A4 — L) > 2, we can apply Clifford’s inequality and write
(X, wx + L —-2A)<g—a+ %; since d < 3g + 1, one again obtains that a general stable
vector bundle E € SUx (2, L) does not appear in this way. O
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6.3. The variety of subpencils of a vector bundle. Before stating the next result,
recall that § € H?(Pic*(X),Q) is the class of the theta divisor, see [7, Chapter 7].

Proposition 6.5. Let X be a general curve of genus g. Fix a positive integer d, a line
bundle L € Pic?(X), and a vector bundle E € SUx (2, L).

(1) For % < a < g+1, each irreducible component of the variety of subpencils

WY(E) = {A eWIX): (X, E®AY) > 2}

a

has dimension at least d — 3g — 1.

(2) If WH(E) is of the expected dimension d — 3g — 1, its cohomology class equals
94g7d+1
29+2a—d—1!(g—a+ 1) (g—a+2)!
(3) If E is very stable and R(X, E) is strongly isotropic, let A € WL(E) be such that
hY(X,A) = 2. Then W} (E) is smooth of dimension d —3g — 1 at the point [A] if
and only if there exists no element 0 #v e HY(X,A) @ H*(X,wx ® A) such that

v- HY(X, L —2A) C ker(e). (6.6)

(WE)] = 92g+2a—d—1

a

e H*(Pic*(X), Q).

Note that the left hand side in (6.6) is viewed via the multiplication map as a subspace
of H'(X,wx + L — 2A). Also note that Theorem 1.5 asserts that the hypotheses on the
vector bundle F appearing in part (3) of Proposition 6.5 are satisfied for a general vector
bundle E € SUx(2,L).

Proof. Denoting by P the restriction to X x W!(X) of the Poincaré bundle on X x Pic®(X),
we have that P|x .4 = A, for every A e WHX). Let

T X x WHX) - X and ma: X x WH(X) —» WHX)
be the two projection maps.

We fix an effective divisor D = p; + - - - + p; of large degree b := deg(D) » 0 and consider
the following vector bundles over W} (X),

E = (Wg)*(TI'T (E(D)) ®73V> and F := (7r2)*<7TT(E(D))®PV|D>.

Note that rank(€) = d — 2a + 2 — 2g + 2b and rank(F) = 2b and that our assumption on
a amounts to the inequality rank(€) < rank(F). There exists a vector bundle morphism
x: & — F which fibrewise corresponds to the evaluation map

HO (X, E(D) ®AV> S HO (X,E(D) ®AV\D).

Then we can realize W} (E) as the locus where x fails to be injective. Using the general
theory of degeneracy loci, cf. [7, Chapter 3], we conclude that each component of W}(E)
has dimension at least

dim W}(X) — rank(F) + rank(§) —1=2a —g —2—2b+ (d — 2a + 2 — 29 + 2b) — 1
=d—3g—1.
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This proves part (1).

Applying the Porteous formula (see [7, Theorem 4.2]), we compute the virtual class of
WL(E) (which equals its actual cohomology class when dim W (E) = d—3g—1 as expected),
and we find that

(W (B)]™ = eagroa—a1(F — E) = cag20—a—1(—E),

where we used that F is algebraically equivalent to the trivial bundle over Wa1 (X), and thus
¢(F) =1, see [7, p. 309]. Furthermore, ¢(—¢&) = ek(B)0 — 20 whereas it is well-known
that

1

(g—a+1)!-(g—a+2)!
see [7, Theorem 4.4]. Putting all these facts together, we obtain the equalities
(W, (E)]Virt = C2a+2g-d-1 (626) |Wal (X)
92a+29—d—1 gig—d+1
(29+2a—d—1)! (g—a+1)!-(g—a+2)
This finishes the proof of part (2).

We now proceed to prove (3) and begin by describing the tangent space of W1(E) at
a point [A] using the usual identification T} (Pic*(X)) =~ H'(X,0x) = H(X,wx)".

From Brill-Noether theory we know that Tj4(Wy (X)) = (im(,uA))l c HY(X,Ox), see
[7, Chapter 4]. Consider the cup product map

[WI(X)] _ g29—2a+2 H2(2g—2a+2) (Picd(X), @)7

u: HOX,EQ AV)® HY(X,0x) — HYX,E®Q AV),

write S := Spec(k[t]/(¢?)), and denote by A the line bundle on X x S corresponding to the
deformation of the line bundle A parametrized by a tangent vector ¢ € H'(X,Ox). Then
via a Kodaira-Spencer argument (see also [24, §3.2]), the section s € HY(X, E® AV) can be
extended to a section 0 # §€ H(X x S, E®.A") if and only s U ¢ = 0. We conclude that
the tangent space at the point [A] of W2 (E) consists of those vectors ¢ € Tpa (W3 (X))
such that sup =0€ HY(X,E® AV), for every s € H*(X, E® AV). Via Serre duality, we
have that H'(X,E® A) =~ H° (X, EYQuwx ® A) Y. therefore, we obtain

Tia)(Wa(E)) = {90 € HY(X,wx)" 1 @ go(x, A\0HO (X wox @A )+im(Fr.a) = 0}7 (6.7)

where g 4 is the twisted Petri map introduced in (6.3).

We continue with the proof of (3) and assume E € SUx(2,L) is a very stable vector
bundle such that R(X, E) is strongly isotropic and choose [A] € W} (E) to be an element
such that h°(X, A) = 2. Using Corollary 6.3, we have that h°(X, EQ AY) = 1, whereas the
very stability of F£ guarantees that the map 3 := g 4 is in fact injective; in particular,

dimim(B) = h°(X,E¥ Qux ® A) = 2a + 29 —d — 1.
Since X is general, the Petri map p4 is injective, hence dimim(us) = 2(9 —a + 1) and

dimim(f) + dimim(pua) = 49 —d + 1.
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Thus W} (E) is smooth of the expected dimension d —3g — 1 at the point [A] if and only if
im(8) Nnim(pa) = 0. (6.8)
Assume (6.8) does not hold, in which case there are non-zero sections s € H(X, EQ A)
and t € H(X, EY Qwx ®A) such that S(s®t) € H(X, A)QH"(X,wx®AY) € H*(X,wx).

In order to make this condition more explicit, we write down the exact sequence obtained
by tensoring (6.4), using that £ ~ EV (L) and then taking cohomology:
0 — HY(X,E¥ @uwy ®A) 2 10X wy) —2 HO(X, L — 24)

Assume B(s®@t) € HO(X, A) @ H'(X,wx ® AV) for t € H*(X,E¥ Qwx @ A). We set
vi=B(s®t)e H'(X,A)® H*(X,wx ® AV) and denote by

v: (HO(X, A) @ H (X, wx ® AV)> ® HO(X,L — 24) — HO(X,wx) (6.9)
the multiplication map, where we identify H(X, A)®@ H*(X,wx®AY) with its image under

the map 4. We then obtain that W (E) is smooth of the expected dimension at the point
[A] if and only if there exist no element 0 # v e H*(X, A) ® H*(X,wxy ® A") such that

v(v-HY(X,L —2A)) < ker(e), (6.10)
where recall that e € Ext!(L ® AV, A) is the extension class of the vector bundle E. O
d—2g+2

Remark 6.6. The argument given in Proposition 6.5 also shows that when a < ===,
the equality W1 (E) = W1(X) holds.

The following result shows that in the extremal case d = 3g + 1, the strong isotropicity
of the resonance R(X, E) is equivalent to the smoothness of all determinantal loci W} (E).

Theorem 6.7. Let X be a general curve of genus g and let E € SUx (2, L) be a very stable
vector bundle of degree 3g + 1.
(1) If R(X, E) is strongly isotropic, then WL(E) is smooth and zero-dimensional for

each g;2<a<g+1.

(2) The variety ngH(E) is smooth, zero-dimensional, and consists of 29 reduced points.

Proof. Assume R(X, E) is strongly isotropic. Since E is very stable H(X, L — 2A) = 0,
for every subpencil A € W}(E), therefore by Riemann-Roch we obtain h?(X, L — 24) =
2(g — a + 1). Moreover, the argument in Lemma 6.4 shows that h%(X, A) = 2, for every
such A. Set W = HY(X,A) ® H'(X,wx ® AV) and U := H°(X,L — 2A), therefore
dim(U) = dim(W) = 2(g — a + 1). We consider the following diagram,

P(W) x P(U) x P¥—2atl x p29—20tl Y, P(HY(X,wx + L — 24)).

lﬂl \ (6.11)
P(W) PU)
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Here v is the projection of the Segre embedding induced by the multiplication map, and
thus

v (Op(H0(wy+1-24)) (1)) = 7 (Opaw) (1)) @ 75 (Op(1r)(1)).

Assume by contradiction that W]} (FE) is not smooth and of dimension zero at a point
[A]. Then by applying Proposition 6.5, there exists an element [v] € P(W) such that
v+ H(X,L — 2A) C ker(e), where recall that ker(e) is regarded as a hyperplane inside
H°(X,wx + L —2A). In other words, if H is the pull-back of ker(e) under the natural map
P(W®U) --» P(H(X,wx + L — 24)), writing the equation of H as

> cijzij = 0,

it follows that the coefficient matrix (c;;) is singular. Therefore, there exists an element
[u] € P(U) such that v(P(W) x {[u]}) = Pker(e). Using Lemma 6.2, this amounts to
R(X, E) not being strongly isotropic. This contradicts our hypothesis, and thus proves
part (1).

Part (2) follows immediately from part (1), once we consider the tangent space description
(6.7) when d = 3g+ 1. Since E is very stable, the map £ is surjective, hence condition (6.8)
is automatically satisfied. This completes the proof. ]

Remark 6.8. Assuming F € SUx (2, L) is a vector bundle as above (of degree d = 3g + 1)
which contains no line subbundles A < E with h%(X, ) > 2 (an assumption satisfied
outside a subset of codimension 3 in SUx (2, L), see Lemma 6.4), the proof of Theorem 6.7
can be reversed and we obtain that R(X, E) is strongly isotropic if and only if W(E) is

smooth and zero-dimensional for each 9;2 <a<g+1.

6.4. The resonance variety of a general vector bundle. We are now in a position to
complete the proof of Theorem 1.5 from the Introduction.

Proof of Theorem 1.5. We fix a general vector bundle E € SUx (2, L) of degree d < 3g + 1.
Assume by contradiction that R(X, F) is not strongly separable, which in this case amounts
to its non-separability. After invoking Lemma 6.4, we can express E as an extension

0 A s B s LAY — 0

as in Lemma 6.2, where A € W]}(X) is such that h°(X, A) = 2 and the base locus F of |A|
is an effective divisor of degree b on X and the subspace H(X,A) € H)(X,E) =:VV is a
non-separable component of R(X, F). Therefore, the conclusion of Lemma 6.2 holds. Via
a parameter count, we shall argue that this is not possible for a general choice of F.

For given values g—f <a<g+1and0<b<a, welet X be the b-th symmetric product
of X, and we denote by 7y 5 the subvariety of W} (X) x X}, consisting of pairs (4, F'), where F
is an effective divisor of degree b on X and A € W} (X) is a pencil having F in its base locus.
Clearly, if 7, is non-empty, it is irreducible of dimension dim W! , (X)+b=2a—g—2—b,
where we use the generality of X, which implies that dim W, ,(X) = max{2a—2b—g—2,0}.
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We now introduce the parameter space
AeW, p(X), Fe X,
Sap =13 (A, F [u],[e]) : [u]e PHY(X,L—-2A+F), [e]e PH)(X,wx + L —24)" ¢,
HY(X,A) @ H(X,wx ® AY) - (u) < ker (e)
together with the projections

Tab 2 Sap —25 SUx(2, L), (6.12)

where pry associates to (A, F, [u], [¢]) the vector bundle E corresponding to the extension
class e € Ext'(L ® AV, A), whereas pry (A, F,[u],[e]) == (A,F). We now estimate the
general fibre dimension of pr;. By the generality hypothesis, £ may be assumed to be very
stable, therefore h'(X,wyx +2A — L) =0, hence h%(X,L —2A+ F)=d—2a+b+1—g.
Having fixed A, F, and [u] € PH?(X, L —2A+ F), the parameter space for extension classes
[e] € PExt!(L® AV, A) such that (A, F, [u], [e]) € ¥4 is the projective space of dimension
RO(X,wx + L —2A) —h%(X,A) - (X, wx ®AY)—1=d—g—4.

We obtain the estimate

dim¥,, <dimT,p+(d—2a+b—g)+(d—g—4)

=2d—-3g—-6<39g—4<dimSUx(2,L),

which shows that the resonance of a general vector bundle £ € SUx(2,L) is strongly
isotropic.

In the case d < 3g, this parameter count also establishes that R(X, E) = 0, for a general
E € SUx(2,L). Indeed, assuming the general vector bundle E appears in an extension
(6.4), we obtain that vector bundles appearing in this way depend on at most

dimWHX) + h°(X,wx + L —2A) —1=d—4<3g—4<3g—3=dimSUx(2,L)
parameters, thus finishing the proof. O
Remark 6.9. In degree 3g + 2 < d < 4g, the projective resonance R, (X, E) is not linear.
Indeed, it follows from Propositions 6.1 and 6.5 that R4 (X, E) admits a regular fibration
over W(E). On the other hand, since 6 is an ample class on the Jacobian variety Pic®(X),

it follows from part (2) of Proposition 6.5 that each component of W1(E) is a positive
dimensional variety of general type; thus, R, (X, E) cannot be linear.

7. KAHLER GROUPS AND KODAIRA FIBRATIONS

7.1. Resonance varieties of Kahler manifolds. We now discuss the case of Kahler
groups, when the resonance varieties in question are not isotropic (unless they vanish). For
a compact Kahler manifold X, let

ux: N°HY(X,C) — H?*(X,C)

be the cup product map. We consider the resonance variety R(X) = R(m (X )) of the
fundamental group of X. As is well-known, X is formal, and thus m(X) is 1-formal; thus,
R(X) is linear and projectively disjoint. On the other hand, if R(X) # {0}, then, as
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shown in [15, Corollary 7.3], all irreducible components of R(X) are 1-isotropic, that is, the
restriction of Ux to each such component has 1-dimensional image.

The first notable case is that of surface groups. Let ¥, be a smooth algebraic curve of
genus g > 2, and let II; := m(X,) be its fundamental group. It is well-known that ¥, is
formal, and thus II, is 1-formal. The cohomology ring has the form H*(3,) = E/I, where
E = /\(el, ces€gy €1, ,ég) and I is the ideal generated by the quadrics e; A ej, €; A €; for
1<i<j<g, e Aejfori+#j, respectively e; A& —e; A€ forl <i<g.

It is readily seen that R(Il;) = H'(Il,,C) = C%. Clearly, this linear space is 1-isotropic
and separable. Moreover, it follows from [34, Theorem 7.3] that the infinitesimal Alexander
invariant B(Il,) has Hilbert series

, 1—2gt +t2
Therefore, the Chen ranks are given by 6 (Il,) = 2g, 62(I1,) = 2g°> — g — 1, and
2 -2 2 -
0,(I1,) = (q — 1)( 9*; ) - ( 9;_92 3> for ¢ > 3. (7.1)

We discuss next the case of irregular fibrations. A fibration from a compact complex
manifold X onto a smooth complex curve B is a surjective holomorphic map with connected
fibers. For smooth projective varieties, and, more generally, for compact Kéhler manifolds,
all components of the resonance variety R(X) are of the form V; := f*H'(B,C), where
f: X — B runs through the (finite) set £(X) of equivalence classes of fibrations with base
B being a smooth curve of genus ¢ > 2 and with no multiple fibers (see e.g. [15,14,43]).
We sometimes write these maps as f: X — By to emphasize the dependence of the base
of the fibration on f. The resulting components V; are linear (of dimension 2g(B) > 4),
projectively disjoint, and 1-isotropic. As shown by Catanese [8], the existence of such a
fibration f: X — B is equivalent to the existence of an epimorphism 71 (X) — 71 (B) whose
kernel is finitely generated.

Example 7.1. To illustrate the phenomenon that the resonance does not detect fibra-
tions with multiple fibres, we mention the Catanese—Ciliberto-Mendes Lopes surface X
[22, Example 2], which admits an elliptic fibration, f: X — B with base a smooth curve
of genus 2. It follows from [22,43] that the resonance variety R(X) consists of a single,
4-dimensional linear subspace in H'(X,C) = C%, which is equal to f*(H'(B,C)). Indeed,
direct computation shows that H*(X,C) = E/I, where E = /(e1,é1,e2,€2,e3,€3) and
I = {ey A e, &1 A Ea,e1 A B 60 A EL,e1 A Bl — €3 A E). Setting VV = H'(X,C) and
Kt = I, ¢ A’VV, we have that R(X) = R(V,K) = V' = (e1,é1,e9,&). Clearly,
Kt c /\2 VY and K = {(v1 A D1); thus, V" is 1l-isotropic. Moreover, V' is separable,
and thus, by Theorem 4.5 it defines an isolated component of R(V, K). To sum up, the
resonance of X is linear, projectively disjoint, and reduced. The surface X also admits a
fibration with base an elliptic curve and with 2 singular fibers, each of multiplicity 2. This
(singular) fibration defines by pullback a 2-dimensional translated torus component of the
characteristic variety V(X), but this component is not detected by R(X), see again [43].
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7.2. Kodaira fibrations. Assume now that f: X — B is a Kodaira fibration over a
smooth projective curve of genus b > 2 and denote by X, a general fibre of f. The study of
such fibrations goes back to the fundamental papers of Atiyah and Kodaira [6,26]. A Ko-
daira fibration induces a monodromy representation, p: Il — Spe,(Z) = Aut(H; (3, Z)).
The Leray—Serre spectral sequence of the fibration gives rise to the short exact sequence

0 — HY(B,C) 5 H'(X,C) — H'(Z,,C)? — 0. (7.2)

In particular, the relative irregularity, qr = q(X) — g(B) of the fibration can be regarded
as the invariant part of the monodromy representation; that is, q; = %hl (Eg, (C)p . There
are essentially two known ways to construct Kodaira fibrations. One is by taking generic
complete intersections in the moduli space M, of stable curves of genus g using that the
Satake compactification of M, has boundary of codimension 2; the other via ramified
branched cover constructions over product of curves, see [6,10,26]. No examples of compact
Kahler surfaces X having at least three non-equivalent Kodaira fibrations are known, see
[9, Question 10]. On the other hand, Salter [40] has provided examples of closed (non-
algebraic) 4-manifolds which admit a number of non-equivalent surface bundle structures
that is an arbitrary power of 2.

The resonance of complete intersection Kodaira fibrations turns out to be quite simple.

Lemma 7.2. Let ¥, — X —f» B be a complete intersection Kodaira fibration. Then
HY(X,C) =~ f*HY(B,C) and accordingly the resonance R(X) = f*H'(B,C) is separable.

Proof. We let Mén) be the moduli space of genus g curves with a level n > 3 structure, that
is, the parameter space for smooth curves of genus g, together with the choice of a symplectic

isomorphism Pic®(X)[n] =~ (Z/nZ)?. It is known that M_E,”) is a fine moduli space of curves;
we denote by Mé”) the normalization of the Deligne-Mumford compactification M, in the
function field of Mgn) (see [20] for details on these matters).

Using the theory of Satake compactifications, there exists a regular map, ¢: M;n) — PN

such that the boundary ﬂén)\Mén) is contracted to a codimension 2 set of its image. It
follows that the inverse image under ¢ of the intersection of 3g —4 general hyperplanes in PV
is a smooth projective curve B < Mén). Since ./\/lgn) is a fine moduli space, the pull-back
to B of its universal family induces a Kodaira fibration f: X — B of smooth curves of
genus ¢g. By the Lefschetz hyperplane section theorem, since B is obtained by intersecting
Mg") with ample divisors, the map ty: m(B) — 7 (Mé")) is surjective. Consequently,
the image under the monodromy map of 71 (B) inside the mapping class group Mod, is of
finite index. It follows that H!(X,, C)? = 0, and so by the exactness of (7.2), we have that
H'(X,C) =~ f*H(B,C). Therefore, ker(ux) = ker(upg) and accordingly R(X) =~ f*R(B).
Applying Lemma 3.11, we conclude that R(X) is separable. O

It follows from the lemma that formula (7.1) applies for the Chen ranks of 71 (X).
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Assume now X admits two non-equivalent Kodaira fibration structures, ¥, — X Eil By

and g, — X 5 Bsy. We consider the product map, f = (f1, f2): X — Bj X Bag, and the
homomorphisms induced in cohomology,

Hi(f): H(By x B»,C) — H(X,C) (7.3)

fori=1,2.
Proof of Theorem 1.7. With the notation of (7.3), we are in the situation of a double
Kodaira fibration for which H!(f) is an isomorphism, whereas H?(f) is injective. We are
going to verify the separability of R(X) using Lemma 3.11. To that end, we write down
the following commutative diagram:
2751
AZH' (B x By, ) MU A2 p1(x 0
J/UBl X Bg iux (74)
2 H2(f) 2
H?(B; x By,C) ———— H?*(X,C)

From the Kiinneth formula, it follows that ker(ux) = ker(up, )@ker(Up, ), and accordingly,
R(X) = fl*Hl(Bl, C) v fZ*Hl(BQ,C). Setting U; = ker{(fi)* : H1<X, (C) — Hl(BZ',(C)}, we
obtain that

K= (U1 ®U) @ (A*f)  (Ha(B1,C) @ (A2f+) " (Ha(B2, C)) € A2Hi(X,C). (7.5)
Using the notation (3.4) for the component V, = f; (H'(B1,C)) of R(X), we have that
H= AU, M=U,®U,, and L = A\?*Us,.

Since U;®Us € K, it follows with the notation of (3.6) that the map ppr: Kn (H@M) — M
is surjective. Using Lemma 3.11, we conclude that the component f{H?!(B;,C) of R(X) is
separable. Same considerations apply for the component fiH!(Bz,C) of the resonance. []

7.3. The Atiyah—Kodaira construction. The simplest examples of double Kodaira fi-
brations where the conditions of Theorem 1.7 are satisfied are provided by the Atiyah—
Kodaira fibrations constructed in the 1960s in [6,26]. These surfaces can be described as
follows. Let 7: By — Bj be a fixed point free involution of a curve of genus g(Bz) = 29 — 1,
and let ¢: By — By be the congruence unramified cover classified by the homomorphism
m1(Bs) — Hi(B2,Z) — Hy (B, Z/2Z), thus deg(p) = 2229~V and g(B;) = 1+2%971(g—1).
We let X be the 2-fold branched cover of By x By ramified along the divisor Y7 + Y2, where

Vi={(z,0(2)): z€ Bi} and Ys:={(2,7(¢(2))) : 2z € Bi}.
Observe that Y7 n Yo = . The two independent Kodaira fibrations of X are of the form

Sig 0 — X 25 B and By g3 — X 25 B, (7.6)
Using [25, Theorem 2.2], we obtain that f = (f1, f2): X — Bj x Bz induces an isomorphism
on H!(—,C) and an injection on H?(—, C), see also [11, Theorem 1.1], where only the case
g = 2 of this construction is treated. Indeed, one applies the sequence (7.2) to the fibration
fi: X — Bj and use that its general fibre ¥4, is a double cover of By = 3,1, branched
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at two points conjugate under the involution 7. Then H' (24%2’@)%1(31) ~ HY(B,,C),
therefore by (X) = 4g +2%(g — 1) and R(X) = V; U V5, where V, = f*H(B;,C) for
i = 1,2. Therefore, Theorem 1.7 applies in this case.

Similar considerations apply to the example of the double Kodaira fibration given in [12].
This complex surface X has b1(X) = 38 and fibers in two distinct ways, ¥4y — X — X7
and Y49 — X — Yo. A similar argument shows that R(X) is separable. We have not tried
to verify the hypothesis of Theorem 1.7 for other families of double Kodaira fibrations, for
instance, those constructed in [10].

These considerations naturally raise the following question.

Question 7.3. Is the resonance variety of a Kahler group G always linear, projectively
disjoint, and reduced?

Of course, the real question is whether R(G) is reduced. Again, it would be enough to
show that the components f*(H!(By,C)) of R(G) are all separable. If this question were
to have a positive answer, the following Chen ranks conjecture for Kdhler groups would be
the natural next step to consider.

ConJecture 7.4. Let X be a compact Kdahler manifold. For each g = 2, we denote by
#{f € £(X):9(By) = g} the number of components of R(X) of dimension 2g.
Then for all g » 0, the following Chen rank formula holds:

Oy (m1 (X)) = 2, Ga(m(By)) = D, helX

feg(X) 922

:(q_1)-2hg(X)<2g+q ) S hy(X (2g+q2—3>.

g=2 g=2
8. RESONANCE OF RIGHT-ANGLED ARTIN GROUPS

We now apply the general theory to the case when the subspace K & /\2V admits a
monomial basis, that is, there exists a basis {v1,...,v,} for V so that K admits a basis
whose elements are of the form v; A v;.

Let ([ ]) be the set of ordered k-tuples from [n] = {1,...,n}. The above information is
conveniently encoded in a (simple) graph I' = (V, E) on vertex set V = [n] and edge set

E= {(i,j)e ([g]) ZUZ‘/\’UJ'EK}. (8.1)
Dually, V'V is spanned by {e1, ..., e,} and K is the linear subspace spanned by the elements
{ei nej:(i,j) € E}, where E = ([g])\E is the edge set of the complement graph I = (V, E).
We also denote by T the set of complete triangles in I', and by T = ([g])\T the set of

triangles with at least one missing edge. To the graph I' one can associate the right-angled
Artin group Gt having the following presentation

GF ;:<vi:vi-vj=vj-vi for U,L'AUjEK>.

The cohomology ring of Gr can be identified with the Stanley—Reisner algebra E/(KY g,
where F = /\ V'V is the exterior algebra generated by ey, ..., ep,.
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A graph TV = (V/,E') of T is a full subgraph of T' (or, an induced subgraph on the
vertex set V/ € V) if E' = En (\g) Given two graphs, IV = (V/,E’) and T” = (V",E”),
their join T' = TV « T'” | is the graph with vertex set V = V' U V" and having the edge set
E=E UE" U {(#,i"):i eV, i"e V.

Let S = St be the polynomial ring k[x1, ..., z,] and let W = W(Gr) := W(V, K) be the
Koszul module associated to I'. This module has the following graph-theoretic description:

Lemma 8.1 ([36]). The Koszul module of a graph T' admits a presentation,
Wr = coker {©: Span(T)® S — Span(E) ® S}, (8.2)

where © 1is the matriz with entries
Tp ifl=1,m=j

—x; ifl=i,m=k

Oijk,em = (8:3)

x; ifl=73, m=k
0 otherwise.

Example 8.2. For the complete graph K, on n vertices, we have Wk, = 0. On the
opposite end, if I' = K, is a discrete graph, then Wp = ker(d2).

Let Rr = R(Gr) := R(V, K) be the resonance scheme associated to the Koszul module
Wr. The underlying set Rr was described in [35, Theorem 5.5] as a union of coordinate
subspaces of V. For a subgraph I < I', we denote by V}y < V'V the coordinate subspace
spanned by the vertices of IV. With this notation,

Rr = U{VFV, : T is a maximally disconnected full subgraph of F}. (8.4)

The next result explains in combinatorial terms the isotropicity and separability condi-
tions for resonance components introduced in this paper.

Proposition 8.3. Let I' be a connected graph, let I" be a mazimally disconnected full
subgraph, and let V'Y =V be the corresponding component of Rr. Then,

(1) V' is isotropic if and only if T" is discrete.

(2) V'V is separable if and only if T =T’ % T”.

In particular, isotropic implies separable for the resonance varieties of graphs.

Proof. By definition, the linear subspace V' is isotropic if A?V’Y < K=, that is, the set
{e; Aej: (i,j) € V'} is contained in {e; A e; : (4,5) € E}. This last condition amounts to
(\gl) C E, which is equivalent to I being discrete.

Finally, V¥ is separable if K+ n (A’V'V @ (V'Y @ V"")) € A’V'Y. This condition is
equivalent to En ((\gl) UV, V") < (\gl), that is, En (V/, V") = ¢, which again means that
I=I"=+I". ]

We now give two classes of graphs that satisfy the conditions of Proposition 8.3, and
thus, of Theorem 1.1. In what follows, we denote by K, the complete graph on n vertices.
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Example 8.4. Let I' = K,,, *--- * K, be a complete multipartite graph, that is, an
iterated join of discrete graphs. Then Rr is projectively disjoint and isotropic (and hence,
separable).

As a concrete example, take the complete graph K,, = K1 %---% K1; then Ry, = . As
another example, consider the square, I' = Ks % Ko; then Rr is the disjoint union of two
(isotropic) lines.

Example 8.5. Let I' be a graph obtained from the square with one diagonal, by taking
iterated cones. Then Rr consists of a single line, and therefore is projectively disjoint and
isotropic (and hence, separable).

In general, though, the resonance varieties Rp are neither isotropic, nor separable, nor
projectively disjoint. The simplest such example is as follows.

Example 8.6. Let ' be a path on 4 vertices. Then V'V = Span{ey,es, e3,e4} and Kt =
Span{e; A ea,ea A e3,e3 A eq}. Setting S = k[x1, x9, x3, 24], the S-module Wr is presented
by the matrix

13 14 24
123 [ —xo 0 0
124 0 —x9 T
Or =
134 T4 —I3 0
234 0 0 —x3

Note that Fitto(Wr) = (z2) n (x3) N (21,23, 23, 74) is not reduced, though the annihilator
Ann(Wr) = (x2) n (x3) is reduced. It follows that R(V, K) = {xe = 0} U {z3 = 0} is linear
and reduced, but neither projectively disjoint, nor isotropic, nor separable.

We refer to [4] for a comprehensive study of the higher Koszul modules and the higher res-
onance schemes associated to monomial ideals corresponding to arbitrary (finite) simplicial
complexes.
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