

Deep profiling of plant stress biomarkers following bacterial pathogen infection with protein corona based nano-omics

Roxana Coreas¹, Nikitha Sridhar¹, Teng-Jui Lin¹, Henry J. Squire¹, Elizabeth Voke¹, Markita P. Landry^{1,2,3,4,*}

¹Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA

²Innovative Genomics Institute, Berkeley, CA

³California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA

⁴Chan Zuckerberg Biohub, San Francisco, CA

*Corresponding author: landry@berkeley.edu

1 Abstract

2 Detection and remediation of stress in crops is vital to ensure agricultural productivity.

3 Conventional forms of assessing stress in plants are limited by feasibility, delayed phenotypic

4 responses, inadequate specificity, and lack of sensitivity during initial phases of stress. While mass

5 spectrometry is remarkably precise and achieves high-resolution, complex samples, such as plant

6 tissues, require time-consuming and biased depletion strategies to effectively identify low-

7 abundant stress biomarkers. Here, we bypassed these reduction methods via a nano-omics

8 approach, where gold nanoparticles were used to enrich time- and temperature-dependent stress-

9 related proteins through biomolecular corona formation that were subsequently analyzed by ultra-

10 high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). This

11 nano-omic approach was more effective than a conventional proteomic analysis using UHPLC-

12 MS/MS for resolving biotic-stress induced responses at early stages of pathogen infection in

13 *Arabidopsis thaliana*, well before the development of visible phenotypic symptoms, as well as in

14 distal tissues of pathogen infected plants at early timepoints. The enhanced sensitivity of this nano-

15 omic approach enables the identification of stress-related proteins at early critical timepoints,

16 providing a more nuanced understanding of plant-pathogen interactions that can be leveraged for

17 the development of early intervention strategies for sustainable agriculture.

18 **Introduction**

19 Bacterial pathogen infections, which impact agriculture by decreasing both crop
20 productivity and quality^{1,2}, are expected to increase in specific regions of the world due to the
21 impacts of climate change.³ The ability to rapidly detect and control pathogens in crops is crucial
22 for maintaining food security and preventing the transmission of zoonotic pathogens into the
23 human population. Viable pathogens in crops can be assessed using conventional methods
24 including visual examination and culture isolation, the latter of which is labor- and resource-
25 intensive.⁴ Additionally, while visual examinations are limited by subjective analysis and lack of
26 sensitivity, especially for pathogen detection in early stages, whereas culture-based methods are
27 prone to contamination and are unsuitable for unculturable pathogens. Recently, molecular
28 methods, such as PCR and ELISA, have been used to detect pathogens in plants however, these
29 methods can produce false positives due to their reliance on immunological or genetic markers,
30 and specificity is largely dependent on targeting a known pathogen and/or gene.^{4,5} The
31 identification of stress induced small molecules, such as reactive oxygen species (ROS), typically
32 relies on chromogenic and chemiluminescent substrates, staining and microscopy to evaluate
33 cytotoxicity, electrolyte leakage to analyze cell membrane integrity, or light-emitting chlorophyll
34 fluorometers to measure photosynthetic efficiencies.^{6,7} However, these approaches lack sensitivity,
35 specificity, and rely on semi-quantitative methods that are typically inefficient for stress detection
36 in plants prior to evident phenotypic responses. Recently, nanotechnology has been developed to
37 assess early indicators of plant stress through nano-sensors that detect small molecules, such as
38 H₂O₂,⁸ salicylic acid,⁹ and extracellular adenosine triphosphate¹⁰, in real-time following the
39 induction of abiotic and biotic stressors. However, these nano-sensors are limited to detecting 1
40 small molecule or phytohormone at a time and their multiplexing is currently not feasible. Lastly,

41 mass spectrometry (MS) can probe changes at the proteomic and metabolomic levels in plants
42 exposed to stress conditions,^{11,12} however the detection of low abundance biomarkers, which are
43 critical for assessing and monitoring stress in plants and crops,¹³ remains a significant
44 challenge^{14,15}.

45 Nanotechnology has also been used to deep profile proteomes via an approach termed
46 ‘nano-omics’, where nanoparticles are introduced into biological milieus as a diagnostic tool for
47 the detection of diseases in complex fluids and tissues.^{16–19} Nano-omics utilizes the
48 physicochemical properties of nanoparticles, specifically high surface-to-volume ratios and
49 facility for surface functionalization, to rapidly enrich low-abundance biomolecules from complex
50 samples for downstream analysis with MS, alleviating bottlenecks associated with complicated
51 and time-consuming sample preparation methods. This unique analytical approach is founded on
52 the concept of the biomolecular corona;^{20,21} biomolecules spontaneously adsorb onto the surfaces
53 of nanomaterials when they are introduced into complex environments. The constituents of the
54 biomolecular corona are comprised of biomolecules that possess strong affinity to the
55 nanoparticles, and often contain biomolecules that are not abundant in the native biofluid, thus
56 permitting their selective detection. Protein corona constituents are subsequently characterized
57 with analytical tools, such as MS. Moreover, relative to conventional MS-based liquid biopsies or
58 sampling of biological milieus, such as plant leaf lysates, nano-omics reduces the need for
59 extensive extraction, purification, and depletion strategies traditionally used to reduce the levels
60 of high abundance proteins,¹⁶ thereby streamlining the detection of biomarkers. Importantly, stress
61 biomarkers are inherently low-abundance biomolecules, especially in early timepoints following
62 stress onset, thus making nano-omics a valuable approach for the early detection of stress-induced
63 biomarkers in plants.

64 In this work, gold nanoparticles (AuNP), formulated with different surface charges, were
65 used to enrich time- and temperature-dependent stress-related proteins from *Pseudomonas*
66 *syringae* pathovar *tomato* (*Pst*) strain (DC3000) infected *Arabidopsis thaliana* Col-0 ecotype
67 (hereafter referred to as *P. syringae* infected *A. thaliana*). AuNP were introduced into *A. thaliana*
68 leaf lysates, and the resulting biomolecular corona was analyzed via nano-omics with ultra-high
69 performance liquid chromatography tandem mass spectrometry (UPHLC-MS/MS). This nano-
70 omic approach was compared to conventional proteomic analysis and was found to be more
71 efficient at enriching and detecting stress-induced proteins in pathogen infected plant leaves, and
72 non-infiltrated distal leaves from pathogen infected plants. Moreover, this nano-omic approach
73 enhanced the detection of stress induced biomarkers at early timepoints prior to symptomatic
74 expression and the onset of phenotypic responses in healthy appearing *A. thaliana*, enabling
75 detection of early-onset plant stress, and potentiating its use for the future detection of new low-
76 abundance plant stress biomarkers.

77

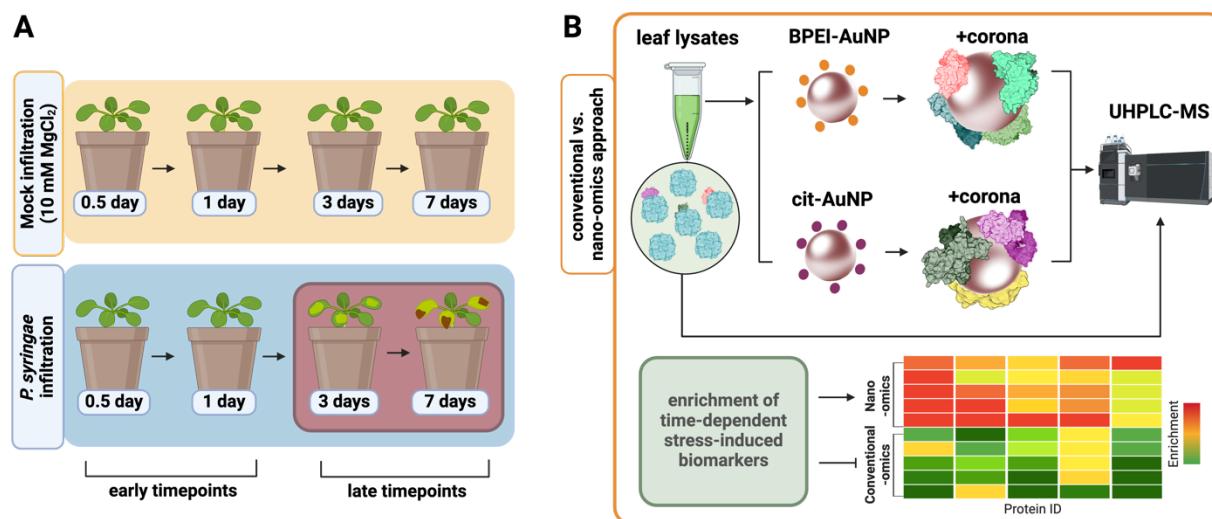
78 **Results**

79 **Characterization of AuNP.** Citrate capped (cit-AuNP) and branched polyethylenimine
80 (BPEI) conjugated AuNP (BPEI-AuNP) were characterized for size, morphology, and surface
81 properties using DLS, ζ -potential analysis, and UV-vis spectroscopy. DLS measurements
82 conveyed that the hydrodynamic diameters of the cit-AuNP and BPEI-AuNP were 18.4 ± 1.4 and
83 39.6 ± 3.1 nm, respectively (**Supplementary Fig. 1A**). Correspondingly, ζ -potential
84 measurements confirmed cit-AuNP had a negative charge of -40.6 ± 2.5 mV and BPEI-AuNP had
85 a positive charge of 36.3 ± 1.7 mV at pH 6 in Milli-Q water ($18.2 \text{ M}\Omega/\text{cm}$) (**Supplementary Fig.**
86 **1B**), supporting the presence of the negatively charged citrate ligand and the positively charged

87 BPEI polymer on the AuNP surfaces. The UV-vis spectra of cit-AuNP exhibited an adsorption
88 band with a λ_{max} of 519.5 nm, which is characteristic of spherical AuNPs that are stable in
89 solution.²² Conjugation with BPEI resulted in a slight red shift (BPEI-AuNP λ_{max} 524.5 nm)
90 (**Supplementary Fig. 1C**). Average polydispersity index (PDI) values were 0.27 ± 0.01 and 0.16
91 ± 0.02 for BPEI-AuNP and cit-AuNP, respectively (**Supplementary Fig. 1D**), suggesting that the
92 AuNP were moderately polydispersed.

93 **Deep profiling of time-dependent pathogen infected *A. thaliana* proteome with**
94 **protein corona based nano-omics.** To determine if pathogen induced stress markers could be
95 detected prior to the manifestation of phenotypic expression of disease in *A. thaliana*, we applied
96 a nano-omic strategy and compared its efficiency to a conventional proteomics approach. We used
97 three plants as biological replicates for each condition and timepoint. For each plant, primary
98 inoculation of *P. syringae* was performed by pressure infiltration into the apoplast of three 5-6
99 week old leaves distributed \sim 130° apart.²³ Mock treated plants were infiltrated with 10 mM MgCl₂.
100 A schematic representation and photographs of the temporal phenotypic effects observed in
101 pathogen infected *A. thaliana* are shown in **Fig. 1A** and **Supplementary Fig. 2**, respectively.
102 While 10 mM MgCl₂ did not induce observable phenotypic changes in *A. thaliana* over time,
103 exposure to *P. syringae* resulted in a time-dependent manifestation of chlorosis, leaf wilting,
104 necrotic lesions, and stunted growth, aligning with previous studies,²⁴⁻²⁶ with severe symptoms
105 occurring between 3- and 7-DPI (days post infiltration). At designated timepoints (0.5-, 1-, 3- and
106 7-DPI), six leaves were collected from each plant: three infiltrated leaves and three non-infiltrated
107 ‘distal’ leaves. Leaves collected from 0.5- and 1-DPI plants were designated ‘early timepoint’
108 samples, while those collected from 3- and 7-DPI were assigned ‘late timepoint’. An additional
109 control group of non-infiltrated plants was also sampled to determine how the mock treatment

110 would impact the *Arabidopsis* proteome. For each condition and timepoint, we used three plants
111 as biological replicates. The three leaves collected from each plant for each condition (infiltrated,
112 distal, and non-infiltrated control) and timepoints were pooled and treated as a single biological
113 sample. The collected leaves were briefly washed to sterilize the surface, flash frozen, and lysed
114 in Milli-Q water using a bead-beater homogenizer. We then compared two approaches to analyze
115 the proteome of *A. thaliana*: (1) a conventional proteomic analysis where the homogenized leaf
116 lysates were directly analyzed by UHPLC-MS/MS, and (2) our nano-omic approach where
117 biomolecular coronas were formed by incubating BPEI-AuNP and cit-AuNP with leaf lysates at
118 ambient temperatures and the proteins from the coronas were analyzed with UHPLC-MS/MS.
119 Both approaches followed a 10 minute electrophoretic separation step to resolve the proteins; this
120 brief separation was applied to ensure separation quality with rapid processing of the samples.



121

122 **Fig. 1. A)** Scheme of the biotic stress induced in *A. thaliana* and the deep profiling nano-omics
123 approach used in this study. Following pathogen infection, *A. thaliana* tissues, both directly
124 infected leaves as well as distal leaves from infected plants, were collected from 0.5- to 7-DPI
125 timepoints (blue box) for analysis. Mock treated plants were infiltrated with 10 mM MgCl₂ (yellow
126 box) and leaves were collected from 7-DPI mock treated plants as controls. Time-dependent
127 phenotypic responses in pathogen infected *A. thaliana* were apparent at 3- and 7-DPI (red box).
128 **B)** Protein markers of stress were probed in pathogen infected *A. thaliana* leaf lysates using
129 conventional proteomic and nano-omic approaches. While both approaches employed UHPLC-
130 MS/MS, nano-omics leveraged protein corona enrichment with BPEI-AuNP and cit-AuNP.

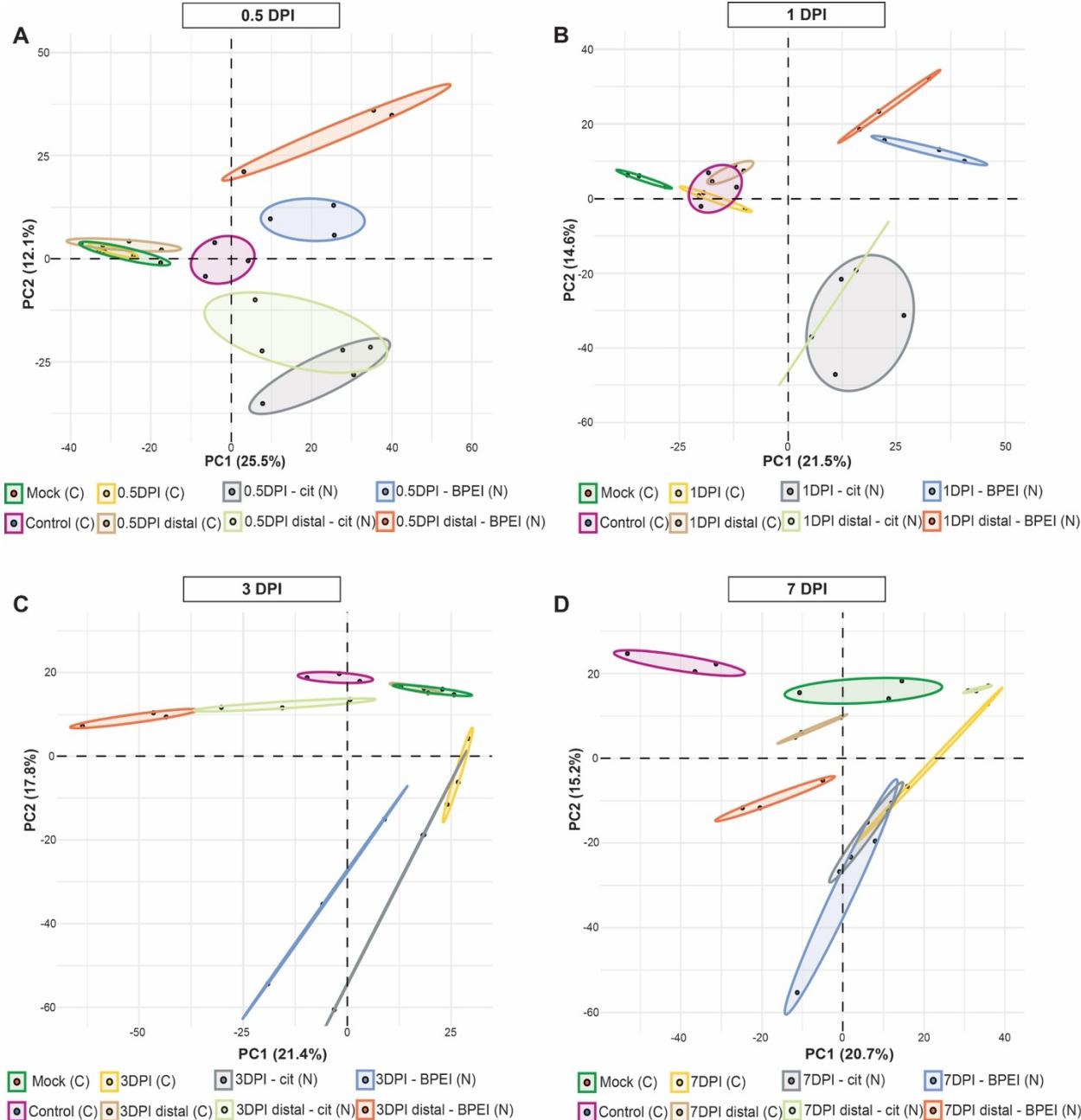
131 Between the conventional and nano-omic approaches, 3128 and 559 *A. thaliana* and *P.*
132 *syringae* proteins were comprehensively identified. Average number of proteins and CV
133 percentages per sample type are listed in **Supplementary Table 1**. Protein spectral counts were
134 analyzed by principal component analysis (PCA) to reduce high-dimensional data into two
135 principal components, with the resulting scores plots shown in **Fig. 2**. We observed overlaps and
136 proximity clustering among samples that were analyzed by conventional proteomics. Specifically,
137 the mock, 0.5-DPI, and 0.5-DPI distal samples overlapped, and were positioned near the non-
138 infiltrated control samples (**Fig. 2A**). A similar proximity grouping was observed between the
139 control, mock, 1-DPI and 1-DPI distal samples (**Fig. 2B**). In contrast, while the mock and 3-DPI
140 distal samples also overlapped and grouped near the control samples, the 3-DPI group was
141 positioned further away (**Fig. 2C**), indicating some divergence. Likewise, the control, mock, and
142 7-DPI distal samples were closely grouped together, but the 7-DPI samples were further removed,
143 suggesting a greater degree of variance in the data collected at this timepoint (**Fig. 2D**). These
144 findings suggest that samples from the early and non-symptomatic timepoints (0.5- and 1-DPI)
145 exhibit protein compositions that are highly similar to the mock infiltrated and non-infiltrated
146 control plants, with minimal differences detectable by the conventional proteomic approach.
147 Protein coronas extracted from the BPEI- and cit-AuNPs were positioned furthest away from the
148 conventionally analyzed samples, with clear discrepancies between them. Coronas formed with
149 the lysates from early timepoints (0.5- and 1-DPI) grouped closer together based on surface charge
150 and not sample type (distal vs infiltrated) (**Figs. 2A, 2B**). In contrast, coronas formed with lysates
151 from the late timepoints (3- and 7-DPI) tended to cluster together according to sample type (**Figs.**
152 **2C and 2D**), suggesting that late timepoints exhibit a larger degree of stress-induced changes in
153 the proteome, therefore relatively diminishing the importance of AuNP surface chemistry for nano-

154 omic analysis. Notably, overlaps were observed between coronas formed with cit-AuNPs and the
155 early timepoint samples, suggesting that BPEI-AuNPs may be more effective than cit-AuNP in
156 adsorbing more unique proteins from early-stage pre-symptomatic infected plants. Additionally,
157 the cit-AuNP coronas formed with 3- and 7-DPI samples overlapped with the conventionally
158 analyzed 3- and 7-DPI samples, indicating that the protein corona compositions formed with cit-
159 AuNP closely resembled protein compositions in the native biofluid. In contrast, the BPEI-AuNP
160 coronas displayed greater divergence from the native biofluid protein compositions. PCA was also
161 conducted on coronas formed with the mock, mock distal, and non-infiltrated control samples as
162 a subset analysis. As shown in **Supplementary Fig. 3**, no clear distinction between clusters was
163 observed between the control, mock, mock distal lysates, as expected, and their corresponding cit-
164 AuNP coronas, indicating a close similarity between these groups. BPEI-AuNP coronas formed
165 with non-infiltrated control, mock control, and mock distal samples were positioned furthest away.
166 Collectively, these results suggest that cit-AuNP may reflect the native biofluid protein
167 composition more closely, while BPEI-AuNP could be more selective for distinct or ‘unique’
168 proteins. This selectivity, particularly in the context of disease progression, implies that BPEI-
169 AuNP may capture unique proteomic signatures, or biomarkers, that are not as easily detected
170 through conventional proteomics, and may do so more effectively than cit-AuNP. **Supplementary**
171 **Fig. 4** presents the PCA plot encompassing all analyzed samples together. To quantify the
172 divergence in PCA space between samples, the Euclidean distances of the mean PC1 and PC2
173 values were calculated for the time dependent samples relative to the mock, as shown in
174 **Supplementary Fig. 5**. With increasing timepoints (0.5- to 7-DPI), we observed a progressive
175 increase in the Euclidean distance from the mock for samples analyzed by conventional
176 proteomics, with distances ranging from 2.9 – 24. A similar trend was observed for distal tissues

177 analyzed by conventional proteomics, where distances ranged from 2 – 17.6. Collectively, samples
178 analyzed by the conventional proteomic approach were closest to the mock in PCA space,
179 supporting that their protein profiles were most similar to the mock samples. In contrast, samples
180 analyzed using nano-omics exhibited significantly greater Euclidean distances from the mock,
181 with values ranging between 28 – 72. Among the AuNP coronas, those formed with the BPEI-
182 AuNP showed the largest distinction from the mock, as evidenced by their greater Euclidean
183 distances. Notably, with the nano-omics samples, we did not see a progressive increase in
184 Euclidean distance over time. These findings highlight the sensitivity of the nano-omics approach
185 in capturing protein differences across samples mediated by distinct differences in AuNP surface
186 chemistry, and suggest that AuNP-based enrichment of low-abundance stress markers, especially
187 at early disease timepoints, is a valuable method for detecting pre-symptomatic plant stress.

188 Z-scores, calculated from the average relative abundance of proteins, are displayed as
189 heatmaps with hierarchical clustering in **Supplementary Figs. 7, 8** for *A. thaliana* and *P. syringae*
190 proteins, respectively. For *A. thaliana* proteins, clustering of z-scores revealed patterns of
191 similarity between lysates and coronas that were dependent on timepoint, sample type (infiltrated,
192 mock, distal, non-infiltrated control) and AuNP surface chemistry. Z-score analysis suggests that
193 while the surface chemistry of the AuNP plays a dominant role in protein corona formation at
194 earlier timepoints, its influence diminishes as disease progresses. Importantly, this analysis shows
195 greater variability in protein samples derived from AuNP-based corona samples relative to those
196 analyzed by conventional proteomics, suggesting that the nano-omic approach captured a wider
197 range of *A. thaliana* proteins with relative changes in expression levels. Among the samples from
198 the later timepoints (3- and 7-DPI), which exhibited the greatest variation in protein expression,
199 the AuNP coronas had higher variability compared to the corresponding lysates analyzed by

200 conventional proteomics, suggesting that the nano-omic approach can provide more nuanced
201 insights on pathogen infection.



202

203

204 **Fig. 2.** Principal component analysis of protein spectral counts identified by the conventional
205 proteomic and nano-omic approaches. Score plots of the lysate, distal leaf lysate, BPEI-AuNP
206 corona, cit-AuNP corona, mock, and non-infiltrated control for **A** 0.5-DPI, **B** 1-DPI, **C** 3-DPI,
207 and **D** 7-DPI conditions; PC1 and PC2 summarized 37.6%, 36.1%, 39.2%, and 35.9% of the
208 variances, respectively. Each point represents a biological replicate, and the ellipses represent the
209 95% confidence intervals around the mean point of each group ($n=3$). In **B**, only 2 of the 3

210 biological replicates are shown and analyzed by PCA for the 1-DPI distal-cit-AuNP group; the
211 PCA of all three replicates for the 1-DPI distal-cit-AuNP group is shown in **Supplementary Fig.**
212 **6.** (C) denotes that the sample was analyzed by conventional proteomics and (N) denotes that the
213 sample was analyzed by the nano-omic approach.

214

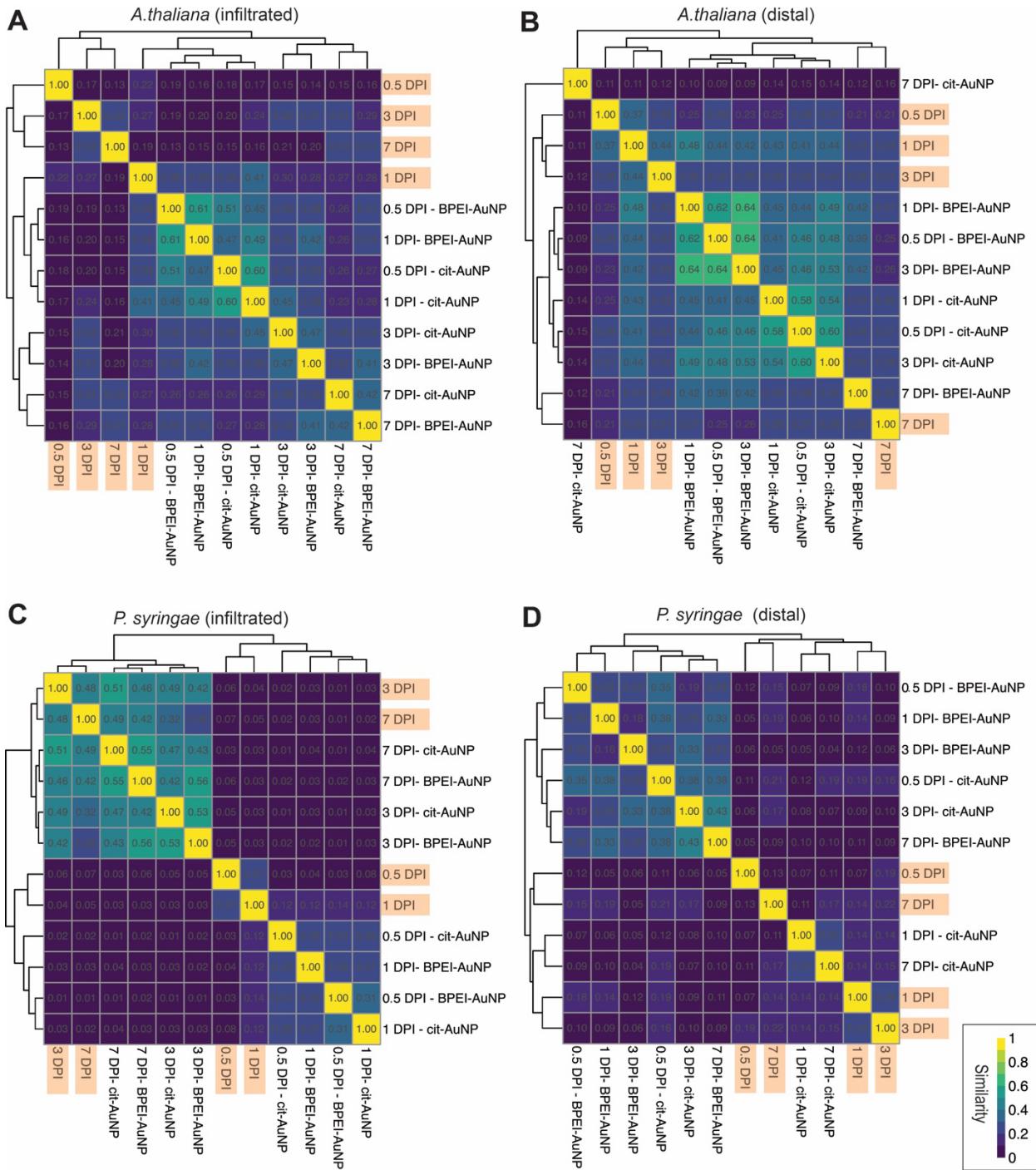
215 To further compare relative protein expression, $\log_2(\text{fold changes})$ were calculated by
216 comparing protein levels in pathogen-infiltrated leaf lysates and the AuNP coronas formed with
217 these lysates against those in mock treated and non-infiltrated controls. Additionally, proteins
218 exclusively detected in either the lysates or the AuNP coronas – but absent from the mock treated
219 and/or non-infiltrated controls – were classified as ‘unique’ proteins. **Supplementary Fig. 9**
220 illustrates the quantity of differentially expressed ($\log_2(\text{fc}) > 1$ or < -1) and ‘unique’ *A. thaliana* and
221 *P. syringae* proteins identified, relative to protein expression in mock treated leaf lysates, via the
222 nano-omic and conventional proteomic approaches. Across the timepoints and sample types (distal
223 and infiltrated), the nano-omics approach allowed for the characterization of 1.3 – 3.7 fold more
224 proteins compared to conventional proteomics. To illustrate the relationship between these
225 proteins and the analytical approaches applied, Venn diagrams were generated to compare protein
226 profiles across three time-dependent conditions: cit-AuNP corona proteins, BPEI-AuNP corona
227 proteins, and proteins in the leaf lysates analyzed through conventional proteomics. In general, the
228 number of *A. thaliana* proteins exclusive to each type of AuNP was larger than the quantity of
229 proteins identified by conventional proteomic analyses. However, this trend was less prominent
230 for *P. syringae* proteins, particularly in early timepoint infiltrated samples and distal leaf lysates,
231 where fewer proteins were observed. Neither of the two AuNP surface chemistries used in this
232 study appeared to be more efficient than the other at enriching *P. syringae* proteins. Similarly,
233 **Supplementary Fig. 10** depicts the number of differentially expressed ($\log_2(\text{fc}) > 1$ or < -1) and
234 ‘unique’ *A. thaliana* and *P. syringae* proteins identified relative to non-infiltrated controls, where

235 the nano-omics approach facilitated the identification of 1.3 – 3.8 fold more proteins than the
236 conventional proteomic analyses. Furthermore, Venn diagrams revealed that protein enrichment,
237 specifically the number of proteins, on the cit-AuNP and BPEI-AuNP was not strongly influenced
238 by surface chemistry, suggesting that both nanomaterial types can capture a broad range of proteins
239 regardless of surface properties.

240 The shared and distinct proteins identified between differentially expressed and ‘unique’
241 proteins were then used to calculate Jaccard index values to quantify the degree of similarity across
242 samples. These similarity values were plotted as heatmaps with hierarchical clustering, as shown
243 in **Fig. 3**. For pathogen infiltrated leaves, the similarity heatmap of *A. thaliana* proteins revealed
244 two distinct clusters that separate the conventional proteomic analyses from the nano-omics
245 approach. Sub-clustering of the nano-omics samples revealed distinct grouping patterns: for the
246 late timepoints (3- and 7-DPI), samples clustered according to sample type, while for early
247 timepoints (0.5- and 1-DPI), subculturing was driven by the AuNP surface chemistry. Meanwhile,
248 the similarity heatmap for *P. syringae* proteins exhibited grouping that was driven by time-
249 dependence, with samples from early timepoints (0.5- and 1-DPI) clustering together and
250 separately from later timepoints (3- and 7-DPI). Congruently, Jaccard index values were also
251 calculated for *A. thaliana* and *P. syringae* proteins identified from distal leaves of pathogen
252 infected plants (**Fig. 3**). Notably, the degree of similarity of *A. thaliana* proteins across distal
253 samples was generally higher than their similarity in pathogen infiltrated leaves. In contrast, *P.*
254 *syringae* proteins exhibited a more complex pattern of similarity. An opposing trend was observed,
255 where the similarity between distal leaf samples was comparatively lower than in the pathogen-
256 infiltrated samples. To compare protein similarities with mock infiltrated plants, we calculated
257 Jaccard index values by comparing the differential expression and ‘unique’ protein composition

258 of each sample relative to non-infiltrated controls (**Supplementary Fig. 11**). This approach
259 enabled a quantitative evaluation of how protein compositions in our samples diverged from those
260 in healthy, non-infiltrated control plants. Hierarchical clustering revealed that mock treated
261 samples were most similar to the 0.5-DPI samples, regardless of sample type (distal vs infiltrated)
262 or protein origin (*A. thaliana* vs *P. syringae*). Additional clusters reflected the same trends driven
263 by time-dependence and AuNP surface chemistry, consistent with the patterns observed in **Fig. 3**.
264 This clustering pattern underscores that early-stage protein expression in pathogen infiltrated
265 plants closely resembles that of mock treated plants and this similarity may reflect the pathogen's
266 initial phase of growth, during which it has not yet reached a sufficient population to elicit a
267 pronounced differential response in the plant, thus a conventional proteomic approach may not be
268 sensitive enough to distinguish low-abundant stress-induced proteins at early and critically
269 relevant timepoints.

270



271
272

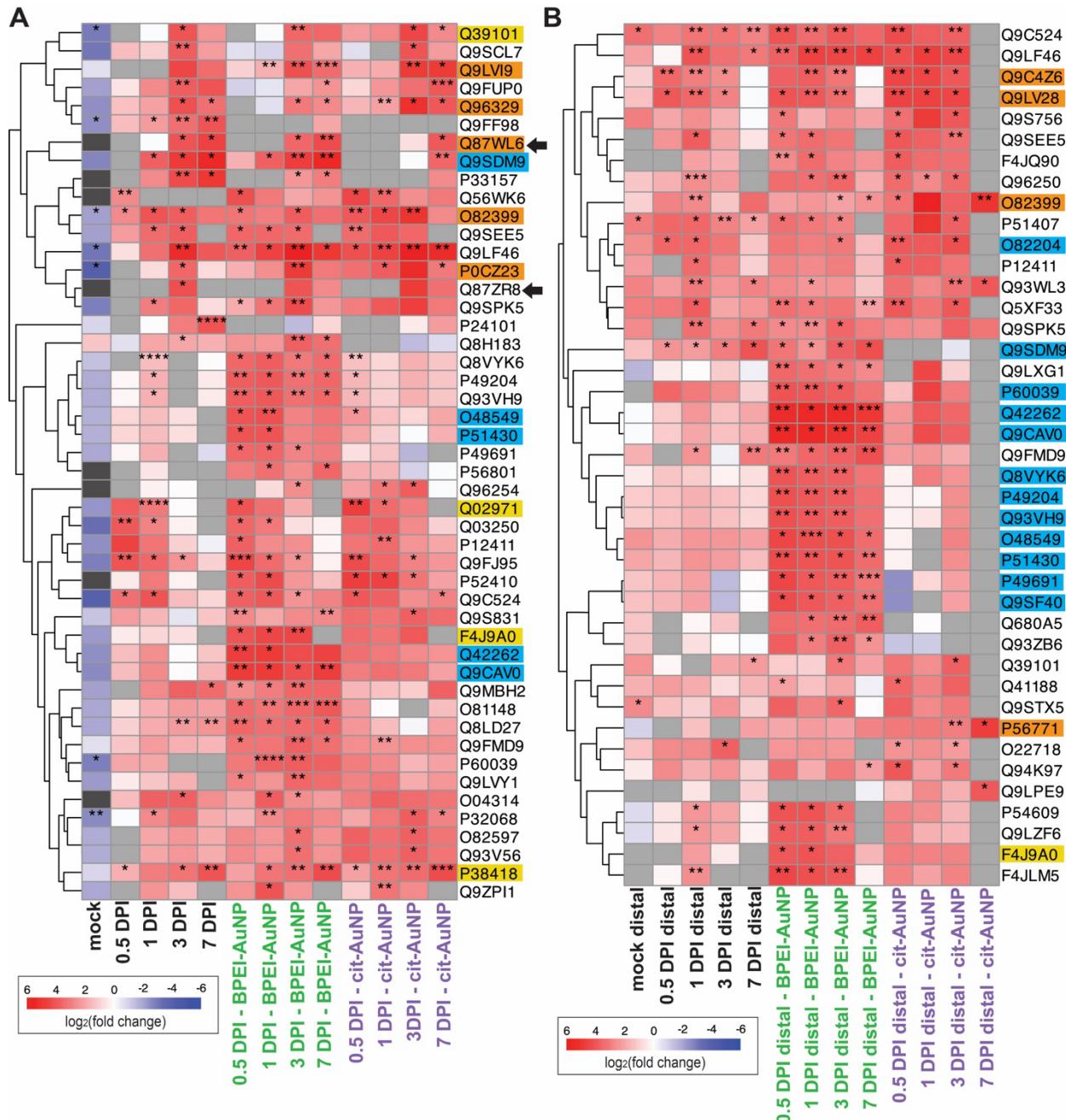
273 **Fig. 3.** Heatmaps with hierarchical clustering depict the similarities between samples based on the
274 composition of **A), B)** *A. thaliana* and **C), D)** *P. syringae* differentially expressed ($\log_2(\text{fc}) > 1$ and
275 < -1) and unique proteins, relative to mock infiltration, identified in **A), C)** pathogen infiltrated
276 and **B), D)** distal tissues of pathogen infected plants, respectively. The color scale indicates the degree
277 of similarity based on Jaccard index values. Samples labeled in orange represent those analyzed
278 by the conventional proteomic approach.

279

280 To better highlight protein patterns in response to pathogen infiltration, we generated
281 heatmaps of differential expression (i.e.: $\log_2(\text{fc})$ values), comparing protein levels in lysates and
282 AuNP coronas against those in mock infiltrated samples. This approach prioritizes variations in
283 protein abundances, revealing over- and under-expressed proteins in lysates analyzed via the
284 conventional proteomic approach, as well as enriched and depleted proteins in the AuNP coronas
285 analyzed via nano-omics. **Fig. 4A** shows the heatmap of differential protein expression in
286 pathogen-infiltrated lysates, while **Fig. 4B** shows protein expression in lysates of distal leaves from
287 pathogen-infiltrated plants. For both heatmaps, proteins were filtered to include only those that
288 met the conditions of $\log_2(\text{fc}) > 3.5$ and $p < 0.05$ in at least one sample. We identified four proteins
289 associated with bacterial infection responses that were significantly enriched on the AuNPs.
290 Nodulin/glutamine synthetase-like protein (NodGS) (F4J9A0), which can also be involved in
291 developmental processes independent of bacterial infections,²⁷ was slightly overexpressed
292 following pathogen infection according to conventional proteomics, but was significantly enriched
293 on the BPEI-AuNP corona formed with the 0.5-, 1-, and 3-DPI lysates, suggesting that this stress
294 biomarker is better detected with nano-omics. Interestingly, in distal tissues, NodGS was
295 significantly enriched on the BPEI-AuNP coronas formed with the 0.5-DPI lysates, but not
296 detectable by conventional proteomics, indicating that, although distal tissues appeared healthy,
297 their proteome suggests an underlying response to pathogen-induced signals from infected leaves.
298 These findings imply that even tissues not directly exposed to the pathogen may initiate subtle
299 defense mechanisms in response to systemic infection signaling. Ferritin-1 (Q39101), which
300 regulates iron homeostasis and leaf development,²⁸ slightly increased with pathogen infection,
301 particularly in the late timepoint samples (3- and 7-DPI), as detected by conventional proteomics.
302 Ferritin-1 was enriched on cit-AuNP, specifically in the coronas formed with 0.5- and 1-DPI,

303 supporting its expression as an early, low abundance protein, induced by pathogen infection²⁹ that
304 is detectable at early timepoints solely by nano-omics. Lipoxygenase 2 (P38418), a jasmonate-
305 inducible enzyme integral to various plant defense pathways,^{30,31} was notably overexpressed in
306 pathogen-infiltrated samples, with peak expression observed at 7-DPI, supporting previous
307 findings.³² Significant enrichment of this enzyme was also observed on both AuNP coronas,
308 particularly at early infection stages (0.5- and 1-DPI). These findings indicate that lipoxygenase 2
309 may play an early and sustained role in the plant's defense response, and AuNP coronas effectively
310 capture and enrich this protein during initial pathogen exposure. Cinnamyl alcohol dehydrogenase
311 7 (Q02971), encoded by the *ELI3* gene and inferred to be overexpressed as result of pathogen
312 infection,³³ was only significantly overexpressed in 1-DPI lysates. It was significantly enriched on
313 both AuNP coronas formed with the earliest timepoint samples (0.5-DPI), indicating that it may
314 be more efficiently captured on the AuNP coronas than with conventional proteomics due to its
315 low abundance in the 0.5-DPI lysates. Additionally, we observed the enrichment of several
316 proteins associated with redox homeostasis in both pathogen infiltrated samples and lysates of
317 distal leaves. Peroxisomal malate dehydrogenase 1 (O82399), along with acyl-coenzyme A
318 oxidases 3 (P0CZ23) and 4 (Q96329), were more significantly enriched on AuNPs when compared
319 to their expression levels in lysates analyzed by conventional proteomics. These enzymes play a
320 key role in regulating fatty acid β -oxidation,^{34,35} a metabolic process that supports cellular redox
321 homeostasis by generating electron carriers essential for maintaining oxidative stability under
322 stress.³⁶ Small ribosomal subunit proteins RACK1y (Q9C4Z6) and RACK1x (Q9LV28), MAPK
323 cascade scaffolding proteins that regulate immune signaling pathways,³⁷ were overexpressed and
324 significantly enriched in 0.5-, 1-, and 3-DPI distal lysates and coronas. However, the detection of
325 these proteins was more prominent through the nano-omic approach, especially for RACK1x

326 which was resolvable in 7-DPI samples exclusively by the nano-omic approach. Moreover, several
327 mRNA binding proteins were not significantly overexpressed in distal lysates when analyzed by
328 conventional proteomics but showed selective enrichment on the BPEI-AuNP protein corona. For
329 example, small ribosomal subunit protein eS6z (O48549) was significantly enriched on BPE-
330 AuNP coronas formed with the 0.5-, 1-, 3- and 7-DPI distal lysates. While the expression of this
331 protein in response to bacterial infections has not yet been characterized in *A. thaliana*,
332 transcriptional upregulation of its gene has been documented in *Oryza sativa* (rice) in response to
333 infection by the bacterial pathogen *Xanthomonas oryzae* pv. *oryzae*.³⁸ This selective enrichment
334 of eS6z and other mRNA binding proteins on BPEI-AuNP highlights the potential for nano-omic
335 approaches to capture low-abundance, stress-responsive proteins that may be overlooked by
336 conventional proteomics. Interestingly, *P.syringae* catalase-peroxidase (Q87WL6) was markedly
337 overexpressed in 3- and 7-DPI lysates and their respective coronas. This finding is interesting as
338 bacterial recovery from 7-DPI lysates was not feasible (**Supplementary Fig. 19**), suggesting that
339 catalase-peroxidase expression may reflect a stress adaptation mechanism by *P.syringae* in
340 response to the plant's defenses. The sustained presence of catalase-peroxidase underscores its
341 potential role in pathogen survival strategies within host tissues at advanced infection stages.



342

343 **Fig. 4.** Heatmaps with Euclidean hierarchical clustering of a subset of $\log_2(\text{fc})$ values, calculated
 344 relative to mock infiltration, of proteins from **A**) pathogen infiltrated leaf lysates and **B**) distal
 345 tissues of pathogen infected plants. For the heatmaps, proteins were filtered to plot $\log_2(\text{fc}) > 3.5$
 346 and $p\text{-values} < 0.05$ observed in at least one sample. Samples analyzed by conventional proteomics
 347 are labeled in black font, while nano-omics analyses are labeled in green and purple fonts for the
 348 BPEI- and cit-AuNPs, respectively. In panel A), mock refers to its protein expression relative to
 349 the non-infiltrated control. Overexpression, or protein enrichment on the AuNP surfaces, is depicted
 350 by red boxes ($\log_2(\text{fc}) > 0$), while underexpression, or depletion from the AuNP surfaces, is depicted
 351 by blue boxes ($\log_2(\text{fc}) < 0$). Grey boxes indicate incalculable fold change. Light grey represents
 352 cases where the protein was detected solely in the mock, resulting in an undefined fc calculation.

353 Dark grey represents cases where the protein was not detected in the mock, making the fc
354 calculation invalid. Asterisks denote significance levels (*, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$;
355 ****, $p < 0.0001$). Protein accession IDs are highlighted to annotate specific functions: proteins
356 responsive to bacterial infection are marked with a yellow highlight; proteins involved with redox
357 homeostasis are marked with an orange highlight; and proteins that bind to RNA are marked with
358 a blue highlight. Black arrows point to *P.syringae* proteins.
359

360 To further determine if pathogen induced biomarkers were detectable in our samples, we
361 identified enriched biological processes of the ‘unique’ plant proteins detected in plant tissues
362 directly infected with *P.syringae*. The ‘unique’ proteins in our samples were those that were
363 uniquely expressed in pathogen-infected tissues but were not identified in the mock treated
364 controls. To analyze the enriched processes, we leveraged DAVID, a robust bioinformatics
365 platform designed for gene ontology and pathway enrichment analysis.^{39,40} The unique proteins
366 from the pathogen infected plants were associated with 260 enriched biological processes. Of
367 these, 45% were identified solely by nano-omics, 17% were identified with conventional
368 proteomics, and 38% were identified by both analytical approaches. We scrutinized the time-
369 dependency of these enriched biological processes by categorizing them according to the earliest
370 timepoint at which the highest gene count was observed. For the early timepoint samples (0.5- and
371 1-DPI), 43% (111) of the enriched biological processes were identified uniquely by nano-omics,
372 13% (33) by conventional proteomics, and 21% (56) were detected by both approaches; however,
373 for those that were identified by both approaches, 19% (50) showed higher gene or proteins counts
374 when analyzed by nano-omics. For the late timepoint samples (3- and 7-DPI), 11% (28) were
375 detected solely by nano-omics, 7% (17) were identified uniquely by conventional proteomics, and
376 6% (15) were characterized by both methods. **Fig. 5** depicts the temporal dynamics of a subset,
377 111 of the 260, of enriched processes and highlights how these processes evolve over time as
378 revealed by the applied analytical approach (conventional vs nano-omics). For the early timepoint

379 samples, response to bacterium, cinnamic acid biosynthesis, defense response by callose
380 deposition in the cell wall, proteolysis, and ROS metabolism were enriched and detectable solely
381 with nano-omics, while cell death, toxin catabolism, and regulation of salicylic acid metabolism
382 were enriched and identified uniquely by conventional proteomics. For the late timepoint samples,
383 programmed cell death, response to endoplasmic reticulum stress, and response to hypoxia were
384 enriched and only resolvable using nano-omics, while systemic acquired resistance, salicylic acid
385 metabolism, and jasmonic acid metabolism were uniquely identified using conventional
386 proteomics. Interestingly, for early timepoint samples, several hormone and metabolite
387 biosyntheses were enriched and had higher gene counts via nano-omics than conventional
388 proteomics, including fatty acid-, glycogen-, jasmonic acid-, lignin-, oxylipin-, phenylacetate- and
389 phosphatidylcholine-biosynthesis. Additionally, proteins involved in quality control for misfolded
390 and/or incompletely synthesized proteins, RuBisCO complex assembly, immune responses, as
391 well as responses to cold, heat, and oxidative stress, were enriched and showed higher gene counts
392 with nano-omics. Glutathione metabolism, response to wounding, and diaminopimelate
393 biosynthesis were also enriched in the early timepoint samples but showed higher gene counts
394 resolvable by conventional proteomics. As a comparative measure, the enriched biological
395 processes associated with the ‘unique’ proteins adsorbed onto the BPEI- (**Supplementary Fig. 12**)
396 and cit-AuNP (**Supplementary Fig. 13**) when incubated with mock samples was also compared.
397 Few proteins associated with responses to cold and heat stressors were slightly enriched on the
398 AuNPs due to the mock treatment. However, responses to oxidative stress or pathogen-induced
399 stress responses were not detected in either AuNP protein corona, suggesting these processes were
400 not upregulated under the mock conditions, as expected. Additionally, as a baseline, the enriched
401 biological processes linked with ‘unique’ proteins from the mock samples relative to the non-

402 infiltrated control were analyzed. **Supplementary Fig. 14** shows that treatment with the mock
403 solution resulted in the overexpression of proteins involved with hyperosmotic salinity responses,
404 protein dephosphorylation, and responses to jasmonic acid stimuli. This finding indicates that
405 infiltration with mock solution slightly alters the proteome of *Arabidopsis* but does not induce
406 pathogen-dependent stress biomarkers. Collectively, the temporal categorization shown in **Fig. 5**
407 highlights the improved sensitivity and resolution of our nano-omics approach to detecting low-
408 abundance biomarkers of plant stress at early timepoints post-infection.

409 In the same manner, gene ontology analysis was conducted on the ‘unique’ proteins
410 identified in distal tissues of pathogen infected plants. A total of 170 enriched biological processes
411 were identified as shown in **Fig. 6**; of these, 55% (94) were detected uniquely by nano-omics, 14%
412 (23) were identified by conventional proteomics, and 31% (53) were discernible by both analytical
413 methods. For the early timepoint distal samples, 54% (91) of the enriched biological processes
414 were identified uniquely by nano-omics, 12% (21) by conventional proteomics, and 21% (36) were
415 detected by both approaches; however, for those that were identified by both, 16% (27) showed
416 higher gene or proteins counts when analyzed by nano-omics. For the late timepoint distal samples,
417 9% (16) were detected solely by nano-omics, 2% (4) were identified uniquely by conventional
418 proteomics, and 1% (2) were distinguishable by both methods. Notably, for the early timepoint
419 distal samples (0.5- and 1-DPI), water transport, responses to wounding and ROS, methylation,
420 immune response, iron-sulfur cluster assembly, hydrogen peroxide transmembrane transport, and
421 fatty acid β -oxidation were enriched processes that were solely detectable via nano-omics.
422 Contrastingly, only cellular response to heat was enriched and identified uniquely by conventional
423 proteomics in 0.5-DPI distal samples. RuBisCO complex assembly, diaminopimelate and fatty
424 acid biosyntheses were enriched, detected by both analytical approaches, but the associated gene

425 counts were higher via nano-omics. Surprisingly, proteins involved in responses to oxidative stress
426 were expressed early in distal tissues as depicted by their enrichment and analysis via nano-omics,
427 with approximately 20 proteins enriched in 0.5- to 3-DPI distal samples. These proteins were not
428 discernable by conventional proteomics until 7-DPI. For comparison, the enriched biological
429 processes associated with ‘unique’ proteins from distal leaves of mock treated plants were also
430 analyzed (**Supplementary Fig. 15**); the distal leaves showed overexpression of proteins linked
431 with responses to heat and cold, quality control for misfolded or incompletely synthesized proteins,
432 and toxin catabolism. Overall, the findings in **Fig. 6** indicate that there are proteins that are
433 produced in low abundances, at early timepoints, and in tissues distal to pathogen infection that
434 are difficult or not possible to detect with conventional proteomics. However, by applying a nano-
435 omic approach, these low abundant biomarkers of stress, predominately in distal tissues that
436 were never directly exposed to pathogens, can be enriched and detected more efficiently.

437

438 **Fig. 5.** Gene ontology analysis of a subset of enriched biological processes associated with unique
 439 proteins identified in pathogen infiltrated lysates and the corresponding AuNP coronas. The x-axis
 440 consists of the time-dependent samples analyzed by nano-omics (N) and conventional proteomics

441 (C). The names of the enriched biological processes are displayed on the y-axis. The plot was
442 divided into 2 sections to facilitate better visualization. Gene counts are illustrated by dot size and
443 significance is depicted with a color scale indicative of $-\log(p\text{-value})$.
444

445

446

447 **Fig. 6.** Gene ontology of a subset of enriched biological processes from unique proteins identified
448 in distal tissues collected from pathogen infiltrated plants and their respective AuNP coronas. The
449 x-axis consists of the time-dependent samples analyzed by nano-omics (N) and conventional
450 proteomics (C). Distal tissues are denoted (D) on the x-axis. Names of the enriched biological
451 processes are shown on the y-axis. Gene counts are illustrated by dot size and significance is
452 depicted with a color scale of $-\log(p\text{-values})$.

453 Lastly, protein binding affinity, conformation and stability are highly influenced by
454 temperature making it a key factor in determining the composition of nanoparticle protein
455 coronas.^{20,41,42} Consequently, we hypothesized that temperature could potentially impact the
456 reliability and efficiency of our nano-omic approach by altering protein corona compositions. In
457 mammalian studies, protein corona formation is typically performed at 37°C as this temperature
458 reflects physiological conditions in the human body at which human proteins have evolved to
459 function. However, the optimal temperature for protein corona formation with plant lysates has yet
460 to be established and may depend on specific plant species and their natural environments. We
461 therefore studied temperature dependence of protein corona formation in 3-DPI pathogen infected
462 plant lysates, with AuNP incubated with leaf lysates at both 37°C and at ambient temperature
463 (~25°C) because for *A. thaliana* 22–25°C reflects the conditions at which *in planta* proteins
464 function normally and suppress thermomorphogenesis.⁴³ We generally find that while the number
465 of differentially expressed and ‘unique’ *A. thaliana* proteins adsorbed onto the cit- and BPEI-
466 AuNPs were not substantially mediated by temperature, the *P. syringae* proteins identified on the
467 AuNP coronas were indeed temperature dependent. Specifically, ~2.4 fold more *P. syringae*
468 proteins were characterizable on the AuNP at 37°C compared to 25°C, (**Supplementary Fig. 16**)
469 highlighting a pivotal temperature-based enrichment of bacterial proteins on both AuNP.
470 Furthermore, as shown in **Supplementary Fig. 17**, the higher temperature resulted in an increased
471 number of adsorbed differentially expressed proteins on the AuNP. However, while 37°C was
472 optimal to enrich a large quantity of protein, gene ontology analysis indicated that 25°C was more
473 favorable to deduce significantly impacted biological processes associated with the ‘unique’
474 proteins from the coronas. **Supplementary Fig. 18** demonstrates that while proteins associated
475 with defense responses to bacterium, responses to oxidative stress, and systemic acquired

476 resistance, were enriched on BPEI- and cit-AuNPs when incubated with pathogen infected samples
477 in a non-temperature dependent manner, proteins linked to innate immunity and responses to
478 bacterium were upregulated in distal tissues of pathogen infected plants and were solely
479 identifiable on the AuNP coronas formed at 25°C. Additionally, for the AuNP coronas formed
480 with the pathogen infiltrated samples, proteins involved in responses to singlet oxygen, siRNA
481 processing, protein-RNA complex assembly, and protein dephosphorylation were enriched
482 uniquely at 25°C. These findings suggest that proteins involved in these critical responses may
483 possess higher conformational stability and/or structural changes that support their greater affinity
484 to the AuNPs at ambient temperatures.

485
486 **Discussion**

487 In this work, we aimed to detect the early induction of biotic stress-induced proteins and
488 biomarkers in pathogen infected *A. thaliana*. To accomplish this, we used a nano-omics approach
489 in which cit- and BPEI-AuNP were incubated with infiltrated and distal leaf lysates to form
490 biomolecular coronas for subsequent analysis with UHPLC-MS/MS. This nano-omics approach
491 enabled high-resolution identification and quantification of stress-related proteins and biological
492 processes, offering superior and time-dependent analytical depth compared to conventional
493 proteomics, without selectively depleting highly abundant species from the complex leaf lysates.
494 Moreover, when compared to other standard analytical techniques used to assess plant stress and
495 pathogen infection (**Supplementary Fig. 19**), our nano-omics strategy was most sensitive,
496 detecting early biomarkers of stress in pathogen infected samples prior to the manifestation of
497 phenotypic symptoms of disease, as well as in distal tissues of pathogen infected plants – a feat
498 that was not feasible with customary methods.

499 Previous studies that have analyzed early stages of differential protein expression in *A.*
500 *thaliana* infected with *P. syringae* utilized 2-D electrophoresis followed by MS to resolve proteins
501 from complex leaf lysates⁴⁴⁻⁴⁶. The dynamic range of protein detection with 2-D electrophoresis
502 can be inherently limited, particularly for underrepresented low abundance proteins⁴⁷. This
503 limitation may have contributed to the relatively low number of stress-related proteins identified
504 in these studies. For example, Sghaier-Hammami, *et al.* identified 24 differentially expressed
505 proteins, of which only 7 were involved in stress defenses.⁴⁶ Similarly, Jones, *et al.* identified 52
506 differentially expressed proteins, and of those 15 were associated with stress responses.^{44,45} In this
507 work, we identified ~1500 differentially expressed and ‘unique’ *A.thaliana* proteins using our
508 nano-omics approach, achieving a 2- to 3- fold enhancement in resolution of these proteins when
509 compared to a conventional proteomic approach using high resolution UHPLC-MS/MS. For the
510 early timepoint samples (0.5-DPI) analyzed in this study, 210 differentially expressed and ‘unique’
511 proteins associated with stress-responses were enriched on the AuNP coronas. Of these 210, none
512 were identified in the 0.5-DPI samples analyzed by conventional proteomics (**Supplementary Fig.**
513 **20**), showcasing the superior ability of nano-omics to distinguish and quantify protein variations
514 with greater sensitivity. Moreover, we observed a time-dependent increase of proteins involved in
515 stress-responses with 223, 251 and 198 proteins identified by nano-omics in 1-, 3-, and 7-DPI
516 lysates, respectively. Through this nano-omics approach, we also detected proteins involved in
517 responses to oxidative stress and toxic substances in 0.5-DPI distal leaf lysates, a feature that was
518 not detected with the conventional proteomic approach. These findings reinforce the concept that
519 localized pathogen infections can trigger systemic responses throughout the plant, and that nano-
520 omics may be able to not only detect early plant stress but also can serve to identify new and as-
521 of-yet unknown protein biomarkers of plant stress in the future. Particularly, they highlight the

522 upregulation of proteins involved in stress mitigation and defense mechanisms, enabling the plant
523 to proactively address bacterial infections occurring in distant tissues.

524 Although the complete proteome of *A. thaliana* has yet to be completely characterized,^{48,49}
525 which is attributable to varying protein abundances across complex tissues and the
526 underrepresentation of proteins from low-abundant transcripts, significant progress has been made
527 with advanced proteomic techniques. However, challenges in characterizing the complete
528 proteomes of understudied plants and crops highlights the need for more sensitive and
529 comprehensive methods, such as nano-omics, to capture a larger range of proteins that improve
530 the depth of proteome coverage. Studies have shown that protein abundances often do not correlate
531 with transcriptional levels in plants.^{50,51} RNA-seq analyses of early transcriptional responses *in*
532 *planta* have shown that plant defense hormone pathways, such as those mediated by salicylic acid,
533 jasmonic acid, and ethylene, contribute redundantly to plant⁵² and bacterial⁵³ transcriptional
534 reprogramming. In this work, the nano-omics approach uniquely identified key immune-related
535 proteins, as well as enzymes associated with jasmonic acid and ethylene biosyntheses, at the
536 earliest timepoint examined (0.5-DPI) – proteins that were undetectable using a conventional
537 proteomic analysis due to their low abundances. Consequently, the proteomic profile generated
538 solely from the conventional analysis might appear negatively correlated with transcriptional data
539 simply because this approach did not resolve these early, low-abundance proteins. In contrast, the
540 nano-omics approach provides a more sensitive and comprehensive early-stage post-
541 transcriptomic analysis, potentially offering a closer alignment with the transcriptional
542 reprogramming that occurs during plant immune responses.

543 Though AuNP were used in this study to enrich a distinct subset of *A. thaliana* proteins,
544 further studies are needed to optimize nano-omics workflows. This includes identifying the most

545 optimal nanoparticle type(s) with physicochemical properties that enhance the detectable
546 resolution and diversity of plant and agricultural biomolecules. Additionally, we observed that
547 while an ambient temperature was slightly less efficient than the typical 37°C used in mammalian
548 studies for protein adsorption onto AuNP surfaces, it enabled better enrichment of stress-specific
549 low-abundance biomarkers. These results support the idea that warmer temperatures may promote
550 more dynamic nano-bio interactions driven by increased kinetic energy and collisions but may not
551 always favor the selective enrichment of specific target proteins – further research is needed to
552 understand the influence of other environmental factors on the specificity and sensitivity of nano-
553 omic analyses. Variables such as pH, ionic strength, and biomolecular compositions of different
554 plant tissues and fluids must be explored to fully understand their impact on protein corona
555 formation, and by extension, nano-omic pipelines. Such optimization of nano-omic pipelines has
556 the potential to transform plant proteomics, offering deeper insights into molecular and biological
557 processes in plants that can improve upon agricultural practices, bolster crops, and provide new
558 insights into early stress-induced pathways and mechanisms in plants. This research paves the way
559 for more targeted and field-deployable interventions and detection tools that leverage
560 nanotechnology for sustainable agriculture.

561

562 **Methods**

563 **Materials.** AuNP were purchased from NanoComposix. Qubit Broad Range protein assay
564 was acquired from Thermo Fisher. Flamingo fluorescent stain, 4× Laemmli buffer and 4-20%
565 SDS-PAGE gels were purchased from BioRad.

566 **Characterization of AuNP physicochemical properties.** Dynamic light scattering (DLS),
567 polydispersity index (PDI), and zeta (ζ) potentials were measured with a Nano Zetasizer (Malvern

568 Panalytical). ζ potential measurements were conducted using Smoluchowski approximation and
569 samples were prepared in ultrapure water (pH 6) with 0.1 mM NaCl for conductivity. UV-Vis
570 spectroscopy was conducted with a UV-3600i Plus Spectrophotometer (Shimadzu).

571 **Plant growth conditions.** Wild-type *A. thaliana* (Col-0) seeds were sown in inundated soil
572 (Sunshine Mix #4), stratified for 3 days at 4°C, and then grown in a growth chamber kept at 24°C
573 with a light intensity of 100-150 μ mol/m²s. The photoperiod was cycled at 8h light/16h dark. Plants
574 were fertilized on a bimonthly basis with 75 ppm N 20-20-20 general-purpose fertilizer and 90
575 ppm N calcium nitrate fertilizer reconstituted in H₂O.

576 **Preparation of bacterial inocula.** *P. syringae* pathovar *tomato* (*Pst*) strain, DC3000, was
577 grown from a stock culture onto an NBY media plate supplemented with rifampicin for 4 days at
578 30°C. A single bacterial colony was suspended in 10 mM MgCl₂. The OD₆₀₀ was adjusted to 0.1
579 ($\sim 5 \times 10^7$ cfu/mL) by adding 10 mM MgCl₂ as needed. Serial dilutions were performed to obtain
580 a bacterial suspension with an OD₆₀₀ of 0.001 ($\sim 5 \times 10^5$ cfu/mL) for leaf infiltration.

581 **Biotic infection of *A. thaliana*.** At approximately 5-6 weeks, plants were infiltrated with
582 *P. syringae* or with sterile 10 mM MgCl₂ (mock control) via needless syringe following a
583 standardized protocol for primary leaf inoculation.²³ Briefly, three leaves, separated 130° from
584 each other, per plant, were infiltrated. Following infiltration, plants were returned to the growth
585 chamber for an allotted time; infections persisted for durations of 0.5-, 1-, 3-, and 7-DPI for leaf
586 collection.

587 **Photosynthetic activity measurements.** Chlorophyll fluorescence measurements were
588 collected with a pulsed amplitude modulation fluorometer equipped with leaf clip holder 2035-B
589 (MINI-PAM-II/B, Walz GmbH, Effeltrich, Germany). Actinic lighting was emitted through optic
590 fibers by a blue (470 nm) LED. The photochemical activity parameters of photosystem II (PSII)

591 were measured by applying a 0.5s saturation pulse (intensity 5000 $\mu\text{mol}/\text{m}^2 \cdot \text{s}$) on infiltrated and
592 distal leaves after 1h dark adaptation. The maximum quantum efficiency of PSII primary
593 photochemistry (efficiency at which light adsorbed by PSII is used for photosynthesis when all
594 reaction centers are open) was calculated as F_v/F_m .

595 **Bacterial growth assays.** For each timepoint assessed, 1 disc (5.5 mm diameter) was
596 perforated from each of the three infected leaves from 4 different plants. The three discs per plant
597 were pooled as 1 sample, homogenized with 0.1 mL of selective NBY broth via bead beating, and
598 subjected to a 1:10 dilution series. The samples (0.1 mL) were plated onto selective NBY plates
599 and incubated at ambient temperature for 2 days before colony forming units (CFU) were counted.

600 **Protein corona formation and extraction.** Leaves from both distal and primary infection
601 sites were collected from plants treated with *P. syringae* as well as those subjected to mock
602 treatments. To eliminate the risk of false positives in distal tissues, potentially caused by epiphytic
603 stages of *P. syringae*,⁵⁴ the collected distal leaves were sequentially submerged in 70% EtOH, 10%
604 NaClO, and ultrapure H₂O briefly to sterilize foliar surfaces. Leaves were immediately flash-
605 frozen in liquid nitrogen and homogenized in ultrapure H₂O using a bead beater. Leaf lysates were
606 centrifuged 1h at 5,000 \times g (4°C) to pellet chloroplasts and cell wall debris. Lysates were
607 normalized to 0.1 mg/mL after quantifying protein concentrations with the Qubit Broad Range
608 assay. Protein corona was formed with 20 $\mu\text{g}/\text{mL}$ AuNPs which were added to leaf lysates (50 μL
609 final volume; final protein concentration 0.1 mg/mL) and incubated at 37°C or ambient
610 temperature for 1h. Following protein corona formation, AuNPs were pelleted (21,000 \times g; 30
611 min) and washed thrice with 1 \times PBS. Proteins were denatured and desorbed from resuspended
612 AuNPs (10 μL , 1 \times PBS) with (1:1, v/v) 4 \times Laemmli buffer. For the time-dependent nano-omics
613 approach, proteins were separated using 4% SDS-PAGE (110 V; 10 min). For the temperature-

614 dependent nano-omics approach, proteins were separated using 4-20% SDS-PAGE (110 V; 65
615 min). Gels were stained with 1× Flamingo fluorescent gel stain solutions and imaged with a GE
616 Typhoon FLA 9000 Imaging Scanner.

617 ***In gel digestion of proteins.*** For gels that were run for 10 mins, the proteins did not separate
618 into individual bands and the singular band was excised for downstream analysis. For gels that
619 were run to completion (1h), protein bands (~ 75-25 kDa) were excised from the SDS-PAGE gels.
620 Gel bands were then diced into 1mm × 1 mm cubes and unstained 3× by first washing with 100
621 µL of 100 mM ammonium bicarbonate (NH₄HCO₃) for 15 min followed by an addition of 100 µL
622 of acetonitrile for 15 min. The supernatants were removed, and the gel pieces were dried with a
623 SpeedVac. Samples were reduced by incubating the gel pieces with 200 µL of 10 mM DTT in 100
624 mM NH₄HCO₃ at 56°C for 30 min. After cooling to room temperature, the supernatants were
625 removed and replaced with 200 µL of 55 mM IAA in 100 mM NH₄HCO₃ and the samples were
626 incubated at room temperature in the dark for 20 min. The supernatants were then removed, and
627 the gel pieces were washed 1× with 200 µL of 100 mM NH₄HCO₃ for 15 min. Samples were then
628 dehydrated with 200 µL acetonitrile and dried with a SpeedVac. For protein digestion, enough
629 solution of ice-cold trypsin (0.01 µg/µL), in 50 mM NH₄HCO₃, was added to cover the gel pieces
630 and the samples were placed on ice for 30 min. After complete rehydration of the gel pieces, the
631 trypsin solutions were removed and replaced with 50 mM NH₄HCO₃ and left overnight at 37°C.
632 The peptides were extracted 2× by adding 50 µL of 0.2% formic acid/ 5% acetonitrile and
633 vortexing the samples for 30 min at ambient temperature. The supernatants containing peptides
634 were collected. Any remaining peptides were further extracted from the gel pieces by adding 50
635 µL of 0.2% formic acid/ 50% acetonitrile and vortexing for 30 min at ambient temperature. The
636 supernatants were collected, pooled with the peptides from the first extraction, and dried.

637 **UHPLC-MS/MS.** Dried peptides were redissolved in 10 μ L of 5% formic acid and
638 analyzed by UHPLC-MS/MS using nano-electrospray ionization (nano-ESI). The nano-ESI was
639 performed using a timsTOF Pro 2 hybrid mass spectrometer (Bruker) interfaced with nano-scale
640 reversed phase UHPLC (EVOSEP ONE). Mobile phase A was comprised of 0.1% formic acid and
641 mobile phase B was composed of 0.1% formic acid/ 99.9% acetonitrile. The timsTOF Pro 2 MS
642 was operated in the PASEF mode for standard proteomics. Protein identification and label free
643 quantification was carried out using Peaks Studio X (Bioinformatics Solutions, Inc) against the
644 UniProt *A. thaliana* and *P. syringae* databases (UP000006548 & UP000002515, respectively).

645 **Gene ontology analyses.** UniProt accession IDs were input into the Functional Annotation
646 Tool of the DAVID bioinformatics platform for gene ontology analysis. For this analysis,
647 thresholds were set to a count of 2 and an EASE value of 0.05 for the identification of enriched
648 biological processes associated with input list of protein uniport accession IDs. UniProt accession
649 IDs were also input into the STRING database for gene ontology analysis dependent on protein-
650 protein interaction networks. For this analysis, a maximum false discovery rate of ≤ 0.05 was used
651 to analyze enriched biological processes.

652 **Statistics and reproducibility.** Statistical analysis and visualization were performed with
653 GraphPad Prism (v.10.1.1) and R (v.4.3.2), respectively. The following packages were used in R
654 to conduct PCA, generate hierarchical heatmaps, and create dots plots in R: stats, factoextra,
655 pheatmap, and ggplot2. Experiments were conducted with biological triplicates ($n = 3$), unless
656 otherwise noted.

657

658

659

660 **References**

661 (1) Buttmer, C.; McAuliffe, O.; Ross, R. P.; Hill, C.; O'Mahony, J.; Coffey, A.
662 Bacteriophages and Bacterial Plant Diseases. *Front. Microbiol.* **2017**, *8*.
663 <https://doi.org/10.3389/fmicb.2017.00034>.

664 (2) Ristaino, J. B.; Anderson, P. K.; Bebber, D. P.; Brauman, K. A.; Cunniffe, N. J.;
665 Fedoroff, N. V.; Finegold, C.; Garrett, K. A.; Gilligan, C. A.; Jones, C. M.; Martin, M. D.;
666 MacDonald, G. K.; Neenan, P.; Records, A.; Schmale, D. G.; Tateosian, L.; Wei, Q. The
667 Persistent Threat of Emerging Plant Disease Pandemics to Global Food Security. *Proc. Natl.
668 Acad. Sci.* **2021**, *118* (23), e2022239118. <https://doi.org/10.1073/pnas.2022239118>.

669 (3) Chaloner, T. M.; Gurr, S. J.; Bebber, D. P. Plant Pathogen Infection Risk Tracks Global
670 Crop Yields under Climate Change. *Nat. Clim. Change* **2021**, *11* (8), 710–715.
671 <https://doi.org/10.1038/s41558-021-01104-8>.

672 (4) Yang, P.; Zhao, L.; Gao, Y. G.; Xia, Y. Detection, Diagnosis, and Preventive
673 Management of the Bacterial Plant Pathogen *Pseudomonas Syringae*. *Plants* **2023**, *12* (9), 1765.
674 <https://doi.org/10.3390/plants12091765>.

675 (5) Ross, A.; Somssich, I. E. A DNA-Based Real-Time PCR Assay for Robust Growth
676 Quantification of the Bacterial Pathogen *Pseudomonas Syringae* on *Arabidopsis Thaliana*. *Plant
677 Methods* **2016**, *12* (1), 48. <https://doi.org/10.1186/s13007-016-0149-z>.

678 (6) Bonfig, K. B.; Schreiber, U.; Gabler, A.; Roitsch, T.; Berger, S. Infection with Virulent
679 and Avirulent *P. Syringae* Strains Differentially Affects Photosynthesis and Sink Metabolism in
680 *Arabidopsis* Leaves. *Planta* **2006**, *225* (1), 1–12. <https://doi.org/10.1007/s00425-006-0303-3>.

681 (7) Bach-Pages, M.; Preston, G. M. Methods to Quantify Biotic-Induced Stress in Plants. In
682 *Host-Pathogen Interactions*; Medina, C., López-Baena, F. J., Eds.; Methods in Molecular
683 Biology; Springer New York: New York, NY, 2018; Vol. 1734, pp 241–255.
684 https://doi.org/10.1007/978-1-4939-7604-1_19.

685 (8) Lew, T. T. S.; Koman, V. B.; Silmore, K. S.; Seo, J. S.; Gordiichuk, P.; Kwak, S.-Y.;
686 Park, M.; Ang, M. C.-Y.; Khong, D. T.; Lee, M. A.; Chan-Park, M. B.; Chua, N.-H.; Strano, M.
687 S. Real-Time Detection of Wound-Induced H₂O₂ Signalling Waves in Plants with Optical
688 Nanosensors. *Nat. Plants* **2020**, *6* (4), 404–415. <https://doi.org/10.1038/s41477-020-0632-4>.

689 (9) Ang, M. C.-Y.; Saju, J. M.; Porter, T. K.; Mohaideen, S.; Sarangapani, S.; Khong, D. T.;
690 Wang, S.; Cui, J.; Loh, S. I.; Singh, G. P.; Chua, N.-H.; Strano, M. S.; Sarojam, R. Decoding
691 Early Stress Signaling Waves in Living Plants Using Nanosensor Multiplexing. *Nat. Commun.*
692 **2024**, *15* (1), 2943. <https://doi.org/10.1038/s41467-024-47082-1>.

693 (10) Son, W. K.; Choi, Y. S.; Han, Y. W.; Shin, D. W.; Min, K.; Shin, J.; Lee, M. J.; Son, H.;
694 Jeong, D. H.; Kwak, S.-Y. In Vivo Surface-Enhanced Raman Scattering Nanosensor for the
695 Real-Time Monitoring of Multiple Stress Signalling Molecules in Plants. *Nat. Nanotechnol.*
696 **2023**, *18* (2), 205–216. <https://doi.org/10.1038/s41565-022-01274-2>.

697 (11) Taylor, N. L.; Tan, Y. F.; Jacoby, R. P.; Millar, A. H. Abiotic Environmental Stress
698 Induced Changes in the *Arabidopsis Thaliana* Chloroplast, Mitochondria and Peroxisome
699 Proteomes. *J. Proteomics* **2009**, *72* (3), 367–378. <https://doi.org/10.1016/j.jprot.2008.11.006>.

700 (12) Pang, Q.; Chen, S.; Dai, S.; Chen, Y.; Wang, Y.; Yan, X. Comparative Proteomics of Salt
701 Tolerance in *Arabidopsis Thaliana* and *Thellungiella Halophila*. *J. Proteome Res.* **2010**, *9* (5),
702 2584–2599. <https://doi.org/10.1021/pr100034f>.

703 (13) Aina, O.; Bakare, O. O.; Fadaka, A. O.; Keyster, M.; Klein, A. Plant Biomarkers as Early
704 Detection Tools in Stress Management in Food Crops: A Review. *Planta* **2024**, *259* (3), 60.
705 <https://doi.org/10.1007/s00425-024-04333-1>.

706 (14) Gupta, R.; Wang, Y.; Agrawal, G. K.; Rakwal, R.; Jo, I. H.; Bang, K. H.; Kim, S. T.
707 Time to Dig Deep into the Plant Proteome: A Hunt for Low-Abundance Proteins. *Front. Plant*
708 *Sci.* **2015**, *6*. <https://doi.org/10.3389/fpls.2015.00022>.

709 (15) Wienkoop, S. Relative and Absolute Quantitative Shotgun Proteomics: Targeting Low-
710 Abundance Proteins in *Arabidopsis Thaliana*. *J. Exp. Bot.* **2006**, *57* (7), 1529–1535.
711 <https://doi.org/10.1093/jxb/erj157>.

712 (16) Gardner, L.; Kostarelos, K.; Mallick, P.; Dive, C.; Hadjidemetriou, M. Nano-Omics:
713 Nanotechnology-Based Multidimensional Harvesting of the Blood-Circulating Cancerome. *Nat.*
714 *Rev. Clin. Oncol.* **2022**, *19* (8), 551–561. <https://doi.org/10.1038/s41571-022-00645-x>.

715 (17) Blume, J. E.; Manning, W. C.; Troiano, G.; Hornburg, D.; Figa, M.; Hesterberg, L.; Platt,
716 T. L.; Zhao, X.; Cuaresma, R. A.; Everley, P. A.; Ko, M.; Liou, H.; Mahoney, M.; Ferdosi, S.;
717 Elgierari, E. M.; Stolarszyk, C.; Tangeysh, B.; Xia, H.; Benz, R.; Siddiqui, A.; Carr, S. A.; Ma,
718 P.; Langer, R.; Farias, V.; Farokhzad, O. C. Rapid, Deep and Precise Profiling of the Plasma
719 Proteome with Multi-Nanoparticle Protein Corona. *Nat. Commun.* **2020**, *11* (1), 3662.
720 <https://doi.org/10.1038/s41467-020-17033-7>.

721 (18) Corbo, C.; Li, A. A.; Poustchi, H.; Lee, G. Y.; Stacks, S.; Molinaro, R.; Ma, P.; Platt, T.;
722 Behzadi, S.; Langer, R.; Farias, V.; Farokhzad, O. C. Analysis of the Human Plasma Proteome
723 Using Multi-Nanoparticle Protein Corona for Detection of Alzheimer’s Disease. *Adv. Healthc.*
724 *Mater.* **2021**, *10* (2), 1–10. <https://doi.org/10.1002/adhm.202000948>.

725 (19) Caracciolo, G.; Safavi-Sohi, R.; Malekzadeh, R.; Poustchi, H.; Vasighi, M.; Zenezini
726 Chiozzi, R.; Capriotti, A. L.; Laganà, A.; Hajipour, M.; Di Domenico, M.; Di Carlo, A.; Caputo,
727 D.; Aghaverdi, H.; Papi, M.; Palmieri, V.; Santoni, A.; Palchetti, S.; Digiocomo, L.; Pozzi, D.;
728 Suslick, K. S.; Mahmoudi, M. Disease-Specific Protein Corona Sensor Arrays May Have
729 Disease Detection Capacity. *Nanoscale Horiz.* **2019**, *4* (5), 1063–1076.
730 <https://doi.org/10.1039/c9nh00097f>.

731 (20) Mahmoudi, M.; Landry, M. P.; Moore, A.; Coreas, R. The Protein Corona from
732 Nanomedicine to Environmental Science. *Nat. Rev. Mater.* **2023**, *8* (7), 422–438.
733 <https://doi.org/10.1038/s41578-023-00552-2>.

734 (21) Voke, E.; Pinals, R. L.; Goh, N. S.; Landry, M. P. In *Planta Nanosensors: Understanding*
735 *Biocorona Formation for Functional Design*. *ACS Sens.* **2021**, *6* (8), 2802–2814.
736 <https://doi.org/10.1021/acssensors.1c01159>.

737 (22) Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of Size and
738 Concentration of Gold Nanoparticles from UV–Vis Spectra. *Anal. Chem.* **2007**, *79* (11), 4215–
739 4221. <https://doi.org/10.1021/ac0702084>.

740 (23) Rufián, J. S.; Rueda-Blanco, J.; Beuzón, C. R.; Ruiz-Albert, J. Protocol: An Improved
741 Method to Quantify Activation of Systemic Acquired Resistance (SAR). *Plant Methods* **2019**, *15*
742 (1), 16. <https://doi.org/10.1186/s13007-019-0400-5>.

743 (24) Katagiri, F.; Thilmony, R.; He, S. Y. The *Arabidopsis Thaliana*-*Pseudomonas Syringae*
744 Interaction. *Arab. Book* **2002**, *1*, e0039. <https://doi.org/10.1199/tab.0039>.

745 (25) Whalen, M. C.; Innes, R. W.; Bent, A. F.; Staskawicz, B. J. Identification of
746 *Pseudomonas Syringae* Pathogens of *Arabidopsis* and a Bacterial Locus Determining Avirulence
747 on Both *Arabidopsis* and Soybean. *Plant Cell* **1991**, *3* (1), 49–59.
748 <https://doi.org/10.1105/tpc.3.1.49>.

749 (26) Xin, X.-F.; He, S. Y. *Pseudomonas Syringae* Pv. *Tomato* DC3000: A Model Pathogen for
750 Probing Disease Susceptibility and Hormone Signaling in Plants. *Annu. Rev. Phytopathol.* **2013**,
751 *51* (1), 473–498. <https://doi.org/10.1146/annurev-phyto-082712-102321>.

752 (27) Doskočilová, A.; Plíhal, O.; Volc, J.; Chumová, J.; Kourová, H.; Halada, P.; Petrovská,
753 B.; Binarová, P. A Nodulin/Glutamine Synthetase-like Fusion Protein Is Implicated in the
754 Regulation of Root Morphogenesis and in Signalling Triggered by Flagellin. *Planta* **2011**, *234*
755 (3), 459–476. <https://doi.org/10.1007/s00425-011-1419-7>.

756 (28) Ravet, K.; Touraine, B.; Boucherez, J.; Briat, J.; Gaymard, F.; Cellier, F. Ferritins
757 Control Interaction between Iron Homeostasis and Oxidative Stress in Arabidopsis. *Plant J.*
758 **2009**, *57* (3), 400–412. <https://doi.org/10.1111/j.1365-313X.2008.03698.x>.

759 (29) Dellagi, A.; Rigault, M.; Segond, D.; Roux, C.; Kraepiel, Y.; Cellier, F.; Briat, J.;
760 Gaymard, F.; Expert, D. Siderophore-mediated Upregulation of Arabidopsis Ferritin Expression
761 in Response to *Erwinia Chrysanthemi* Infection. *Plant J.* **2005**, *43* (2), 262–272.
762 <https://doi.org/10.1111/j.1365-313X.2005.02451.x>.

763 (30) Ren, C.; Pan, J.; Peng, W.; Genschik, P.; Hobbie, L.; Hellmann, H.; Estelle, M.; Gao, B.;
764 Peng, J.; Sun, C.; Xie, D. Point Mutations in Arabidopsis *Cullin1* Reveal Its Essential Role in
765 Jasmonate Response. *Plant J.* **2005**, *42* (4), 514–524. <https://doi.org/10.1111/j.1365-313X.2005.02394.x>.

766 (31) Moran, P. J.; Thompson, G. A. Molecular Responses to Aphid Feeding in Arabidopsis in
767 Relation to Plant Defense Pathways. *Plant Physiol.* **2001**, *125* (2), 1074–1085.
769 <https://doi.org/10.1104/pp.125.2.1074>.

770 (32) Jakob, K.; Kniskern, J. M.; Bergelson, J. The Role of Pectate Lyase and the Jasmonic
771 Acid Defense Response in *Pseudomonas Viridiflava* Virulence. *Mol. Plant-Microbe
772 Interactions®* **2007**, *20* (2), 146–158. <https://doi.org/10.1094/MPMI-20-2-0146>.

773 (33) Kiedrowski, S.; Kawalleck, P.; Hahlbrock, K.; Somssich, I. E.; Dangl, J. L. Rapid
774 Activation of a Novel Plant Defense Gene Is Strictly Dependent on the Arabidopsis RPM1
775 Disease Resistance Locus. *EMBO J.* **1992**, *11* (13), 4677–4684. <https://doi.org/10.1002/j.1460-2075.1992.tb05572.x>.

776 (34) Pracharoenwattana, I.; Cornah, J. E.; Smith, S. M. Arabidopsis Peroxisomal Malate
777 Dehydrogenase Functions in B-oxidation but Not in the Glyoxylate Cycle. *Plant J.* **2007**, *50* (3),
779 381–390. <https://doi.org/10.1111/j.1365-313X.2007.03055.x>.

780 (35) Adham, A. R.; Zolman, B. K.; Millius, A.; Bartel, B. Mutations in Arabidopsis acyl-CoA
781 Oxidase Genes Reveal Distinct and Overlapping Roles in B-oxidation. *Plant J.* **2005**, *41* (6),
782 859–874. <https://doi.org/10.1111/j.1365-313X.2005.02343.x>.

783 (36) Rinaldi, M. A.; Patel, A. B.; Park, J.; Lee, K.; Strader, L. C.; Bartel, B. The Roles of β -
784 Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in *Arabidopsis*
785 *Thaliana*. *Genetics* **2016**, *204* (3), 1089–1115. <https://doi.org/10.1534/genetics.116.193169>.

786 (37) Cheng, Z.; Li, J.-F.; Niu, Y.; Zhang, X.-C.; Woody, O. Z.; Xiong, Y.; Djonović, S.;
787 Millet, Y.; Bush, J.; McConkey, B. J.; Sheen, J.; Ausubel, F. M. Pathogen-Secreted Proteases
788 Activate a Novel Plant Immune Pathway. *Nature* **2015**, *521* (7551), 213–216.
789 <https://doi.org/10.1038/nature14243>.

790 (38) Saha, A.; Das, S.; Moin, M.; Dutta, M.; Bakshi, A.; Madhav, M. S.; Kirti, P. B. Genome-
791 Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small
792 Subunit (RPS) Genes and Their Comparative Analysis with the Large Subunit (RPL) Genes in
793 Rice. *Front. Plant Sci.* **2017**, *8*, 1553. <https://doi.org/10.3389/fpls.2017.01553>.

794 (39) Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and Integrative Analysis of
795 Large Gene Lists Using DAVID Bioinformatics Resources. *Nat. Protoc.* **2009**, *4* (1), 44–57.
796 <https://doi.org/10.1038/nprot.2008.211>.

797 (40) Sherman, B. T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M. W.; Lane, H. C.; Imamichi, T.;
798 Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional
799 Annotation of Gene Lists (2021 Update). *Nucleic Acids Res.* **2022**, *50* (W1), W216–W221.
800 <https://doi.org/10.1093/nar/gkac194>.

801 (41) Oberländer, J.; Champanhac, C.; Da Costa Marques, R.; Landfester, K.; Mailänder, V.
802 Temperature, Concentration, and Surface Modification Influence the Cellular Uptake and the
803 Protein Corona of Polystyrene Nanoparticles. *Acta Biomater.* **2022**, *148*, 271–278.
804 <https://doi.org/10.1016/j.actbio.2022.06.028>.

805 (42) Tomak, A.; Cesmeli, S.; Hanoglu, B. D.; Winkler, D.; Oksel Karakus, C. Nanoparticle-
806 Protein Corona Complex: Understanding Multiple Interactions between Environmental Factors,
807 Corona Formation, and Biological Activity. *Nanotoxicology* **2021**, *15* (10), 1331–1357.
808 <https://doi.org/10.1080/17435390.2022.2025467>.

809 (43) Quint, M.; Delker, C.; Franklin, K. A.; Wigge, P. A.; Halliday, K. J.; Van Zanten, M.
810 Molecular and Genetic Control of Plant Thermomorphogenesis. *Nat. Plants* **2016**, *2* (1), 15190.
811 <https://doi.org/10.1038/nplants.2015.190>.

812 (44) Jones, A. M. E.; Thomas, V.; Truman, B.; Lilley, K.; Mansfield, J.; Grant, M. Specific
813 Changes in the Arabidopsis Proteome in Response to Bacterial Challenge: Differentiating Basal
814 and R-Gene Mediated Resistance. *Phytochemistry* **2004**, *65* (12), 1805–1816.
815 <https://doi.org/10.1016/j.phytochem.2004.04.005>.

816 (45) Jones, A. M. E.; Thomas, V.; Bennett, M. H.; Mansfield, J.; Grant, M. Modifications to
817 the Arabidopsis Defense Proteome Occur Prior to Significant Transcriptional Change in
818 Response to Inoculation with *Pseudomonas Syringae*. *Plant Physiol.* **2006**, *142* (4), 1603–1620.
819 <https://doi.org/10.1104/pp.106.086231>.

820 (46) Sghaier-Hammami, B.; Redondo-López, I.; Maldonado-Alconada, A. M.; Echevarría-
821 Zomeño, S.; Jorrín-Novo, J. V. A Proteomic Approach Analysing the Arabidopsis Thaliana
822 Response to Virulent and Avirulent *Pseudomonas Syringae* Strains. *Acta Physiol. Plant.* **2012**,
823 *34* (3), 905–922. <https://doi.org/10.1007/s11738-011-0888-4>.

824 (47) Garbis, S.; Lubec, G.; Fountoulakis, M. Limitations of Current Proteomics Technologies.
825 *J. Chromatogr. A* **2005**, *1077* (1), 1–18. <https://doi.org/10.1016/j.chroma.2005.04.059>.

826 (48) Mergner, J.; Frejno, M.; List, M.; Papacek, M.; Chen, X.; Chaudhary, A.; Samaras, P.;
827 Richter, S.; Shikata, H.; Messerer, M.; Lang, D.; Altmann, S.; Cyprys, P.; Zolg, D. P.;
828 Mathieson, T.; Bantscheff, M.; Hazarika, R. R.; Schmidt, T.; Dawid, C.; Dunkel, A.; Hofmann,
829 T.; Sprunck, S.; Falter-Braun, P.; Johannes, F.; Mayer, K. F. X.; Jürgens, G.; Wilhelm, M.;
830 Baumbach, J.; Grill, E.; Schneitz, K.; Schwechheimer, C.; Kuster, B. Mass-Spectrometry-Based
831 Draft of the Arabidopsis Proteome. *Nature* **2020**, *579* (7799), 409–414.
832 <https://doi.org/10.1038/s41586-020-2094-2>.

833 (49) Zhang, H.; Liu, P.; Guo, T.; Zhao, H.; Bensaddek, D.; Aebersold, R.; Xiong, L.
834 Arabidopsis Proteome and the Mass Spectral Assay Library. *Sci. Data* **2019**, *6* (1), 278.
835 <https://doi.org/10.1038/s41597-019-0294-0>.

836 (50) Liang, C.; Cheng, S.; Zhang, Y.; Sun, Y.; Fernie, A. R.; Kang, K.; Panagiotou, G.; Lo,
837 C.; Lim, B. L. Transcriptomic, Proteomic and Metabolic Changes in Arabidopsis Thaliana
838 Leaves after the Onset of Illumination. *BMC Plant Biol.* **2016**, *16* (1), 43.
839 <https://doi.org/10.1186/s12870-016-0726-3>.

840 (51) Ponnala, L.; Wang, Y.; Sun, Q.; Van Wijk, K. J. Correlation of mRNA and Protein
841 Abundance in the Developing Maize Leaf. *Plant J.* **2014**, *78* (3), 424–440.
842 <https://doi.org/10.1111/tpj.12482>.

843 (52) Hillmer, R. A.; Tsuda, K.; Rallapalli, G.; Asai, S.; Truman, W.; Papke, M. D.;
844 Sakakibara, H.; Jones, J. D. G.; Myers, C. L.; Katagiri, F. The Highly Buffered Arabidopsis
845 Immune Signaling Network Conceals the Functions of Its Components. *PLOS Genet.* **2017**, *13*
846 (5), e1006639. <https://doi.org/10.1371/journal.pgen.1006639>.

847 (53) Nobori, T.; Velásquez, A. C.; Wu, J.; Kvitko, B. H.; Kremer, J. M.; Wang, Y.; He, S. Y.;
848 Tsuda, K. Transcriptome Landscape of a Bacterial Pathogen under Plant Immunity. *Proc. Natl.
849 Acad. Sci.* **2018**, *115* (13). <https://doi.org/10.1073/pnas.1800529115>.

850 (54) Xin, X. F.; Kvitko, B.; He, S. Y. *Pseudomonas Syringae*: What It Takes to Be a
851 Pathogen. *Nat. Rev. Microbiol.* **2018**, *16* (5), 316–328. <https://doi.org/10.1038/nrmicro.2018.17>.
852

853 **Acknowledgements**

854 R.C. is supported by the NSF PRFB award number 2305663 and the Burroughs Wellcome Fund
855 (BWF) PDEP award. H.J.S. and E.V. are supported by the DOD through the NDSEG graduate
856 fellowship. We further acknowledge support of a BWF Career Award at the Scientific Interface
857 (CASI) (to M.P.L.), a Dreandyfus foundation award (to M.P.L.), the Philomathia foundation (to
858 M.P.L.), an NIH MIRA award (to M.P.L.), an NIH R03 award (to M.P.L), an NSF CAREER award
859 (to M.P.L), an NSF CBET award (to M.P.L.), an NSF CGEM award (to M.P.L.), a CZI imaging
860 award (to M.P.L), a Sloan Foundation Award (to M.P.L.), a USDA BBT EAGER award (to
861 M.P.L), a Moore Foundation Award (to M.P.L.), an NSF CAREER Award (to M.P.L), and a DOE
862 Office of Science grant with award number DE-SC0020366 (to M.P.L.). M.P.L. is a Chan
863 Zuckerberg Biohub investigator, a Hellen Wills Neuroscience Institute Investigator, and an IGI
864 Investigator.

865

866 **Author Contributions**

867 R.C. conceived and designed the project. R.C. carried out the experiments for this project with
868 help from N.S, H.J.S., and E.V. Data analysis was conducted by R.C. with support from T-J. L.

869 The manuscript was written by R.C. Technical guidance, research prioritization, manuscript
870 writing and editing was provided by M.P.L. All authors provided editorial guidance on the
871 manuscript.

872

873 **Competing Interest**

874 The authors declare no competing interests.

875

876 **Ethics**

877 Due diligence was taken to ensure all co-authors were properly credited for their contributions to
878 this work.