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Abstract  1 

Detection and remediation of stress in crops is vital to ensure agricultural productivity. 2 

Conventional forms of assessing stress in plants are limited by feasibility, delayed phenotypic 3 

responses, inadequate specificity, and lack of sensitivity during initial phases of stress. While mass 4 

spectrometry is remarkably precise and achieves high-resolution, complex samples, such as plant 5 

tissues, require time-consuming and biased depletion strategies to effectively identify low-6 

abundant stress biomarkers. Here, we bypassed these reduction methods via a nano-omics 7 

approach, where gold nanoparticles were used to enrich time- and temperature-dependent stress-8 

related proteins through biomolecular corona formation that were subsequently analyzed by ultra-9 

high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). This 10 

nano-omic approach was more effective than a conventional proteomic analysis using UHPLC-11 

MS/MS for resolving biotic-stress induced responses at early stages of pathogen infection in 12 

Arabidopsis thaliana, well before the development of visible phenotypic symptoms, as well as in 13 

distal tissues of pathogen infected plants at early timepoints. The enhanced sensitivity of this nano-14 

omic approach enables the identification of stress-related proteins at early critical timepoints, 15 

providing a more nuanced understanding of plant-pathogen interactions that can be leveraged for 16 

the development of early intervention strategies for sustainable agriculture.  17 
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Introduction  18 

Bacterial pathogen infections, which impact agriculture by decreasing both crop 19 

productivity and quality1,2, are expected to increase in specific regions of the world due to the 20 

impacts of climate change.3 The ability to rapidly detect and control pathogens in crops is crucial 21 

for maintaining food security and preventing the transmission of zoonotic pathogens into the 22 

human population. Viable pathogens in crops can be assessed using conventional methods 23 

including visual examination and culture isolation, the latter of which is labor- and resource-24 

intensive.4 Additionally, while visual examinations are limited by subjective analysis and lack of 25 

sensitivity, especially for pathogen detection in early stages, whereas culture-based methods are 26 

prone to contamination and are unsuitable for unculturable pathogens. Recently, molecular 27 

methods, such as PCR and ELISA, have been used to detect pathogens in plants however, these 28 

methods can produce false positives due to their reliance on immunological or genetic markers, 29 

and specificity is largely dependent on targeting a known pathogen and/or gene.4,5 The 30 

identification of stress induced small molecules, such as reactive oxygen species (ROS), typically 31 

relies on chromogenic and chemiluminescent substrates, staining and microscopy to evaluate 32 

cytotoxicity, electrolyte leakage to analyze cell membrane integrity, or light-emitting chlorophyll 33 

fluorometers to measure photosynthetic efficiencies.6,7 However, these approaches lack sensitivity, 34 

specificity, and rely on semi-quantitative methods that are typically inefficient for stress detection 35 

in plants prior to evident phenotypic responses. Recently, nanotechnology has been developed to 36 

assess early indicators of plant stress through nano-sensors that detect small molecules, such as 37 

H2O2,8 salicylic acid,9 and extracellular adenosine triphosphate10, in real-time following the 38 

induction of abiotic and biotic stressors. However, these nano-sensors are limited to detecting 1 39 

small molecule or phytohormone at a time and their multiplexing is currently not feasible. Lastly, 40 
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mass spectrometry (MS) can probe changes at the proteomic and metabolomic levels in plants 41 

exposed to stress conditions,11,12 however the detection of low abundance biomarkers, which are 42 

critical for assessing and monitoring stress in plants and crops,13 remains a significant 43 

challenge14,15.  44 

Nanotechnology has also been used to deep profile proteomes via an approach termed 45 

‘nano-omics’, where nanoparticles are introduced into biological milieus as a diagnostic tool for 46 

the detection of diseases in complex fluids and tissues.16–19 Nano-omics utilizes the 47 

physicochemical properties of nanoparticles, specifically high surface-to-volume ratios and 48 

facility for surface functionalization, to rapidly enrich low-abundance biomolecules from complex 49 

samples for downstream analysis with MS, alleviating bottlenecks associated with complicated 50 

and time-consuming sample preparation methods. This unique analytical approach is founded on 51 

the concept of the biomolecular corona;20,21 biomolecules spontaneously adsorb onto the surfaces 52 

of nanomaterials when they are introduced into complex environments. The constituents of the 53 

biomolecular corona are comprised of biomolecules that possess strong affinity to the 54 

nanoparticles, and often contain biomolecules that are not abundant in the native biofluid, thus 55 

permitting their selective detection. Protein corona constituents are subsequently characterized 56 

with analytical tools, such as MS. Moreover, relative to conventional MS-based liquid biopsies or 57 

sampling of biological milieus, such as plant leaf lysates, nano-omics reduces the need for 58 

extensive extraction, purification, and depletion strategies traditionally used to reduce the levels 59 

of high abundance proteins,16 thereby streamlining the detection of biomarkers. Importantly, stress 60 

biomarkers are inherently low-abundance biomolecules, especially in early timepoints following 61 

stress onset, thus making nano-omics a valuable approach for the early detection of stress-induced 62 

biomarkers in plants.  63 
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In this work, gold nanoparticles (AuNP), formulated with different surface charges, were 64 

used to enrich time- and temperature-dependent stress-related proteins from Pseudomonas 65 

syringae pathovar tomato (Pst) strain (DC3000) infected Arabidopsis thaliana Col-0 ecotype 66 

(hereafter referred to as P. syringae infected A. thaliana). AuNP were introduced into A. thaliana 67 

leaf lysates, and the resulting biomolecular corona was analyzed via nano-omics with ultra-high 68 

performance liquid chromatography tandem mass spectrometry (UPHLC-MS/MS). This nano-69 

omic approach was compared to conventional proteomic analysis and was found to be more 70 

efficient at enriching and detecting stress-induced proteins in pathogen infected plant leaves, and 71 

non-infiltrated distal leaves from pathogen infected plants. Moreover, this nano-omic approach 72 

enhanced the detection of stress induced biomarkers at early timepoints prior to symptomatic 73 

expression and the onset of phenotypic responses in healthy appearing A. thaliana, enabling 74 

detection of early-onset plant stress, and potentiating its use for the future detection of new low-75 

abundance plant stress biomarkers.  76 

 77 

Results 78 

Characterization of AuNP. Citrate capped (cit-AuNP) and branched polyethylenimine 79 

(BPEI) conjugated AuNP (BPEI-AuNP) were characterized for size, morphology, and surface 80 

properties using DLS, !-potential analysis, and UV-vis spectroscopy. DLS measurements 81 

conveyed that the hydrodynamic diameters of the cit-AuNP and BPEI-AuNP were 18.4 ± 1.4 and 82 

39.6 ± 3.1 nm, respectively (Supplementary Fig. 1A). Correspondingly, !-potential 83 

measurements confirmed cit-AuNP had a negative charge of -40.6 ± 2.5 mV and BPEI-AuNP had 84 

a positive charge of 36.3 ± 1.7 mV at pH 6 in Milli-Q water (18.2 MΩ/cm) (Supplementary Fig. 85 

1B), supporting the presence of the negatively charged citrate ligand and the positively charged 86 
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BPEI polymer on the AuNP surfaces. The UV-vis spectra of cit-AuNP exhibited an adsorption 87 

band with a λmax of 519.5 nm, which is characteristic of spherical AuNPs that are stable in 88 

solution.22 Conjugation with BPEI resulted in a slight red shift (BPEI-AuNP λmax 524.5 nm) 89 

(Supplementary Fig. 1C). Average polydispersity index (PDI) values were 0.27 ± 0.01 and 0.16 90 

± 0.02 for BPEI-AuNP and cit-AuNP, respectively (Supplementary Fig. 1D), suggesting that the 91 

AuNP were moderately polydispersed.  92 

Deep profiling of time-dependent pathogen infected A. thaliana proteome with 93 

protein corona based nano-omics. To determine if pathogen induced stress markers could be 94 

detected prior to the manifestation of phenotypic expression of disease in A. thaliana, we applied 95 

a nano-omic strategy and compared its efficiency to a conventional proteomics approach. We used 96 

three plants as biological replicates for each condition and timepoint. For each plant, primary 97 

inoculation of P. syringae was performed by pressure infiltration into the apoplast of three 5-6 98 

week old leaves distributed ~130° apart.23 Mock treated plants were infiltrated with 10 mM MgCl2. 99 

A schematic representation and photographs of the temporal phenotypic effects observed in 100 

pathogen infected A. thaliana are shown in Fig. 1A and Supplementary Fig. 2, respectively. 101 

While 10 mM MgCl2 did not induce observable phenotypic changes in A. thaliana over time, 102 

exposure to P. syringae resulted in a time-dependent manifestation of chlorosis, leaf wilting, 103 

necrotic lesions, and stunted growth, aligning with previous studies,24–26 with severe symptoms 104 

occurring between 3- and 7-DPI (days post infiltration). At designated timepoints (0.5-, 1-, 3- and 105 

7-DPI), six leaves were collected from each plant: three infiltrated leaves and three non-infiltrated 106 

‘distal’ leaves. Leaves collected from 0.5- and 1-DPI plants were designated ‘early timepoint’ 107 

samples, while those collected from 3- and 7-DPI were assigned ‘late timepoint’. An additional 108 

control group of non-infiltrated plants was also sampled to determine how the mock treatment 109 
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would impact the Arabidopsis proteome. For each condition and timepoint, we used three plants 110 

as biological replicates. The three leaves collected from each plant for each condition (infiltrated, 111 

distal, and non-infiltrated control) and timepoints were pooled and treated as a single biological 112 

sample. The collected leaves were briefly washed to sterilize the surface, flash frozen, and lysed 113 

in Milli-Q water using a bead-beater homogenizer. We then compared two approaches to analyze 114 

the proteome of A. thaliana: (1) a conventional proteomic analysis where the homogenized leaf 115 

lysates were directly analyzed by UHPLC-MS/MS, and (2) our nano-omic approach where 116 

biomolecular coronas were formed by incubating BPEI-AuNP and cit-AuNP with leaf lysates at 117 

ambient temperatures and the proteins from the coronas were analyzed with UHPLC-MS/MS. 118 

Both approaches followed a 10 minute electrophoretic separation step to resolve the proteins; this 119 

brief separation was applied to ensure separation quality with rapid processing of the samples.  120 

 121 

Fig. 1. A) Scheme of the biotic stress induced in A. thaliana and the deep profiling nano-omics 122 
approach used in this study. Following pathogen infection, A. thaliana tissues, both directly 123 
infected leaves as well as distal leaves from infected plants, were collected from 0.5- to 7-DPI 124 
timepoints (blue box) for analysis. Mock treated plants were infiltrated with 10 mM MgCl2 (yellow 125 
box) and leaves were collected from 7-DPI mock treated plants as controls. Time-dependent 126 
phenotypic responses in pathogen infected A. thaliana were apparent at 3- and 7-DPI (red box). 127 
B) Protein markers of stress were probed in pathogen infected A. thaliana leaf lysates using 128 
conventional proteomic and nano-omic approaches. While both approaches employed UHPLC-129 
MS/MS, nano-omics leveraged protein corona enrichment with BPEI-AuNP and cit-AuNP.  130 
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Between the conventional and nano-omic approaches, 3128 and 559 A. thaliana and P. 131 

syringae proteins were comprehensively identified. Average number of proteins and CV 132 

percentages per sample type are listed in Supplementary Table 1. Protein spectral counts were 133 

analyzed by principal component analysis (PCA) to reduce high-dimensional data into two 134 

principal components, with the resulting scores plots shown in Fig. 2. We observed overlaps and 135 

proximity clustering among samples that were analyzed by conventional proteomics. Specifically, 136 

the mock, 0.5-DPI, and 0.5-DPI distal samples overlapped, and were positioned near the non-137 

infiltrated control samples (Fig. 2A). A similar proximity grouping was observed between the 138 

control, mock, 1-DPI and 1-DPI distal samples (Fig. 2B). In contrast, while the mock and 3-DPI 139 

distal samples also overlapped and grouped near the control samples, the 3-DPI group was 140 

positioned further away (Fig. 2C), indicating some divergence. Likewise, the control, mock, and 141 

7-DPI distal samples were closely grouped together, but the 7-DPI samples were further removed, 142 

suggesting a greater degree of variance in the data collected at this timepoint (Fig.2D). These 143 

findings suggest that samples from the early and non-symptomatic timepoints (0.5- and 1-DPI) 144 

exhibit protein compositions that are highly similar to the mock infiltrated and non-infiltrated 145 

control plants, with minimal differences detectable by the conventional proteomic approach. 146 

Protein coronas extracted from the BPEI- and cit-AuNPs were positioned furthest away from the 147 

conventionally analyzed samples, with clear discrepancies between them. Coronas formed with 148 

the lysates from early timepoints (0.5- and 1-DPI) grouped closer together based on surface charge 149 

and not sample type (distal vs infiltrated) (Figs. 2A, 2B). In contrast, coronas formed with lysates 150 

from the late timepoints (3- and 7-DPI) tended to cluster together according to sample type (Figs. 151 

2C and 2D), suggesting that late timepoints exhibit a larger degree of stress-induced changes in 152 

the proteome, therefore relatively diminishing the importance of AuNP surface chemistry for nano-153 
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omic analysis. Notably, overlaps were observed between coronas formed with cit-AuNPs and the 154 

early timepoint samples, suggesting that BPEI-AuNPs may be more effective than cit-AuNP in 155 

adsorbing more unique proteins from early-stage pre-symptomatic infected plants. Additionally, 156 

the cit-AuNP coronas formed with 3- and 7-DPI samples overlapped with the conventionally 157 

analyzed 3- and 7-DPI samples, indicating that the protein corona compositions formed with cit-158 

AuNP closely resembled protein compositions in the native biofluid. In contrast, the BPEI-AuNP 159 

coronas displayed greater divergence from the native biofluid protein compositions. PCA was also 160 

conducted on coronas formed with the mock, mock distal, and non-infiltrated control samples as 161 

a subset analysis. As shown in Supplementary Fig. 3, no clear distinction between clusters was 162 

observed between the control, mock, mock distal lysates, as expected, and their corresponding cit-163 

AuNP coronas, indicating a close similarity between these groups. BPEI-AuNP coronas formed 164 

with non-infiltrated control, mock control, and mock distal samples were positioned furthest away. 165 

Collectively, these results suggest that cit-AuNP may reflect the native biofluid protein 166 

composition more closely, while BPEI-AuNP could be more selective for distinct or ‘unique’ 167 

proteins. This selectivity, particularly in the context of disease progression, implies that BPEI-168 

AuNP may capture unique proteomic signatures, or biomarkers, that are not as easily detected 169 

through conventional proteomics, and may do so more effectively than cit-AuNP. Supplementary 170 

Fig. 4 presents the PCA plot encompassing all analyzed samples together. To quantify the 171 

divergence in PCA space between samples, the Euclidean distances of the mean PC1 and PC2 172 

values were calculated for the time dependent samples relative to the mock, as shown in 173 

Supplementary Fig. 5. With increasing timepoints (0.5- to 7-DPI), we observed a progressive 174 

increase in the Euclidean distance from the mock for samples analyzed by conventional 175 

proteomics, with distances ranging from 2.9 – 24. A similar trend was observed for distal tissues 176 
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analyzed by conventional proteomics, where distances ranged from 2 –17.6. Collectively, samples 177 

analyzed by the conventional proteomic approach were closest to the mock in PCA space, 178 

supporting that their protein profiles were most similar to the mock samples. In contrast, samples 179 

analyzed using nano-omics exhibited significantly greater Euclidean distances from the mock, 180 

with values ranging between 28 – 72. Among the AuNP coronas, those formed with the BPEI-181 

AuNP showed the largest distinction from the mock, as evidenced by their greater Euclidean 182 

distances. Notably, with the nano-omics samples, we did not see a progressive increase in 183 

Euclidean distance over time. These findings highlight the sensitivity of the nano-omics approach 184 

in capturing protein differences across samples mediated by distinct differences in AuNP surface 185 

chemistry, and suggest that AuNP-based enrichment of low-abundance stress markers, especially 186 

at early disease timepoints, is a valuable method for detecting pre-symptomatic plant stress. 187 

Z-scores, calculated from the average relative abundance of proteins, are displayed as 188 

heatmaps with hierarchical clustering in Supplementary Figs. 7, 8 for A. thaliana and P. syringae 189 

proteins, respectively. For A. thaliana proteins, clustering of z-scores revealed patterns of 190 

similarity between lysates and coronas that were dependent on timepoint, sample type (infiltrated, 191 

mock, distal, non-infiltrated control) and AuNP surface chemistry. Z-score analysis suggests that 192 

while the surface chemistry of the AuNP plays a dominant role in protein corona formation at 193 

earlier timepoints, its influence diminishes as disease progresses. Importantly, this analysis shows 194 

greater variability in protein samples derived from AuNP-based corona samples relative to those 195 

analyzed by conventional proteomics, suggesting that the nano-omic approach captured a wider 196 

range of A.thaliana proteins with relative changes in expression levels. Among the samples from 197 

the later timepoints (3- and 7-DPI), which exhibited the greatest variation in protein expression, 198 

the AuNP coronas had higher variability compared to the corresponding lysates analyzed by 199 
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conventional proteomics, suggesting that the nano-omic approach can provide more nuanced 200 

insights on pathogen infection. 201 

 202 
 203 

Fig. 2. Principal component analysis of protein spectral counts identified by the conventional 204 
proteomic and nano-omic approaches. Score plots of the lysate, distal leaf lysate, BPEI-AuNP 205 
corona, cit-AuNP corona, mock, and non-infiltrated control for A) 0.5-DPI, B) 1-DPI, C) 3-DPI, 206 
and D) 7-DPI conditions; PC1 and PC2 summarized 37.6%, 36.1%, 39.2%, and 35.9% of the 207 
variances, respectively. Each point represents a biological replicate, and the ellipses represent the 208 
95% confidence intervals around the mean point of each group (n=3). In B), only 2 of the 3 209 
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biological replicates are shown and analyzed by PCA for the 1-DPI distal-cit-AuNP group; the 210 
PCA of all three replicates for the 1-DPI distal-cit-AuNP group is shown in Supplementary Fig. 211 
6. (C) denotes that the sample was analyzed by conventional proteomics and (N) denotes that the 212 
sample was analyzed by the nano-omic approach.  213 

 214 

To further compare relative protein expression, log2(fold changes) were calculated by 215 

comparing protein levels in pathogen-infiltrated leaf lysates and the AuNP coronas formed with 216 

these lysates against those in mock treated and non-infiltrated controls. Additionally, proteins 217 

exclusively detected in either the lysates or the AuNP coronas – but absent from the mock treated 218 

and/or non-infiltrated controls – were classified as ‘unique’ proteins. Supplementary Fig. 9 219 

illustrates the quantity of differentially expressed (log2(fc) >1 or <-1) and ‘unique’ A. thaliana and 220 

P.syringae proteins identified, relative to protein expression in mock treated leaf lysates, via the 221 

nano-omic and conventional proteomic approaches. Across the timepoints and sample types (distal 222 

and infiltrated), the nano-omics approach allowed for the characterization of 1.3 – 3.7 fold more 223 

proteins compared to conventional proteomics. To illustrate the relationship between these 224 

proteins and the analytical approaches applied, Venn diagrams were generated to compare protein 225 

profiles across three time-dependent conditions: cit-AuNP corona proteins, BPEI-AuNP corona 226 

proteins, and proteins in the leaf lysates analyzed through conventional proteomics. In general, the 227 

number of A. thaliana proteins exclusive to each type of AuNP was larger than the quantity of 228 

proteins identified by conventional proteomic analyses. However, this trend was less prominent 229 

for P. syringae proteins, particularly in early timepoint infiltrated samples and distal leaf lysates, 230 

where fewer proteins were observed. Neither of the two AuNP surface chemistries used in this 231 

study appeared to be more efficient than the other at enriching P.syringae proteins. Similarly, 232 

Supplementary Fig. 10 depicts the number of differentially expressed (log2(fc) >1 or <-1) and 233 

‘unique’ A. thaliana and P.syringae proteins identified relative to non-infiltrated controls, where 234 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.12.627884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.12.627884


the nano-omics approach facilitated the identification of 1.3 – 3.8 fold more proteins than the 235 

conventional proteomic analyses. Furthermore, Venn diagrams revealed that protein enrichment, 236 

specifically the number of proteins, on the cit-AuNP and BPEI-AuNP was not strongly influenced 237 

by surface chemistry, suggesting that both nanomaterial types can capture a broad range of proteins 238 

regardless of surface properties.  239 

 The shared and distinct proteins identified between differentially expressed and ‘unique’ 240 

proteins were then used to calculate Jaccard index values to quantify the degree of similarity across 241 

samples. These similarity values were plotted as heatmaps with hierarchical clustering, as shown 242 

in Fig. 3. For pathogen infiltrated leaves, the similarity heatmap of A. thaliana proteins revealed 243 

two distinct clusters that separate the conventional proteomic analyses from the nano-omics 244 

approach. Sub-clustering of the nano-omics samples revealed distinct grouping patterns: for the 245 

late timepoints (3- and 7-DPI), samples clustered according to sample type, while for early 246 

timepoints (0.5- and 1-DPI), subculturing was driven by the AuNP surface chemistry. Meanwhile, 247 

the similarity heatmap for P. syringae proteins exhibited grouping that was driven by time-248 

dependence, with samples from early timepoints (0.5- and 1-DPI) clustering together and 249 

separately from later timepoints (3- and 7-DPI). Congruently, Jaccard index values were also 250 

calculated for A. thaliana and P. syringae proteins identified from distal leaves of pathogen 251 

infected plants (Fig. 3). Notably, the degree of similarity of A.thaliana proteins across distal 252 

samples was generally higher than their similarity in pathogen infiltrated leaves. In contrast, P. 253 

syringae proteins exhibited a more complex pattern of similarity. An opposing trend was observed, 254 

where the similarity between distal leaf samples was comparatively lower than in the pathogen-255 

infiltrated samples. To compare protein similarities with mock infiltrated plants, we calculated 256 

Jaccard index values by comparing the differential expression and ‘unique’ protein composition 257 
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of each sample relative to non-infiltrated controls (Supplementary Fig. 11). This approach 258 

enabled a quantitative evaluation of how protein compositions in our samples diverged from those 259 

in healthy, non-infiltrated control plants. Hierarchical clustering revealed that mock treated 260 

samples were most similar to the 0.5-DPI samples, regardless of sample type (distal vs infiltrated) 261 

or protein origin (A. thaliana vs P.syringae). Additional clusters reflected the same trends driven 262 

by time-dependence and AuNP surface chemistry, consistent with the patterns observed in Fig. 3. 263 

This clustering pattern underscores that early-stage protein expression in pathogen infiltrated 264 

plants closely resembles that of mock treated plants and this similarity may reflect the pathogen’s 265 

initial phase of growth, during which it has not yet reached a sufficient population to elicit a 266 

pronounced differential response in the plant, thus a conventional proteomic approach may not be 267 

sensitive enough to distinguish low-abundant stress-induced proteins at early and critically 268 

relevant timepoints.   269 

 270 
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 271 
 272 

Fig. 3. Heatmaps with hierarchical clustering depict the similarities between samples based on the 273 
composition of A), B) A. thaliana and C), D) P. syringae differentially expressed (log2(fc)>1 and 274 
<-1) and unique proteins, relative to mock infiltration, identified in A), C) pathogen infiltrated and 275 
B), D) distal tissues of pathogen infected plants, respectively. The color scale indicates the degree 276 
of similarity based on Jaccard index values. Samples labeled in orange represent those analyzed 277 
by the conventional proteomic approach.  278 
 279 
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To better highlight protein patterns in response to pathogen infiltration, we generated 280 

heatmaps of differential expression (i.e.: log2(fc) values), comparing protein levels in lysates and 281 

AuNP coronas against those in mock infiltrated samples. This approach prioritizes variations in 282 

protein abundances, revealing over- and under-expressed proteins in lysates analyzed via the 283 

conventional proteomic approach, as well as enriched and depleted proteins in the AuNP coronas 284 

analyzed via nano-omics. Fig. 4A shows the heatmap of differential protein expression in 285 

pathogen-infiltrated lysates, while Fig. 4B shows protein expression in lysates of distal leaves from 286 

pathogen-infiltrated plants. For both heatmaps, proteins were filtered to include only those that 287 

met the conditions of log2(fc) >3.5 and p<0.05 in at least one sample. We identified four proteins 288 

associated with bacterial infection responses that were significantly enriched on the AuNPs. 289 

Nodulin/glutamine synthetase-like protein (NodGS) (F4J9A0), which can also be involved in 290 

developmental processes independent of bacterial infections,27 was slightly overrexpressed 291 

following pathogen infection according to conventional proteomics, but was significantly enriched 292 

on the BPEI-AuNP corona formed with the 0.5-, 1-, and 3-DPI lysates, suggesting that this stress 293 

biomarker is better detected with nano-omics. Interestingly, in distal tissues, NodGS was 294 

significantly enriched on the BPEI-AuNP coronas formed with the 0.5-DPI lysates, but not 295 

detectable by conventional proteomics, indicating that, although distal tissues appeared healthy, 296 

their proteome suggests an underlying response to pathogen-induced signals from infected leaves. 297 

These findings imply that even tissues not directly exposed to the pathogen may initiate subtle 298 

defense mechanisms in response to systemic infection signaling. Ferritin-1 (Q39101), which 299 

regulates iron homeostasis and leaf development,28 slightly increased with pathogen infection, 300 

particularly in the late timepoint samples (3- and 7-DPI), as detected by conventional proteomics. 301 

Ferritin-1 was enriched on cit-AuNP, specifically in the coronas formed with 0.5- and 1-DPI, 302 
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supporting its expression as an early, low abundance protein, induced by pathogen infection29 that 303 

is detectable at early timepoints solely by nano-omics. Lipoxygenase 2 (P38418), a jasmonate-304 

inducible enzyme integral to various plant defense pathways,30,31 was notably overexpressed in 305 

pathogen-infiltrated samples, with peak expression observed at 7-DPI, supporting previous 306 

findings.32 Significant enrichment of this enzyme was also observed on both AuNP coronas, 307 

particularly at early infection stages (0.5- and 1-DPI). These findings indicate that lipoxygenase 2 308 

may play an early and sustained role in the plant’s defense response, and AuNP coronas effectively 309 

capture and enrich this protein during initial pathogen exposure. Cinnamyl alcohol dehydrogenase 310 

7 (Q02971), encoded by the ELI3 gene and inferred to be overexpressed as result of pathogen 311 

infection,33 was only significantly overexpressed in 1-DPI lysates. It was significantly enriched on 312 

both AuNP coronas formed with the earliest timepoint samples (0.5-DPI), indicating that it may 313 

be more efficiently captured on the AuNP coronas than with conventional proteomics due to its 314 

low abundance in the 0.5-DPI lysates. Additionally, we observed the enrichment of several 315 

proteins associated with redox homeostasis in both pathogen infiltrated samples and lysates of 316 

distal leaves. Peroxisomal malate dehydrogenase 1 (O82399), along with acyl-coenzyme A 317 

oxidases 3 (P0CZ23) and 4 (Q96329), were more significantly enriched on AuNPs when compared 318 

to their expression levels in lysates analyzed by conventional proteomics. These enzymes play a 319 

key role in regulating fatty acid β-oxidation,34,35 a metabolic process that supports cellular redox 320 

homeostasis by generating electron carriers essential for maintaining oxidative stability under 321 

stress.36 Small ribosomal subunit proteins RACK1y (Q9C4Z6) and RACK1x (Q9LV28), MAPK 322 

cascade scaffolding proteins that regulate immune signaling pathways,37 were overexpressed and 323 

significantly enriched in 0.5-, 1-, and 3-DPI distal lysates and coronas. However, the detection of 324 

these proteins was more prominent through the nano-omic approach, especially for RACK1x 325 
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which was resolvable in 7-DPI samples exclusively by the nano-omic approach. Moreover, several 326 

mRNA binding proteins were not significantly overexpressed in distal lysates when analyzed by 327 

conventional proteomics but showed selective enrichment on the BPEI-AuNP protein corona. For 328 

example, small ribosomal subunit protein eS6z (O48549) was significantly enriched on BPE-329 

AuNP coronas formed with the 0.5-, 1-, 3- and 7-DPI distal lysates. While the expression of this 330 

protein in response to bacterial infections has not yet been characterized in A. thaliana, 331 

transcriptional upregulation of its gene has been documented in Oryza sativa (rice) in response to 332 

infection by the bacterial pathogen Xanthomonas oryzae pv. oryzae.38 This selective enrichment 333 

of eS6z and other mRNA binding proteins on BPEI-AuNP highlights the potential for nano-omic 334 

approaches to capture low-abundance, stress-responsive proteins that may be overlooked by 335 

conventional proteomics. Interestingly, P.syringae catalase-peroxidase (Q87WL6) was markedly 336 

overexpressed in 3- and 7-DPI lysates and their respective coronas. This finding is interesting as 337 

bacterial recovery from 7-DPI lysates was not feasible (Supplementary Fig. 19), suggesting that 338 

catalase-peroxidase expression may reflect a stress adaptation mechanism by P.syringae in 339 

response to the plant’s defenses. The sustained presence of catalase-peroxidase underscores its 340 

potential role in pathogen survival strategies within host tissues at advanced infection stages. 341 
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 342 

Fig. 4. Heatmaps with Euclidean hierarchical clustering of a subset of log2(fc) values, calculated 343 
relative to mock infiltration, of proteins from A) pathogen infiltrated leaf lysates and B) distal 344 
tissues of pathogen infected plants. For the heatmaps, proteins were filtered to plot log2(fc) >3.5 345 
and p-values<0.05 observed in at least one sample. Samples analyzed by conventional proteomics 346 
are labeled in black font, while nano-omics analyses are labeled in green and purple fonts for the 347 
BPEI- and cit-AuNPs, respectively. In panel A), mock refers to its protein expression relative to 348 
the non-infiltrated control. Overexpression, or protein enrichment on the AuNPs, is depicted by 349 
red boxes (log2(fc) >0), while underexpression, or depletion from the AuNP surfaces, is depicted 350 
by blue boxes (log2(fc) <0). Grey boxes indicate incalculable fold change. Light grey represents 351 
cases where the protein was detected solely in the mock, resulting in an undefined fc calculation. 352 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.12.627884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.12.627884


Dark grey represents cases where the protein was not detected in the mock, making the fc 353 
calculation invalid. Asterisks denote significance levels (*, p< 0.05; **, p <0.01; ***, p<0.001; 354 
****, p<0.0001). Protein accession IDs are highlighted to annotate specific functions: proteins 355 
responsive to bacterial infection are marked with a yellow highlight; proteins involved with redox 356 
homeostasis are marked with an orange highlight; and proteins that bind to RNA are marked with 357 
a blue highlight. Black arrows point to P.syringae proteins. 358 

 359 

 To further determine if pathogen induced biomarkers were detectable in our samples, we 360 

identified enriched biological processes of the ‘unique’ plant proteins detected in plant tissues 361 

directly infected with P.syringae. The ‘unique’ proteins in our samples were those that were 362 

uniquely expressed in pathogen-infected tissues but were not identified in the mock treated 363 

controls. To analyze the enriched processes, we leveraged DAVID, a robust bioinformatics 364 

platform designed for gene ontology and pathway enrichment analysis.39,40 The unique proteins 365 

from the pathogen infected plants were associated with 260 enriched biological processes. Of 366 

these, 45% were identified solely by nano-omics, 17% were identified with conventional 367 

proteomics, and 38% were identified by both analytical approaches. We scrutinized the time-368 

dependency of these enriched biological processes by categorizing them according to the earliest 369 

timepoint at which the highest gene count was observed. For the early timepoint samples (0.5- and 370 

1-DPI), 43% (111) of the enriched biological processes were identified uniquely by nano-omics, 371 

13% (33) by conventional proteomics, and 21% (56) were detected by both approaches; however, 372 

for those that were identified by both approaches, 19% (50) showed higher gene or proteins counts 373 

when analyzed by nano-omics. For the late timepoint samples (3- and 7-DPI), 11% (28) were 374 

detected solely by nano-omics, 7% (17) were identified uniquely by conventional proteomics, and 375 

6% (15) were characterized by both methods. Fig. 5 depicts the temporal dynamics of a subset, 376 

111 of the 260, of enriched processes and highlights how these processes evolve over time as 377 

revealed by the applied analytical approach (conventional vs nano-omics). For the early timepoint 378 
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samples, response to bacterium, cinnamic acid biosynthesis, defense response by callose 379 

deposition in the cell wall, proteolysis, and ROS metabolism were enriched and detectable solely 380 

with nano-omics, while cell death, toxin catabolism, and regulation of salicylic acid metabolism 381 

were enriched and identified uniquely by conventional proteomics. For the late timepoint samples, 382 

programmed cell death, response to endoplasmic reticulum stress, and response to hypoxia were 383 

enriched and only resolvable using nano-omics, while systemic acquired resistance, salicylic acid 384 

metabolism, and jasmonic acid metabolism were uniquely identified using conventional 385 

proteomics. Interestingly, for early timepoint samples, several hormone and metabolite 386 

biosyntheses were enriched and had higher gene counts via nano-omics than conventional 387 

proteomics, including fatty acid-, glycogen-, jasmonic acid-, lignin-, oxylipin-, phenylacetate- and 388 

phosphatidylcholine-biosynthesis. Additionally, proteins involved in quality control for misfolded 389 

and/or incompletely synthesized proteins, RuBisCO complex assembly, immune responses, as 390 

well as responses to cold, heat, and oxidative stress, were enriched and showed higher gene counts 391 

with nano-omics. Glutathione metabolism, response to wounding, and diaminopimelate 392 

biosynthesis were also enriched in the early timepoint samples but showed higher gene counts 393 

resolvable by conventional proteomics. As a comparative measure, the enriched biological 394 

processes associated with the ‘unique’ proteins adsorbed onto the BPEI- (Supplementary Fig. 12) 395 

and cit-AuNP (Supplementary Fig. 13) when incubated with mock samples was also compared. 396 

Few proteins associated with responses to cold and heat stressors were slightly enriched on the 397 

AuNPs due to the mock treatment. However, responses to oxidative stress or pathogen-induced 398 

stress responses were not detected in either AuNP protein corona, suggesting these processes were 399 

not upregulated under the mock conditions, as expected. Additionally, as a baseline, the enriched 400 

biological processes linked with ‘unique’ proteins from the mock samples relative to the non-401 
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infiltrated control were analyzed. Supplementary Fig. 14 shows that treatment with the mock 402 

solution resulted in the overexpression of proteins involved with hyperosmotic salinity responses, 403 

protein dephosphorylation, and responses to jasmonic acid stimuli. This finding indicates that 404 

infiltration with mock solution slightly alters the proteome of Arabidopsis but does not induce 405 

pathogen-dependent stress biomarkers. Collectively, the temporal categorization shown in Fig. 5 406 

highlights the improved sensitivity and resolution of our nano-omics approach to detecting low-407 

abundance biomarkers of plant stress at early timepoints post-infection.  408 

In the same manner, gene ontology analysis was conducted on the ‘unique’ proteins 409 

identified in distal tissues of pathogen infected plants. A total of 170 enriched biological processes 410 

were identified as shown in Fig. 6; of these, 55% (94) were detected uniquely by nano-omics, 14% 411 

(23) were identified by conventional proteomics, and 31% (53) were discernible by both analytical 412 

methods. For the early timepoint distal samples, 54% (91) of the enriched biological processes 413 

were identified uniquely by nano-omics, 12% (21) by conventional proteomics, and 21% (36) were 414 

detected by both approaches; however, for those that were identified by both, 16% (27) showed 415 

higher gene or proteins counts when analyzed by nano-omics. For the late timepoint distal samples, 416 

9% (16) were detected solely by nano-omics, 2% (4) were identified uniquely by conventional 417 

proteomics, and 1% (2) were distinguishable by both methods. Notably, for the early timepoint 418 

distal samples (0.5- and 1-DPI), water transport, responses to wounding and ROS, methylation, 419 

immune response, iron-sulfur cluster assembly, hydrogen peroxide transmembrane transport, and 420 

fatty acid β-oxidation were enriched processes that were solely detectable via nano-omics. 421 

Contrastingly, only cellular response to heat was enriched and identified uniquely by conventional 422 

proteomics in 0.5-DPI distal samples. RuBisCO complex assembly, diaminopimelate and fatty 423 

acid biosyntheses were enriched, detected by both analytical approaches, but the associated gene 424 
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counts were higher via nano-omics. Surprisingly, proteins involved in responses to oxidative stress 425 

were expressed early in distal tissues as depicted by their enrichment and analysis via nano-omics, 426 

with approximately 20 proteins enriched in 0.5- to 3-DPI distal samples. These proteins were not 427 

discernable by conventional proteomics until 7-DPI. For comparison, the enriched biological 428 

processes associated with ‘unique’ proteins from distal leaves of mock treated plants were also 429 

analyzed (Supplementary Fig. 15); the distal leaves showed overexpression of proteins linked 430 

with responses to heat and cold, quality control for misfolded of incompletely synthesized proteins, 431 

and toxin catabolism. Overall, the findings in Fig. 6 indicate that there are proteins that are 432 

produced in low abundances, at early timepoints, and in tissues distal to pathogen infection that 433 

are difficult or not possible to detect with conventional proteomics. However, by applying a nano-434 

omic approach, these low abundant biomarkers of stress, predominately in in distal tissues that 435 

were never directly exposed to pathogens, can be enriched and detected more efficiently.  436 
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 437 

Fig. 5. Gene ontology analysis of a subset of enriched biological processes associated with unique 438 
proteins identified in pathogen infiltrated lysates and the corresponding AuNP coronas. The x-axis 439 
consists of the time-dependent samples analyzed by nano-omics (N) and conventional proteomics 440 
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(C). The names of the enriched biological processes are displayed on the y-axis. The plot was 441 
divided into 2 sections to facilitate better visualization. Gene counts are illustrated by dot size and 442 
significance is depicted with a color scale indicative of -log(p-values).  443 
 444 

 445 
 446 

Fig. 6. Gene ontology of a subset of enriched biological processes from unique proteins identified 447 
in distal tissues collected from pathogen infiltrated plants and their respective AuNP coronas. The 448 
x-axis consists of the time-dependent samples analyzed by nano-omics (N) and conventional 449 
proteomics (C). Distal tissues are denoted (D) on the x-axis. Names of the enriched biological 450 
processes are shown on the y-axis. Gene counts are illustrated by dot size and significance is 451 
depicted with a color scale of -log(p-values). 452 
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Lastly, protein binding affinity, conformation and stability are highly influenced by 453 

temperature making it a key factor in determining the composition of nanoparticle protein 454 

coronas,20,41,42. Consequently, we hypothesized that temperature could potentially impact the 455 

reliability and efficiency of our nano-omic approach by altering protein corona compositions. In 456 

mammalian studies, protein corona formation is typically performed at 37℃ as this temperature 457 

reflects physiological conditions in the human body at which human proteins have evolved to 458 

function. However, the optimal temperature for protein corona formation with plant lysates has yet 459 

to be established and may depend on specific plant species and their natural environments. We 460 

therefore studied temperature dependence of protein corona formation in 3-DPI pathogen infected 461 

plant lysates, with AuNP incubated with leaf lysates at both 37℃ and at ambient temperature 462 

(~25℃) because for A. thaliana 22–25℃ reflects the conditions at which in planta proteins 463 

function normally and suppress thermomorphogenesis.43 We generally find that while the number 464 

of differentially expressed and ‘unique’ A.thaliana proteins adsorbed onto the cit- and BPEI-465 

AuNPs were not substantially mediated by temperature, the P. syringae proteins identified on the 466 

AuNP coronas were indeed temperature dependent. Specifically, ~2.4 fold more P. syringae 467 

proteins were characterizable on the AuNP at 37℃ compared to 25℃, (Supplementary Fig. 16) 468 

highlighting a pivotal temperature-based enrichment of bacterial proteins on both AuNP. 469 

Furthermore, as shown in Supplementary Fig. 17, the higher temperature resulted in an increased 470 

number of adsorbed differentially expressed proteins on the AuNP. However, while 37℃ was 471 

optimal to enrich a large quantity of protein, gene ontology analysis indicated that 25℃ was more 472 

favorable to deduce significantly impacted biological processes associated with the ‘unique’ 473 

proteins from the coronas. Supplementary Fig. 18 demonstrates that while proteins associated 474 

with defense responses to bacterium, responses to oxidative stress, and systemic acquired 475 
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resistance, were enriched on BPEI- and cit-AuNPs when incubated with pathogen infected samples 476 

in a non-temperature dependent manner, proteins linked to innate immunity and responses to 477 

bacterium were upregulated in distal tissues of pathogen infected plants and were solely 478 

identifiable on the AuNP coronas formed at 25℃. Additionally, for the AuNP coronas formed 479 

with the pathogen infiltrated samples, proteins involved in responses to singlet oxygen, siRNA 480 

processing, protein-RNA complex assembly, and protein dephosphorylation were enriched 481 

uniquely at 25℃. These findings suggest that proteins involved in these critical responses may 482 

possess higher conformational stability and/or structural changes that support their greater affinity 483 

to the AuNPs at ambient temperatures.  484 

 485 
Discussion 486 

 In this work, we aimed to detect the early induction of biotic stress-induced proteins and 487 

biomarkers in pathogen infected A. thaliana. To accomplish this, we used a nano-omics approach 488 

in which cit- and BPEI-AuNP were incubated with infiltrated and distal leaf lysates to form 489 

biomolecular coronas for subsequent analysis with UHPLC-MS/MS. This nano-omics approach 490 

enabled high-resolution identification and quantification of stress-related proteins and biological 491 

processes, offering superior and time-dependent analytical depth compared to conventional 492 

proteomics, without selectively depleting highly abundant species from the complex leaf lysates. 493 

Moreover, when compared to other standard analytical techniques used to assess plant stress and 494 

pathogen infection (Supplementary Fig. 19), our nano-omics strategy was most sensitive, 495 

detecting early biomarkers of stress in pathogen infected samples prior to the manifestation of 496 

phenotypic symptoms of disease, as well as in distal tissues of pathogen infected plants – a feat 497 

that was not feasible with customary methods. 498 
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Previous studies that have analyzed early stages of differential protein expression in A. 499 

thaliana infected with P. syringae utilized 2-D electrophoresis followed by MS to resolve proteins 500 

from complex leaf lysates44–46. The dynamic range of protein detection with 2-D electrophoresis 501 

can be inherently limited, particularly for underrepresented low abundance proteins47. This 502 

limitation may have contributed to the relatively low number of stress-related proteins identified 503 

in these studies. For example, Sghaier-Hammami, et al. identified 24 differentially expressed 504 

proteins, of which only 7 were involved in stress defenses.46 Similarly, Jones, et al. identified 52 505 

differentially expressed proteins, and of those 15 were associated with stress responses.44,45 In this 506 

work, we identified ~1500 differentially expressed and ‘unique’ A.thaliana proteins using our 507 

nano-omics approach, achieving a 2- to 3- fold enhancement in resolution of these proteins when 508 

compared to a conventional proteomic approach using high resolution UHPLC-MS/MS. For the 509 

early timepoint samples (0.5-DPI) analyzed in this study, 210 differentially expressed and ‘unique’ 510 

proteins associated with stress-responses were enriched on the AuNP coronas. Of these 210, none 511 

were identified in the 0.5-DPI samples analyzed by conventional proteomics (Supplementary Fig. 512 

20), showcasing the superior ability of nano-omics to distinguish and quantify protein variations 513 

with greater sensitivity. Moreover, we observed a time-dependent increase of proteins involved in 514 

stress-responses with 223, 251 and 198 proteins identified by nano-omics in 1-, 3-, and 7-DPI 515 

lysates, respectively. Through this nano-omics approach, we also detected proteins involved in 516 

responses to oxidative stress and toxic substances in 0.5-DPI distal leaf lysates, a feature that was 517 

not detected with the conventional proteomic approach. These findings reinforce the concept that 518 

localized pathogen infections can trigger systemic responses throughput the plant, and that nano-519 

omics may be able to not only detect early plant stress but also can serve to identify new and as-520 

of-yet unknown protein biomarkers of plant stress in the future. Particularly, they highlight the 521 
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upregulation of proteins involved in stress mitigation and defense mechanisms, enabling the plant 522 

to proactively address bacterial infections occurring in distant tissues.  523 

Although the complete proteome of A. thaliana has yet to be completely characterized,48,49 524 

which is attributable to varying protein abundances across complex tissues and the 525 

underrepresentation of proteins from low-abundant transcripts, significant progress has been made 526 

with advanced proteomic techniques. However, challenges in characterizing the complete 527 

proteomes of understudied plants and crops highlights the need for more sensitive and 528 

comprehensive methods, such as nano-omics, to capture a larger range of proteins that improve 529 

the depth of proteome coverage. Studies have shown that protein abundances often do not correlate 530 

with transcriptional levels in plants.50,51 RNA-seq analyses of early transcriptional responses in 531 

planta have shown that plant defense hormone pathways, such as those mediated by salicylic acid, 532 

jasmonic acid, and ethylene, contribute redundantly to plant52 and bacterial53 transcriptional 533 

reprogramming. In this work, the nano-omics approach uniquely identified key immune-related 534 

proteins, as well as enzymes associated with jasmonic acid and ethylene biosyntheses, at the 535 

earliest timepoint examined (0.5-DPI) – proteins that were undetectable using a conventional 536 

proteomic analysis due to their low abundances. Consequently, the proteomic profile generated 537 

solely from the conventional analysis might appear negatively correlated with transcriptional data 538 

simply because this approach did not resolve these early, low-abundance proteins. In contrast, the 539 

nano-omics approach provides a more sensitive and comprehensive early-stage post-540 

transcriptomic analysis, potentially offering a closer alignment with the transcriptional 541 

reprogramming that occurs during plant immune responses.  542 

Though AuNP were used in this study to enrich a distinct subset of A. thaliana proteins, 543 

further studies are needed to optimize nano-omics workflows. This includes identifying the most 544 
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optimal nanoparticle type(s) with physicochemical properties that enhance the detectable 545 

resolution and diversity of plant and agricultural biomolecules. Additionally, we observed that 546 

while an ambient temperature was slightly less efficient than the typical 37℃ used in mammalian 547 

studies for protein adsorption onto AuNP surfaces, it enabled better enrichment of stress-specific 548 

low-abundance biomarkers. These results support the idea that warmer temperatures may promote 549 

more dynamic nano-bio interactions driven by increased kinetic energy and collisions but may not 550 

always favor the selective enrichment of specific target proteins – further research is needed to 551 

understand the influence of other environmental factors on the specificity and sensitivity of nano-552 

omic analyses. Variables such as pH, ionic strength, and biomolecular compositions of different 553 

plant tissues and fluids must be explored to fully understand their impact on protein corona 554 

formation, and by extension, nano-omic pipelines. Such optimization of nano-omic pipelines has 555 

the potential to transform plant proteomics, offering deeper insights into molecular and biological 556 

processes in plants that can improve upon agricultural practices, bolster crops, and provide new 557 

insights into early stress-induced pathways and mechanisms in plants. This research paves the way 558 

for more targeted and field-deployable interventions and detection tools that leverage 559 

nanotechnology for sustainable agriculture. 560 

 561 

Methods 562 

Materials. AuNP were purchased from NanoComposix. Qubit Broad Range protein assay 563 

was acquired from Thermo Fisher. Flamingo fluorescent stain, 4× Laemmli buffer and 4-20% 564 

SDS-PAGE gels were purchased from BioRad.  565 

Characterization of AuNP physiochemical properties. Dynamic light scattering (DLS), 566 

polydispersity index (PDI), and zeta (!) potentials were measured with a Nano Zetasizer (Malvern 567 
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Panalytical). ! potential measurements were conducted using Smoluchowski approximation and 568 

samples were prepared in ultrapure water (pH 6) with 0.1 mM NaCl for conductivity. UV-Vis 569 

spectroscopy was conducted with a UV-3600i Plus Spectrophotometer (Shimadzu).  570 

Plant growth conditions. Wild-type A. thaliana (Col-0) seeds were sown in inundated soil 571 

(Sunshine Mix #4), stratified for 3 days at 4°C, and then grown in a growth chamber kept at 24°C 572 

with a light intensity of 100-150 µmol/m2s. The photoperiod was cycled at 8h light/16h dark. Plants 573 

were fertilized on a bimonthly basis with 75 ppm N 20-20-20 general-purpose fertilizer and 90 574 

ppm N calcium nitrate fertilizer reconstituted in H2O.  575 

Preparation of bacterial inocula. P. syringae pathovar tomato (Pst) strain, DC3000, was 576 

grown from a stock culture onto an NBY media plate supplemented with rifampicin for 4 days at 577 

30°C. A single bacterial colony was suspended in 10 mM MgCl2. The OD600 was adjusted to 0.1 578 

(~ 5 × 107 cfu/mL) by adding 10 mM MgCl2 as needed. Serial dilutions were performed to obtain 579 

a bacterial suspension with an OD600 of 0.001 (~ 5 x 105 cfu/mL) for leaf infiltration.  580 

Biotic infection of A. thaliana. At approximately 5-6 weeks, plants were infiltrated with 581 

P. syringae or with sterile 10 mM MgCl2 (mock control) via needless syringe following a 582 

standardized protocol for primary leaf inoculation.23 Briefly, three leaves, separated 130° from 583 

each other, per plant, were infiltrated. Following infiltration, plants were returned to the growth 584 

chamber for an allotted time; infections persisted for durations of 0.5-, 1-, 3-, and 7-DPI for leaf 585 

collection.  586 

Photosynthetic activity measurements. Chlorophyll fluorescence measurements were 587 

collected with a pulsed amplitude modulation fluorometer equipped with leaf clip holder 2035-B 588 

(MINI-PAM-II/B, Walz GmbH, Effeltrich, Germany). Actinic lighting was emitted through optic 589 

fibers by a blue (470 nm) LED. The photochemical activity parameters of photosystem II (PSII) 590 
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were measured by applying a 0.5s saturation pulse (intensity 5000 μmol/m2・s) on infiltrated and 591 

distal leaves after 1h dark adaptation. The maximum quantum efficiency of PSII primary 592 

photochemistry (efficiency at which light adsorbed by PSII is used for photosynthesis when all 593 

reaction centers are open) was calculated as Fv/Fm.  594 

Bacterial growth assays. For each timepoint assessed, 1 disc (5.5 mm diameter) was 595 

perforated from each of the three infected leaves from 4 different plants. The three discs per plant 596 

were pooled as 1 sample, homogenized with 0.1 mL of selective NBY broth via bead beating, and 597 

subjected to a 1:10 dilution series. The samples (0.1 mL) were plated onto selective NBY plates 598 

and incubated at ambient temperature for 2 days before colony forming units (CFU) were counted.  599 

Protein corona formation and extraction. Leaves from both distal and primary infection 600 

sites were collected from plants treated with P. syringae as well as those subjected to mock 601 

treatments. To eliminate the risk of false positives in distal tissues, potentially caused by epiphytic 602 

stages of P. syringae,54 the collected distal leaves were sequentially submerged in 70% EtOH, 10% 603 

NaClO, and ultrapure H2O briefly to sterilize foliar surfaces. Leaves were immediately flash-604 

frozen in liquid nitrogen and homogenized in ultrapure H2O using a bead beater. Leaf lysates were 605 

centrifuged 1h at 5,000 × g (4°C) to pellet chloroplasts and cell wall debris. Lysates were 606 

normalized to 0.1 mg/mL after quantifying protein concentrations with the Qubit Broad Range 607 

assay. Protein corona was formed with 20 µg/mL AuNPs which were added to leaf lysates (50 µL 608 

final volume; final protein concentration 0.1 mg/mL) and incubated at 37°C or ambient 609 

temperature for 1h. Following protein corona formation, AuNPs were pelleted (21,000 × g; 30 610 

min) and washed thrice with 1× PBS. Proteins were denatured and desorbed from resuspended 611 

AuNPs (10 μL, 1× PBS) with (1:1, v/v) 4× Laemmli buffer. For the time-dependent nano-omics 612 

approach, proteins were separated using 4% SDS-PAGE (110 V; 10 min). For the temperature-613 
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dependent nano-omics approach, proteins were separated using 4-20% SDS-PAGE (110 V; 65 614 

min). Gels were stained with 1× Flamingo fluorescent gel stain solutions and imaged with a GE 615 

Typhoon FLA 9000 Imaging Scanner.  616 

In gel digestion of proteins. For gels that were run for 10 mins, the proteins did not separate 617 

into individual bands and the singular band was excised for downstream analysis. For gels that 618 

were run to completion (1h), protein bands (~ 75-25 kDa) were excised from the SDS-PAGE gels. 619 

Gel bands were then diced into 1mm × 1 mm cubes and unstained 3× by first washing with 100 620 

μL of 100 mM ammonium bicarbonate (NH4HCO3) for 15 min followed by an addition of 100 μL 621 

of acetonitrile for 15 min. The supernatants were removed, and the gel pieces were dried with a 622 

SpeedVac. Samples were reduced by incubating the gel pieces with 200 μL of 10 mM DTT in 100 623 

mM NH4HCO3 at 56°C for 30 min. After cooling to room temperature, the supernatants were 624 

removed and replaced with 200 μL of 55 mM IAA in 100 mM NH4HCO3 and the samples were 625 

incubated at room temperature in the dark for 20 min. The supernatants were then removed, and 626 

the gel pieces were washed 1× with 200 μL of 100 mM NH4HCO3 for 15 min. Samples were then 627 

dehydrated with 200 μL acetonitrile and dried with a SpeedVac. For protein digestion, enough 628 

solution of ice-cold trypsin (0.01 μg/μL), in 50 mM NH4HCO3, was added to cover the gel pieces 629 

and the samples were placed on ice for 30 min. After complete rehydration of the gel pieces, the 630 

trypsin solutions were removed and replaced with 50 mM NH4HCO3 and left overnight at 37°C. 631 

The peptides were extracted 2× by adding 50 μL of 0.2% formic acid/ 5% acetonitrile and 632 

vortexing the samples for 30 min at ambient temperature. The supernatants containing peptides 633 

were collected. Any remaining peptides were further extracted from the gel pieces by adding 50 634 

μL of 0.2% formic acid/ 50% acetonitrile and vortexing for 30 min at ambient temperature. The 635 

supernatants were collected, pooled with the peptides from the first extraction, and dried.  636 
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UHPLC-MS/MS. Dried peptides were redissolved in 10 μL of 5% formic acid and 637 

analyzed by UPHLC-MS/MS using nano-electrospray ionization (nano-ESI). The nano-ESI was 638 

performed using a timsTOF Pro 2 hybrid mass spectrometer (Bruker) interfaced with nano-scale 639 

reversed phase UHPLC (EVOSEP ONE). Mobile phase A was comprised of 0.1% formic acid and 640 

mobile phase B was composed of 0.1% formic acid/ 99.9% acetonitrile. The timsTOF Pro 2 MS 641 

was operated in the PASEF mode for standard proteomics. Protein identification and label free 642 

quantification was carried out using Peaks Studio X (Bioinformatics Solutions, Inc) against the 643 

UniProt A. thaliana and P. syringae databases (UP000006548 & UP000002515, respectively).  644 

Gene ontology analyses. UniProt accession IDs were input into the Functional Annotation 645 

Tool of the DAVID bioinformatics platform for gene ontology analysis. For this analysis, 646 

thresholds were set to a count of 2 and an EASE value of 0.05 for the identification of enriched 647 

biological processes associated with input list of protein uniport accession IDs. UniProt accession 648 

IDs were also input into the STRING database for gene ontology analysis dependent on protein-649 

protein interaction networks. For this analysis, a maximum false discovery rate of ≤ 0.05 was used 650 

to analyze enriched biological processes.  651 

Statistics and reproducibility. Statistical analysis and visualization were performed with 652 

GraphPad Prism (v.10.1.1) and R (v.4.3.2), respectively. The following packages were used in R 653 

to conduct PCA, generate hierarchical heatmaps, and create dots plots in R: stats, factoextra, 654 

pheatmap, and ggplot2. Experiments were conducted with biological triplicates (n = 3), unless 655 

otherwise noted.  656 

 657 

 658 

 659 
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