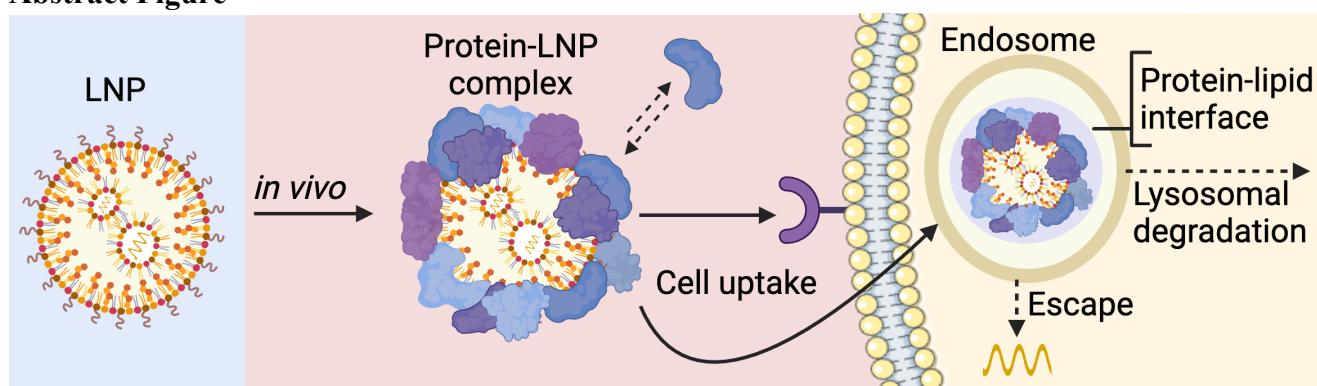


1 Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo

2 Elizabeth Voke¹, Mariah Arral², Henry J. Squire¹, Teng-Jui Lin¹, Roxana Coreas¹, Alison Lui¹, Anthony
3 T. Iavarone³, Rebecca L. Pinals^{*4,5}, Kathryn A. Whitehead^{*2,6}, and Markita Landry^{*1}

4

5 *Co-corresponding authors


6

7 ¹Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley,
8 CA; ²Department of Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA;
9 ³California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley,
10 CA; ⁴Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge,
11 MA; ⁵Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge,
12 MA; ⁶Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA

14 Abstract

15 Lipid nanoparticles (LNPs) are the most clinically advanced nonviral RNA-delivery vehicles, though
16 challenges remain in fully understanding how LNPs interact with biological systems. *In vivo*, proteins
17 form an associated corona on LNPs that redefines their physicochemical properties and influences delivery
18 outcomes. Despite its importance, the LNP protein corona is challenging to study owing to the technical
19 difficulty of selectively recovering soft nanoparticles from biological samples. Herein, we developed a
20 quantitative, label-free mass spectrometry-based proteomics approach to characterize the protein corona
21 on LNPs. Critically, this protein corona isolation workflow avoids artifacts introduced by the presence of
22 endogenous nanoparticles in human biofluids. We applied continuous density gradient ultracentrifugation
23 for protein-LNP complex isolation, with mass spectrometry for protein identification normalized to
24 protein composition in the biofluid alone. With this approach, we quantify proteins consistently enriched
25 in the LNP corona including vitronectin, C-reactive protein, and alpha-2-macroglobulin. We explore the
26 impact of these corona proteins on cell uptake and mRNA expression in HepG2 human liver cells, and
27 find that, surprisingly, increased levels of cell uptake do not correlate with increased mRNA expression
28 in part likely due to protein corona-induced lysosomal trafficking of LNPs. Our results underscore the
29 need to consider the protein corona in the design of LNP-based therapeutics.

30 31 Abstract Figure

33

Introduction

34

Lipid nanoparticles (LNPs) are advanced nonviral ribonucleic acid (RNA) delivery vehicles for clinical applications. These LNPs function to protect RNA against degradation during transit into cells and facilitate endosomal escape for the delivery of their RNA cargo following cell internalization.^{1–5} The clinical success of these therapeutics has been demonstrated by Alnylam Pharmaceuticals' LNPs loaded with small interfering RNA (siRNA) to treat liver amyloidosis⁶ and messenger RNA (mRNA)-based vaccines against SARS-CoV-2 from Moderna and Pfizer/BioNTech.⁷ Current applications of mRNA delivery additionally include protein replacement therapy, immunotherapy, and gene editing.^{3,4,8} Despite the success of locally administered vaccines, achieving organ- and cell-type specific LNP delivery outside the liver from intravenous administration remains challenging. Given the commercial interest in this space, the development of additional LNP formulations with enhanced potency is also an area of focus for clinical translation.⁹

45

46

To improve LNP potency and develop formulations for selective organ- or cell-type targets, large LNP formulation libraries with subsequent *in vivo* screens are conventionally implemented for accelerated materials discovery.^{1,10,11} The primary focus of the field has been engineering LNPs through formulation alterations including changes in lipid structure,^{12–14} the introduction of targeting ligands such as antibodies to the surface,¹⁵ and tuning polyethylene glycol (PEG) density.¹⁶ While this work has shown success in developing more potent delivery vehicles^{13,17} and delivery to extrahepatic tissues,^{18–21} the mechanisms behind the increased potency from formulation changes or how modification to LNP composition alters organ tropism remain unclear. This lack of mechanistic understanding limits future rational design. Moreover, these screening approaches face a high degree of complexity due to the theoretically infinite design space for LNP synthesis. Currently, these screens fail to predict how changes in particle function in the context of *in vitro* screens will translate to LNP function in cellular assays or resulting *in vivo* efficacy.^{22,23} Evidence has established a potential relationship between protein recruitment to the LNP surface and organ targeting^{14,24–26} and functionality,^{27,28} necessitating further characterization of the interactions between proteins and LNPs.

60

61

As such, we seek to explore how the LNP identity is redefined by the spontaneous adsorption of biofluid proteins, and how these LNP corona proteins impact their function. Upon injection, nanoparticles encounter various biological tissues and compartments. Biomolecules such as proteins spontaneously interact with the nanoparticles and form an associated protein corona.^{29–32} Proteins with a strong affinity for the particle surface form a “hard corona,” while more loosely associated proteins form a dynamic “soft corona”.³⁰ These corona proteins modify nanoparticle function and localization *in vivo*, as this outer protein layer changes how nanoparticles interact with cell-surface receptors, impacting cell uptake^{33,34} and biodistribution.^{35,36} Upon systemic injection, most nanoparticles are cleared by the liver and, in particular for LNPs, adsorption of apolipoprotein E (ApoE) facilitates interactions with low-density lipoprotein receptors on the surface of hepatocytes to mediate intracellular delivery.²⁵ By connecting protein corona formation and cellular delivery outcomes observed for LNP formulations, we can better understand how biomolecular interactions govern LNP transfection efficacy and design LNPs with favorable biomolecular interactions during library screening to optimize LNP function.

74

75

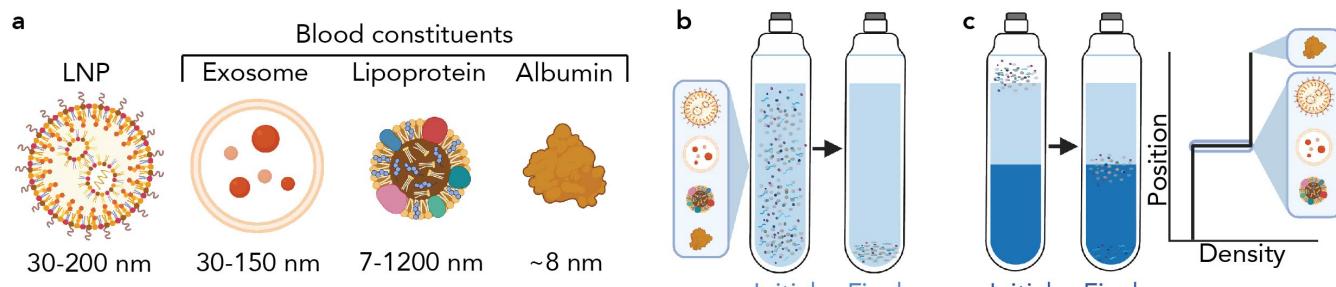
In this work, we applied a quantitative, label-free mass spectrometry-based proteomics workflow that leverages continuous density gradients to probe the nano-bio interface of LNPs in human blood plasma. Our approach accounts for the presence of native particles in the proteomic analysis of the corona without modification of the LNP formulation or surface. We provide clarity on best practices for sample preparation to reproducibly collect highly enriched LNP corona proteins, and through this approach, consistently find proteins associated with lipid transport and metabolism enriched in the corona. Additionally, we explore the impact of protein-LNP interactions on LNP transfection of cells, and

81

82 discovered a mismatched relationship between how corona proteins affect internalization of protein-LNP
83 complexes and mRNA expression levels. This work establishes a framework to reliably characterize
84 proteins enriched on the LNP surface and shows that a subset of these proteins (e.g., vitronectin)
85 significantly affect LNP uptake into cells and compromise LNP transfection efficiency.
86

87 Results

88 ***Limitations of current methods for protein corona characterization on LNPs***


89 The development of methods to study protein-LNP interactions is difficult due to the similar properties of
90 lipid-based nanomaterials and the nanoparticles intrinsically present in the biological fluids they will
91 encounter *in vivo*, such as plasma in the context of intravenous administration. Broadly, biological fluids
92 are mixtures of many constituents including individual biomolecules and biological particles, with
93 diameters on the scale of nanometers to micrometers. Plasma, for example, contains proteins such as serum
94 albumin, the most abundant protein in plasma, and endogenous particles including extracellular vesicles
95 and lipoproteins. Such particles are primarily composed of lipids and proteins, and have diameters ranging
96 from 7-1200 nm.^{37,38} LNPs often have diameters ranging from 30-200 nm,³⁹ and protein corona formation
97 would likely increase LNP hydrodynamic size.⁴⁰ Effective isolation of protein-LNP complexes from
98 biological fluids thus requires separation from these endogenous particles while also maintaining stable
99 LNPs with an intact corona.³⁹ However, selective LNP isolation has remained a major challenge because
100 these native particles have similar sizes and compositions relative to protein-LNP complexes (Fig.
101 1a).^{39,41,42} Additionally, attempts to isolate protein-LNP complexes may impact particle stability and
102 corona integrity.^{39,43}
103

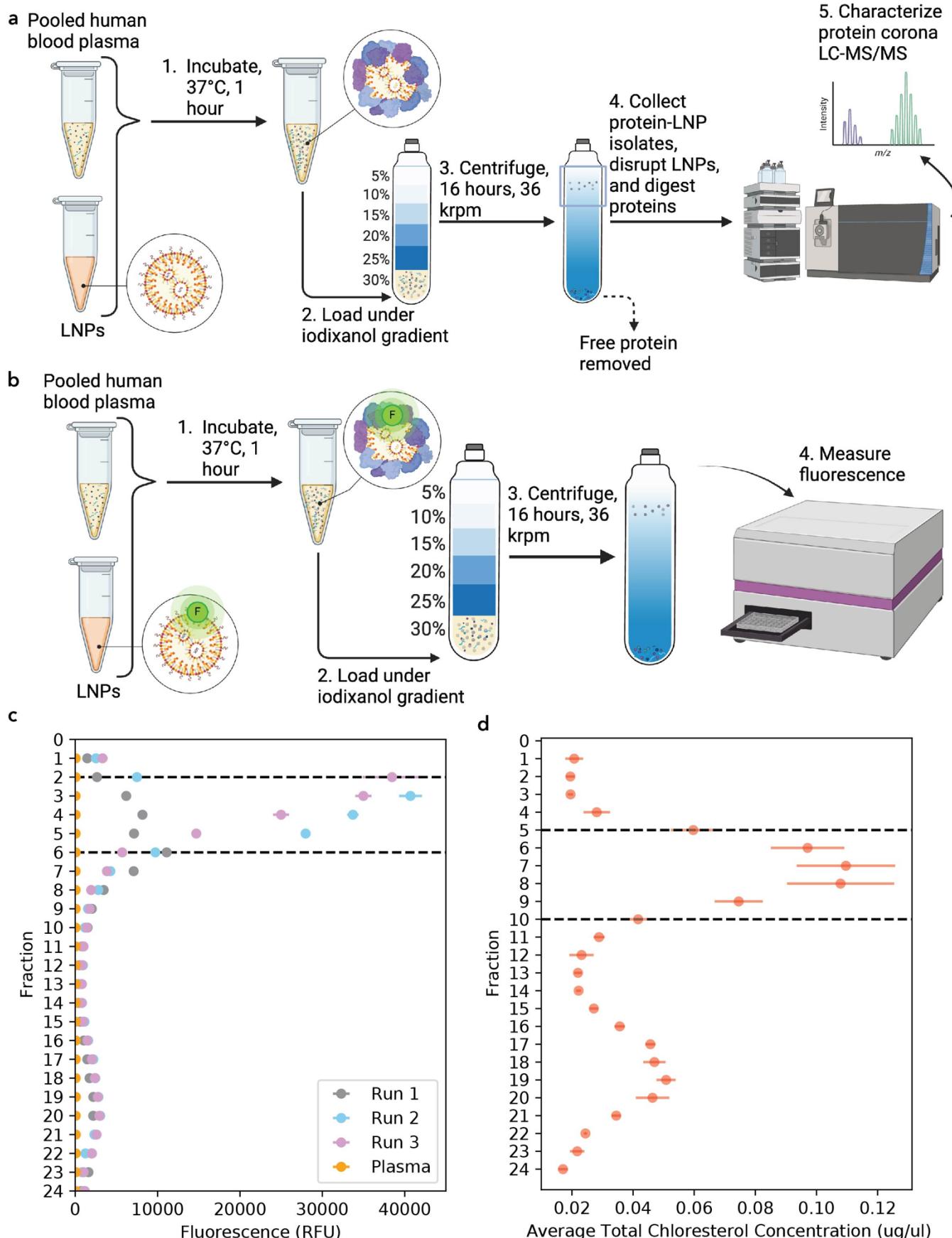
104 A further challenge of isolating protein-LNPs is the low density of these soft nanoparticles. For denser
105 substrates such as polymeric nanoparticles, standard centrifugation is sufficient to pellet protein-
106 nanoparticle complexes from free proteins that remain suspended in solution, leading to well-established
107 protein corona isolation techniques.⁴⁴ In contrast, the low density of LNPs renders these particles buoyant
108 in common buffers such as phosphate-buffered saline (PBS), even upon incubation with biological fluids.
109 This buoyancy prevents LNP pelleting via table-top centrifugation. We demonstrate this challenge by
110 characterizing a potent LNP synthesized with the lipidoid, 306O₁₀, as a model LNP.^{12,19} We used dynamic
111 light scattering (DLS) to measure the hydrodynamic diameters of constituents in the supernatant post-
112 centrifugation for 30 minutes at 4 °C and 20,000 rcf (Supplementary Fig. 1a). Alternatively, higher g-
113 forces (ultracentrifugation) have been shown to result in aggregation⁴⁵ or disruption⁴⁶ of these low-density
114 lipid-based particles, as we also confirm by ultracentrifugation for 2 hours at 4 °C and 160,000 relative
115 centrifugal force (rcf) (Supplementary Fig. 1a). Ultracentrifugation also fails to provide LNP separation
116 from biofluid-derived particles, as all particles eventually sediment to the bottom of the tube at longer
117 time scales (Fig. 1b). Other techniques such as size exclusion chromatography (SEC) generally preserve
118 particle stability but fail to effectively separate endogenous particles.⁴⁵ Additionally, sucrose cushions,
119 which isolate LNPs at an interface between fluids of different densities, trap endogenous particles with
120 the protein-LNP complex (Fig. 1c) and a lack of plasma controls makes it challenging to distinguish
121 between proteins interacting with LNPs and proteins interacting with endogenous similarly-sized
122 particles, such as exosomes.
123

124 Some methods have been developed in recent years such as photoaffinity-based,⁴⁷ antibody-based,⁴⁸ and
125 magnetic-based⁴⁹ isolations that are high-throughput and include wash steps to remove native particles.
126 However, photoaffinity-based and magnetic-based approaches require modifications of the lipid-based
127 formulations that may impact the corona proteins identified, whereas antibody-based pulldowns targeting
128 PEG may be biased by PEG desorption from the LNP surface.⁵⁰ These methods have been highly valuable
129 in enabling larger formulation screens, whereas a method that does not alter LNP-corona formation or rely
130 on PEG presence is still needed for further mechanistic studies of protein-LNP complexes. Another

131 approach that can be used to study LNP corona proteins while avoiding the contribution of endogenous
132 particles is to use plasma depleted of lipoproteins, yet the use of depleted plasma fails to capture
133 interactions between apolipoproteins and the LNP, which are often associated with the mechanism of LNP
134 uptake, such as ApoE.²⁵
135

136 Density gradient ultracentrifugation (DGC) is a promising method that is gentle on the protein corona,
137 does not require changes to the LNP formulation, and enables relative separation from more dense
138 lipoproteins. Within a density gradient, the medium may vary in density in a linear or stepwise manner
139 depending on the medium selected and the centrifugation conditions. As samples are centrifuged in a
140 density gradient, lower density particles including LNPs float towards the top, while denser plasma protein
141 components like serum albumin will sink to the bottom. Previous studies characterizing the LNP corona
142 using this approach separate particles at relatively short time scales (3-4 hours)^{28,51} and thus fail to
143 effectively separate protein-LNP complexes from the more abundant plasma proteins and endogenous
144 nanoparticles (Supplementary Fig. 1b). As a result, protein corona characterization from these studies
145 include proteins recovered both from LNPs and from biofluid-derived particles, making it difficult to
146 assess which of these proteins originated from the LNP corona itself.^{18,28,51} In contrast, most methods for
147 separating exosomes from biofluids within a density gradient use longer centrifugation times of ~16-24
148 hours to accomplish a clean separation.^{52,53} Here, we hypothesized that by 1) providing adequate
149 separation time to isolate protein-LNP complexes and 2) accounting and correcting for native particle
150 contamination, we could identify and quantify the presence of proteins that adsorb to the LNP surface in
151 human biofluids.

152
153 **Figure 1. Challenges of existing methods for LNP corona characterization.** (a) The separation process
154 to isolate protein-LNP complexes from plasma is challenging because of the variety of endogenous
155 particles (exosomes, lipoproteins, etc.) in plasma with similar physicochemical properties to LNPs with
156 associated protein coronas, arising from their similar composition of lipid and protein species. Illustrations
157 demonstrating (b) why ultracentrifugation (that pellets all particles) and (c) discrete sucrose gradients (that
158 isolate LNPs at the interface of two different density solutions) fail to effectively separate LNPs from
159 biofluid-derived particles.
160


161 ***Improved workflow for protein corona isolation from LNPs***

162 To address the limitations of current techniques, we developed a workflow that employs a continuous
163 linear density gradient to isolate protein-LNP complexes, followed by proteomic analysis (Fig. 2). In this
164 workflow, we incubated LNPs with pooled human blood plasma for 1 hour at 37°C before loading onto
165 the bottom of a six-layer iodixanol gradient and centrifuging for 16 hours at 36 kilorotations per minute
166 (krpm) (Fig. 2a). This workflow was inspired by methods used in the exosome field to separate
167 subpopulations of exosomes.^{54,55} Unlike discrete gradients with step-change differences in density (Fig.
168 1c), an iodixanol gradient linearizes over the course of centrifugation,⁵⁶ forming a continuous gradient
169 that enables a finer degree of separation in fractions throughout the linear region of the tube. We confirmed
170 the stability of the LNPs after density gradient centrifugation with DLS which showed colloidally stable
171 particles (Supplementary Fig. 2). As an additional quality control, we checked the density throughout the

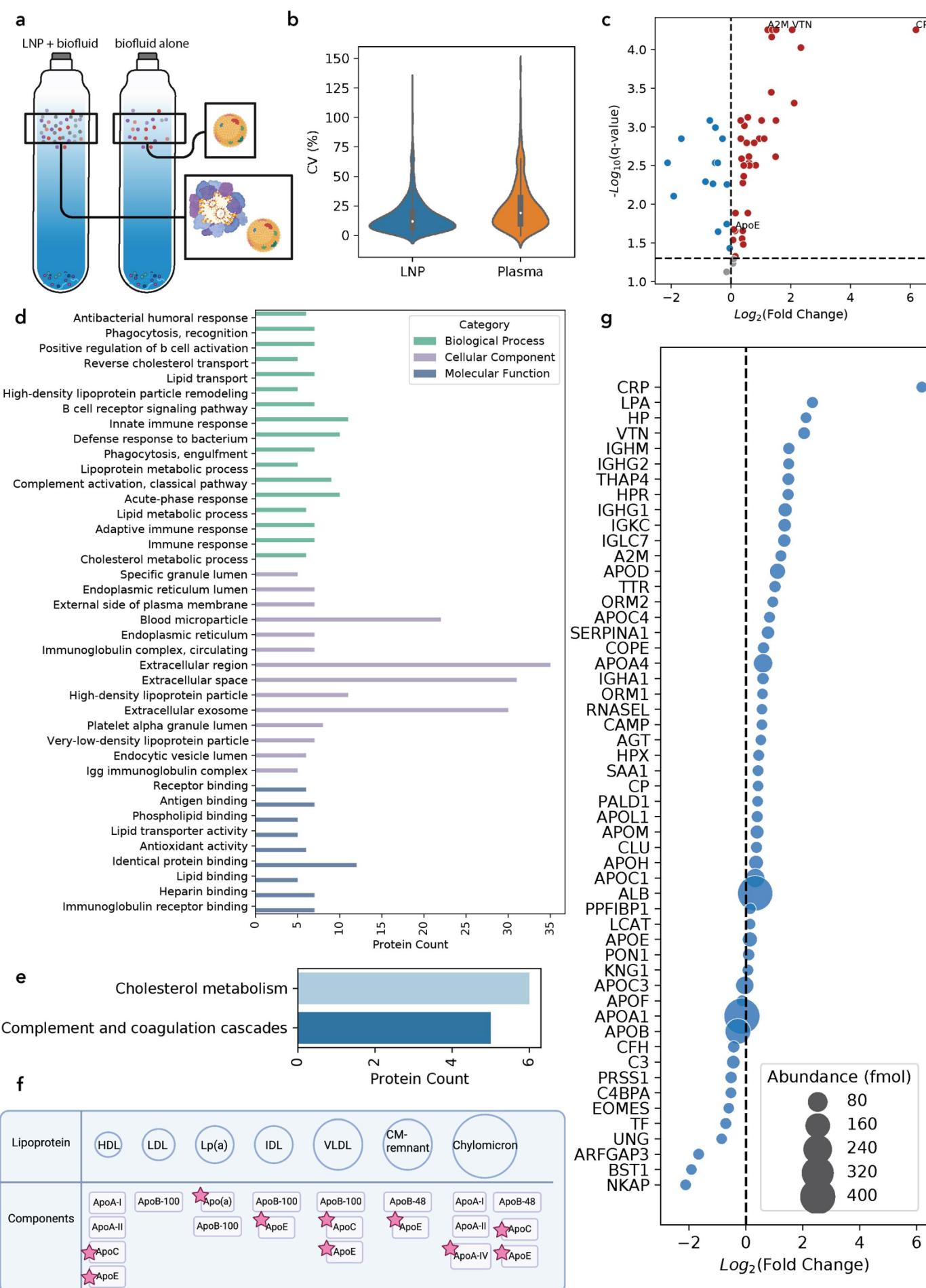
172 gradient via refractive index and absorbance to ensure that density varies linearly through the tube
173 (Supplementary Fig. 3,4).

174
175 After centrifugation, we used fluorescence measurements to track LNP localization and selected fractions
176 for collection. Based on our DLS measurements (Supplementary Fig. 1a) and prior DLS characterization
177 of LNPs,¹⁷ we determined that our synthesized LNPs possessed a low polydispersity and narrow diameter
178 range. This suggested that LNPs would distribute within a small range of fractions within the iodixanol
179 gradient. We identified fractions containing LNPs by synthesizing an LNP sample with a fluorescently
180 tagged lipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)) and
181 running the fluorescent LNPs through the iodixanol gradient (Fig. 2b). 0.5-mL fractions were collected
182 top to bottom and fluorescence was measured to quantify LNP localization (Fig. 2c) as well as absorbance
183 to confirm linearity of the iodixanol gradient (Supplementary Fig. 4). Based on our fluorescence
184 measurements, we found that approximately 68% of LNPs localized within fractions 2-6 of the iodixanol
185 gradient, denoted as a single sharp peak in the early gradient fractions (Fig. 2c, Supplementary Table 1).
186 We observed a broad minor second fluorescence peak at higher fraction numbers (Fig. 2c), which is likely
187 due to fluorophores dissociating from the LNP as previously demonstrated.⁵⁷ The autofluorescence of
188 proteins in blood plasma was found to be negligible.
189

190 To examine the degree of separation from lipoproteins, which are representative endogenous particles that
191 confound LNP protein corona results, we quantified the presence of total cholesterol as a key lipoprotein
192 constituent throughout the gradient (Fig. 2d). We found that most cholesterol is present in fractions 5-10
193 and later fractions, which has limited overlap with the localization of the LNPs. By pooling fractions 2-6
194 for characterization via liquid chromatography-tandem mass spectrometry (LC-MS/MS), the
195 concentration of LNPs was maximized relative to amounts of native particles present in the control sample.
196 We elected to keep the marginal fractional overlap between localization of the LNPs and lipoproteins in
197 fraction 5-6 to have sufficient protein amounts for proteomic processing and to avoid biasing the recovery
198 of proteins from LNPs of slightly smaller size or higher density. Importantly, our control sample accounts
199 for the fractional overlap of LNPs and lipoproteins through proteomic comparison. This process of fraction
200 selection allows us to minimize contributions of endogenous blood particles and predominately focus on
201 LNP corona proteins for downstream analysis.

203 **Figure 2. Proteomics workflow for label-free, quantitative protein corona profiling on LNPs. (a)**
204 LNPs were incubated with pooled human blood plasma for 1 hour at 37 °C then mixed with the low
205 osmolarity density gradient medium, iodixanol, to a final concentration of 30% iodixanol before being
206 loaded under five distinct layers of iodixanol (25%, 20%, 15%, 10%, and 5%) and centrifuged for 16 hours
207 at 36,000 rpm. 0.5-mL fractions were collected from the top to the bottom and selected fractions were
208 processed for LC-MS/MS characterization. (b) LNPs were tagged with lissamine rhodamine, incubated
209 with blood plasma, and loaded under an iodixanol gradient with the same isolation workflow conditions.
210 (c) Fluorescence measurements of fluorescently tagged LNPs after the DGC isolation workflow reveal
211 that 0.5-mL fractions 2-6 (dotted lines) in the density gradient have the maximum number of LNPs.
212 Excitation/emission wavelengths of 560/580 nm were used to detect lissamine rhodamine-tagged LNPs.
213 (d) Average total cholesterol quantification of plasma fractions collected after DGC isolation workflow
214 show that lipoproteins are present primarily among fractions 5-10 (dotted lines).

215
216 ***Proteomic characterization of the protein corona isolated from LNPs***


217 To selectively characterize the LNP corona, we account for the presence of native biological particles
218 through fraction selection and normalization. We normalize by similarly separating a plasma-alone sample
219 with DGC and submitting the same selected fractions as those with LNPs present for proteomic
220 characterization (Fig. 3a). Through this analysis, we identified 56 proteins in the LNP protein corona and
221 in the plasma-alone sample, which then allowed us to calculate the protein abundance fold-change of
222 protein-LNP samples relative to plasma control fractions. Peptide coefficients of variations (CV)%
223 distribution for LNP and plasma samples (Fig. 3b) show low variation with a median CV% of 11.8 and
224 19.0 for the LNP and plasma samples, respectively. Out of the 56 identified proteins, 53 proteins were
225 found to have significant differences (false discovery rate (FDR) corrected p-value (q-value) <0.05)
226 between the protein-LNP sample and the plasma control sample, with 39 proteins enriched in the LNP
227 corona and 14 proteins depleted (Fig. 3c). The enriched subset of proteins is relatively small compared to
228 existing literature on protein-LNP complexes, suggesting that our approach removes proteins that are
229 abundant in plasma alone but not necessarily relevant to the protein corona. We also attempted density
230 gradient centrifugation using previously reported centrifugation conditions (4 hours), which yielded high
231 levels of serum albumin in the fractions where the LNPs localized (Supplementary Table 2). As such, our
232 method of using a longer centrifugation time at a higher speed with a more robust density gradient layering
233 technique reduces presence of serum albumin in the fractions of interest, suggesting a more effective
234 separation of protein-LNP complexes from free plasma proteins with longer centrifugation times.

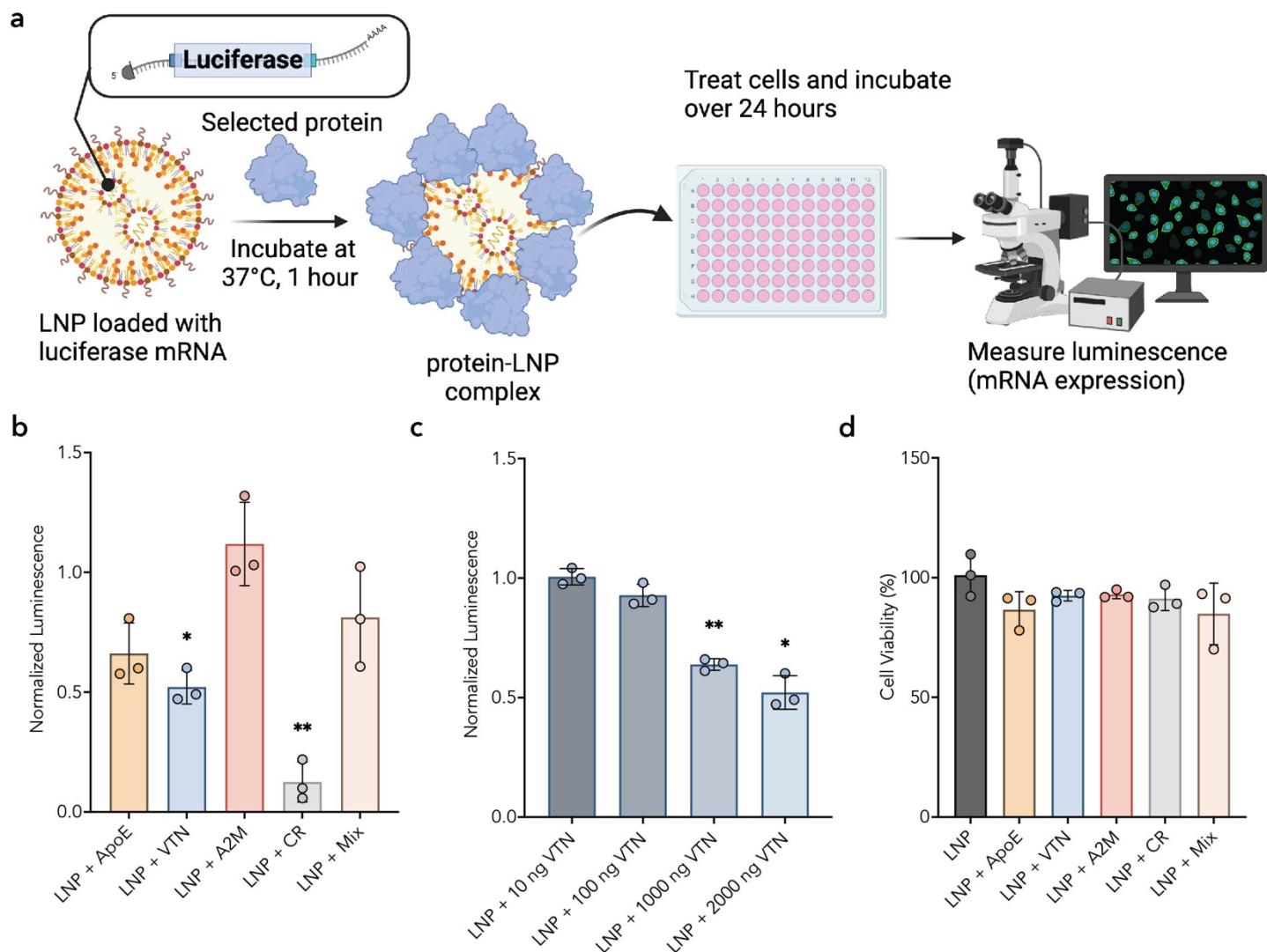
235
236 We next categorized proteins enriched in the LNP corona based on their gene ontology, specifically, their
237 biological process, cellular component, and molecular function (Fig. 3d). We found that the biological
238 processes of these proteins are associated with both the innate and adaptive immune responses, as well as
239 lipid transport and metabolism. As anticipated, the cellular component characterization of these proteins
240 reveals their associations with the extracellular space, exosomes, and microparticles. Their molecular
241 functions were associated with lipid-binding, immunoglobulin receptor-binding, and heparin-binding
242 functions. Further analysis also revealed that enriched LNP-corona proteins were involved in biological
243 pathways including cholesterol metabolism (Fig. 3e) and components in apolipoproteins (Fig. 3f). Despite
244 apolipoprotein A-I (ApoA-I) and apolipoprotein A-II (ApoA-II) being the two most abundant
245 apolipoproteins in blood plasma,⁵⁸ we do not identify ApoA-I or ApoA-II as enriched in the protein
246 corona, suggesting we are selectively identifying apolipoproteins that interact with LNPs. Additionally,
247 we find that proteins implicated in complement and coagulation cascades are enriched in the corona phase
248 (Fig. 3e).

249
250 We compared the fold change in protein abundance relative to plasma alone (Fig. 3g), which revealed
251 enriched proteins such as c-reactive protein (CR) that have a high affinity for the LNPs. In previous

252 methods, this low abundance protein would be challenging to identify as an enriched protein due to high
253 levels of contamination from high-abundance proteins, such as serum albumin, and apolipoproteins. We
254 also found that vitronectin, a cell adhesion and spreading factor that interacts with glycosaminoglycans
255 and proteoglycans, is highly enriched in the LNP protein corona, in agreement with prior work.²⁸
256

257 To highlight the merits of this approach, we examined the relationship between proteomic analyses that
258 considered the relative protein abundance only upon LNP incubation and our approach that quantifies
259 differences between the LNP sample and a biofluid control (Supplementary Fig. 5a). In previous LNP
260 corona work,²⁸ the relative abundance was reported as the percent abundance of each protein identified in
261 the LNP experiment without a biofluid-alone control. In contrast, we quantify the absolute protein
262 abundance and report the fold change in the LNP sample relative to the biofluid control. We found a near
263 zero and negative correlation for our data analysis (fold change relative to plasma) and previous
264 approaches for reporting top enriched proteins (relative abundance (%)) for all identified proteins and
265 apolipoproteins, respectively (Supplementary Fig. 5b-c). These results suggest that examining the relative
266 abundance in an LNP sample is not sufficient for selective identification of proteins that comprise the
267 LNP protein corona. Analyzing the LNP sample by highest relative abundance (%) likely biases toward
268 higher abundance plasma proteins. As such, proteins that are more abundant in the biofluid, including
269 ApoA-I, may appear highly enriched in the corona. Therefore, characterizing the LNP protein corona with
270 centrifugation-based approaches by only considering the most abundant proteins in the corona is less
271 accurate, and is largely overwhelmed by proteins introduced by particles native to plasma, and not
272 interaction with the LNPs.
273
274
275
276

278 **Figure 3. Proteomic analysis of the LNP protein corona.** (a) Normalization across density gradient
279 fractions enables proteomic analysis that accounts for native lipoproteins found in plasma. (b) Peptide
280 coefficient of variation (CV) analysis shows low variation in peptide quantification during LC-MS/MS.
281 (c) Log2 fold-change of LNP-corona proteins discovered via LC-MS/MS vs. negative log10 of the q-
282 value, showing nonsignificant proteins in grey, significantly enriched corona proteins in red, and
283 significantly depleted corona proteins in blue (n = 3). (d) Gene Ontology analysis of enriched corona
284 proteins and (e) KEGG pathway analysis of enriched corona proteins are shown for p-values < 0.05. (f)
285 Enriched proteins mapped to lipoprotein components with identified proteins starred. (g) Log2 fold-
286 change of LNP-corona proteins, with bubble size denoting femtomolar (fmol) abundance.
287


288 ***Effect of proteins enriched in the LNP corona on LNP function***

289 Ultimately, we are interested in studying how proteins consistently enriched in the LNP protein corona
290 affect LNP transfection efficiency. Our analysis thus far highlights the proteins most enriched in the LNP
291 protein corona from three technical replicates. Our group has previously shown that experimental
292 replicates, particularly those performed on different days and analyzed at different LC-MS/MS core
293 facilities, exhibit very high variability, with less than 2% common proteins identified from different LC-
294 MS/MS core facilities from otherwise identical protein corona samples.^{59,60} Therefore, we performed 3
295 independent experimental replicates of our protein isolation workflow to assess the true variation within
296 our method. To do so, we compared enriched proteins from samples processed in parallel, which have
297 limited LC-MS/MS instrument variation, and samples processed via LC-MS/MS independently across
298 different weeks, each with 3 replicates of the isolation workflow. This experiment ensures that proteins
299 we find across several independent and time-separated replicate datasets are consistently enriched in the
300 corona. Samples processed in parallel (Supplementary Fig. 6) show similar proteins enriched in the
301 corona. We therefore conclude that these proteins have a high association with the LNP surface and their
302 consistent enrichment through the density gradient isolation strategy suggests that these proteins are likely
303 “hard corona” proteins.

304
305 We next analyzed specifically which subset of proteins is consistently enriched in the LNP corona across
306 the different batches processed by LC-MS/MS (Supplementary Table 3). This analysis reduces the
307 variability contributed by the LC-MS/MS method itself in detecting low-abundance corona proteins and
308 enables us to study consistently enriched proteins in greater mechanistic depth: alpha-2-macroglobulin,
309 C-reactive protein, and vitronectin, as summarized in Table 1. Thus, by including independent batches of
310 experimental runs that include both technical and experimental replicates, analyzing our data relative to
311 the plasma control, and using a continuous iodixanol gradient protocol, we reproducibly measure and
312 identify proteins that are consistently enriched in the LNP protein corona. Having identified several LNP-
313 corona proteins consistently observed with high enrichment in the protein corona across independent
314 batches and parallel replicates, as summarized in Table 1, we sought to study their effects on LNP cellular
315 interactions and function. Additionally, we included ApoE in our downstream studies because of its
316 putative relevance to LNP cellular internalization, despite the variability with which we measured its
317 presence in the corona (Supplementary Fig. 6).

318
319 **Table 1.** Proteins enriched in the LNP corona chosen for *in vitro* study.

Protein	Entry	Function	Ref.
Alpha-2-macroglobulin	A2M	Inhibits all four classes of proteinases	61
Apolipoprotein E	ApoE	Facilitates interactions with low-density lipoprotein receptors for lipid transport	25
C-reactive protein	CR	Activates the complement pathway	62
Vitronectin	VTN	Cell adhesion and spreading factor	63

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

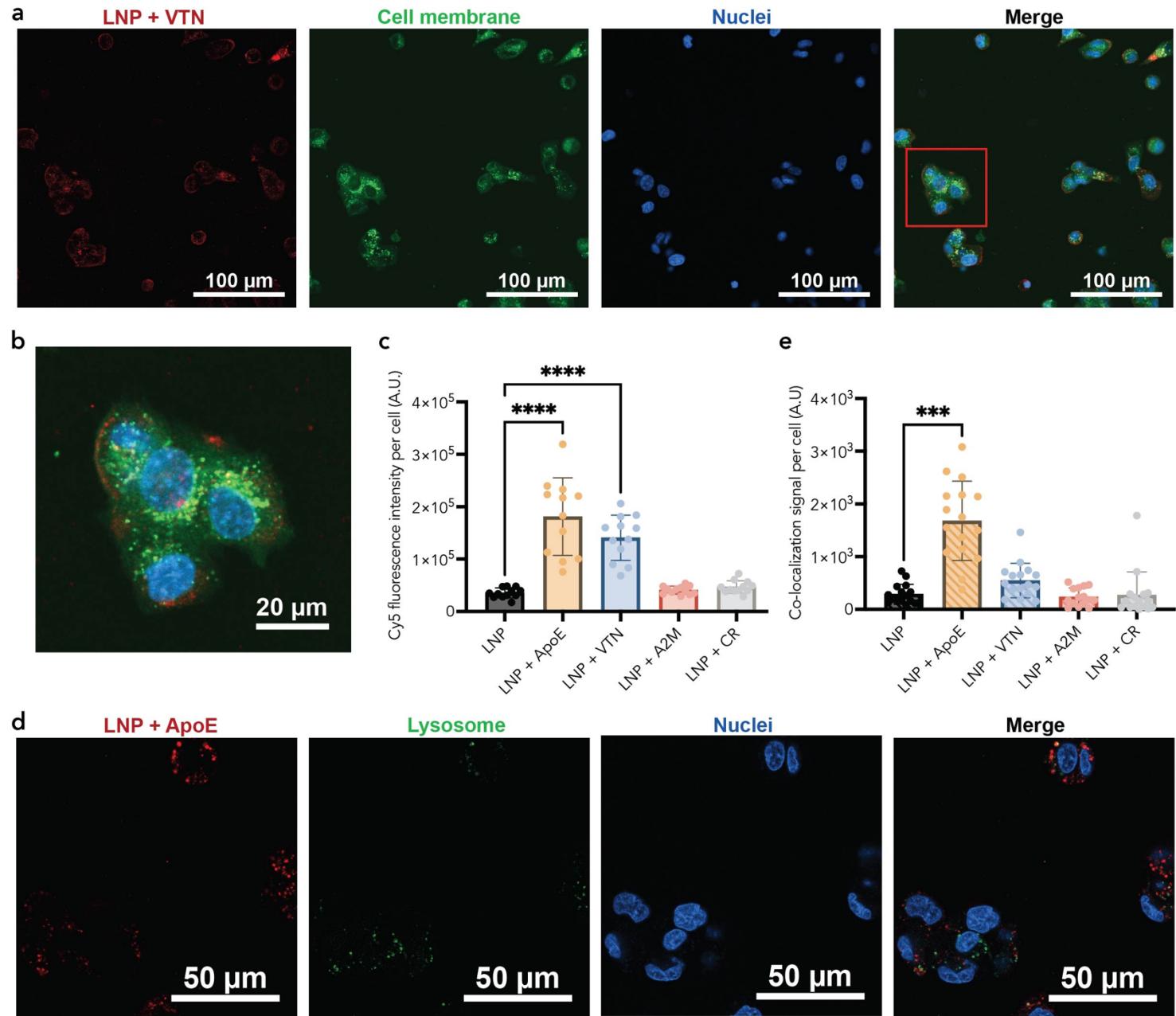
335

336

337

338

Figure 4. In vitro mRNA expression with delivery by protein-LNP complexes. (a) LNPs loaded with mRNA encoding luciferase were incubated with selected high-binding corona proteins (0.05 ng mRNA : 1 ng protein) prior to introduction to HepG2 cells seeded at 4.7×10^4 cells per cm^2 (100 ng mRNA per well). The luminescence was measured as a proxy for mRNA expression to understand the effect of proteins on LNP delivery efficiency. Luminescence was normalized to the average of each no-corona LNP biological control for all *in vitro* studies. (b) Resulting luminescence of pre-incubations of individual proteins with LNPs showed no significant change in luminescence (mRNA expression) for ApoE, A2M, or a mixture of the proteins, while showing a significant decrease for VTN or CR, each compared to the no-corona LNP control. (c) Dose-response of protein concentrations for VTN incubated LNPs showed a significant decrease in mRNA expression compared to the no-corona LNP control. (d) Cell viability showed no statistical difference for protein incubations. N = 4 technical replicates, n = 3 biological replicates. Data points shown are biological replicates. Error bars all denote standard deviation, One-way ANOVA test where * and ** represent $p \leq 0.05$ and $p \leq 0.01$ respectively.


Protein-nanoparticle interactions impact nanoparticle functionality

To understand the effect of corona proteins on LNP-mediated mRNA delivery, we assessed the mRNA delivery and protein expression efficiency in cell culture for LNPs with coronas pre-formed using proteins identified in our proteomic analysis (Table 1). We considered both single protein LNP coronas and an

339 LNP corona formed from the combination of the selected top-enriched proteins. LNPs were loaded with
340 a luciferase mRNA that provides a quantitative, luminescent readout upon successful luciferase mRNA
341 translation to protein. 2 μ g of each protein (0.05 ng mRNA : 1 ng protein, 0.01 mg/mL protein), an amount
342 that is in excess of its presence in the corona as measured by LC-MS/MS (Supplementary Table 4), was
343 incubated for 1 hour at 37 °C with each LNP formulation before LNP introduction to HepG2 human liver
344 cells in serum-free media for attempted transfection. Of note, protein concentrations are within the same
345 order of magnitude as native plasma protein concentrations, except for A2M which is more highly
346 abundant in plasma (Supplementary Table 5). The output luminescence was measured with a plate reader
347 after 24 hours and compared across protein corona conditions (Fig. 4a). We found that LNP protein
348 coronas formed from proteins ApoE, A2M, and the protein mixture of all four proteins together did not
349 have a significant impact on mRNA expression levels relative to LNPs without a pre-formed protein
350 corona. In contrast, LNPs with VTN or CR pre-formed coronas showed decreased mRNA expression
351 relative to LNPs without a pre-formed corona (Fig. 4b). We observed an approximately 50% decrease in
352 mRNA expression for LNPs with a VTN corona and approximately 90% decrease in mRNA expression
353 for LNPs with a CR corona.

354

355 Based on the observed decrease in mRNA expression driven by single-constituent protein coronas, we
356 next investigated concentration dependency for the case of LNPs with a pre-formed VTN corona on
357 mRNA expression. A dose-response experiment shows that the effect on mRNA expression is dependent
358 on the VTN protein concentrations used to generate the pre-formed corona during incubation with LNPs,
359 with VTN protein concentrations above 0.005 mg/mL (1000 ng added) exhibiting significantly decreased
360 mRNA expression efficiency relative to LNPs without a protein corona (Fig. 4c). This protein
361 concentration at 0.005 mg/mL represents a lower VTN concentration than found in native plasma
362 (Supplementary Table 5). We also considered that LNPs with pre-formed coronas may affect cell viability
363 and thus indirectly affect transfection efficiency. However, we found that the pre-formed single-
364 constituent protein coronas had no significant impact on cell viability (Fig. 4d). These results demonstrate
365 that the pre-formed protein coronas result in decreased mRNA expression through mechanisms that are
366 independent of cell viability (Fig. 4d).

367

368 **Figure 5. Uptake and lysosomal co-localization of protein-LNP complexes in HepG2 cells.** (a) HepG2
369 cells internalizing LNPs loaded with Cy5-mRNA incubated with high-binding corona proteins were
370 visualized by confocal microscopy. Representative image of LNP + VTN incubations showing LNPs
371 (Cy5; red), cell membrane (CellBrite membrane dye; green) and nuclei (Hoechst; blue). (b) Inset showing
372 a magnified view of the region outlined by the red box in panel (a). (c) Quantification of Cy5 (LNP) signal
373 per cell demonstrates differences in cell uptake between select protein incubations ($n = 4$ technical
374 replicates, $n = 3$ biological replicates). To compare endosome entrapment for select protein incubations,
375 co-localization of the Cy5 signal (LNP) and fluorescently labeled lysosomes (green) were analyzed.
376 Representative image of LNP + ApoE incubation shows (d) LNPs (red), lysosomes (green) and nuclei
377 (blue) fluorescently labeled. (e) Quantification of overlapping Cy5 (LNP) and lysosome signal per cell (n
378 = 4 technical replicates, $n = 4$ biological replicates). Data points shown are 3 averaged FOV for each
379 technical replicate. Error bars all denote standard deviation, Kruskal-Wallis one-way ANOVA (non-
380 parametric) test where *, **, and *** represent $p \leq 0.05$, 0.001, and 0.0001, respectively.

381

382 From these cell transfection expression experiments, we conclude that protein-LNP interactions impact
383 the ability of LNPs to deliver mRNA into cells' cytoplasm for transfection. We hypothesize that pre-
384 formed coronas on LNPs, which compromise LNP transfection efficiency, may show altered interactions
385 with cells during cargo delivery. To investigate how pre-formed LNP coronas affect LNP-cell interactions,
386 we first considered how pre-formed LNP coronas influence LNP cellular uptake, an essential step for
387 mRNA expression. We define cellular uptake to include LNP uptake into the cell membrane and not
388 necessarily the cell cytoplasm where mRNA expression occurs. We used confocal microscopy to visualize
389 and quantify differences in cell uptake of LNPs loaded with Cy5-tagged mRNA, each with a pre-formed
390 single-constituent protein corona formed with ApoE, VTN, A2M, or CR (Fig. 5a-b). We specifically
391 selected the mRNA for fluorophore-based visualization to enable tracking of the functional cargo, because
392 fluorescent tagging of other LNP constituents such as lipids may exchange in the surrounding
393 environment.⁵⁷ We quantified the Cy5 signal found inside the cell membrane as a proxy for LNP uptake
394 within the cells.

395

396 We analyzed the Cy5 signal within the labeled cell membranes and normalized this signal per cell by the
397 nuclei count. We found significantly increased Cy5 signal per cell for LNPs with pre-formed ApoE or
398 VTN coronas and no significant difference in Cy5 signal per cell for LNPs with pre-formed A2M or CR
399 coronas (Fig. 5c). No signal was observed from protein-only controls added to cells (Supplemental Fig.
400 7a). In the case of the ApoE-LNP corona, we found five-fold higher levels of Cy5 signal per cell compared
401 to the LNPs without a pre-formed protein corona. This increase in uptake of LNPs with a pre-formed
402 ApoE corona is supported by previous literature that associates ApoE with more uptake in hepatocytes
403 via receptor-mediated uptake.²⁵ Additionally, LNPs with pre-formed VTN coronas had four-fold observed
404 higher Cy5 signal per cell than cells treated with LNPs alone. However, unlike ApoE, VTN is not
405 associated with increased uptake in HepG2 cells. Alternatively, VTN is a cell adhesion protein which may
406 drive LNP adhesion to the outer cell surface. This counterintuitive result that certain single-component
407 pre-formed protein coronas increase cell uptake while decreasing transfection efficiency suggests that
408 corona proteins may affect the efficiency of LNP endosomal escape.

409

410 We investigated if the increase in Cy5 signal per cell for ApoE and VTN may be due to LNPs associating
411 with the outer membrane of the cell rather than internalization into the cytoplasm. Images were collected
412 from adherent cells with a 4.5 μ m offset from the bottom of the cell, enabling visualization through an
413 intermediate slice of each cell. This approach enables us to observe LNP association with the membrane
414 as signal localized to the outer region on the cell. Through an erosion analysis of the cell within this focal
415 plane, we studied the relative signal from the outer region of the cell where LNPs may be stuck within the
416 extracellular matrix or cell membrane and the inner region of the cell (Supplemental Fig. 7b-c). We
417 calculated the fraction of Cy5 signal from the outer region relative to Cy5 signal from entire cell
418 (Supplemental Fig. 7d) and found that the LNPs incubated with either ApoE or VTN pre-formed coronas
419 had significantly more signal in this outer cell region compared to cells incubated with LNPs alone. LNP
420 incubations with A2M and CR did not have a significant difference in the fraction of the signal in the
421 cell's outer region compared to protein-free LNPs. However, LNPs with an ApoE corona showed a 3.5%
422 increase in signal localization to the cell's outer region compared LNPs without a pre-formed protein
423 corona. Additionally, LNPs with VTN pre-formed coronas had the highest fraction of signal from the
424 outer region relative to protein-free LNPs with an 8.5% increase for VTN-LNP coronas from the LNP
425 control. These results suggest that this increased Cy5 signal inside of the cell may be partially due to
426 protein corona-induced LNP adhesion to the outer cell membrane. We also confirmed that these observed
427 trends hold for increased amounts of erosion, which compares the signal within different thicknesses of
428 the outer cell region (Supplemental Fig. 7e).

429

430 Next, we considered if pre-formed LNP coronas further affect LNP-cell interactions by influencing LNP
431 endosomal escape, driving our observed discrepancies between LNP uptake and mRNA expression. For
432 effective cargo delivery, LNPs must escape the endosome before LNPs are trafficked to the lysosome for
433 degradation.² To investigate differences between pre-formed coronas during intracellular trafficking, we
434 compared co-localization of lysosomes and LNPs. We quantified the co-localization of the Cy5-tagged
435 LNP with the lysosome signal and normalized this signal per cell by the nuclei. We found significantly
436 increased lysosomal co-localization for LNPs with pre-formed ApoE coronas and no significant difference
437 in lysosomal co-localization signal for LNPs with pre-formed VTN or A2M or CR coronas (Fig. 5d-e).
438 Specifically, we observe greater than five-fold higher levels of LNP and lysosomal co-localization per cell
439 for LNPs with an ApoE corona compared to the LNPs without a pre-formed protein corona. Although we
440 observe no statistically significant difference between the VTN-LNPs and LNPs without coronas, our data
441 suggests that the LNPs with the pre-formed VTN corona have the second highest lysosomal co-
442 localization signal. These results, in combination with the trends observed for the impact of protein
443 coronas on mRNA expression, suggest that proteins influence LNP delivery efficiency at the level of both
444 cell uptake and lysosomal trafficking.

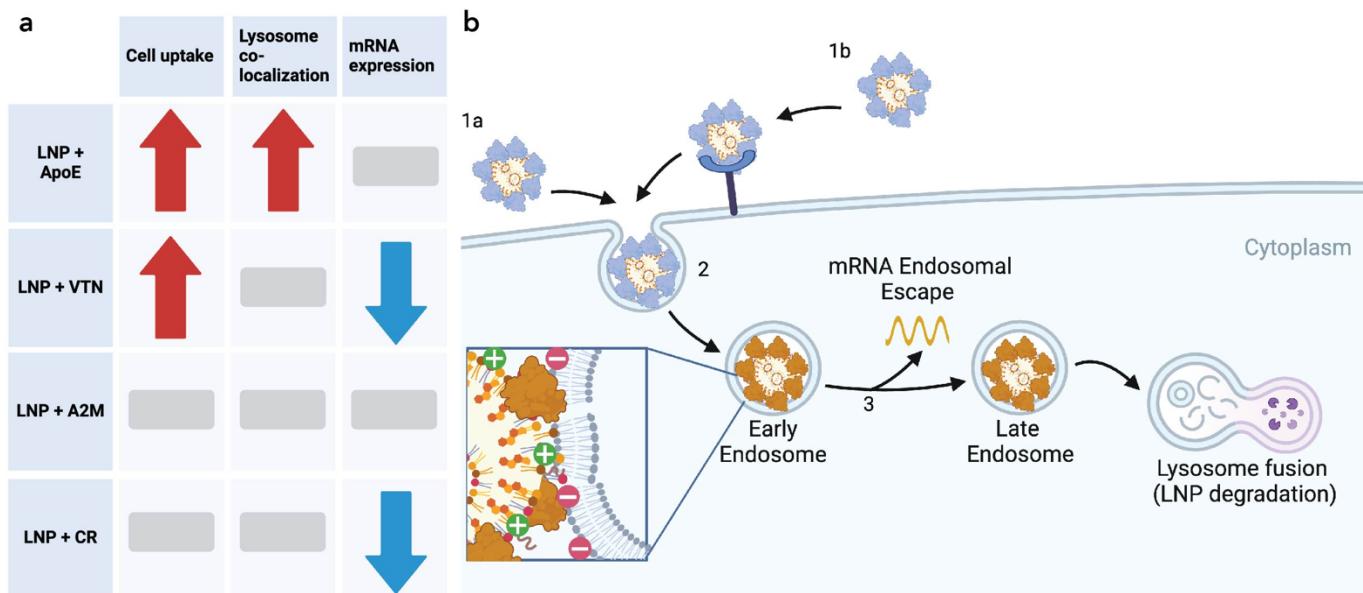
445

446 Discussion

447 In this work, we describe a workflow to characterize the protein corona on LNPs in a quantitative manner.
448 We account for the presence of native particles in the biological fluid (here, blood plasma) through a
449 continuous density gradient and abundance normalization. As informed by tracking separation of
450 fluorophore-tagged LNPs, we collect a subset of fractions from DGC that maximizes the concentration of
451 LNPs and limits contamination from non-interacting proteins for proteomic analysis. We identify enriched
452 LNP-corona proteins consistent with literature such as apolipoproteins and vitronectin,²⁸ as well as lower
453 abundance proteins not previously identified within the LNP protein corona, such as C-reactive protein.
454 We also detect only select apolipoproteins within the LNP protein corona, as demonstrated by the lack of
455 highly abundant apolipoproteins ApoA-I and ApoA-II in our analysis.

456

457 Further analysis of enriched proteins revealed their functions as associated with lipid transport and
458 cholesterol metabolism. The association of corona protein functions with both the innate and adaptative
459 immune responses, as well as lipid transport and metabolism, is supported by previous work.^{24,51,64} These
460 observed functional associations with lipid transport align with the lipid composition of the LNPs,
461 confirming interactions with proteins that are exchanged on lipoproteins during blood circulation.
462 Additionally, identification of lipid-binding and immunoglobulin receptor-binding molecular functions
463 suggests that we successfully isolated proteins that are biologically relevant to the LNP corona.
464 Interestingly, gene ontology analysis also links seven enriched proteins to heparin binding, which may
465 impact cell internalization, as seen with liposomes.⁶⁵ The discovery of proteins related to complement and
466 coagulation cascades enriched in the corona phase is also in line with previous literature demonstrating
467 that nanoparticles are often tagged for removal by the complement activation pathway.⁶⁶


468

469 We studied the impact of putative hard corona proteins on LNP functionality *in vitro* by comparing mRNA
470 expression of LNPs pre-incubated with top corona proteins versus LNPs without a pre-formed corona. We
471 found significantly decreased mRNA expression for LNPs incubated with VTN or CR proteins and no
472 significant change in mRNA expression for LNPs incubated with ApoE, A2M, or protein mixtures. The
473 decrease in mRNA expression for CR incubated LNPs is likely because CR, a protein secreted by the liver
474 and associated with inflammation, activates the complement pathway and has a role in LNP destruction
475 or clearance.⁶² Conversely, VTN functions as a cell adhesion and spreading factor.⁶³ LNPs with a VTN-
476 rich corona relative to ApoE have previously shown worse delivery outcomes in HepG2 cells.²⁸
477 Additionally, previous research has linked LNP formulations with specificity toward the lungs for mRNA
478 expression with a VTN-rich corona.²⁴ Decreased mRNA expression in liver cells for LNP formulations

479 with VTN-rich coronas aligns with our results, potentially enhancing the overall selectivity of LNPs to
480 other organs such as the lungs.²⁴ Our results therefore highlight the significance of understanding how
481 protein-LNP interactions, and specifically the LNP protein corona, enhances or inhibits LNP cellular
482 uptake and transfection of the mRNA cargo.

483
484 To understand the observed differences in mRNA expression for certain protein coronas, we compared
485 the levels of cell uptake and lysosomal trafficking for LNPs pre-incubated with our selected proteins.
486 Counterintuitively, we found that although LNPs incubated with VTN or CR displayed *decreased* levels
487 of mRNA expression, they did not have decreased levels of cell uptake (Fig. 6a). In fact, VTN-LNPs
488 showed *increased* cell uptake relative to LNPs not pre-incubated with protein, while LNPs incubated with
489 CR had no significant difference in uptake relative to LNPs without a pre-formed corona. We hypothesized
490 that this increase in cellular uptake for VTN-LNPs may be due to their association with the membrane
491 rather than internalization into the cell cytoplasm, as our localization analysis supported the conclusion
492 that VTN-LNPs generally adhere more to the outside of the cell relative to protein-free LNPs. Specifically,
493 VTN-LNPs, when compared to LNPs incubated without protein, show 8.5% more signal localized to the
494 outer region of the cell versus inside the cell, suggesting that the association with the outside of the cell
495 may prevent effective cargo delivery, leading to decreased mRNA expression. However, the four-fold
496 increase in cell uptake for VTN-LNPs paired with decreased mRNA expression is not fully explained by
497 the ~1.7 fold difference in LNP signal associated with the cell membrane. To further investigate this
498 discrepancy, we considered whether VTN corona proteins may have an additional impact on LNP
499 endosomal escape (Fig. 6b). Interestingly, we do not observe a significant difference in lysosomal co-
500 localization for LNPs with pre-formed VTN coronas despite significantly higher levels of VTN-LNPs
501 observed for cell uptake and decreased levels of mRNA expression. These results suggest additional as-
502 of-yet unidentified mechanisms associated with how corona proteins affect LNP function.

503
504 The observed mRNA expression and uptake patterns for LNPs with pre-formed ApoE coronas also
505 provide evidence that proteins influence LNP functionality beyond uptake. LNPs pre-incubated with
506 ApoE had no significant increase in mRNA expression but had a five-fold increase in cellular uptake in
507 comparison to LNPs without pre-formed coronas. Co-localization analysis of ApoE-LNPs with lysosomes
508 revealed a 5.8-fold increase in lysosome co-localization for LNPs with pre-formed ApoE coronas relative
509 to LNPs alone. In this case, we find a similar increase in both cell uptake and lysosome co-localization for
510 LNPs with pre-formed ApoE coronas. Specifically, the five-fold increase in cell uptake and the 5.8-fold
511 increase in lysosomal co-localization suggests that, as more LNPs enter the cell, more LNPs are also
512 trafficked to the lysosome for degradation. Lysosomal degradation of these LNPs likely accounts for the
513 similar levels of mRNA expression between the ApoE-LNPs and the LNPs without a pre-formed corona.
514 These results suggest that although the presence of an ApoE corona is beneficial for cell uptake into
515 hepatocytes, the ApoE corona may also be inhibiting endosomal escape for this LNP. As these proteins
516 enter the acidic environment of the early endosome, the net negative charge of ApoE shifts to a net positive
517 charge with an isoelectric point of approximately 5.65, potentially influencing ApoE-lipid interactions
518 and affecting endosomal escape.^{67,68} These mismatched patterns in mRNA expression and cell uptake
519 highlight the importance of continued research to fully elucidate the impact of corona proteins on
520 mechanisms of LNP functionality.

521

522 **Figure 6. Mismatch between mRNA expression and cell uptake.** (a) Differences in cell uptake,
523 lysosome co-localization, and mRNA expression for protein-LNP complexes (arrows indicate increase or
524 decrease and bars indicate no change). (b) Proteins influence LNP uptake into the cell through non-specific
525 (1a) and/or receptor-mediated uptake (1b). These protein-LNP complexes enter (2) early endosomes
526 where the lower pH (pH ~5) environment ionizes the LNP and may impact the protein charge depending
527 on its isoelectric point. Next, the mRNA must escape the endosome for protein expression (3). These
528 proteins likely impact LNP endosomal escape leading to different mRNA expression outcomes.
529

530 Our results highlight the importance of characterizing proteins with a high affinity for the LNP surface
531 and provide a workflow that is easily adoptable for a wide range of particle formulations. More broadly,
532 our workflow can be applied to other soft nanoparticles such as liposomes, protein-based nanoparticles,
533 and DNA nanostructures that fail to separate using conventional corona-isolation techniques. These
534 historically understudied soft nanoparticles, which comprise 44% of nanoparticles in clinical trials, would
535 benefit from further study of biomolecular interaction governing nanoparticle functionality using our
536 workflow.^{69,70} The incorporation of fluorophores in the LNPs and quality-control measurements
537 throughout the protocol enable more widespread applicability of our protocol to particles beyond LNPs
538 and to biofluids beyond blood plasma. However, this workflow is limited to probing proteins with a high
539 affinity for the LNP surface, known as the “hard corona”, whereas proteins comprising the more transient
540 and dynamic soft LNP corona remain to be characterized.
541

542 In summary, we provide clarity on methods in an area of interest within the LNP field: the LNP protein
543 corona. We found that select proteins distinctly influence LNP internalization, endosomal escape, and
544 subsequent mRNA expression. These findings contribute to the growing evidence that biomolecular
545 interactions heavily influence the mechanism of LNP delivery outcomes, shown here for mRNA delivery
546 efficiency in cells, but likely also for additional outcome measures including biodistribution,
547 biocompatibility, stability, and *in vivo* efficacy. Further study is required to untangle the complexity of
548 these protein-LNP interactions and their influence on the broad and growing range of clinical applications
549 supported by LNP technologies. By understanding these protein-nanoparticle interactions, we can tune
550 the design of future mRNA-based biotechnologies for improved translation to clinical practice.
551

552 **Methods**

553 *Materials*

554 Helper lipids (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine: DOPE, 850725), C-14-poly(ethylene
555 glycol) (PEG)-2000 (880150P), and Liss Rhod PE (810150) were purchased from Avanti Polar Lipids.
556 Cholesterol (C8667) was purchased from Sigma-Aldrich. Cre recombinase and luciferase mRNA were
557 acquired from Translate Bio, now Sanofi. EZ Cap™ Cy5 Firefly Luciferase mRNA (R1010) was
558 purchased from ApexBio Technology. Thermo Scientific™ Slide-A-Lyzer™ dialysis cassettes (66330)
559 were purchased from Thermo Fisher Scientific. Pooled human blood plasma (991-58-P-RC) was
560 purchased from Lee BioSolutions. OptiPrep Density Gradient Medium (ab286850) was purchased from
561 Abcam. Open-top polyclear 12-mL ultracentrifuge tubes (NC9863486) were purchased from Thermo
562 Fisher Scientific. The 21-gauge needles (305167) were purchased from BD. Cholesterol assay kit
563 (AB65390) was purchased from Abcam. The protein detergent removal kit (1632130) was purchased from
564 Bio-Rad. Trypsin/Lys-C Mix (V5073) was purchased from Promega. Amicon 0.5-mL 3-kDa (UFC5003)
565 and 30-kDa (UFC503024) molecular weight cut-off (MWCO) centrifugal filters were purchased from
566 Sigma-Aldrich. EZQ Protein Quantitation Kit (R33200) and Pierce Peptide Quantitation Kit (23290) were
567 purchased from Thermo Fisher Scientific. *Escherichia coli* chaperone protein ClpB, Hi3 *E. coli* standard
568 (186006012) was purchased from Waters. Recombinant human apolipoprotein E (ApoE) (AB280330),
569 recombinant human vitronectin (ab217407), recombinant human C-reactive protein (ab167710), and
570 native human alpha-2-macroglobulin (ab77935) were purchased from Abcam. Greiner white-bottom 96-
571 well plates (655083) and PerkinElmer black, clear-bottom 96-well plate (6055300) were purchased. The
572 Bright-Glo™ Luciferase Assay System kit (E2610) was purchased from Promega. Hoechst 33342
573 (H1399) was purchased from Fisher Scientific. CellBrite™ Cytoplasmic Membrane Labeling Kit (30021)
574 was purchased from Biotium. Invitrogen™ Lysotracker™ Green DND-26 (L7526) was purchased from
575 Fisher Scientific.

576

577 *LNP synthesis*

578 LNPs were synthesized according to our previously published work.⁷¹ Lipidoid (306O₁₀), helper lipids
579 (DOPE), cholesterol, and C-14-poly(ethylene glycol)(PEG)-2000 were dissolved in reagent-grade ethanol
580 at 10 mg/mL. The lipidoid, helper lipid, cholesterol, and PEG were mixed in a 35:16:46.5:2.5 molar ratio,
581 respectively. Subsequently, the citrate buffer was added to the lipid solution in a 1:10 volumetric ratio.
582 Cre recombinase or luciferase mRNA was dissolved in 10 mM sodium citrate buffer at 1 mg/mL. Cre
583 recombinase mRNA was used in LNPs for protein corona composition experiments and luciferase mRNA
584 was used in LNPs for *in vitro* experiments. The lipid solution was added to the mRNA solution at a 10:1
585 lipidoid to mRNA mass ratio and mixed by pipetting. The solution was then diluted with an equal volume
586 of phosphate-buffered saline (PBS). Lastly, the LNPs were dialyzed against 2 L of PBS for 1 hour in 0.5-
587 mL 3.5-kDa MWCO Thermo Scientific™ Slide-A-Lyzer™ dialysis cassettes. Lipid nanoparticles for
588 protein corona isolation and *in vitro* studies were formulated at final mRNA concentrations of 0.05 and
589 0.01 mg/mL mRNA, respectively.

590

591 *Fluorescently tagged LNP synthesis*

592 Fluorescently tagged LNPs were synthesized based on the standard LNP synthesis method described
593 above, with the addition of 0.5 mol % fluorescently tagged lipid, 1,2-dioleoyl-sn-glycero-3-
594 phosphoethanolamine-N- (lissamine rhodamine B sulfonyl) (Liss Rhod PE). The lipidoid, helper lipid,
595 fluorescently tagged lipid, cholesterol, and PEG were mixed in a 35:15.5:0.5:46.5:2.5 molar ratio,
596 respectively.

597

598 *Dynamic Light Scattering (DLS)*

599 Hydrodynamic size distribution of LNPs were determined in a 10-fold PBS dilution to a concentration of
600 0.005 mRNA mg/mL LNPs using dynamic light scattering (DLS) (Malvern ZetaSizer Nano, Malvern
601 Instruments).

602

603 *Protein corona isolation*

604 LNPs synthesized at a concentration of 0.05 mg/mL mRNA with Cre recombinase mRNA were incubated
605 with an equal volume (400 μ L) of pooled human blood plasma at 37 °C, the physiologically relevant
606 temperature, for 1 hour, which has previously been determined as sufficient time for corona formation to
607 occur.⁴⁰ Simultaneously, a PBS control was incubated with equal volume (400 μ L) of pooled human blood
608 plasma at 37 °C for 1 hour. Iodixanol solutions were prepared the same day and chilled on ice prior to
609 gradient preparation according to protocols established for exosome purification.⁵⁵ Directly after
610 incubation, each sample was diluted to a final concentration of 30% iodixanol (OptiPrep Density Gradient
611 Medium) with a total volume of 2 mL and loaded into the bottom of a polyclear 12-mL ultracentrifuge
612 tube. This bottom layer was followed by 2-mL layers of 25%, 20%, 15%, 10%, and 5% iodixanol, resulting
613 in a six-layer iodixanol gradient. These layers were added to the tube with a 21-gauge needle beginning
614 from the bottom layer to the top layer, proceeding slowly to avoid splashing/mixing of layers and avoiding
615 the introduction of bubbles, which disrupt the gradient during centrifugation. The difference in density
616 between each of the six gradient layers should be visible (Supplementary Fig. 8). Two tubes, one
617 containing the LNPs incubated with plasma and one with a plasma control, were centrifuged for 16 hours
618 at 36,000 rpm (160,000 rcf) and 4 °C with minimum acceleration and no breaking in a SW 41 Ti Beckman
619 swinging bucket rotor. Post centrifugation, 0.5-mL volume fractions were collected from top to bottom of
620 the tube by careful pipetting. We added Triton-X 100 to the selected fractions as determined by the
621 fluorescence assay to a final concentration of 2 % Triton-X 100 to disrupt LNPs and then pooled them
622 together using Amicon 0.5-mL 3-kDa MWCO centrifugal filters pre-rinsed with 50 mM Tris-HCl pH 8 at
623 4 °C according to manufacturer's instructions.

624

625 *Protein sample preparation for characterization*

626 Following sample pooling, an acid-based protein precipitation method (Bio-Rad detergent removal kit)
627 was used to remove ionic contaminants that interfere with LC-MS/MS, including detergents and free
628 lipids. Further sample preparation followed our previously established protocols.³² Proteins were reduced
629 by heating at 37 °C for 60 min in urea/dithiothreitol (DTT) reducing buffer (8 M urea, 5 mM DTT, 50
630 mM Tris-HCl, pH 8). Proteins were alkylated with 15 mM iodoacetamide for 30 minutes in the dark. Next,
631 500 mM DTT was added to quench excess iodoacetamide in a volume ratio of 3:1 and incubated for 20
632 minutes. These samples were concentrated and filtered with 0.5-mL 3-kDa MWCO centrifugal filters pre-
633 rinsed with 50 mM Tris-HCl pH8. Protein concentration was determined with the EZQ Protein
634 Quantitation Kit before 1:1 dilution with 50 mM Tris-HCl pH 8 to allow enzymatic protein digestion. In-
635 solution protein digestion was done with a ratio of 1:25 weight/weight Trypsin/Lys-C (Mass Spectrometry
636 Grade) to protein, overnight at 37 °C. Any remaining large contaminants were removed by filtering with
637 pre-rinsed Amicon 0.5-mL 30-kDa MWCO centrifugal filters. Peptide concentration was determined with
638 the Pierce Peptide Quantitation Kit and samples were then normalized to the same mass concentration.
639 Peptide solutions were spiked with 50 fmol of *E. coli* housekeeping peptide (Hi3 *E. coli* Standard, Waters)
640 per 5 μ L sample volume to enable protein quantification. Digestion was stopped by freezing samples to -
641 20 °C.

642

643 *Protein characterization via liquid chromatography-tandem mass spectrometry (LC-MS/MS).*

644 Samples of proteolytically digested proteins were analyzed using a Synapt G2-Si ion mobility mass
645 spectrometer that was equipped with a nanoelectrospray ionization source (Waters, Milford, MA). The
646 Synapt G2-Si was connected in line with an Acquity M-class ultra-performance liquid chromatography
647 system that was equipped with reversed-phase trapping (Symmetry C18, inner diameter: 180 μ m, length:
648 20 mm, particle size: 5 μ m, part number 186007496) and analytical (HSS T3, inner diameter: 75 μ m,
649 length: 150 mm, particle size: 1.8 μ m, part number 186007473, Waters) columns. The mobile phase
650 solvents were water and acetonitrile, both of which contained 0.1% formic acid and 0.01% difluoroacetic

651 acid (volume/volume).⁷² Data-independent, ion mobility-enabled, high-definition mass spectra and
652 tandem mass spectra were acquired using the positive ion mode.⁷³⁻⁷⁶ Instrument control and data
653 acquisition were performed using MassLynx software (version 4.1, Waters). Peptide and protein
654 identification and quantification using a label-free approach were performed using Progenesis QI for
655 Proteomics software (version 4.2, Waters Nonlinear Dynamics).^{77,78} *Escherichia coli* chaperone protein
656 ClpB (accession P63284, Hi3 *E. coli* standard) was used as an internal standard for protein quantification.
657 Data were searched against the human protein database to identify tryptic peptides using ion accounting
658 as peptide identification method, trypsin as digest reagent allowing up to three missed tryptic cleavages,
659 carbamidomethylcysteine as a fixed post-translational modification, methionine sulfoxide as a variable
660 post-translational modification, a target false discovery rate of less than four percent, three or more
661 fragment ions per peptide, seven or more fragment ions per protein, one or more peptides per protein, and
662 a minimum score of four.⁷⁹

663

664 *Proteomic data analysis*

665 Proteins were filtered for q-values (FDR adjusted p-values) less than 0.05. Database for Annotation,
666 Visualization and Integrated Discovery (DAVID) was used for functional annotation of gene ontology
667 (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway analysis of enriched
668 proteins.^{80,81} KEGG analysis relates known biological pathway maps to protein IDs of interest.⁸²⁻⁸⁴ For
669 GO and KEGG analysis using DAVID, the thresholds were based on the count (number of IDs) and EASE
670 score (a modified Fisher Exact p-value for gene-enrichment analysis) which were set to 5 and 0.05,
671 respectively.

672

673 *In vitro luciferase delivery*

674 HepG2 cells were cultured in Eagle's Minimum Essential Medium with 10% fetal bovine serum
675 (volume/volume) and 1% penicillin-streptomycin (volume/volume).⁸⁵ Before plating, cells were washed
676 with serum-free media and seeded into a white-bottom 96-well plate (surface area = 0.32 cm² per well) at
677 a density of 15,000 cells per well. The cells were incubated at 37 °C for 24 hours in serum-free media.
678 LNPs synthesized with luciferase mRNA at 0.01 mg/mL mRNA were incubated with proteins for 1 hour
679 at 37 °C to a final LNP concentration of 0.005 mg/mL mRNA. The LNPs were incubated with 2000 ng of
680 each protein (0.05 ng mRNA:1 ng protein, 0.01 mg/mL protein) unless otherwise specified. Following the
681 incubation, each well was incubated with 20 µL of LNPs with or without the pre-formed protein corona
682 at 0.005 mg/mL mRNA (100 ng mRNA per well) as optimized previously.¹⁹ After 24 hours, Brightglow
683 Bright-Glo™ Luciferase Assay System kit and a plate reader were used to quantify mRNA expression via
684 luminescence.

685

686 *Confocal microscopy of LNP internalization*

687 HepG2 cells were cultured and plated according to conditions for the *in vitro* luciferase delivery assay.
688 Cells were washed with serum-free media and were seeded into a black, clear bottom 96-well plate at a
689 density of 15,000 cells per well and incubated at 37 °C for 24 hours in serum-free media. LNPs were
690 synthesized with EZ Cap™ Cy5 Firefly Luciferase mRNA at 0.01 mg/mL mRNA and incubated with
691 proteins for 1 hour at 37 °C to a final LNP concentration of 0.005 mg/mL mRNA and 0.01 mg/mL protein
692 concentration unless otherwise specified. Following the incubation, each well was incubated with 20 µL
693 of LNPs with or without the pre-formed protein corona at 0.005 mg/mL mRNA (100 ng mRNA per well).
694 For cell uptake experiments, 1.5 hours after LNP addition, cells were stained with Hoechst 33342 and
695 CellBrite™ Cytoplasmic Membrane Labeling Kit. Images were acquired using a ZEISS Celldiscoverer 7
696 with n = 3 biological replicates and n = 4 technical replicates, with 3 fields of view (FOV) per technical
697 replicate. Fields of view were collected in an unbiased automated fashion throughout each well at a focal
698 plane offset of 4.5 µm from the bottom of the adherent cells using an air objective, 20X (0.95)
699 magnification, 0.5x tube lens, and a 43-second frame time. Images were collected with 0.8%, 0.1%, and

700 3% laser power for Cy5, CellBrite, and Hoechst, respectively. These acquisitions were taken by
701 sequentially exciting Cy5 at 640 nm, CellBrite at 488, and Hoechst at 405 nm. Emission was collected in
702 the 617-700 nm range, 490-600 nm range, and 400-485 nm range, respectively. Images were batch
703 processed by first creating a mask for the cell membrane based on the CellBrite dye. Then, the Cy5 signal
704 within the mask was quantified and normalized according to the nuclei count per image. We calculated
705 the fluorescence intensity as the summation of the Cy5 signal per FOV with values from 3 FOVs mean-
706 aggregated to a single technical replicate. For the erosion analysis, the inner membrane mask was acquired
707 by eroding the membrane mask $n = 10$ times. The outer membrane mask was the exclusive disjunction
708 (XOR) of total membrane mask and inner membrane mask. Intensity was summed within each outer and
709 inner mask, and the fraction was calculated based on Cy5 intensity within the membrane mask. For
710 lysosomal co-localization of LNP analysis, 1.5 hours after LNP addition, cells were stained with Hoechst
711 33342 and InvitrogenTM LysotrackerTM. Images were acquired using a ZEISS Celldiscoverer 7 with $n =$
712 4 biological replicates and $n = 4$ technical replicates, with 3 fields of view (FOV) per technical replicate.
713 Fields of view were collected in an unbiased automated fashion throughout each well at a focal plane
714 offset of 4.5 μ m from the bottom of the adherent cells with a water immersion objective, 50X (1.2)
715 magnification, 0.5x tube lens, and a 34-second frame time. Images were collected with 0.8%, 0.2%, and
716 2% laser power for Cy5, InvitrogenTM LysotrackerTM, and Hoechst, respectively. These acquisitions were
717 taken by sequentially exciting Cy5 at 640 nm, InvitrogenTM LysotrackerTM at 488, and Hoechst at 405 nm.
718 Emission was collected in the 620-700 nm range, 490-602 nm range, and 400-495 nm range, respectively.
719 These images were batch processed by creating a mask for the lysosomes based on the InvitrogenTM
720 LysotrackerTM. Then, the Cy5 signal within the lysosome mask was quantified and normalized according
721 to the nuclei count per image. We calculated the fluorescence intensity as the summation of the Cy5 signal
722 per FOV with values from 3 FOVs mean-aggregated to a single technical replicate. Further detailed
723 analysis is available (<https://github.com/tengjulin/internalization-analysis>).
724

725 *Statistics*

726 Statistical analysis and visualization were performed with GraphPad Prism (v.10.2.3) and Python (v3).
727

728 **Author Contributions:** Conceptualization, E.V., R.L.P., and M.A.; project organization, resources, and
729 funding acquisition, M.P.L. and K.W.; methodology and experiment design, E.V., M.A., R.L.P., A.T.I.,
730 and A.L., experiments and characterizations, E.V., H.J.S., M.A., and R.C.; data analysis and visualization,
731 E.V. and T.-J.L.; writing—original draft, E.V.; writing, review & editing, all co-authors.
732

733 **Acknowledgements:** Research was conducted with the California Institute for Quantitative
734 Biosciences/College of Chemistry Mass Spectrometry Facility which received NIH support (grant number
735 1S10OD020062-01) and UC Berkeley Cell Culture Facility (RRID is SCR_017924). Confocal imaging
736 experiments were conducted at the CRL Molecular Imaging Center, RRID:SCR_017852, supported by
737 Helen Wills Neuroscience Institute. E.V. and H.J.S. were supported by the Department of Defense (DoD)
738 through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. M.L.A.
739 was supported by an NSF Graduate Research Fellowship (award number DGE1745016) and by an NIH
740 F31 Fellowship (award number 1F31AG077874-01A1). R.C. was supported by the NSF PRFB (award
741 2305663) and the BWF PDEP award. R.L.P. acknowledges support from the Schmidt Science Fellows
742 program in partnership with the Rhodes Trust and the Burroughs Wellcome Fund Career Award at the
743 Scientific Interface (CASI). We acknowledge support from a Dreyfus Foundation award (MPL), the
744 Philomathia Foundation (MPL), an NSF CAREER award 2046159 (MPL), a McKnight Foundation award
745 (MPL), a Simons Foundation Award (MPL), a Moore Foundation Award (MPL), a Brain Foundation
746 Award (MPL), a Heising-Simons Fellowship (MPL), and a Polymaths Award from Schmidt Sciences,
747 LLC (MPL). MPL is a Chan Zuckerberg Biohub Investigator, and a Hellen Wills Neuroscience Institute
748 Investigator.

749

References:

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

- (1) Chaudhary, N.; Weissman, D.; Whitehead, K. A. mRNA Vaccines for Infectious Diseases: Principles, Delivery and Clinical Translation. *Nat Rev Drug Discov* **2021**, *20* (11), 817–838. <https://doi.org/10.1038/s41573-021-00283-5>.
- (2) Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; Epstein-Barash, H.; Zhang, L.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Image-Based Analysis of Lipid Nanoparticle–Mediated siRNA Delivery, Intracellular Trafficking and Endosomal Escape. *Nat Biotechnol* **2013**, *31* (7), 638–646. <https://doi.org/10.1038/nbt.2612>.
- (3) Hajj, K. A.; Whitehead, K. A. Tools for Translation: Non-Viral Materials for Therapeutic mRNA Delivery. *Nat Rev Mater* **2017**, *2* (10), 1–17. <https://doi.org/10.1038/natrevmats.2017.56>.
- (4) Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid Nanoparticles for mRNA Delivery. *Nat Rev Mater* **2021**, *6* (12), 1078–1094. <https://doi.org/10.1038/s41578-021-00358-0>.
- (5) Kowalski, P. S.; Rudra, A.; Miao, L.; Anderson, D. G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. *Molecular Therapy* **2019**, *27* (4), 710–728. <https://doi.org/10.1016/j.ymthe.2019.02.012>.
- (6) Akinc, A.; Maier, M. A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M. J.; Madden, T. D.; Mui, B. L.; Semple, S. C.; Tam, Y. K.; Ciufolini, M.; Witzigmann, D.; Kulkarni, J. A.; van der Meel, R.; Cullis, P. R. The Onpattro Story and the Clinical Translation of Nanomedicines Containing Nucleic Acid-Based Drugs. *Nat. Nanotechnol.* **2019**, *14* (12), 1084–1087. <https://doi.org/10.1038/s41565-019-0591-y>.
- (7) Kisby, T.; Yilmazer, A.; Kostarelos, K. Reasons for Success and Lessons Learnt from Nanoscale Vaccines against COVID-19. *Nat. Nanotechnol.* **2021**, *16* (8), 843–850. <https://doi.org/10.1038/s41565-021-00946-9>.
- (8) Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA Vaccines — a New Era in Vaccinology. *Nat Rev Drug Discov* **2018**, *17* (4), 261–279. <https://doi.org/10.1038/nrd.2017.243>.
- (9) Verma, M.; Ozer, I.; Xie, W.; Gallagher, R.; Teixeira, A.; Choy, M. The Landscape for Lipid-Nanoparticle-Based Genomic Medicines. *Nature Reviews Drug Discovery* **2023**, *22* (5), 349–350. <https://doi.org/10.1038/d41573-023-00002-2>.
- (10) Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. *Nano Lett.* **2015**, *15* (11), 7300–7306. <https://doi.org/10.1021/acs.nanolett.5b02497>.
- (11) Dahlman, J. E.; Kauffman, K. J.; Xing, Y.; Shaw, T. E.; Mir, F. F.; Dlott, C. C.; Langer, R.; Anderson, D. G.; Wang, E. T. Barcoded Nanoparticles for High Throughput in Vivo Discovery of Targeted Therapeutics. *Proceedings of the National Academy of Sciences* **2017**, *114* (8), 2060–2065. <https://doi.org/10.1073/pnas.1620874114>.
- (12) Hajj, K. A.; Ball, R. L.; Deluty, S. B.; Singh, S. R.; Strelkova, D.; Knapp, C. M.; Whitehead, K. A. Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo Due to Enhanced Ionization at Endosomal pH. *Small* **2019**, *15* (6), 1805097. <https://doi.org/10.1002/smll.201805097>.
- (13) Whitehead, K. A.; Dorkin, J. R.; Vegas, A. J.; Chang, P. H.; Veiseh, O.; Matthews, J.; Fenton, O. S.; Zhang, Y.; Olejnik, K. T.; Yesilyurt, V.; Chen, D.; Barros, S.; Klebanov, B.; Novobrantseva, T.; Langer, R.; Anderson, D. G. Degradable Lipid Nanoparticles with Predictable in Vivo siRNA Delivery Activity. *Nat Commun* **2014**, *5* (1), 4277. <https://doi.org/10.1038/ncomms5277>.
- (14) Dilliard, S. A.; Sun, Y. S.; Brown, M. O.; Sung, Y.-C.; Chatterjee, S.; Farbiak, L.; Vaidya, A.; Lian, X.; Wang, X.; Lemoff, A.; Siegwart, D. J. The Interplay of Quaternary Ammonium Lipid Structure and Protein Corona on Lung-Specific mRNA Delivery by Selective Organ Targeting

797 (SORT) Nanoparticles. *J Control Release* **2023**, S0168-3659(23)00482-0.
798 <https://doi.org/10.1016/j.jconrel.2023.07.058>.

799 (15) Okamoto, A.; Asai, T.; Kato, H.; Ando, H.; Minamino, T.; Mekada, E.; Oku, N. Antibody-
800 Modified Lipid Nanoparticles for Selective Delivery of siRNA to Tumors Expressing Membrane-
801 Anchored Form of HB-EGF. *Biochem Biophys Res Commun* **2014**, 449 (4), 460–465.
802 <https://doi.org/10.1016/j.bbrc.2014.05.043>.

803 (16) Kumar, V.; Qin, J.; Jiang, Y.; Duncan, R. G.; Brigham, B.; Fishman, S.; Nair, J. K.; Akinc, A.;
804 Barros, S. A.; Kasperkovitz, P. V. Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on
805 Physicochemical Properties, Cytokine Induction, and Efficacy. *Molecular Therapy - Nucleic Acids*
806 **2014**, 3, e210. <https://doi.org/10.1038/mtna.2014.61>.

807 (17) Hajj, K. A.; Melamed, J. R.; Chaudhary, N.; Lamson, N. G.; Ball, R. L.; Yerneni, S. S.;
808 Whitehead, K. A. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery
809 and Gene Editing In Vivo. *Nano Lett.* **2020**, 20 (7), 5167–5175.
810 <https://doi.org/10.1021/acs.nanolett.0c00596>.

811 (18) Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective Organ
812 Targeting (SORT) Nanoparticles for Tissue-Specific mRNA Delivery and CRISPR–Cas Gene
813 Editing. *Nat. Nanotechnol.* **2020**, 15 (4), 313–320. <https://doi.org/10.1038/s41565-020-0669-6>.

814 (19) LoPresti, S. T.; Arral, M. L.; Chaudhary, N.; Whitehead, K. A. The Replacement of Helper
815 Lipids with Charged Alternatives in Lipid Nanoparticles Facilitates Targeted mRNA Delivery to the
816 Spleen and Lungs. *Journal of Controlled Release* **2022**, 345, 819–831.
817 <https://doi.org/10.1016/j.jconrel.2022.03.046>.

818 (20) Xue, L.; Gong, N.; Shepherd, S. J.; Xiong, X.; Liao, X.; Han, X.; Zhao, G.; Song, C.; Huang, X.;
819 Zhang, H.; Padilla, M. S.; Qin, J.; Shi, Y.; Alameh, M.-G.; Pochan, D. J.; Wang, K.; Long, F.;
820 Weissman, D.; Mitchell, M. J. Rational Design of Bisphosphonate Lipid-like Materials for mRNA
821 Delivery to the Bone Microenvironment. *J. Am. Chem. Soc.* **2022**, 144 (22), 9926–9937.
822 <https://doi.org/10.1021/jacs.2c02706>.

823 (21) Melamed, J. R.; Yerneni, S. S.; Arral, M. L.; LoPresti, S. T.; Chaudhary, N.; Sehrawat, A.;
824 Muramatsu, H.; Alameh, M.-G.; Pardi, N.; Weissman, D.; Gittes, G. K.; Whitehead, K. A. Ionizable
825 Lipid Nanoparticles Deliver mRNA to Pancreatic β Cells via Macrophage-Mediated Gene Transfer.
826 *Science Advances* **2023**, 9 (4), eade1444. <https://doi.org/10.1126/sciadv.ade1444>.

827 (22) Paunovska, K.; Sago, C. D.; Monaco, C. M.; Hudson, W. H.; Castro, M. G.; Rudoltz, T. G.;
828 Kalathoor, S.; Vanover, D. A.; Santangelo, P. J.; Ahmed, R.; Bryksin, A. V.; Dahlman, J. E. A
829 Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of
830 Nanoparticles Reveals a Weak Correlation. *Nano Lett.* **2018**, 18 (3), 2148–2157.
831 <https://doi.org/10.1021/acs.nanolett.8b00432>.

832 (23) Whitehead, K. A.; Matthews, J.; Chang, P. H.; Niroui, F.; Dorkin, J. R.; Severgnini, M.;
833 Anderson, D. G. In Vitro–In Vivo Translation of Lipid Nanoparticles for Hepatocellular siRNA
834 Delivery. *ACS Nano* **2012**, 6 (8), 6922–6929. <https://doi.org/10.1021/nn301922x>.

835 (24) Dilliard, S. A.; Cheng, Q.; Siegwart, D. J. On the Mechanism of Tissue-Specific mRNA Delivery
836 by Selective Organ Targeting Nanoparticles. *Proc Natl Acad Sci USA* **2021**, 118 (52), e2109256118.
837 <https://doi.org/10.1073/pnas.2109256118>.

838 (25) Akinc, A.; Querbes, W.; De, S.; Qin, J.; Frank-Kamenetsky, M.; Jayaprakash, K. N.; Jayaraman,
839 M.; Rajeev, K. G.; Cantley, W. L.; Dorkin, J. R.; Butler, J. S.; Qin, L.; Racie, T.; Sprague, A.; Fava,
840 E.; Zeigerer, A.; Hope, M. J.; Zerial, M.; Sah, D. W.; Fitzgerald, K.; Tracy, M. A.; Manoharan, M.;
841 Koteliansky, V.; Fougerolles, A. de; Maier, M. A. Targeted Delivery of RNAi Therapeutics With
842 Endogenous and Exogenous Ligand-Based Mechanisms. *Molecular Therapy* **2010**, 18 (7), 1357–
843 1364. <https://doi.org/10.1038/mt.2010.85>.

844 (26) Swingle, K. L.; Hamilton, A. G.; Safford, H. C.; Geisler, H. C.; Thatte, A. S.; Palanki, R.;
845 Murray, A. M.; Han, E. L.; Mukalel, A. J.; Han, X.; Joseph, R. A.; Ghalsasi, A. A.; Alameh, M.-G.;

846 Weissman, D.; Mitchell, M. J. Placenta-Tropic VEGF mRNA Lipid Nanoparticles Ameliorate
847 Murine Pre-Eclampsia. *Nature* **2025**, *637* (8045), 412–421. <https://doi.org/10.1038/s41586-024-08291-2>.

849 (27) Debnath, M.; Forster, J. I.; Ramesh, A.; Kulkarni, A. Protein Corona Formation on Lipid
850 Nanoparticles Negatively Affects the NLRP3 Inflammasome Activation. *Bioconjugate Chem.* **2023**,
851 <https://doi.org/10.1021/acs.bioconjchem.3c00329>.

852 (28) Chen, D.; Parayath, N.; Ganesh, S.; Wang, W.; Amiji, M. The Role of Apolipoprotein- and
853 Vitronectin-Enriched Protein Corona on Lipid Nanoparticles for in Vivo Targeted Delivery and
854 Transfection of Oligonucleotides in Murine Tumor Models. *Nanoscale* **2019**, *11* (40), 18806–18824.
855 <https://doi.org/10.1039/C9NR05788A>.

856 (29) Hadjidemetriou, M.; Kostarelos, K. Nanomedicine: Evolution of the Nanoparticle Corona.
857 *Nature Nanotechnology* **2017**, *12* (4), 288–290.

858 (30) Ke, P. C.; Lin, S.; Parak, W. J.; Davis, T. P.; Caruso, F. A Decade of the Protein Corona. *ACS
859 Nano* **2017**, *11* (12), 11773–11776. <https://doi.org/10.1021/acsnano.7b08008>.

860 (31) L. Pinals, R.; Chio, L.; Ledesma, F.; P. Landry, M. Engineering at the Nano-Bio Interface:
861 Harnessing the Protein Corona towards Nanoparticle Design and Function. *Analyst* **2020**, *145* (15),
862 5090–5112. <https://doi.org/10.1039/D0AN00633E>.

863 (32) Pinals, R. L.; Yang, D.; Rosenberg, D. J.; Chaudhary, T.; Crothers, A. R.; Iavarone, A. T.;
864 Hammel, M.; Landry, M. Quantitative Protein Corona Composition and Dynamics on Carbon
865 Nanotubes in Biological Environments. *Angewandte Chemie International Edition* **2020**, *n/a* (n/a).
866 <https://doi.org/10.1002/anie.202008175>.

867 (33) Chithrani, B. D.; Chan, W. C. W. Elucidating the Mechanism of Cellular Uptake and Removal of
868 Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. *Nano Lett.* **2007**, *7* (6), 1542–
869 1550. <https://doi.org/10.1021/nl070363y>.

870 (34) van Straten, D.; Sork, H.; van de Schepop, L.; Frunt, R.; Ezzat, K.; Schiffelers, R. M. Biofluid
871 Specific Protein Coronas Affect Lipid Nanoparticle Behavior in Vitro. *Journal of Controlled
872 Release* **2024**, *373*, 481–492. <https://doi.org/10.1016/j.conrel.2024.07.044>.

873 (35) Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson,
874 K. A. Physical–Chemical Aspects of Protein Corona: Relevance to *in Vitro* and *in Vivo* Biological
875 Impacts of Nanoparticles. *J. Am. Chem. Soc.* **2011**, *133* (8), 2525–2534.
876 <https://doi.org/10.1021/ja107583h>.

877 (36) Dobrovolskaia, M. A.; Aggarwal, P.; Hall, J. B.; McNeil, S. E. Preclinical Studies To
878 Understand Nanoparticle Interaction with the Immune System and Its Potential Effects on
879 Nanoparticle Biodistribution. *Mol. Pharmaceutics* **2008**, *5* (4), 487–495.
880 <https://doi.org/10.1021/mp800032f>.

881 (37) Gotto, A. M.; Pownall, H. J.; Havel, R. J. [1] Introduction to the Plasma Lipoproteins. In
882 *Methods in Enzymology*; Plasma Lipoproteins Part A: Preparation, Structure, and Molecular
883 Biology; Academic Press, 1986; Vol. 128, pp 3–41. [https://doi.org/10.1016/0076-6879\(86\)28061-1](https://doi.org/10.1016/0076-6879(86)28061-1).

884 (38) Caby, M.-P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like
885 Vesicles Are Present in Human Blood Plasma. *International Immunology* **2005**, *17* (7), 879–887.
886 <https://doi.org/10.1093/intimm/dxh267>.

887 (39) Francia, V.; Schiffelers, R. M.; Cullis, P. R.; Witzigmann, D. The Biomolecular Corona of Lipid
888 Nanoparticles for Gene Therapy. *Bioconjugate Chem.* **2020**, *31* (9), 2046–2059.
889 <https://doi.org/10.1021/acs.bioconjchem.0c00366>.

890 (40) Barrán-Berdón, A. L.; Pozzi, D.; Caracciolo, G.; Capriotti, A. L.; Caruso, G.; Cavaliere, C.;
891 Riccioli, A.; Palchetti, S.; Laganà, A. Time Evolution of Nanoparticle–Protein Corona in Human
892 Plasma: Relevance for Targeted Drug Delivery. *Langmuir* **2013**, *29* (21), 6485–6494.
893 <https://doi.org/10.1021/la401192x>.

894 (41) Brennan, K.; Martin, K.; FitzGerald, S. P.; O'Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.;
895 Mc Gee, M. M. A Comparison of Methods for the Isolation and Separation of Extracellular Vesicles
896 from Protein and Lipid Particles in Human Serum. *Sci Rep* **2020**, *10* (1), 1039.
897 <https://doi.org/10.1038/s41598-020-57497-7>.

898 (42) Jachimska, B.; Pajor, A. Physico-Chemical Characterization of Bovine Serum Albumin in
899 Solution and as Deposited on Surfaces. *Bioelectrochemistry* **2012**, *87*, 138–146.
900 <https://doi.org/10.1016/j.bioelechem.2011.09.004>.

901 (43) Liu, K.; Lázaro-Ibáñez, E.; Lerche, M.; Lindén, D.; Salvati, A.; Sabirsh, A. Reply to: Technical
902 Challenges of Studying the Impact of Plasma Components on the Efficacy of Lipid Nanoparticles
903 for Vaccine and Therapeutic Applications. *Nat Commun* **2024**, *15* (1), 3853.
904 <https://doi.org/10.1038/s41467-024-47726-2>.

905 (44) Partikel, K.; Korte, R.; Stein, N. C.; Mulac, D.; Herrmann, F. C.; Humpf, H.-U.; Langer, K.
906 Effect of Nanoparticle Size and PEGylation on the Protein Corona of PLGA Nanoparticles.
907 *European Journal of Pharmaceutics and Biopharmaceutics* **2019**, *141*, 70–80.
908 <https://doi.org/10.1016/j.ejpb.2019.05.006>.

909 (45) Yang, K.; Mesquita, B.; Horvatovich, P.; Salvati, A. Tuning Liposome Composition to Modulate
910 Corona Formation in Human Serum and Cellular Uptake. *Acta Biomaterialia* **2020**, *106*, 314–327.
911 <https://doi.org/10.1016/j.actbio.2020.02.018>.

912 (46) Guan, S.; Yu, H.; Yan, G.; Gao, M.; Sun, W.; Zhang, X. Characterization of Urinary Exosomes
913 Purified with Size Exclusion Chromatography and Ultracentrifugation. *J. Proteome Res.* **2020**, *19*
914 (6), 2217–2225. <https://doi.org/10.1021/acs.jproteome.9b00693>.

915 (47) Pattipeilu, R.; Crielaard, S.; Klein-Schiphorst, I.; Florea, B. I.; Kros, A.; Campbell, F.
916 Unbiased Identification of the Liposome Protein Corona Using Photoaffinity-Based
917 Chemoproteomics. *ACS Cent. Sci.* **2020**, *6* (4), 535–545. <https://doi.org/10.1021/acscentsci.9b01222>.

918 (48) Liu, K.; Nilsson, R.; Lázaro-Ibáñez, E.; Duàn, H.; Miliotis, T.; Strimfors, M.; Lerche, M.;
919 Salgado Ribeiro, A. R.; Ulander, J.; Lindén, D.; Salvati, A.; Sabirsh, A. Multiomics Analysis of
920 Naturally Efficacious Lipid Nanoparticle Coronas Reveals High-Density Lipoprotein Is Necessary
921 for Their Function. *Nat Commun* **2023**, *14* (1), 4007. <https://doi.org/10.1038/s41467-023-39768-9>.

922 (49) Francia, V.; Zhang, Y.; Cheng, M. H. Y.; Schiffelers, R. M.; Witzigmann, D.; Cullis, P. R. A
923 Magnetic Separation Method for Isolating and Characterizing the Biomolecular Corona of Lipid
924 Nanoparticles. *Proceedings of the National Academy of Sciences* **2024**, *121* (11), e2307803120.
925 <https://doi.org/10.1073/pnas.2307803120>.

926 (50) Simonsen, J. B. Technical Challenges of Studying the Impact of Plasma Components on the
927 Efficacy of Lipid Nanoparticles for Vaccine and Therapeutic Applications. *Nat Commun* **2024**, *15*
928 (1), 3852. <https://doi.org/10.1038/s41467-024-47724-4>.

929 (51) Chen, D.; Ganesh, S.; Wang, W.; Amiji, M. The Role of Surface Chemistry in Serum Protein
930 Corona-Mediated Cellular Delivery and Gene Silencing with Lipid Nanoparticles. *Nanoscale* **2019**,
931 *11* (18), 8760–8775. <https://doi.org/10.1039/C8NR09855G>.

932 (52) Onódi, Z.; Pelyhe, C.; Terézia Nagy, C.; Brenner, G. B.; Almási, L.; Kittel, Á.; Manček-Keber,
933 M.; Ferdinand, P.; Buzás, E. I.; Giricz, Z. Isolation of High-Purity Extracellular Vesicles by the
934 Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography
935 From Blood Plasma. *Frontiers in Physiology* **2018**, *9*, 1479.
936 <https://doi.org/10.3389/fphys.2018.01479>.

937 (53) Yakubovich, E. I.; Polischouk, A. G.; Evtushenko, V. I. Principles and Problems of Exosome
938 Isolation from Biological Fluids. *Biochem (Mosc) Suppl Ser A Membr Cell Biol* **2022**, *16* (2), 115–
939 126. <https://doi.org/10.1134/S1990747822030096>.

940 (54) Temoche-Diaz, M. M.; Shurtleff, M. J.; Nottingham, R. M.; Yao, J.; Fadadu, R. P.; Lambowitz,
941 A. M.; Schekman, R. Distinct Mechanisms of microRNA Sorting into Cancer Cell-Derived
942 Extracellular Vesicle Subtypes. *Elife* **2019**, *8*, e47544. <https://doi.org/10.7554/eLife.47544>.

943 (55) Temoche-Diaz, M.; Shurtleff, M.; Schekman, R. Buoyant Density Fractionation of Small
944 Extracellular Vesicle Sub-Populations Derived from Mammalian Cells. *BIO-PROTOCOL* **2020**, 10
945 (15). <https://doi.org/10.21769/BioProtoc.3706>.

946 (56) Ford, T.; Graham, J.; Rickwood, D. Iodixanol: A Nonionic Iso-Osmotic Centrifugation Medium
947 for the Formation of Self-Generated Gradients. *Analytical Biochemistry* **1994**, 220 (2), 360–366.
948 <https://doi.org/10.1006/abio.1994.1350>.

949 (57) Huang, W.-Q.; Burger, P. C.; Amin, M.; Luider, T. M.; Hagen, T. L. M. ten. Precision
950 Localization of Lipid-Based Nanoparticles by Dual-Fluorescent Labeling for Accurate and High-
951 Resolution Imaging in Living Cells. *Small Science* n/a (n/a), 2300084.
952 <https://doi.org/10.1002/smsc.202300084>.

953 (58) Ahmed, F. E. Sample Preparation and Fractionation for Proteome Analysis and Cancer
954 Biomarker Discovery by Mass Spectrometry. *Journal of Separation Science* **2009**, 32 (5–6), 771–
955 798. <https://doi.org/10.1002/jssc.200800622>.

956 (59) Ashkarran, A. A.; Gharibi, H.; Voke, E.; Landry, M. P.; Saei, A. A.; Mahmoudi, M.
957 Measurements of Heterogeneity in Proteomics Analysis of the Nanoparticle Protein Corona across
958 Core Facilities. *Nat Commun* **2022**, 13 (1), 6610. <https://doi.org/10.1038/s41467-022-34438-8>.

959 (60) Gharibi, H.; Ashkarran, A. A.; Jafari, M.; Voke, E.; Landry, M. P.; Saei, A. A.; Mahmoudi, M. A
960 Uniform Data Processing Pipeline Enables Harmonized Nanoparticle Protein Corona Analysis
961 across Proteomics Core Facilities. *Nat Commun* **2024**, 15 (1), 342. <https://doi.org/10.1038/s41467-023-44678-x>.

962 (61) Van Leuven, F. Human A2-Macroglobulin: Structure and Function. *Trends in Biochemical
963 Sciences* **1982**, 7 (5), 185–187. [https://doi.org/10.1016/0968-0004\(82\)90135-9](https://doi.org/10.1016/0968-0004(82)90135-9).

964 (62) Du Clos, T. W. Function of C-Reactive Protein. *Annals of Medicine* **2000**, 32 (4), 274–278.
965 <https://doi.org/10.3109/07853890009011772>.

966 (63) Schvartz, I.; Seger, D.; Shaltiel, S. Vitronectin. *The International Journal of Biochemistry & Cell
967 Biology* **1999**, 31 (5), 539–544. [https://doi.org/10.1016/S1357-2725\(99\)00005-9](https://doi.org/10.1016/S1357-2725(99)00005-9).

968 (64) Amici, A.; Caracciolo, G.; Digiocomo, L.; Gambini, V.; Marchini, C.; Tilio, M.; L. Capriotti, A.;
969 Colapicchioni, V.; Matassa, R.; Familiari, G.; Palchetti, S.; Pozzi, D.; Mahmoudi, M.; Laganà, A. In
970 Vivo Protein Corona Patterns of Lipid Nanoparticles. *RSC Advances* **2017**, 7 (2), 1137–1145.
971 <https://doi.org/10.1039/C6RA25493D>.

972 (65) Champanhac, C.; Haas, H.; Landfester, K.; Mailänder, V. Heparin Modulates the Cellular
973 Uptake of Nanomedicines. *Biomaterials Science* **2021**, 9 (4), 1227–1231.
974 <https://doi.org/10.1039/D0BM01946A>.

975 (66) Chen, F.; Wang, G.; Griffin, J. I.; Brenneman, B.; Banda, N. K.; Holers, V. M.; Backos, D. S.;
976 Wu, L.; Moghimi, S. M.; Simberg, D. Complement Proteins Bind to Nanoparticle Protein Corona
977 and Undergo Dynamic Exchange in Vivo. *Nature Nanotech* **2017**, 12 (4), 387–393.
978 <https://doi.org/10.1038/nnano.2016.269>.

979 (67) *Expasy - Compute pI/Mw tool*. https://web.expasy.org/compute_pi/ (accessed 2025-01-09).

980 (68) Garai, K.; Baban, B.; Frieden, C. Self-Association and Stability of the ApoE Isoforms at Low
981 pH: Implications for ApoE–Lipid Interactions. *Biochemistry* **2011**, 50 (29), 6356–6364.
982 <https://doi.org/10.1021/bi2006702>.

983 (69) Li, S.; Cortez-Jugo, C.; Ju, Y.; Caruso, F. Approaching Two Decades: Biomolecular Coronas
984 and Bio–Nano Interactions. *ACS Nano* **2024**. <https://doi.org/10.1021/acsnano.4c13214>.

985 (70) Namiot, E. D.; Sokolov, A. V.; Chubarev, V. N.; Tarasov, V. V.; Schiöth, H. B. Nanoparticles in
986 Clinical Trials: Analysis of Clinical Trials, FDA Approvals and Use for COVID-19 Vaccines.
987 *International Journal of Molecular Sciences* **2023**, 24 (1), 787.
988 <https://doi.org/10.3390/ijms24010787>.

989 (71) Petersen, D. M. S.; Weiss, R. M.; Hajj, K. A.; Yerneni, S. S.; Chaudhary, N.; Newby, A. N.;
990 Arral, M. L.; Whitehead, K. A. Branched-Tail Lipid Nanoparticles for Intravenous mRNA Delivery
991 <https://doi.org/10.3390/ijms24010787>.

992 to Lung Immune, Endothelial, and Alveolar Cells in Mice. *Advanced Healthcare Materials* **2024**, *13*
993 (22), 2400225. <https://doi.org/10.1002/adhm.202400225>.

994 (72) Nguyen, J. M.; Smith, J.; Rzewuski, S.; Legido-Quigley, C.; Lauber, M. A. High Sensitivity LC-
995 MS Profiling of Antibody-Drug Conjugates with Difluoroacetic Acid Ion Pairing. *MAbs* **2019**, *11*
996 (8), 1358–1366. <https://doi.org/10.1080/19420862.2019.1658492>.

997 (73) Plumb, R. S.; Johnson, K. A.; Rainville, P.; Smith, B. W.; Wilson, I. D.; Castro-Perez, J. M.;
998 Nicholson, J. K. UPLC/MSE; a New Approach for Generating Molecular Fragment Information for
999 Biomarker Structure Elucidation. *Rapid Communications in Mass Spectrometry* **2006**, *20* (13),
1000 1989–1994. <https://doi.org/10.1002/rcm.2550>.

1001 (74) Shliaha, P. V.; Bond, N. J.; Gatto, L.; Lilley, K. S. Effects of Traveling Wave Ion Mobility
1002 Separation on Data Independent Acquisition in Proteomics Studies. *J. Proteome Res.* **2013**, *12* (6),
1003 2323–2339. <https://doi.org/10.1021/pr300775k>.

1004 (75) Distler, U.; Kuharev, J.; Navarro, P.; Levin, Y.; Schild, H.; Tenzer, S. Drift Time-Specific
1005 Collision Energies Enable Deep-Coverage Data-Independent Acquisition Proteomics. *Nat Methods*
1006 **2014**, *11* (2), 167–170. <https://doi.org/10.1038/nmeth.2767>.

1007 (76) D, H.; Jp, V.; Cj, H.; H, H.; B, R.; F, P.; A, G.; K, R.; J, W.; Sk, M.; H, M.; M, W.; I, B.; S, L.;
1008 M, B.; Ji, L.; B, K. Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up
1009 Proteomics. *Molecular & cellular proteomics : MCP* **2014**, *13* (12).
1010 <https://doi.org/10.1074/mcp.M114.041038>.

1011 (77) Docter, D.; Distler, U.; Storck, W.; Kuharev, J.; Wünsch, D.; Hahlbrock, A.; Knauer, S. K.;
1012 Tenzer, S.; Stauber, R. H. Quantitative Profiling of the Protein Coronas That Form around
1013 Nanoparticles. *Nat Protoc* **2014**, *9* (9), 2030–2044. <https://doi.org/10.1038/nprot.2014.139>.

1014 (78) Distler, U.; Kuharev, J.; Navarro, P.; Tenzer, S. Label-Free Quantification in Ion Mobility-
1015 Enhanced Data-Independent Acquisition Proteomics. *Nat Protoc* **2016**, *11* (4), 795–812.
1016 <https://doi.org/10.1038/nprot.2016.042>.

1017 (79) The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2021. *Nucleic Acids
1018 Research* **2021**, *49* (D1), D480–D489. <https://doi.org/10.1093/nar/gkaa1100>.

1019 (80) Sherman, B. T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M. W.; Lane, H. C.; Imamichi, T.; Chang,
1020 W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene
1021 Lists (2021 Update). *Nucleic Acids Res* **2022**, *50* (W1), W216–W221.
1022 <https://doi.org/10.1093/nar/gkac194>.

1023 (81) Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and Integrative Analysis of Large
1024 Gene Lists Using DAVID Bioinformatics Resources. *Nat Protoc* **2009**, *4* (1), 44–57.
1025 <https://doi.org/10.1038/nprot.2008.211>.

1026 (82) Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res*
1027 **2000**, *28* (1), 27–30. <https://doi.org/10.1093/nar/28.1.27>.

1028 (83) Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for
1029 Taxonomy-Based Analysis of Pathways and Genomes. *Nucleic Acids Res* **2023**, *51* (D1), D587–
1030 D592. <https://doi.org/10.1093/nar/gkac963>.

1031 (84) Kanehisa, M. Toward Understanding the Origin and Evolution of Cellular Organisms. *Protein
1032 Sci* **2019**, *28* (11), 1947–1951. <https://doi.org/10.1002/pro.3715>.

1033 (85) Hep G2 [HEPG2] - HB-8065 | ATCC. <https://www.atcc.org/products/hb-8065> (accessed 2024-
1034 01-11).

1035 (86) C-Reactive Protein (CRP) Test: What It Is, Purpose & Results. Cleveland Clinic.
1036 <https://my.clevelandclinic.org/health/diagnostics/23056-c-reactive-protein-crp-test> (accessed 2024-
1037 02-03).

1038 (87) Clemetson, K. J. Chapter 9 - Blood glycoproteins*~*~This Chapter Is Dedicated to Prof. R.U.
1039 Lemieux Who Played a Major Role in Awakening a Whole Generation to the Importance of
1040 Carbohydrate Structure in Biology. In *New Comprehensive Biochemistry*; Montreuil, J.,

1041 Vliegenthart, J. F. G., Schachter, H., Eds.; Glycoproteins II; Elsevier, 1997; Vol. 29, pp 173–201.
1042 [https://doi.org/10.1016/S0167-7306\(08\)60622-5](https://doi.org/10.1016/S0167-7306(08)60622-5).

1043 (88) Mocchegiani, E.; Giacconi, R.; Muti, E.; Muzzioli, M.; Cipriano, C. Zinc-Binding Proteins
1044 (Metallothionein and α -2 Macroglobulin) as Potential Biological Markers of Immunosenescence. In
1045 *NeuroImmune Biology*; Straub, R. H., Mocchegiani, E., Eds.; The Neuroendocrine Immune Network
1046 in Ageing; Elsevier, 2004; Vol. 4, pp 23–40. [https://doi.org/10.1016/S1567-7443\(04\)80004-8](https://doi.org/10.1016/S1567-7443(04)80004-8).

1047 (89) Mahley, R. W.; Innerarity, T. L.; Rall, S. C.; Weisgraber, K. H. Plasma Lipoproteins:
1048 Apolipoprotein Structure and Function. *Journal of Lipid Research* **1984**, 25 (12), 1277–1294.
1049 [https://doi.org/10.1016/S0022-2275\(20\)34443-6](https://doi.org/10.1016/S0022-2275(20)34443-6).

1050