
Characterizing Ethereum Address Poisoning A�ack
Shixuan Guan

sguan4105@sdsu.edu
San Diego State University

San Diego, CA, USA

Kai Li
kli5@sdsu.edu

San Diego State University
San Diego, CA, USA

Abstract
This paper presents the �rst comprehensive analysis of the address
poisoning attack surged on the Ethereum blockchain. This phishing
attack typically exploits the address shortening feature of Ethereum
explorers and digital wallets (e.g., Etherscan and MetaMask) by
crafting token transfer events with a seemingly correct address to
poison victims’ transfer history, waiting for them to mistakenly
transfer assets to the attacker’s address.

To systematically detect and characterize the address poison-
ing attack, we developed a detection system named Poison-Hunter,
which can recognize the attacker’s crafted transfers and detect the
phishing addresses controlled by the attacker. By applying Poison-
Hunter to Ethereum blocks produced from Nov. 2022 to Feb. 2024,
we have detected millions of phishing transfers and phishing ad-
dresses. Our analysis shows that the attacker has predominantly
targeted USDC and USDT token holders and used a phishing ad-
dress that looks highly similar to a benign one. We also �nd that the
sender of legitimate transfers was the primary target of this attack.
Furthermore, by tracing the transaction history of the detected
phishing addresses, we reveal that over 1,800 victim addresses have
lost crypto assets, with a potential �nancial loss of up to $144million
US dollars. Among them, about $90 million of loss are con�rmed
by this work. Finally, our analysis suggests that 98% of phishing
addresses are controlled by four entities, which collected nearly
92% of the total pro�ts.

Overall, this paper sheds light on the tactics utilized in the ad-
dress poisoning attack and its scale and impact on the Ethereum
blockchain, emphasizing the urgent need for an e�ective detection
and prevention mechanism against such a phishing activity.
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1 Introduction
The �ourishing of smart contract-based blockchains has led to an
increasing adoption of various decentralized applications in do-
mains such as �nance, gaming, and health. As the largest smart
contract-based blockchain, Ethereum enables the issuance and cir-
culation of customized tokens, which has proliferated various ERC-
20 tokens [4] and stable coins [23] in the cryptocurrency markets.
However, the rise of cryptocurrency markets has also brought new
threats targeting cryptocurrency users and causing �nancial loss
to them. Among them, one emerging threat is the notorious cryp-
tocurrency scams [37, 44, 47–50, 54, 57, 57, 59] and phishing at-
tacks [33, 36, 41, 45] that playing tricks to deceive cryptocurrency
holders and steal their funds.

In this work, we identi�ed a new phishing attack named Ethereum
address poisoning and conducted the �rst comprehensive analysis
to dissect it and evaluate the impact. Based on an initial investiga-
tion, we found that the attacker exploited the address shortening
feature of Ethereum explorer and digital wallets (e.g., Etherscan [13]
and MetaMask [20]) by using a seemingly correct address to craft
token transfer records in a victim’s transfer history, which can
potentially deceive victims and lead them to transfer assets to the
attacker. To launch the attack at a large scale, the attacker gen-
erated a large number of Ethereum addresses and used them to
craft three types of phishing transfers (dust-value, zero-value, and
fake token transfers). Our initial investigation also shows that the
attacker controlled two sets of addresses. The �rst set is used to
initiate phishing transactions and pay the transaction fee (funding
address). The second set is used to interact with a victim address
and serve as the payload of the phishing transaction (phishing
address). Given such a new phishing activity, in this paper, we aim
to systematically study the address poisoning attack and answer
the following research questions: RQ1. How prevalent is the ad-
dress poisoning attack on the Ethereum blockchain, and how many
users have been targeted by the attacker? RQ2. How many victims
have been deceived by this attack, and how much �nancial loss has
been caused? RQ3. What are the attacker’s behaviors, and what
strategies have been adopted to increase the attack’s success rate?

Detection system: To answer the above research questions,
we developed an attack detection system, Poison-Hunter, to detect
phishing transfers crafted by the attacker and recognize its phishing
address. Speci�cally, Poison-Hunter �rst collects a comprehensive
dataset of ERC-20 token transfer events recorded on the Ethereum
mainnet and then separates them into legitimate transfers and sus-
picious transfers based on the pattern of each type of phishing
transfer. After that, Poison-Hunter matches the suspicious trans-
fers with legitimate transfers by comparing the involved addresses
through an address similarity scoring mechanism, which can accu-
rately recognize the phishing addresses. To avoid �agging benign
addresses that the attacker mistakenly or deliberately entered into
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the phishing transfers, Poison-Hunter also employs a benign address
sifting approach based on the activation timestamp of the address
on Ethereum, which can �lter out benign addresses and ensure that
all of the �agged addresses are indeed controlled by the attacker.

Research �ndings: We have applied Poison-Hunter to analyze
Ethereum blocks produced from Nov. 2022 to Feb. 2024. In summary,
we collected over 14million phishing transfers that target more than
1.44 million benign addresses, predominantly belonging to USDT
and USDC token holders. From the phishing transfers, we identi-
�ed over 6 million phishing addresses and 8,000 funding addresses
controlled by the attacker. In addition, we also collected 2,300 fake
tokens and 2,900 batching contracts deployed by the attacker to
reduce the transaction cost (answers to RQ1). By leveraging the
blockchain’s transparency to trace transactions transferring assets
to the phishing addresses, our work disclosed that over 1,800 victim
addresses lost approximately $144 million US dollars (USD) to the
attacker, of which $81.96 to $89.93 million USD were con�rmed
from the victims targeted in the phishing transfers. Compared to
the $25.5 million USD paid by the attacker as the transaction fee
for crafting the phishing transfers, the return on investment of
this attack is above 220%. Furthermore, by clustering the phishing
addresses based on their associated activities with other addresses,
such as the funding address and batching contract, we identi�ed
four big clusters that controlled 98% of phishing addresses and
gained over 90% of the total pro�ts. Among them, the largest cluster
controlled over 4.6 million addresses and pro�ted over $60 million
USD (answers to RQ2). Moreover, our results suggested that the
attacker’s phishing addresses bear a high degree of similarity with
the benign addresses, most containing more than 7 similar hexadec-
imal characters in the beginning and ending segments. Besides, we
also discovered that the attacker tends to target the sender of legiti-
mate transfers, as proved by the fact that more than 90% phishing
transfers target the "from" address in a legitimate transfer. Finally,
our analysis showed that the attacker’s money �ow followed a
common pattern, which involved mixing services, decentralized
exchanges, and centralized exchanges (answers to RQ3).

Contributions: Our work makes the following contributions.
• A comprehensive analysis: To the best of our knowledge, our
work is the �rst comprehensive study on the Ethereum address
poisoning attack.We dissected the attacker’s strategies in crafting
phishing transfers, including dust-value transfers, zero-value
transfers, and fake token transfers.

• New attack detection system: We developed an attack de-
tection system named Poison-Hunter that leverages the unique
pattern of each phishing transfer type to collect phishing trans-
fers and detect the attacker’s phishing address. The evaluation
result on the ground-truth dataset shows that Poison-Hunter can
achieve 100% precision and 97.3% recall.

• New understandings: Poison-Hunter has led to the discovery
of millions of phishing transfers and addresses controlled by the
attacker. Our work reveals that the attacker has targeted more
than 1.44 million benign addresses and generated more than 6
million phishing addresses that contain 7 or more similar char-
acters to the benign addresses. We also found that the attacker
tends to target the sender of legitimate transfers.

• Quanti�cation of �nancial loss:We quanti�ed that more than
1,800 victim addresses have su�ered a �nancial loss of up to
$144 million USD to the attacker, with $90 million USD of the
loss being con�rmed from the targeted benign addresses. This
compelling result calls for a more comprehensive mitigation
against the address poisoning attack.

Road-map: The rest of this paper is organized as follows. Sec. 2
provides the necessary background of the address poisoning attack.
Sec. 3 illustrates the strategies adopted in the address poisoning
attack. Sec. 4 details how Poison-Hunter is designed and imple-
mented to detect phishing transfers. Sec. 5 presents our analysis of
the detected phishing transfers and addresses. Sec. 6 discusses the
robustness of Poison-Hunter and possible countermeasures. Related
work is discussed in Sec. 7, followed by a conclusion in Sec. 8.

2 Background
2.1 Ethereum Blockchain and ERC-20 Tokens
As the largest smart contract-based blockchain platform, Ethereum
allows users to develop programs with arbitrary logic (a.k.a, smart
contracts) and execute them in a decentralized and trustworthy
manner. With the smart contract feature, various customized tokens
have been deployed on Ethereum. As of this writing, there are
over 1,300 valuable tokens [10] deployed on Ethereum worth $20.4
billion USD1. In order to trade on the Ethereum blockchain, users
can create an account with the Elliptic Curve Digital Signature
Algorithm (ECDSA) [46], which features a pair of public key and
secret key. The public key is shared with other users to help them
identify the owner, while the secret key should be kept private by
the owner, who then uses it to sign transactions. The last 20 bytes
of the hash of the user’s public key, a sequence of 40 hexadecimal
characters, is also called the user’s address on Ethereum.

ERC-20 token: On Ethereum, ERC-20 [4] is a token standard
de�ned for Fungible tokens, which speci�es the necessary func-
tions (i.e., transfer, transferFrom) for owners to trade tokens, as well
as events (i.e., Transfer) to log the token operations. Speci�cally,
in each ERC-20 token contract, a mapping data structure named
balance is used to track the token balance of every owner indexed
by their Ethereum addresses. When the transfer or transferFrom
function is executed successfully, a Transfer event will be emitted
to record the token movement, including the sender’s address, re-
ceiver’s address, and the transferred amount. Any smart contract
implementing the ERC-20 token standard is considered an ERC-20
token. In today’s market, popular ERC-20 tokens include stable
coins such as USDC [27], USDT [28], DAI [11], whose value is al-
ways pegged to $1 USD. It is worth noting that in these popular
ERC20 tokens, as long as the transferred amount is zero, a success-
ful Transfer event will be emitted even if the transaction initiator is
not the token owner. In addition, when deploying an ERC-20 token
contract on Ethereum, the contract deployer is allowed to give the
token an arbitrage name and symbol, as the Ethereum blockchain
does not impose restrictions on the token name and symbol. As a
result, two token contracts could have the same name and symbol,
which renders fake ERC-20 tokens possible on Ethereum, as shown
in the recent work [44].

1https://coincodex.com/cryptocurrencies/sector/ethereum-erc20/
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(a) Etherscan (b) Metamask

Figure 1: The address shortening feature employed by Etherscan and Metamask.

Ethereum transaction batching: Unlike Bitcoin’s Unspent
Transaction Output (UTXO) model, Ethereum adopts an account-
based transaction model where each transaction only binds one
sender address with one receiver address. Hence, Ethereum natively
does not support transfering ETH to multiple receivers or invoking
multiple smart contracts in a single transaction. However, users can
work around this limitation with a batching contract. For example,
to transfer ETH in batch, users can utilize a batching contract that
takes multiple recipient addresses as the input and then distributes
the received ETH to individual recipients through internal transfer
calls. Likewise, users can also utilize batching contracts to invoke
multiple smart contracts through internal function calls. According
to the recent work [55, 56], batching ETH transfers or smart contract
invocations can save users’ transaction costs.

2.2 Ethereum Address Shortening
Due to the large computation and storage cost, it is una�ordable
for an average user to run a full node to manage their accounts
and access the Ethereum blockchain. To solve the problem, third-
party Web3 services have emerged as a gateway to connect users
to the Ethereum blockchain, including digital wallets, RPC ser-
vices [5, 9, 19, 22], and Ethereum explorers [7, 13, 21]. With a dig-
ital wallet like MetaMask [20], users can create an account and
send transactions to the Ethereum blockchain. Once a transaction
is executed successfully, it will be recorded on both the sender
and receiver’s Metamask App. Besides, users can also visit Ether-
scan [13], the most popular Ethereum explorer, to check their bal-
ance and browse the transaction history. Due to the long sequence
of Ethereum addresses, when displaying transactions, most Web3
services would shorten the user’s address, as presented in Fig. 1.
For instance, Fig. 1a shows a user’s two transactions displayed on
Etherscan. As highlighted in the red box, Etherscan shortens both
the sender and receiver’s address by only showing the �rst 8 char-
acters and the last 9 characters. Similarly, Metamask also shortens
the user’s address by only presenting the �rst 5 characters and 2
characters in the middle, as highlighted in Fig. 1b.

3 Threat: Address Poisoning Attack
Due to the address shortening feature employed by Web3 services
such as Etherscan and Metamask, users can only use the pre�x or
su�x to di�erentiate Ethereum addresses. In this work, we discov-
ered that attackers had exploited such an address shortening feature
to launch the so-called address poisoning attack. By investigating
online reports from multiple sources, including Twitter [1], Meta-
Mask [32], and Etherscan [31], overall, we found that the attacker

typically generates a phishing address to impersonate a benign
address and uses it to interact with an address who has previously
interacted with the benign address, aiming to craft a similar transfer
in the address’ transaction history to deceive the address’s owner.
As a result, the owner may copy the attacker’s address and make
subsequent transfers to it. Below, we discuss how the attack is
launched in practice.

3.1 Attack Preparation
For the address poisoning attack, the key to success is launching it
on a large scale and targeting many benign addresses so that the
attacker has a higher chance to successfully deceive one of them. To
do so, the attacker typically generates a large number of Ethereum
addresses before using them to interact with a benign address,
which we denoted as phishing addresses. Since these generated
phishing addresses do not have enough balance to pay the transac-
tion fee, we found that the attacker also controls a set of Ethereum
addresses that will be used to initiate the phishing transaction and
pay the transaction fee, which we denoted as funding addresses.
After generating the phishing addresses, the attacker then actively
monitors transactions recorded on the Ethereum blockchain to �nd
a benign address similar to one of its phishing addresses. Upon
�nding a similar benign address, the attacker then uses the fund-
ing address and phishing address to send a transaction to craft a
phishing transfer in a victim’s transaction history.

3.2 Attack Strategy
Based on the analysis of the online reports, we found that attack-
ers adopted three attack strategies to craft phishing transfers in a
victim’s transaction history, as presented in Fig. 2. These strategies
generally follow a similar pattern and only di�er at step 2 . Below,
we elaborate on each strategy in detail.

Dust-value token transfer: After �nding a legitimate token
transfer between two benign addresses ( 1 ), say Alice (0x1234)
sends 10 USDC to Bob (0x0D8C), the attacker uses its funding ad-
dress (0x5678) to transfer a small amount of USDC to the phishing
address (0x0DBC), which then immediately transfers it to Alice
( 2a ). The phishing address looks highly similar to Bob’s address.
Both the legitimate transfer and the dust-value transfer will be cap-
tured by Etherscan or a digital wallet and added to Alice’s transfer
history. When Alice decides to make another transfer to Bob and
visits Etherscan to browse the token transfer history to �nd Bob’s
address ( 3 ), because the attacker’s phishing address looks similar
to Bob’s, she could copy the phishing address and transfer tokens
to it ( 4 ), resulting in a �nancial loss.
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Figure 2: The work�ow of the address poisoning attack. For
a legitimate transfer from a benign address ( 1 ), the attacker
crafts phishing transfers with a similar recipient address
( 2a , 2b , 2c ). The crafted transfers are added to the benign
address’s transfer history ( 3 ). The benign address’s owner
then copies the recipient address from the phishing transfers
and transfers funds to the attacker ( 4 ).

Zero-value token transfer: In this strategy, the attacker calls
the transferFrom function in the legitimate token contract to trans-
fer zero-value tokens. That is, in step 2b , the attacker uses the fund-
ing address to call the token contract as follows, transferFrom(Alice,
Eve, 0), where Eve is the phishing address. The sanity checks in
the token contract (allowance and balance) would allow the
transfer to pass since the transferred amount is 0. After that, a
Transfer event is emitted to log the zero-value transfer and added
to Alice’s token transfer history. When Alice browses its trans-
fer history ( 3 ), she could copy the phishing address and transfer
tokens to it ( 4 ), resulting in a �nancial loss2.

Fake token transfer: In the above strategy, the attacker cannot
manipulate the transferred amount, which must be 0 and could be
easily detected. To overcome such a drawback, the third strategy is
to deploy a fake ERC-20 token that can emit Transfer events of
arbitrary transferred amounts. That is, the attacker removes the
sanity check logic and then deploys the fake token contract. Then,
in step 2c , the attacker uses the funding address to call the fake
token contract as transferFrom(Alice, Eve, 1,000), which
then emits a Transfer event that looks the same as the legitimate
transfer. Such a fake transfer event will be added to Alice’s transfer
history and displayed to Alice ( 3 ). In this strategy, the attacker can
give di�erent symbols to the fake tokens, which generally can be
summarized in two categories. The �rst category uses the symbol
2Likewise, the attacker can poison Bob’s token transfer history by using an address
similar to Alice’s.

of popular ERC-20 tokens such as USDC and USDT, and the second
category utilizes a self-de�ned symbol such as "ETH."

In summary, each attack strategy can craft a phishing transfer
record in the victim’s transfer history. Compared to the �rst strat-
egy, the last two strategies are cheaper, as the cost only includes the
transaction fee. In this study, we found that attackers also leveraged
batching contracts to save the transaction fee. With a batching con-
tract, the attacker can include multiple phishing transfer payloads
in one transaction, which can dispatches the payloads to emit mul-
tiple transfer events simultaneously. The batching contract allows
the attacker to save the basic transaction fee (21,000 Gas), thus
further reducing the attack cost.

4 Detection System: Poison-Hunter
To collect the phishing transfers crafted by the attacker and detect
the involved phishing addresses, we developed an attack detection
system named Poison-Hunter. Our detection system consists of three
modules: Data Collector, Token Analyzer, Address Filter. An overview
of the detection work�ow is presented in Fig. 3.

4.1 Data Collector
Our �rst module, Data Collector, aims to extract ERC-20 token
contracts and their associated token transfers. To accomplish this
task, we set up an Ethereum full node and synchronized it with the
Ethereum mainnet. After that, we leverage the Ethereum-ETL [16]
tool to extract the deployed ERC-20 token contracts and their as-
sociated token transfer events. Speci�cally, for each ERC-20 token
contract, we collect the token address, name, symbol, and the to-
ken deployer’s address. Thereafter, we collect the token transfer
events emitted by each ERC-20 token contract, including the sender,
receiver, transferred amount, and the token address.

4.2 Token Analyzer
After collecting ERC-20 token contracts and token transfer events,
we run the second module, Token Analyzer, to separate highly suspi-
cious transfers from legitimate token transfers. As described before,
the attacker can craft three types of phishing transfers: dust-value
transfer, zero-value transfer, and fake transfer. Hence, there are
three types of suspicious transfers. Below, we elaborate on how
we separate them from legitimate transfers.

Dust-value transfer:We leverage the ground-truth3 of popular
ERC-20 token addresses [15] to collect the transfer events emitted
by each legitimate token. After that, we �lter the transfer events
by the transferred amount. That is, if the transferred amount is a
dust value (e.g., 0<value<1), we deem it suspicious and save it to
the suspicious transfer dataset. Since a dust-value transfer could
also be sent by a benign user who just wants to verify a receiver or
forgets to set the correct amount, we will describe how we further
�lter the suspicious transfer dataset to detect phishing dust-value
transfers in the next section.

Zero-value transfer: Similar to the above, if the transferred
amount is 0, we deem the token transfer event a suspicious transfer.
Since some zero-value transfers could also be sent by benign users,

3It is well-known that the legitimate USDC and USDT token address is 0xA0b86991c6
218b36c1d19D4a2e9Eb0cE3606eB48 and 0xdAC17F958D2ee523a2206206994597C13
D831ec7.
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Figure 3: The detection work�ow of Poison-Hunter.

we �lter them as follows. For each zero-value transfer, we verify
whether the transaction sender is the sender of the token. If not,
we deem it highly suspicious and save it to the suspicious transfer
dataset. This is because, unlike a phishing dust-value transfer where
the victim is the receiver of the token, the phishing zero-value
transfer often places the victim as the sender of the transfer while
using a funding address as the transaction’s sender. Hence, if a
zero-value transfer transaction’s sender is not the sender of the
transfer, we consider it a highly suspicious transfer. After that, we
further �lter the suspicious transfer dataset to identify phishing
zero-value transfers, as will be described in the next section.

Fake token transfer: To seperate this type of transfer, we need
to �rst identify the fake token deployed by the attacker. There are
two types of fake token contracts: a fake token using the same
symbol as a popular token and a fake token using a self-de�ned
symbol. To detect the �rst type of fake token, we collect the symbols
of top ERC-20 tokens by the market cap to discover fake tokens.
Speci�cally, we collect the contract address and symbol of the top
50 ERC-20 tokens listed on Etherscan [15]. After that, we search
in the collected token contracts for fake tokens that have the same
symbol but di�erent addresses with the legitimate ERC-20 tokens.
Then, we save all the transfer events emitted by the fake tokens to
the suspicious transfer dataset. To identify the second type of fake
tokens, we utilized a token validation method. In this method, we
use a locally generated address to send a testing transaction to exe-
cute the transfer and transferFrom functions in the collected token
contracts. If the testing transaction succeeds and a Transfer event is
emitted, we deem the token contract a suspicious token and save all
the emitted transfer events into the suspicious transfer dataset. This
is because should the token contract employ the correct logic to
check the allowance and balance, our testing transaction would fail,
and no Transfer event would be emitted, as our locally generated
address shall not have a balance in the token. Hence, any token vio-
lating the logic could be used to craft token transfer events, which
will be detected by our token validation technique.

Finally, by applying the Token Analyzer module, we obtain two
token transfer datasets: a legitimate transfer dataset where all the
transferred amounts are larger than or equal to 1, and a suspicious
transfer dataset that includes dust-value transfers, zero-value trans-
fers, and fake token transfers.

4.3 Address Filter
After seperating suspicious and legitimate token transfers, we apply
the Address Filter module to �lter the suspicious transfer dataset
and detect the attacker’s phishing address. Below, we describe how
we achieve the goal in three steps.

4.3.1 Matching token transfers by identical address. In this step,
we match the suspicious transfers with legitimate transfers to �lter
some non-phishing transfers from the suspicious transfer dataset.
We know that in the address poisoning attack, a phishing transfer
particularly targets a previously included legitimate transfer and
uses a phishing address to interact with one of the addresses in the
legitimate transfer. If we can �nd a previous legitimate transfer that
shares an identical address (requirement A) and a highly similar
address (requirement B) with the suspicious transfer, then the
suspicious transfer is likely a phishing transfer. In light of these
requirements, we �rst use requirement A to match the suspicious
transfers with legitimate transfers. Speci�cally, for each suspicious
transfer recorded at block T, we search in the legitimate transfers
for one transfer recorded before block T that has the same “from”
(or “to”) address with the suspicious transfer. Additionally, if the
transfer is a fake token transfer, we also require that they have the
same transferred amount. In this matching phase, one suspicious
transfer could match with multiple legitimate transfers. If so, we
retain all matched legitimate transfers and �lter them in the next
step. In the case that a suspicious transfer does not match with any
legitimate token transfer, we remove it from the suspicious transfer
dataset as it is not related to the address poisoning attack.

4.3.2 Filtering by address similarity. After matching suspicious
transfers with legitimate transfers that share an identical address,
we need to verify further if they meet requirement B, which is
sharing a highly similar address. To accomplish the goal, we pro-
pose an address similarity scoring mechanism to determine if two
addresses are highly similar. Speci�cally, our address similarity
scoring mechanism works as follows. We use a score to represent
the similarity of two addresses and continuously update the score
by comparing the hexadecimal characters of two addresses bidirec-
tionally. At the beginning, we compare the �rst and last characters
of two addresses and see if they are identical or similar. If so, we
increase the score by 2 and move to the next position (the second
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and the last second character) to continue the comparison process.
If only in one direction two characters are identical or similar, we
then increase the score by 1 and move to the next position in that
direction. The comparison process terminates until no characters
in both directions are identical or similar. When comparing hexa-
decimal characters, we consider that letters A-F are case insensitive
(A=a, B=b, etc.). In addition, we also consider the following three
number-to-letter pairs to be similar due to their visual similarity:
(0, “D”), (6, “b”), and (8, “B”). By applying our address similarity
scoring mechanism on a matched suspicious transfer and legitimate
transfer, we can assess whether they share a similar address. In this
work, we require that the �rst 2 characters and the last 2 characters
must be the same or similar in the matched transfers (threshold =
4). If their similarity score is above the threshold, we consider the
suspicious transfer as a phishing transfer.

When a phishing transfer is matched with multiple legitimate
transfers after �ltering by the similarity score, we further calculate
their block distance and retain the closest one. The reason for
keeping the closest legitimate transfer is that in this attack, the
attacker needs to include their phishing transfers right after the
legitimate transfer so that they can be adjacent in the victim’s
transfer history, leading to a high chance of deceiving the victim.

4.3.3 Si�ing benign addresses. After the above two steps, we end
up collecting multiple pairs of suspicious and legitimate transfers
that share an identical address and a similar address. Now, we can
locate the victim’s address (the identical address) and the phishing
address (the similar address in the suspicious transfer). However,
treating all the similar addresses in the suspicious transfers as
phishing can cause a new problem. That is, we could mistakenly
label a benign address that happens to meet all the requirements as
phishing. Indeed, in our initial results, we found that some benign
addresses (e.g., a popular address) were entered into the suspicious
transfers, either due to a coincidence or a mistake made by the
attacker, or even due to a countermeasure adopted by the attacker
for confusing a detection system. To solve this problem, we propose
to sift the similar addresses in the suspicious transfers as follows:
(1) if the similar address has not sent or received any transactions or
legitimate tokens at the time the suspicious transfer is emitted, we
deem it a phishing address; (2) for the other addresses not meeting
the �rst criteria (e.g., has sent or received transactions or legitimate
tokens), if all of their transactions were interacting with one or
another similar address in the suspicious transfers, we treat them as
phishing addresses. The �rst condition guarantees that the similar
address never appears in the blockchain at the time it was entered
into the suspicious transfer, giving us high con�dence that they
must be locally generated by the attacker. The second condition
ensures that attackers cannot evade our detection even if they use
multiple addresses to aggregate or distribute funds for payment
mixing or money laundering. With the two �ltering conditions,
we can ensure that benign addresses are removed and that all the
addresses left are indeed controlled by the attacker.

4.4 Evaluation of Poison-Hunter
To evaluate the performance of Poison-Hunter in detecting phishing
addresses involved in the address poisoning attack, we collected

Table 1: Evaluation of Poison-Hunter on the ground-truth
dataset.

Ground-truth Poison-Hunter

# Address Phishing (P) Benign (N) TP TN FP FN Precision Recall
5,890 1,154 5,729 1,154 0 161 100% 97.3%

Ethereum addresses from reliable sources to build a ground-truth
dataset and measure the precision and recall metrics.

Benign addresses:Due to the blockchain’s anonymity, it is chal-
lenging to attribute an address to an individual or entity. Hence, no
ground-truth benign address dataset is available. However, thanks
to Etherscan’s public label and name tag features, we can build our
own benign address dataset by downloading addresses with benign
public labels and name tags from Etherscan. The public labels and
name tags are added by Etherscan based on the publicly disclosed
information4. For this task, we leveraged Etherscan’s Label Word
Cloud API [14] to obtain labels and name tags related to decentral-
ized �nance (DeFi) and then chose the top 15 labels that own the
most addresses, including Aave, Bancor, Coinbase, Compound, etc.
We then selected the top 100 addresses within each label by the
number of transactions that transfer ERC-20 tokens. In total, we
obtained 1,154 benign addresses.

Phishing addresses: To collect phishing addresses, we com-
bined the reports from Etherscan and Forta [17], which are the only
two services that publish addresses involved in the address poison-
ing attack. Speci�cally, Etherscan has assigned the phishing address
a label of "Fake_Phishing" and published a note of "the address may
be attempting to impersonate a similar looking address" to warn
users. Similarly, Forta also published a phishing address dataset
involved in the address poisoning attack based on intelligence from
multiple detection bots. Indeed, Forta used a combined logic to de-
termine whether a reported address should be labeled as phishing,
including the detection bot’s trustworthiness, the manual analysis
result from the Forta community, the contracts deployed by the ad-
dress, and the address’s association with other phishing addresses,
etc. For this task, we combined the phishing addresses reported by
Etherscan and Forta to build our phishing address dataset. In total,
we collected 5,890 phishing addresses from them.

Evaluation results:We ran Poison-Hunter to detect phishing
addresses from our collected transfer events and compared the re-
sults with the ground-truth dataset. The evaluation result is shown
in Table 1. We can see that our Poison-Hunter did not label any
benign addresses as phishing, achieving a precision of 100%. For
the 5, 890 phishing addresses, Poison-Hunter detected 5, 729 of them,
leading to a recall of 97.3%. We randomly checked certain phish-
ing addresses missed by Poison-Hunter and found that they were
targeting less popular ERC-20 tokens such as TrueUSD [29] and
BUSD [8], which Poison-Hunter has not considered. Nevertheless,
the evaluation result on the ground-truth dataset still shows that
Poison-Hunter has achieved a good performance in detecting phish-
ing addresses involved in the address poisoning attack.

Coverage of Poison-Hunter:We also show the performance
of Poison-Hunter in uncovering new phishing addresses that Ether-
scan and Forta have missed. Speci�cally, we selected the 450K
4Etherscan assigns a corresponding label to an address that is claimed to be owned by
an entity or organization.
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(a) Legitimate transfers. (b) Phishing transfers.

Figure 4: Timeline of legitimate and phishing transfers in the lifespan of the address poisoning attack.

Table 2: Comparison of Poison-Hunter with existing services.

Poison-Hunter Covered by Existing Service
Forta (%) Etherscan (%)

# Address 450,844 33,685 / 7.5% 7 / 0.002%

phishing addresses Poison-Hunter detected from transfer events
emitted in June 2023 and then queried their status on Etherscan
and Forta. As shown in Table 2, Forta only �agged 7.5% (33,685)
of our reported addresses, while Etherscan only �agged 7 of them.
Such a result suggests that over 92.5% of phishing addresses were
uniquely detected by Poison-Hunter, indicating the strong potential
of Poison-Hunter in uncovering new phishing addresses involved
in the address poisoning attack.

5 Detection Results
We applied Poison-Hunter to analyze Ethereum blocks produced
fromAug. 2022 to Feb. 2024 (block number 14, 880, 000 to 19, 350, 000).
In total, we collected hundreds of millions of legitimate transfers,
tens of millions of phishing transfers, and millions of phishing ad-
dresses. Our analysis suggests that the earliest phishing transfer
dated back to Nov. 2022, and USDC and USDT tokens were the
predominant target of this attack due to their popularity, which
accounts for more than 95% of the phishing transfers. We thereby
focus on analyzing the phishing transfers targeting the USDC and
USDT tokens. Below, we illustrate the characteristics of our col-
lected phishing transfers and phishing addresses.

5.1 Characteristics of phishing transfers
We �rst show an overview of the collected phishing transfers and
the fake tokens in Table 3. Speci�cally, from the transfer events
emitted by legitimate USDC/USDT token contracts, we collected
42.3/82 million legitimate transfers transfers, 55K/222K phishing
dust-value transfers, as well as 1.78/6.07 million phishing zero-
value transfers. Then by combining the token symbol searching

and token validation approaches, we respectively detected 1,130
fake USDC tokens and 1,203 fake USDT tokens, and from which
1.22/5.43 million fake token transfers were identi�ed.

Table 3: Overview of collected token transfers.

# Legitimate
Transfers

# Phishing Transfers # Fake
TokensDust-value Zero-value Fake token

USDC 42.3M 55.4K 1.78M 1.22M 1,130
USDT 82.0M 221.9K 6.07M 5.42M 1,203
Total 124.3M 277.3K 7.85M 6.64M 2,333

Based on the results in Table 3, we can obtain several interesting
�ndings. First, the trading frequency of legitimate USDT is twice of
USDC, indicating that cryptocurrency holders have a higher inter-
est in trading USDT than trading USDC. Second, compared to USDC,
USDT has led to 3X to 4X more phishing transfers in dust-value,
zero-value, and fake token transfers due to having more legitimate
transfers. However, the fake tokens of USDC and USDT seem to
have a similar scale, both with more than 1,100 fake ERC-20 tokens
deployed on Ethereum. Third, the number of zero-value transfers
and fake token transfers is much larger than the dust-value trans-
fers, indicating that the attackers prefer to craft zero-value transfers
and fake token transfers. This can be explained as transferring dust-
value incurs a higher cost, rendering the attacker select the cheaper
options by transferring zero-value and fake tokens.

Timeline of phishing transfers: Fig. 4 presents the timeline
trend of legitimate and phishing transfers in di�erent months from
Nov. 2022 to Feb. 2024. We �rst show the monthly volume of le-
gitimate transfers in Fig. 4a. It can be seen that the number of
legitimate transfers in both USDT and USDC exhibited a similar
trend, with the peak occurring in Feb. 2023, followed by a sharp
decline towards May 2023. After that, legitimate transfers experi-
enced a steady growth towards Feb. 2024. In addition, in Fig. 4b,
which shows the monthly volume of phishing transfers, we also
have several interesting observations. First, the �gure shows that
the lifespan of dust-value transfers in both USDT and USDC was
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relatively short, which only spanned Dec. 2022 to Apr. 2023 and
reached a peak in Mar. 2023. After that, dust-value transfers were
no longer of the attacker’s interest. Second, we can see that the
trend of zero-value transfers in USDC and USDT seems to follow
the trend of the legitimate transfers, with the peak also occurring in
Feb. 2023, followed by a sharp decline towards Apr. 2023. Third, for
fake token transfers, the earliest transfer in both USDC and USDT
was in Mar. 2023, which was four months later than the earliest
zero-value transfer. Since then, the number of zero-value transfers
has decreased. Such an observation suggests that in Mar. 2023, the
attacker began to prioritize fake token transfers over zero-value
transfers. In addition, the two �gures indicate that the total number
of all three phishing transfers in each month was roughly 1/4 of
the legitimate transfers, implying that a legitimate transfer could
have a 25% chance of being targeted by the attacker.

Figure 5: The distribution of the block delay between the
matched legitimate transfers and phishing transfers.

Timeliness of phishing transfers: Since a phishing transfer
particularly targets a legitimate transfer included in the previous
blocks, it will be interesting to understand how promptly the at-
tacker was able to craft a phishing transfer upon �nding a suitable
legitimate transfer. To obtain the result, we calculate the block
distance between each matched legitimate transfer and phishing
transfer and summarize the distribution in Fig. 5. We can see that
the attacker was able to craft phishing transfers within 2 minutes
(⇡10 blocks) for more than 47% of legitimate transfers, and 22% of
phishing transfers were crafted in a delay between 2 and 20 minutes.
In contrast, only 7.56% of phishing transfers were crafted with a
delay of more than one day (⇡7,200 blocks). Such an observation
indicates that the attacker was able to craft phishing transfers for
most legitimate transfers in a small amount of time. For the cases
where the block delays were over one day, we suspect that it is
because when the attackers launched the attack, they also searched
legitimate transfers included in historical blocks instead of moni-
toring transfers in the current block, in the hope of targeting more
legitimate transfers and increasing the attack’s success rate.

Batched phishing transfers: We also analyzed the transac-
tions emitting the phishing transfer to see if a batching contract

Table 4: Overview of batched and non-batched phishing trans-
fers.

# Phishing
Transfers # Txs # Funding

Addrs
# Batching
Contracts

Tx Fee
(ETH/USD)

Batched 14.72M 1.50M 3,746 2,914 7,879.6 / 25.4M
Non-batched 50.0K 50.0K 4,823 N/A 39.5 / 127.5K

Total 14.77M 1.55M 8,422 2,914 7,918.2 / 25.5M

was used. Table 4 summarizes the analysis result. We can see that
over 14.72 million phishing transfers are created through batching
contracts, which accounts for 99.7% of the phishing transfers. Be-
sides, the attacker has deployed nearly 3,000 batching contracts
and utilized more than 3,700 funding addresses to send a total of
1.5 million transactions to batch the phishing transfers, which costs
the attacker over 7,800 ETH ($25.4 million USD) of transaction fee.
In comparison, only a tiny portion of the phishing transfers (0.3%)
are directly sent through a single transaction with 4,800 funding
addresses, which costs 39.5 ETH (127.5K USD). Based on the result,
we can see that without a batching contract, the attacker has to
spend an average of 2.55 USD to craft a phishing transfer. In con-
trast, using a batching contract reduces the average transaction fee
to 1.73 USD, saving the attacker’s cost by 32%. Such an advantage
has motivated the attacker to predominantly utilize batching con-
tracts. In addition, the total number of distinct funding addresses
in both batched and non-batched transfers is 8,422, implying that
(3,746+4,823) - 8,422 = 147 addresses have been utilized to send both
non-batched and batched phishing transfers.

5.2 Characteristics of phishing addresses
As described in Sec. 4, we can locate both the targeted benign
address and the phishing address from the matched legitimate and
phishing transfers. In total, we have extracted 6.09 million phishing
addresses and 1.44 million benign addresses targeted by the attacker,
as summarized in Table 5.

Overview: From Table 5, we can obtain several interesting in-
sights. First, the benign and phishing addresses contributed by
USDT are ⇡3X of USDC, which can be attributed to its larger num-
ber of phishing transfers. In addition, in both USDC and USDT,
the number of phishing addresses is ⇡4X of the number of benign
addresses, indicating that one benign address could be targeted
by four phishing addresses on average. Besides, by combining the
benign addresses and phishing addresses, we found that 0.12 mil-
lion benign addresses have been targeted by both USDC and USDT
phishing transfers, and 0.13 million phishing addresses have been
utilized to craft both USDC and USDT phishing transfers, indicating
that some attackers were actually monitoring multiple tokens’ legit-
imate transfers. Moreover, the table also presents the distribution of
the targeted benign addresses based on their role in the legitimate
transfer. The result shows that in 91% - 93% of USDC and USDT
legitimate transfers, the benign address served as the sender of the
transfer, indicating that compared to the receiver, the sender of
legitimate token transfers has a much higher probability of being
targeted by the attacker. This can be explained by the attacker’s
belief that the sender is more likely to make a subsequent transfer
to the same recipient after sending the �rst transfer. Indeed, it is
a common practice in the real world for cryptocurrency users to
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make a small transfer to a recipient before sending a large transfer
in order to validate the recipient. Therefore, attacking the sender
can increase the possibility that the sender may make a mistake
and transfer assets to the attacker, hence improving the attack’s
success rate.

Table 5: Overview of phishing addresses and the targeted
benign addresses.

# Benign # Phishing Role of Benign Address
Sender (%) Receiver (%)

USDC 0.45M 1.56M 92.7% 6.3%
USDT 1.11M 4.66M 91.4% 8.6%
Total 1.44M 6.09M NA NA

Figure 6: The distribution of address similarity score between
the phishing address and benign address.

Address similarity:We further analyzed the similarity between
the phishing and benign addresses to understand the attacker’s abil-
ity to generate highly similar phishing addresses. We applied our
address similarity scoring mechanism to all the matched phishing
and legitimate transfers. The similarity score distribution is shown
in Fig. 6. In both USDC and USDT phishing transfers, the similar-
ity scores of their phishing addresses bear a similar distribution
and vary between 4 and 20. In addition, their similarity scores do
not follow the normal distribution but center around two separate
ranges, one from 7 to 10 and the other from 13 to 16. We analyzed
phishing addresses in such two ranges and found a clear separation
in the timeline. Before Mar. 2023, all the similarity scores were
smaller than 14. After that, the similarity scores in the second range
(13 - 16) started accumulating. Such a separation in the timeline
may be explained by the change in Etherscan’s GUI. In early 2023,
Etherscan only displayed 14 hex characters (�rst 6 and last 8). Then
Etherscan expanded the address �eld to display 17 hex characters
(�rst 8 and last 9). We suspect such a change may have caused
attackers to generate phishing addresses with more similar char-
acters to benign ones. In our results, the total number of phishing

transfers falling into such two ranges is 10.5 million and 3.3 million,
which respectively account for 71.1% and 22.3% of the phishing
transfers, implying that the attacker can generate highly similar
addresses to impersonate a benign address, which could make them
di�cult to be distinguished by users.

5.3 Victim Transactions and Financial Loss
In this section, we discuss our analysis of the victim transactions
and the pro�ts gained by the attackers.

5.3.1 Identification of victim transactions. In general, there are
three types of victim transactions. The �rst type is a victim sends a
basic transaction that transfers Ether to the attacker. The second
type is a victim using a smart contract to internally transfer Ether.
The third type is a victim transfers legitimate ERC-20 tokens to the
attacker. To identify each type of victim transaction, we trace the
transaction history of the detected phishing addresses to search
for both external and internal transactions that transfer Ether to
them, as well as transactions that transfer legitimate ERC-20 to-
kens to them. After that, we group the collected transactions by
the phishing addresses. To remove false positives, we �lter the col-
lected transactions with the following conditions: (1) we remove a
transaction if it is sent by one of the phishing addresses or funding
addresses; (2) we remove a transaction if it is included earlier than
the earliest phishing transfer crafted from the phishing address.
After applying two conditions, we further verify the left transac-
tions and assign them to one of the following two categories if the
transaction sender meets the associated condition:

• Con�rmed victim transaction: The transaction sender
was targeted in one of the phishing transfers.

• Potential victim transaction: The transaction sender was
not targeted in the phishing transfers and only transferred
funds to the phishing addresses less than three times.

The reason we assign a transaction as a potential victim transaction
even though the sender was not targeted in the phishing transfer
is that a victim may own multiple addresses and use a di�erent
address not targeted in the phishing transfers to transfer funds to
the attacker. Moreover, we also assume that victims of this attack
cannot be deceived more than twice.

5.3.2 Overview of victim transactions. After tracing the transac-
tion history of each phishing address, we obtained two groups of
victim transactions, one group representing the con�rmed victim
transactions and the other group representing the potential victim
transactions. Below, we focus on discussing the analysis of the
con�rmed victim transactions.

Con�rmed victim transactions: Table 6 shows the statistics
of the con�rmed victim transactions and the pro�ts gained by the
phishing addresses. From the table, we can see that the majority of
victim transactions are transferring stablecoins (USDT/USDC) to
the attacker. There are more than 1,700 victim addresses that have
sent over 76 million stablecoins to 2,900 phishing addresses in 4,900
transactions, resulting in a �nancial loss of up to $76.79 million
USD. Among the 4,900 victim transactions, the minimal lost amount
is 5, and the maximum is 20 million (the Binance case reported
in [1]). The average and median lost amount is 15,500 and 500. In
addition to transferring stablecoins, we also found that over 200
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Table 6: Overview of con�rmed victim transactions and the associated �nancial loss.

Crypto
Asset

#Phishing
Addr.

#Victim
Addr.

#Victim
Txs

# Lost Amount Total USD Value
(Min⇠Max5)Total Min / Max / Mean / Median

USDT/USDC 2,925 1,715 4,963 76.79M 5 / 20M / 15.5K / 500 76.79M
ETH 1,485 205 1,680 3,231 0.0001 / 2,000 / 0.005 / 1.97 5.17M ⇠ 13.14M
Total 3,149 1,858 6,643 NA 81.96M ⇠ 89.93M

victim addresses have transferred more than 3,200 ETH to 1,400
phishing addresses through 1,600 transactions, leading to a �nancial
loss varying from $5.1 million to $14 million USD. The maximum
lost amount is 2,000 ETH. Based on the result, it can be seen that
the attacker’s primary pro�ts are stablecoins, which is reasonable
as the attacker only crafts token transfers to deceive users, who are
more likely to make subsequent token transfers rather than making
ETH transfers. By combining two categories of victim transactions,
we obtained over 1,800 unique victim addresses and 3,100 unique
phishing addresses. Such a result indicates that the attack’s suc-
cess rate is around (1,858/1.44M)⇡0.1%, and (1,715+205-1,858) = 62
victim addresses (3.3%) have sent both stablecoins and ETH to the
attacker, and (2,925+1,485-3,149) = 1,261 phishing addresses (40%)
have pro�ted in both stablecoins and ETH. Overall, the total lost
amount in two categories of victim transactions is worth $81.96 mil-
lion to $89.93 million USD. Compared to the attacker’s investment
of $25.5 million USD in the transaction fee, the attacker’s return on
investment (ROI) is above 220%.
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(a) Monthly victim transactions.
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(b) Monthly �nancial loss.

Figure 7: Timeline of victims’ transactions and �nancial loss
in the lifespan of the attack.

Timeline of victim transactions and �nancial loss:We show
the monthly victim transactions and lost amount in Fig. 7. From
Fig. 7a, we can see that the number of victim transactions in two
types of crypto assets almost stays stable in the entire lifespan of the
attack, except for a spike in Oct. 2023 totalingmore than 1,000 victim
transactions. However, as shown in Fig. 7b, the victims’ monthly
�nancial loss in two types of crypto assets does not follow a similar
trend. For USDC and USDT, the highest loss occurred in Aug. 2023,
which was caused by the Binance case. For ETH, the highest loss
happened in Jan. 2024, which was caused by the 2,000 ETH loss
case. Besides, for each type of crypto asset, its monthly lost amount
does not follow the trend of monthly victim transactions. This is
because the lost amount in victim transactions varied signi�cantly,
leading to a diversi�ed total lost amount in di�erent months.

Table 7: Overview of potential victim transactions and the
associated �nancial loss.

Crypto
Asset

#Phishing
Addr.

#Victim
Addr.

#Victim
Txs

# Total
Amount

Total USD Value
(Min⇠Max)

USDT/USDC 10,853 659 24,039 8.93M 8.93M
ETH 370 504 1,041 11,102 17.76M ⇠ 45.14M
Total 11,666 1,137 25,080 NA 26.69M ⇠ 54.07M

Potential victim transactions:We also present the statistics
of potential victim transactions in Table 7 and brie�y discuss the
result. We found that over 1,100 addresses have potentially lost
funds to the attacker. Among them, 650 addresses transferred more
than 8.9 million stablecoins to the phishing addresses, and over
500 addresses transferred more than 10,000 ETH. Compared to the
con�rmed victim transactions, potential victim transactions trans-
ferred more ETH to the phishing addresses. The total transferred
assets in potential victim transactions are worth $26 million to $54
million USD.

Summary:Overall, our analysis of the victim transactions yields
several interesting �ndings. First, the address poisoning attack
achieved a small success rate, as only 0.1% of the targeted addresses
have been successfully deceived and lost funds. However, despite
such a low success rate, a deceived victim could transfer a large
amount of assets to the attacker, leading to a signi�cant �nancial
loss. Second, the primary loss of victims is caused by stablecoins
such as USDC and USDT, which are also the attacker’s primary
target. Third, we found that some victims lost both stablecoins
and ETH to the attacker due to mistakenly copying the attacker’s
address from the phishing transfers. Lastly, the potential pro�ts of
the attacker reached ⇡$144 million USD, of which ⇡$90 million are
con�rmed from victims targeted in the phishing transfers. Such a
compelling result calls for a more comprehensive countermeasure
to mitigate such a phishing attack.

5.4 Attacker Clusters
Our previous analysis clearly shows that many phishing addresses
are likely controlled by the same entity, e.g., using the same funding
address or interacting with the same batching contract. Hence,
we can cluster the phishing addresses based on their associated
activities with other addresses in this attack. Below, we describe
our cluster criterion and present the cluster result.

Cluster criterion:We use the following conditions to cluster
the phishing addresses based on their associated activities: (1) if two
phishing addresses are utilized by the same funding address, we add
them along with the funding address to the same group; (2) if two

5We measure the min and max USD value based on the daily closure price of ETH
during this study.
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Table 8: The statistics of the top 4 attacker clusters.

Cluster # # Phishing
Addr.

Pro�ts
USDC/USDT ETH

1 4,608,594 60.65M 2,407.1
2 689,865 1.70M 1.2
3 276,235 3.70M 10.5
4 185,361 3.48M 651.4

Sum 5,958,322 69.86M 3,080.5

funding addresses have interacted with the same batching contract,
we merge their belonged groups; (3) if two batching contracts are
deployed by the same address, we merge their associated funding
and phishing addresses, and add the contract deployer to the group;
(4) if two phishing addresses in two groups are emitted by the same
fake token contract, we merge such two groups and add the fake
token deployer to the group; (5) if two groups have the same fake
token deployer, we merge such two groups.

Cluster result: By applying the above cluster criterion, our
result shows that 6 million phishing addresses are formed into 90
clusters, which account for 99.9% of the total phishing addresses.
For phishing addresses that do not form a cluster, we found most of
them come from the dust-value transfers where the funding address
is the same as the phishing address. Among the 90 clusters, there are
11 big clusters that all control more than 10,000 phishing addresses,
with the biggest one controlling over 4.6 million addresses. In these
11 clusters, we found the top 4 clusters all gained more than 1
million stablecoins. In Table 8, we show the number of controlled
addresses and the pro�ts gained by them. It can be seen that the
largest cluster is also the most pro�table one, which gained over 60
million stablecoins and 2,400 ETH, respectively accounting for 78.5%
and 74.5% of the total con�rmed pro�ts. For the other 3 clusters,
their pro�ts vary between 1.7 million and 3.5 million on stablecoins
and 1 to 652 on ETH. Overall, our clustered result suggests that
there are four attacker entities that collected nearly 92% of the total
con�rmed pro�ts on stablecoins and ETH, where the largest cluster
controlling 4.6 million addresses has pro�ted approximately 78% of
total con�rmed pro�ts.

5.5 Attacker’s Money Flow
In this section, we discuss the attacker’s money �ow during the lifes-
pan of the attack. As previously mentioned, the attacker typically
controls two sets of addresses, one serves as the funding address
and pays the transaction fee, and the other serves as the phishing
addresses to deceive victims. To analyze the attacker’s money �ow,
we downloaded the transaction history of the attacker’s funding ad-
dresses and phishing addresses. Speci�cally, for funding addresses,
we looked into the transactions that send funds to them. For phish-
ing addresses, we investigated the transactions that transfer funds
out. By tracing the transaction history of all the collected fund-
ing addresses and phishing addresses that have gained pro�ts, our
analysis suggests that the attacker’s money �ow actually follows a
common pattern, which is presented in Fig. 8.

As shown in the �gure, we found that the attacker actually pur-
chased ETH from mixing services such as Tornado Cash [25] to
top up the funding addresses. Because using those mixing services

Figure 8: The attacker’s money �ow in the lifespan of the
attack.

does not require users’ real identity, it protects the attacker’s pri-
vacy and anonymity. Then, the attacker uses the funding address
to craft phishing transfers and include the phishing address as the
payload in the transaction. When the phishing address gains pro�ts
from a victim, since the address does not have ETH to cover the
transaction fee, the attacker then transfers a small amount of ETH
from the funding address to the phishing address. After that, the
attacker sends transactions to move the pro�ted funds from the
phishing address to an aggregator contract, which then splits the
funds and swaps them on decentralized exchanges (DEX) such as
Uniswap [26] and 1inch [3] for other types of crypto assets. There-
after, the attacker transfers the swapped assets from the aggregator
contract to multiple withdrawer addresses. In the last step, each
withdrawer address interacts with centralized exchanges (CEX)
such as Binance [6] and Derbit [12] to cash out the crypto assets.
Based on such a money �ow pattern, we believe countermeasures
can be taken on the CEX site, as they require users’ identity to cash
out cryptocurrencies, which can provide assistance to help victims
recover the �nancial loss.

6 Discussion
6.1 Ethical Consideration
We have contacted Etherscan to report all the phishing addresses
identi�ed in this work in order to protect their users. Meanwhile,
we also reported the phishing addresses to the blockchain alerting
services such as Chainabuse [2] and HashDit [18]. We are currently
working on integrating our detection system with Forta to report
phishing addresses involved in this attack continuously. In this pa-
per, we also tried our best to protect the anonymity of the victim and
attacker by shortening their addresses presented in the case study
in Appendix A. Though the data we collected from the Ethereum
blockchain are already part of the public ledger, we also discarded
them after accomplishing the paper’s analysis and writing.

6.2 Robustness of Poison-Hunter
In this address poisoning attack, the key technique explored by the
attacker is to use a similar address to craft token transfer records
to poison a victim’s transfer history. In light of this feature, our
detection system relies on matching suspicious transfers with le-
gitimate transfers and comparing the address similarity to detect
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phishing addresses. However, due to the freedom of entering ar-
bitrary addresses into the phishing transfers, it is important for
a detection system to defend against the defamation attack. That
is, if the detection system �ags all similar addresses involved in
the suspicious transfers as phishing, then the attacker could de-
liberately enter benign addresses to slander them, rendering the
detection system mistakenly �ag benign addresses. Poison-Hunter
avoids this problem with the benign address sifting approach. In
this approach, we sift suspicious addresses by checking if they have
been activated (e.g., have sent or received transactions or tokens) at
the time they are entered into the suspicious transfer. The rationale
comes from the fact that if the attacker defames a benign address,
the address must have been activated on the blockchain so that the
attacker can �nd it. Hence, the benign address sifting approach can
help Poison-Hunter detect such a case and prevent the defamation
attack. While the attacker could enter a random address into the
phishing transfer, the random address is not actually owned by an
existing user and remains unknown who will own it in the future,
still making the defamation attack ine�ective. In addition, Poison-
Hunter also makes it hard for the attacker to evade future detection.
To evade detection, the attacker must transfer funds to the locally
generated address before launching the attack. However, this would
cause a substantial �nancial burden to the attacker due to the high
transaction cost incurred. For example, in order to activate all of
our detected addresses, the estimated cost can be 15 million USD.
Therefore, we believe the high monetary cost can prevent the at-
tacker from launching the attack on a large scale, which is the key
to the success of this attack.

6.3 Limitations of Poison-Hunter
While Poison-Hunter has detected millions of phishing transfers and
addresses, it also has the following limitations. First, Poison-Hunter
has focused on detecting phishing transfers from the top 50 ERC-20
tokens, which could miss the phishing transfers involved in some
less popular tokens, such as TrueUSD and BUSD, as indicated in
the evaluation results on the ground-truth dataset. However, the
problem can be solved by expanding the data collection sources
and adding those tokens to Poison-Hunter. Second, the purpose of
employing a benign address sifting procedure in Poison-Hunter is to
�lter out benign addresses and reduce the false positives. However,
this may cause some phishing addresses to be removed from our
dataset if they have been previously activated before being utilized
in the phishing activity. Hence, the scale of our detected phishing
addresses may not represent the full spectrum. Nevertheless, we
believe such cases are rare given the low success rate of this attack,
and the attacker has to generate a large number of inactivated
addresses. Third, for the pro�t analysis, we only consider ETH and
the two popular stablecoins, USDC and USDT. Therefore, if certain
victims have transferred other forms of cryptocurrencies to the
phishing addresses, the real pro�ts lost by the victims could be
even higher than what we reported in this paper.

6.4 Countermeasures
Here, we discuss the countermeasures already adopted by Etherscan
and recommend more comprehensive countermeasures.

As seen in this work, the attacker typically exploits the address
shortening feature employed by Web3 services such as Etherscan
and MetaMask. Given their dominant popularity, it is thus nec-
essary for them to take proactive countermeasures to protect its
users. Throughout this study, we observed that Etherscan adopted
gradually improved countermeasures. For example, in Aug. 2023,
Etherscan started to �ag fake tokens with red asterisks and pub-
lished a "low-reputation" text to warn users. Later, in Nov. 2023,
Etherscan began to warn users with the pop-up window when they
copy the address from transfer events emitted by a �agged fake to-
ken. Then, in Feb. 2024, Etherscan employed a new countermeasure,
which was to hide zero-value transfers and fake token transfers
for users. Users must tune the settings to display such suspicious
transfers on the website. However, we believe all of these coun-
termeasures can be easily bypassed if attackers use a self-de�ned
symbol in the token contracts, making it di�cult for Etherscan to
detect and �ag.

To more e�ectively mitigate this threat, we discuss more coun-
termeasures that could be adopted by Web3 services and individual
users. For example, Web3 services may redesign their graphical
user interface (GUI) to separate legitimate and suspicious trans-
fers instead of aggregating them together, which could reduce the
chance that users mistakenly copy a phishing address. One may
also suggest that Web3 services develop tools to better di�erentiate
Ethereum addresses, such as hashing the address with some ran-
domness or randomly displaying a part of the address. While these
tools can e�ectively mitigate the attack, they could hurt usability,
as it would be di�cult for users to locate their own addresses and
other benign addresses in the transaction history. In addition, we
recommend that cryptocurrency users take cautious actions when
copying and pasting addresses across di�erent services. It is always
a good strategy to verify each character and ensure the address
belongs to the desired recipient. Another countermeasure that users
may adopt is to request an Ethereum Name Record (ENR) for their
addresses and use it as a nickname to transfer assets, especially
when they need to transfer a large amount of assets or make regular
payments to the same recipient.

7 Related Work
Existing works have studied various phishing scams on public
blockchains, including Ponzi Schemes [34, 35, 37, 40, 47, 57], fraud-
ulent Initial Coin O�ering [43, 51, 52, 60], fake exchange scams [58],
phishings [33, 41, 45], giveaway scams [49, 50, 54, 57], honeypot
contract scams [42, 53], scam tokens [44, 59], and token theft [38].

Some of the existing works also proposed detection systems to
identify phishing addresses on the blockchain, including Chen et
al. [41], Chen et al. [39], and He et al. [45]. Speci�cally, Chen et
al. [41] and Chen et al. [39] have proposed to identify a phishing
address based on the address’s transaction graph on the blockchain
through di�erent machine learningmodels, such as Cascade Feature
Extraction Method and Graph Convolutional Networks. However,
it remains unknown whether they can be applied to detect the
phishing addresses involved in the address poisoning attack, as
the phishing addresses are typically inactive and just have a few
transactions recorded on the blockchain. The most relevant work
to Poison-Hunter is He et al. [45], which developed TxPhishScope to
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detect transaction-based phishing attacks launched on fake web-
sites. In this phishing attack, the victims are attracted to visit a
fake website and sign transactions that would send crypto assets to
the attacker. TxPhishScope detected such an attack by monitoring
Certi�cate Transparency Log [30] to identify suspicious domains
and then visiting the suspicious website to trigger the transac-
tion signing operations to detect phishing addresses. Compared
to the TxPhishScope, our detection system Poison-Hunter focuses
on a di�erent phishing attack in which the victims are deceived
by the phishing transfer records and copy the phishing address to
make a transfer. In addition, Poison-Hunter also employs di�erent
techniques to detect phishing addresses, including matching the
suspicious transfers with legitimate transfers and comparing the
similarity of the involved addresses.

8 Conclusion
In this paper, we present the �rst comprehensive analysis of the
Ethereum address poisoning attack, a new phishing activity that
has crafted more than 14 million phishing transfers from 6 million
phishing addresses. Our analysis shows that the attacker has tar-
geted 1.4 million benign addresses and pro�ted nearly $90 million
USD from more than 1,800 victims. Our work sheds light on the
scale and impact of the address poisoning attack on the Ethereum
blockchain, emphasizing an urgent need to e�ectively prevent such
a phishing activity.
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A Case Study
This section presents a case study on the top phishing addresses
that have made the most pro�ts. We rank the phishing addresses by
their pro�ts and show the top 10 pro�ted addresses of stablecoins
and ETH in Table 9 and Table 10.

Table 9: Top pro�ted phishing addresses by stablecoins.

Rank Address Pro�t (USDC/USDT)
1 0xa7bf4874******a9e90570 20,000,000
2 0xc7b14bd8******c9b33a8f 3,999,000
3 0x1cbb23db******269b758a 3,554,610
4 0x74c9bdbe******8560e1ca 2,030,000
5 0xbb2edba8******dd619455 2,000,000
6 0xcba796e8******1134c994 1,200,000
7 0x9cadec5b******4ebac282 1,107,010
8 0x73435a47******2bca79f7 1,045,150
9 0x9e5c0ec6******ea8671c3 1,000,992
10 0x80d707f2******7e4dbea2 1,000,000

Pro�ts of stablecoins: In Table 9, all 10 phishing addresses have
pro�ted at least 1 million stablecoins. Among them, 2 addresses col-
lected over 2 million stablecoins, 2 addresses collected over 3 million
stablecoins, and 1 address collected 20 million. The largest pro�t
was gained by 0xa7bf4874******a9e90570. The �nancial loss has
been reported on X (formerly Twitter) and con�rmed by Binance[1].
In this paper, we skip this case and analyze the second-highest �-
nancial loss (3.999 million) collected by the phishing address 0xc7b
14bd8******c9b33a8f. For this phishing address, we looked into
its transaction history and found that all of the pro�ts are collected
from one victim whose address is 0x02F35f52******524bE95D.
We investigated the victim’s transaction history and presented it in
Fig. 9.We found that the victim initially received a total of 20 million
USDC from GnosisSafeProxy[24] on Feb. 15, 2023. Then, on Mar.
1, 2023, and Mar. 9, 2023, each day, the victim transferred nearly
4 million USDC to 0xbab64A60******012FbdbF in 2 transactions,
with the �rst transaction transferring a small amount of 1,000 fol-
lowed by another transaction transferring 3.999 million. During

this period, no phishing transfer was sent by the attacker. Then,
on Mar. 22, 2023 at 12:02, the victim transfered another 1,000 to a
new recipient 0xc7b57d97******7E533a8F. Such a transfer was
observed by the attacker, who then immediately crafted a phishing
transfer at 12:06, using a highly similar address 0xC7B14bD8***
***c9B33A8f. Comparing such two recipient addresses, the �rst
3 and last 5 hexadecimal characters are the same. After, at 12:54
and 12:55, the victim respectively transferred 1.999 million and 2
million USDC to the attacker’s address, resulting in a total �nancial
loss of 3.999 million USD. After two hours, the victim realized the
mistake and the intended recipient address 0xc7b57d97******7E
533a8F did not receive the USDC, then the victim transferred 3.999
million USDC to the correct recipient address in 3 transactions,
respectively sending 0.999 million, 1 million, and 2 million USDC.
In this process, we can see that when sending a large amount of
UDSC, every time the victim would send a small amount to verify
the recipient before sending the large amount. In this case, after the
victim transferred the �rst 1,000 to the correct recipient address, the
attacker crafted a fake transfer with the same transferred amount.
Unfortunately, the victim was deceived and thought the attacker’s
address was the correct recipient. Then, the victim transferred the
remaining 3.999 million USDC to the attacker. However, there is no
way for the victim to recover the loss. So, the victim had to transfer
another 3.999 million USDC to the correct recipient address in 3
transactions. During these three transactions, though there were
new fake transfers targeting the victim, the victim already realized
the attack and never made the same mistake again.

Table 10: Top pro�ted phishing addresses by ETH.

Rank Address Pro�t (ETH)
1 0xba8ba758******2a05c0e6 2,000
2 0xbac63481******a32caeae 645
3 0x437eef72******a11a9117 130
4 0x70ad93d0******f846eef2 100
5 0x52a083a4******81a33a49 42.726452
6 0xaee355bd******6108fad4 38.837000
7 0x46ab2d74******70c58231 37.334990
8 0xe387029c******35ae0035 30
9 0xb9d472fc******d10a9b4b 20.335611
10 0x041c6�7******ee4db633 18.474804

Pro�ts of ETH: Table 10 shows the top 10 phishing addresses
that have pro�ted at least 18 ETH. Among them, 6 addresses col-
lected 18 to 43 ETH, 2 addresses collected over 100 ETH, 1 address
collected 645 ETH, and 1 address collected 2,000 ETH. The largest
pro�t was gained by 0xba8ba758******2a05c0e6. We looked into
this phishing address’s transaction history and found the loss was
from the victim 0x01BEF997******7cf83Ec0. Below, we illustrate
the phishing process against the victim in detail. We show both the
victim’s transaction history and token transfer history in Fig. 10. In
token transfer history, the victim initially transferred a total of 200K
USDC to the benign recipient address 0xbA83cE92******3305c0E
6 on Sep. 2, 2023. After a few minutes, the attacker crafted three
phishing transfers respectively in 6, 14, 17 blocks. All the recipient
addresses look highly similar to the benign recipient address. After
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Figure 9: The token transfer history of the victim address 0x02f35f52******524be95d.

Figure 10: The transaction and token transfer history of victim address 0x01BEF997******7cf83Ec0.

90 days, the victim received more than 4,999 ETH from 0xA7EFA
e72******8dD593f3. Then, in 33 days, the victim transferred 300
ETH to the same benign recipient address. Later on the same day,
the victim made a mistake and sent 2,000 ETH to the attacker’s
phishing address 0xba8ba758******2a05c0e6, which was copied
from the �rst phishing transfer. After 315 blocks (⇡1 hour), the
victim realized the mistake, and the benign recipient 0xbA83cE92*
*****3305c0E6 did not receive the ETH. So, the victim transferred

another 3,563 ETH to the benign recipient in one transaction. In
this case, the victim has previously interacted with the same be-
nign recipient in both token transfers and ETH transfers. However,
when the victim intended to make another ETH transfer to the
same benign recipient, the victim visited its token transfer history
and ended up copying the phishing address and sending ETH to it,
resulting in a �nancial loss.
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