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All real projective measurements can be 
self-tested

Ranyiliu Chen    1  , Laura Mančinska1 & Jurij Volčič    2

Entangled quantum systems feature non-local correlations that are stronger 
than could be realized classically. This property makes it possible to perform 
self-testing, the strongest form of quantum functionality verification, which 
allows a classical user to deduce the quantum state and measurements 
used to produce a given set of measurement statistics. While self-testing of 
quantum states is well understood, self-testing of measurements, especially 
in high dimensions, remains relatively unexplored. Here we prove that every 
real projective measurement can be self-tested. Our approach employs the 
idea that existing self-tests can be extended to verify additional untrusted 
measurements, known as post-hoc self-testing. We formalize the method 
of post-hoc self-testing and establish the condition under which it can be 
applied. Using this condition, we construct self-tests for all real projective 
measurements. We build on this result to develop an iterative self-testing 
technique that provides a clear methodology for constructing new self-tests 
from pre-existing ones.

Consider a scenario where a classical user, Victor, engages with a quan-
tum device by posing questions x ∈ ℐ  and receiving answers a ∈ 𝒪𝒪, 
where ℐ and 𝒪𝒪 are two finite sets of labels. Lacking any prior knowledge 
of the device’s internal workings, Victor models its behaviour as a state 
preparation |ψ〉, accompanied by quantum measurements {Ma∣x,∑aMa

∣x = I} where I is the identity matrix. In response to question x, the device 
executes measurement {Ma|x}a on the state |ψ〉 and outputs the result-
ing measurement output a. While it is straightforward to predict the 
device’s output statistics from |ψ〉 and {Ma∣x} using Born’s rule1 
p(a∣x) = 〈ψ∣Ma∣x∣ψ〉, it is impossible to deduce |ψ〉 and {Ma∣x} solely from 
the statistics p(a∣x). Indeed, different states |ψ〉 and {Ma∣x} can yield the 
same p(a∣x). In this setting, even a classical computer is always able to 
simulate the quantum process, if its running time is not limited.

Intriguingly, deducing the quantum functionality from the result-
ing classical statistics becomes possible in the so-called bipartite Bell 
scenario2,3 (Fig. 1). Here, Victor interacts with two spatially separated 
quantum devices, named Alice and Bob. He poses questions x ∈ ℐA and 
y ∈ ℐB  to Alice and Bob respectively, who in turn provide answers, 
a ∈ 𝒪𝒪A and b ∈ 𝒪𝒪B. While Alice and Bob cannot communicate during 
this interaction, they may share an entangled quantum state |ψ〉AB, 
which they can measure locally using measurements 

{Ma|x ∶ a ∈ 𝒪𝒪A, x ∈ ℐA} and {Nb|y ∶ b ∈ 𝒪𝒪B, y ∈ ℐB} to obtain outputs a 
and b. The statistics observed by Victor then follow the distribution 
p(a,b∣x,y) = 〈ψ∣Ma∣x ⊗ Nb∣y∣ψ〉. Some statistics p(a,b∣x,y) can exclusively 
be produced by a specific set of measurements {Ma∣x} and {Nb∣y} on a 
specific entangled state |ψ〉AB (up to a change of a local frame of refer-
ence). This phenomenon is known as self-testing4 and it relies on key 
features of quantum theory such as entanglement5 and incompatibility 
of measurements6. Self-testing represents the strongest form of veri-
fication as it requires minimal assumptions, namely, no-communication 
between Alice’s and Bob’s measuring devices and the validity of the 
quantum theory. In particular, in self-testing we do not require access 
to any trusted or fully characterized quantum devices, a condition also 
known as device independence7.

The quantum mechanical description of the devices in a bipartite 
Bell scenario is given by what we call a strategy. Formally, such a strategy 
𝒮𝒮 is a tuple:

𝒮𝒮 𝒮 (|ψ⟩AB, {Ma|x ∶ a ∈ 𝒪𝒪A, x ∈ ℐA}, {Nb| y ∶ b ∈ 𝒪𝒪B, y ∈ ℐB}) ,

where |ψ⟩AB ∈ ℋA ⊗ℋB  is the shared state and ℳx 𝒮 {Ma|x} ⊆ ℒ(ℋA)  
and 𝒩𝒩b 𝒮 {Nb| y} ⊆ ℒ(ℋB)  are the positive operator-valued measures 
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In general, the complex conjugated strategy (|ψ⟩AB, {Ma|x}, {Nb| y})   
cannot be obtained from the original strategy by a local change of basis. 
Unlike a change of reference frame, complex conjugation does not 
have a natural physical interpretation. Hence, complex conjugation is 
a fundamental obstruction to the verification of complex measure-
ments in the strongest possible sense in the standard two-party Bell 
scenario. To verify complex measurements, the usual approach is to 
weaken the self-testing definition and consider equivalence up to both 
the change of local frame of reference and the complex conjugate19–22. 
More generally, this approach aligns with the concept of convex 
self-testing23, allowing Alice and Bob to employ a convex combination 
of strategies (in the case of self-testing strategies with complex entries, 
a reference strategy and its complex conjugate). In this work our goal 
is to identify which measurements can be verified (self-tested) in the 
strongest form—that is, only up to a change of local frame of reference, 
which is not met by complex measurements. A recent work24 showed 
that only projective measurements fulfil this strict self-testing criterion. 
Our findings therefore offer a comprehensive self-testing protocol for 
all measurements that are potentially self-testable.

In this work we study the self-testing of measurements in a com-
prehensive (as opposed to example-based) manner, and provide initial 
general results for self-testing of measurements. Our specific contribu-
tions include the following:

First, we put forth a fully explicit self-testing protocol for any real 
projective measurement. Our construction has a question set of cubic 
size in d, the dimension of the measurement to be self-tested, and a 
constant-sized answer set. Our self-test is also robust to noise.

Second, we formalize the method of post-hoc self-testing and 
identify the condition for its application. Post-hoc self-testing occurs 
when we can extend a previously self-tested strategy to include an 
additional measurement. While there are sporadic examples of this 
method in the literature, a comprehensive understanding of this phe-
nomenon and when it occurs was lacking. To remedy this, we identified 
a condition under which an initial self-test of a given 𝒮𝒮 can be extended 
to include an additional ℳ. Applying this criterion to an initial strategy 
from recent work15 allows us to obtain our explicit self-testing construc-
tion for any real projective measurement.

Finally, we develop a new technique of iterative self-testing that 
involves the sequential application of post-hoc self-testing. Starting 
from any established self-test, we use Jordan algebra to characterize the 
set of measurements that can be verified via iterative self-testing. Itera-
tive self-testing is inspired by the formalization of post-hoc self-testing, 
and offers a way of developing new self-tests based on pre-existing ones.

Set-up
The observable picture of measurements
In many cases, especially when the measurement is projective (that is, 
all operators in the POVMs are projections), it can be more convenient 
to work with generalized observables than with operators of POVMs. 

(POVMs) of Alice and Bob respectively. Here ℋA/ℋB denotes the Hilbert 
space of Alice/Bob, and ℒ(ℋ) is the space of linear operators on ℋ . 
The resulting measurement statistics:

p(a,b|x, y) 𝒮 ⟨ψ|Ma|x ⊗ Nb| y|ψ⟩

is commonly referred to as correlation. In self-testing, we can recover 
the description of the state and measurements comprising 𝒮𝒮 from 
merely observing the measurement statistics p that it produces. So 
whenever self-testing holds, we can verify the involved state-preparation 
and measurement functionalities without any prior knowledge of the 
inner workings of the employed quantum devices. This leads us to the 
following fundamental question of self-testing:

Question. Which quantum states and which measurements can be 
self-tested?
In other words, the above question asks which state-preparation and 
measurement functionalities can be verified by a classical user with no 
access to trusted quantum devices. To verify (self-test) a given 
state-preparation or measurement functionality, we need to construct 
a strategy 𝒮𝒮 that incorporates this functionality and is moreover deter-
mined (self-tested) by the correlation it produces.

In the bipartite scenario, the question regarding self-testable 
states has been answered by a milestone result8 that allowed any pure 
bipartite entangled state to be self-tested. Recent work showed that in 
the network setting9 it is possible to self-test any entangled multiparty 
state10. In contrast to this relatively complete picture for self-testing of 
quantum states, the self-testing of general measurements has remained 
elusive. Existing protocols primarily focus on low-dimensional quan-
tum systems or specific higher-dimensional measurements. In the case 
of a two-level system, we know how to self-test Pauli measurements4, 
and subsequent work has shown that any two-dimensional projective 
measurement is self-testable11. In refs. 12,13 tensor-products of Pauli 
matrices were self-tested, and ref. 14 presented a self-test for a par-
ticular pair of d-output measurements. In refs. 15,16, constant-sized 
self-testing of measurements satisfying some special property is dem-
onstrated. The verification of measurements has also been considered 
in more general scenarios, including verification of POVM measure-
ments in one-sided device-independent settings17 and verification 
of entangled measurements in structured networks18. Self-testing of 
arbitrary higher-dimensional measurements in the standard bipartite 
Bell scenario, however, has remained out of reach.

The issue of complex measurements
If a strategy uses complex measurements (measurements with complex 
matrix entries in a Schmidt basis of the shared state), we can take the com-
plex conjugate to obtain a different strategy that yields the same statistics:

⟨ψ|Ma|x ⊗ Nb| y|ψ⟩ 𝒮 ⟨ψ|Ma|x ⊗ Nb| y|ψ⟩ .

Ma|x Ma|x

x

a

Nb|y

p(a,b |x,y)

y

b

|ψ�

Alice Bob
Produces

S

|ψ�~

Alice Bob
S

Self-tests
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~

Fig. 1 | Self-testing in a Bell scenario. Spatially separated, Alice and Bob perform local measurements on a shared state (left, described by 𝒮𝒮), giving rise to correlation 
p(a,b∣x,y). In the case of self-testing (right), Victor can classically verify Alice and Bob: the only way for Alice and Bob to produce the correct correlation is by adhering 
to the prescribed specification ̃𝒮𝒮.
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Given a POVM {Ma ∶ a ∈ [0, |𝒪𝒪A| − 1]}, its generalized observables are 
contractions given by:

A( j) ∶𝒮
|𝒪𝒪A|−1
∑
a=0

ωajMa, j ∈ [0, |𝒪𝒪A| − 1]

where ω 𝒮 ei2π/|𝒪𝒪A| . Note that {Ma} can be recovered from {A(j)} by 

Ma 𝒮
1

|𝒪𝒪A|
∑|𝒪𝒪A|−1
j=0 ω−ajA( j)x . So {A(j)} provides an alternative, yet full, 

description of the measurement {Ma}. One important property of gen-
eralized observables is that a measurement {Ma} is projective if, and 
only if, the corresponding A ≔ A(1) is a unitary matrix of order |𝒪𝒪A|  
(see ref. 25 for a proof; here, the order of A is the smallest integer n such 
that An = I). In this case A(j) = Aj is the jth power of A, implying that every 
projective measurement {Ma} is fully characterized by a single operator 
A = ∑aωaMa. Therefore, we call A the observable of {Ma} whenever {Ma} 
is a projective measurement.

In this work we specify quantum strategies by the tuple:

𝒮𝒮 𝒮 (|ψ⟩AB, {A
( j)
x ∶ x ∈ ℐA, j ∈ 𝒪𝒪A} , {B(k)y ∶ y ∈ ℐB, k ∈ 𝒪𝒪B}) ,

where A( j)x 𝒮 ∑|𝒪𝒪A|−1
a=0 ωa j

A
Ma|x , ωA 𝒮 ei2π/|𝒪𝒪A| , B(k)y 𝒮 ∑|𝒪𝒪B|−1

b=0 ωbk
B
Nb| y   

and ωB 𝒮 ei2π/|𝒪𝒪B|. The correlation is also conveniently specified via

{⟨ψ ||A
( j)
x ⊗ B(k)y

||ψ⟩}
j,k,x,y

𝒮 {∑
a,b
ωaj
A
ωbk
B
p(ab|xy)}

j,k,x,y

.

Furthermore, we call 𝒮𝒮 projective if all the measurements in 𝒮𝒮 are pro-
jective, and denote it by 𝒮𝒮 𝒮 (|ψ⟩AB, {Ax ∶ x ∈ ℐA}, {By ∶ y ∈ ℐB}) for sim-
plicity. In this work we shall present our results in terms of observables.

Self-testing
In a self-testing protocol the verifier Victor wishes to infer the underly-
ing quantum strategy from his observation of correlations, so it is 
desired that the strategy generating a given correlation is to some extent  
unique. However, there are at least two types of manipulation  
of the strategy that do not affect the correlation. First, if we only  
choose a different basis, then strategies 𝒮𝒮 𝒮 (|ψ⟩AB, {A

( j)
x }, {B(k)y })  and 

𝒮𝒮𝒮 𝒮 (UA ⊗ UB|ψ⟩AB, {UAA
( j)
x U†A}, {UBB

(k)
y U†B}) produce the same correla-

tion for any local unitaries UA,UB. Second, if we attach a bipartite auxiliary 
state |aux ⟩A′B′ on which the measurements act trivially, then strategies 

𝒮𝒮 𝒮 (|ψ⟩AB, {A
( j)
x }, {B(k)y }) and 𝒮𝒮𝒮 𝒮 (|aux ⟩A′B′⊗|ψ⟩AB, {I⊗ A( j)x }, {I⊗ B(k)y }) 

produce the same correlation. Motivated by the above two manipula-
tions, we say that ̃𝒮𝒮 is a local dilation of 𝒮𝒮 if up to a change of local bases 
𝒮𝒮 is ̃𝒮𝒮  plus some trivial auxiliary state. We are now ready to define 
self-testing.

Definition 1. A strategy ̃𝒮𝒮 𝒮 (||ψ̃⟩ , { ̃A( j)x }, { ̃B(k)y }) is self-tested if any strat-

egy 𝒮𝒮 𝒮 (|ψ⟩ , {A( j)x }, {B(k)y }) producing the same correlation as ̃𝒮𝒮 must be 

locally dilated to ̃𝒮𝒮; that is, up to change of local bases, A( j)x 𝒮 I⊗ ̃A( j)x , 

B(k)y  𝒮 I⊗ ̃B(k)y  and |ψ⟩ 𝒮 |aux ⟩ ⊗ ||ψ̃⟩ for some auxiliary state |aux ⟩.

Results
We begin by presenting our main result: the self-testing of any real pro-
jective measurement. Next, we introduce the methodology employed 
to establish this result and outline its proof. Lastly, we propose  
the method of iterative self-testing and offer a criterion for its  
application.

Self-testing of any real projective measurement
We now show how to self-test an arbitrary real projective measurement. 
Specifically, we construct the following self-tested strategy:

Theorem 1. Let |Φd⟩ 𝒮 ∑d−1
j=0 | jj⟩ /√d be the (canonical) maximally entan-

gled state in dimension d. For any d ≥ 2, we construct d-dimensional 

binary observables ̃T0,… , ̃Td(d+1)/2  such that for any d-dimensional  

real projective measurement given by its observable Õ, the strategy:

̃S 𝒮
⎛
⎜⎜
⎝
|ϕd⟩ ,

Alice’smeasurements

⏞⎴⎴⎴⏞⎴⎴⎴⏞{ ̃T0,… , ̃Td, Õ} ,
Bob’smeasurements

⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞{ ̃T0,… ̃Td, ̃Td+1,… , ̃Td(d+1)/2−1}
⎞
⎟⎟
⎠

is self-tested.
The binary observables ̃T0,… , ̃Td(d+1)/2−1  correspond to rank-1 

projections coming from vectors forming the standard (d + 1)-simplex 
centred at the origin (their explicit construction is described in Sup-
plementary Section 3.1). But let us briefly discuss a few key points about 
Theorem 1. First, the observables { ̃Tj} are independent of the specific 
d-dimensional observable Õ that Victor wishes to self-test, as long as 
d is fixed. One can therefore simultaneously incorporate several new 
projective measurements. Second, all ̃Tj  are binary measurements 
(have two outputs), which means that the size of the question set ℐA × ℐB 
is in O(d3), while the answer set is constant-sized. Third, the self-test 
from Theorem 1 is robust to noise: if a strategy produces a correlation 
close to that of ̃𝒮𝒮, then it must be close to ̃𝒮𝒮 up to a basis change and 
enlargement by some trivial auxiliary state. The robust version of 
Theorem 2 can be found in Supplementary Section 2.2.

Condition for post-hoc self-testing
The concept of post-hoc self-testing has been implicitly employed 
in previous works, such as self-testing of graph states26, randomness 
certification27,28 and one-sided self-testing17,29. A review paper30 sum-
marized this technique and referred to it as post-hoc self-testing. In this 
section, we formalize the idea of post-hoc self-testing and establish the 
necessary condition for its application.

In post-hoc self-testing we consider a scenario where we have 

self-tested strategy ̃𝒮𝒮 𝒮 (||ψ̃⟩ , { ̃A( j)x }x, { ̃B(k)y }y) , and we would like to 

self-test an additional measurement {Õ(ℓ)}, where ℓ denotes the out-
come of the additional measurement. We are interested to ask when 

{Õ(ℓ)}  can be self-tested by extending ̃𝒮𝒮. In particular, when is 
̃𝒮𝒮𝒮 𝒮 (||ψ̃⟩ , { ̃A( j)x }x, { ̃B(k)y , Õ(ℓ)}y) self-tested by the correlation it produces 

(Fig. 2)? As ̃𝒮𝒮 is self-tested, Alice has to honestly perform some meas-

urement that is a local dilation of { ̃A( j)x }, producing correlations 

{⟨ψ̃|( ̃A( j)x ⊗ Õ
(ℓ))|ψ̃⟩}x between ̃A( j)x  and Õ

(ℓ)
. Now if {⟨ψ̃|( ̃A( j)x ⊗ Õ

(ℓ))|ψ̃⟩}x 

can fully characterize {Õ(ℓ)} for all ℓ then Bob also has no choice but to 

honestly perform a local dilation of Õ
(ℓ)

, and ̃S𝒮 remains self-tested 

consequently. Whether {⟨ψ̃| ̃A( j)x ⊗ Õ
(ℓ)|ψ̃⟩}x fully characterizes Õ

(ℓ)
 will 

depend on { ̃A( j)x }, ||ψ̃⟩, and Õ
(ℓ)

. The following theorem provides a cri-
terion for post-hoc self-testing when the measurements are 
projective.

Theorem 2. A criterion for post-hoc self-testing. Let ̃𝒮𝒮 𝒮 (||ψ̃⟩ , { ̃Ax}x, { ̃By}y) 
be a self-tested projective strategy, and let Õ  be the observable of  
an L-output projective measurement. Then ̃𝒮𝒮𝒮 𝒮 (||ψ̃⟩ , { ̃Ax}x, { ̃By, Õ}y)  

remains self-tested, if the following holds: for each ℓ ∈ [0, L − 1], there 
exists a positive-definite operator Pℓ such that:

Õ
ℓ
Pℓ ∈ span ℂ {D ̃A j

xD ∶ x, j} , (1)

where D is the diagonal matrix D = diag(λ1, …, λd), and λj are the Schmidt 
coefficients of ||ψ̃⟩.

http://www.nature.com/naturephysics
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The key steps towards Theorem 2 are twisting the tracial inner 
product between operators with D, inducing a conformal pairing of 
vectors with Pℓ and then leveraging the metric properties of observa-
bles and isometries to recover Õ

ℓ
. While the positive definite Pℓ renders 

condition (1) nonlinear, its existence can be determined via 
semi-definite optimization.

While condition (1) can be checked through a semi-definite pro-
gram, the existential nature of Theorem 2 can make it cumbersome to 
work with in some applications. To address this issue, we present a 
closed-form variant of Theorem 2 for the special case where ||ψ̃⟩ 𝒮 |Φd⟩ 
is the maximally entangled state and ̃Ax  and Õ are binary measure-
ments. This particular form not only facilitates the proof of Theorem 1,  
but also proves useful in the context of iterative self-testing.

Proposition 3. A closed-form criterion for post-hoc self-testing. Let 
̃𝒮𝒮 𝒮 (|Φd⟩ , { ̃Ax}x, { ̃By}y)  be a self-tested projective strategy where { ̃Ax}x   

are binary, and let Õ be the observable of a binary real projective measure-
ment. Then ̃𝒮𝒮𝒮 𝒮 (||ψ̃⟩ , { ̃Ax}x, { ̃By, Õ}y)  remains self-tested whenever:

Õ ∈ sgn (spanℝ{I, ̃Ax ∶ x}),

where sgn is the extension of the sign function via functional  
calculus. Namely, it is given by sgn ∶ H 𝒮 ∑jλj ||vj⟩ ⟨vj|| ↦ ∑jsgn (λj) ||vj⟩ ⟨vj|| 

where {||vj⟩}j is an orthonormal basis of eigenvectors for H.

The proofs of Theorem 2 and Proposition 3 can be found in the 
Supplementary Information. We note that the sgn function is crucial, 
as it produces observables outside the span.

Proof outline of Theorem 1
The self-testing result of Theorem 1 follows by applying Proposition 3 
to an initial self-tested strategy chosen from ref. 15. Specifically, in ref. 
15 the authors show that the strategy:

̃𝒮𝒮(0) 𝒮 (|Φd⟩ , { ̃Tx}
d

x=0, { ̃Ty}
d

y=0)

is robustly self-tested. Here ̃Tj are certain binary observables, the same 
as the ones in Theorem 1. We introduce the following additional observ-
ables for Bob:

{ ̃Ty}
d(d+1)

2
−1

y=d+1 𝒮 {sgn ( ̃Tj + ̃Tk) ∶ 1 ≤ j < k ≤ d } ⧵ {sgn ( ̃T1 + ̃T2)}.

We then use Proposition 3 to conclude that the extended strategy:

̃𝒮𝒮(1) 𝒮 (|Φd⟩ , { ̃Tx}
d

x=0, { ̃Ty}
d(d+1)

2
−1

y=0 )

remains self-tested.
Next we show that the observables on Bob’s side from strategy  

̃𝒮𝒮(1) span the space of all d × d symmetric matrices. Therefore, for any 

binary observable Õbinary, we have Õbinary ∈ sgn (spanℝ{I, ̃Ty}
d(d+1)

2
−1

y=0 ). 

By incorporating Õ into Alice’s set of observables, the strategy:

̃𝒮𝒮(2) 𝒮 (|Φd⟩ , { ̃Tx, Õbinary}
d

x=0, { ̃Ty}
d(d+1)

2
−1

y=0 )

remains self-tested. Finally, if any binary observable can be self-tested, 
then any multiple-output one can also be self-tested by regarding it as 
a collection of binary observables. Specifically, given any L-output observ-

able Õ 𝒮 ∑L−1
a=0 e

i2πa/LM̃a, consider binary observables {2M̃a − I }
L−1
a=0. As 

every binary observable 2M̃a − I can be self-tested, Õ can be self-tested 
as well. This holds for any L≥2, so we conclude that:

̃𝒮𝒮(3) 𝒮 (|Φd⟩ , { ̃Tx, Õ}
d

x=0, { ̃Ty}
d(d+1)

2
−1

y=0 )

is self-tested for any d-dimensional real projective measurement Õ, 
thus finishing the proof of Theorem 1.

Iterative self-testing
In the proof of Theorem 1 we sequentially applied post-hoc self-testing 
two times to get the final self-testing protocol. In general, given initial 
strategy ̃𝒮𝒮 𝒮 (Φd, { ̃Ax}, { ̃By}), if we post-hoc self-test Õ ∈ sgn (span {I, ̃Ax}) 
on Bob’s side, then we can use { ̃By, Õ}  to post-hoc self-test another 
measurement Õ𝒮 ∈ sgn (span {I, ̃By, Õ}) for Alice. By doing this in several 
rounds, starting from a small set of observables { ̃Ax} we may eventually 
self-test many additional observables. We call this process iterative 
self-testing. A priori it is unclear exactly which measurements can be 
reached starting from a fixed self-tested strategy ̃𝒮𝒮 after many rounds 
of iterative self-testing. The main goal of this section is to provide an 
easy-to-use criterion for a measurement Õ to be reachable after an 
arbitrary number of rounds of iterative self-testing.
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Fig. 2 | Post-hoc self-testing. Starting from a self-tested strategy ̃𝒮𝒮 (left), if it is feasible to infer the new measurement Õ
(ℓ)

 with input ynew and output ℓ from 
correlations {⟨ψ|A( j)x ⊗O(ℓ)|ψ⟩}, then extended strategy ̃𝒮𝒮′ (right) remains self-tested.
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Given an initial strategy ̃𝒮𝒮 𝒮 (|Φd⟩ , { ̃Ax}, { ̃By}) , let Sj be the set of 
binary observables that can be obtained in the jth iteration of post-hoc 
self-testing via Proposition 3. Note that S1 𝒮 sgn (spanℝ{I, ̃Ax ∶ x}) and 
Sj+1 𝒮 sgn (spanℝ(Sj))  for j ≥ 1. Furthermore, we have Sj ⊆ Sj+1 since 
sgn (Õ) 𝒮 Õ for any binary observable Õ. Therefore, by iteratively using 
this technique, we enlarge the set of self-tested binary observables, Sj, 
in each step.

Define Vj ∶𝒮 spanℝ(Sj) . Then {Vj}j is an increasing sequence of 
subspaces of the finite-dimensional real Hermitian matrix space, Hd(ℝ), 
and eventually stabilizes at V∞ 𝒮 limj→∞ Vj. Given initial binary observa-
bles { ̃Ax}, { ̃By} , it is natural to ask: what is V∞? In the Supplementary 
Information we show that V∞ is the real Jordan algebra generated by 
{ ̃Ax} (ref. 31). Recall that a (unital) Jordan algebra is a vector subspace 
of an associative algebra that contains the identity and is closed under 
the Jordan product a ⋆ b 𝒮 1

2
(ab + ba).

This yields the following theorem:

Theorem 4. Let ̃𝒮𝒮 𝒮 (|Φd⟩ , { ̃Ax}, { ̃By})  be a self-tested strategy using 
maximally entangled state and binary real projective measurements.  
A binary real projective measurement Õ can be iteratively self-tested if 
Õ ∈ 𝒥𝒥𝒥𝒥({ ̃Ax}), where 𝒥𝒥𝒥𝒥({ ̃Ax}) is the real Jordan algebra generated by 
{ ̃Ax}. Moreover, the upper bound on the number of the iterations is deter-
mined by ⌈2log2d ⌉.

To argue about many-output (rather than just binary-output) 
measurements, we can proceed in a manner similar to that used in the 
proof of Theorem 1. This leads us to conclude that every L-output 
measurement {M̃ℓ, ℓ ∈ [0, L − 1]} satisfying:

M̃ℓ ∈ 𝒥𝒥𝒥𝒥({ ̃Ax}) ∀ℓ ∈ [0, L − 1]

can be iteratively self-tested when starting from a self-tested strategy 
̃𝒮𝒮. In particular, if 𝒥𝒥𝒥𝒥({ ̃Ax}) 𝒮 Hd(ℝ) , that is{ ̃Ax}  generates the whole  

real Jordan algebra of symmetric d × d matrices, then every 
d-dimensional measurement can be self-tested. We show that the con-
dition 𝒥𝒥𝒥𝒥({ ̃Ax}) 𝒮 Hd(ℝ) is equivalent to { ̃Ax} having a trivial centralizer, 
which can be checked efficiently.

Discussion
We have addressed the problem of self-testing an arbitrary real pro-
jective measurement by constructing a self-testing protocol using 
binary measurements and maximally entangled states. Our protocol 
remains the same for any real projective measurement, provided 
that the dimension d is fixed. The protocol has a O(d3)-sized question 
set and a constant-sized answer set. We show that our protocol is, in 
principle, robust. While the obtained robustness could be sufficient 
for further theoretical results, our analysis is not tight enough to 
tolerate realistic noise in current experiments. To obtain experimen-
tally relevant robustness, one should perform a tailored analysis of a 
carefully selected set-up, as it is highly unlikely that any analysis that 
applies to arbitrary set-ups will ever be sufficiently tight for experi-
mental purposes.

Another contribution of this work is the technique of iterative 
self-testing. This offers a convenient method for establishing new 
self-tests based on pre-existing ones. Our results show that the set of 
self-testable observables includes the real Jordan algebra generated 
by the observables that we use for iterative self-testing.

We leave a few open questions and improvements for future 
work. Now that we know that all real projective measurements can be 
self-tested, one outstanding challenge is to enhance the efficiency—
specifically, the size and robustness of the protocols. It is known that 
some high-dimensional states and measurements admit constant-sized 
self-tests (for example, see refs. 15,16 and refs. 14,32 with constant-sized 
question sets). Is it the case that all states and measurements can be 
self-tested by a constant-sized protocol? Another open question is 
whether numerical techniques, such as the numerical swap method33, 

could yield better robustness estimates when our protocol is applied 
to concrete target measurements. This could have applications in 
verifiable distributed quantum computation34.

Lastly, from a theoretical standpoint, iterative self-testing is appli-
cable to strategies with partially entangled states, but the underlying 
algebraic structure remains to be understood. It would also be interesting 
to explore beyond the two-party Bell scenario and investigate whether 
there are more general scenarios that allow self-testing of complex 
measurements in a stronger sense, for example, where only a measure-
ment and its conjugate are allowed but not any combination of them35,36.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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