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Entangled quantum systems feature non-local correlations that are stronger
than could be realized classically. This property makes it possible to perform
self-testing, the strongest form of quantum functionality verification, which

allows a classical user to deduce the quantum state and measurements

used to produce agiven set of measurement statistics. While self-testing of
quantum states is well understood, self-testing of measurements, especially
in high dimensions, remains relatively unexplored. Here we prove that every
real projective measurement can be self-tested. Our approach employs the
idea that existing self-tests can be extended to verify additional untrusted
measurements, known as post-hoc self-testing. We formalize the method

of post-hoc self-testing and establish the condition under which it can be
applied. Using this condition, we construct self-tests for all real projective
measurements. We build on this result to develop aniterative self-testing
technique that provides a clear methodology for constructing new self-tests
from pre-existing ones.

Considerascenario whereaclassical user, Victor, engages with aquan-
tum device by posing questions x € J and receiving answers a € O,
where 7and O are two finite sets of labels. Lacking any prior knowledge
ofthedevice’sinternal workings, Victor modelsits behaviour asastate
preparation |¢), accompanied by quantum measurements {M,,,,> M,
=} where/istheidentity matrix. Inresponse to questionx, the device
executes measurement {M,|,}, on the state |¢) and outputs the result-
ing measurement output a. While it is straightforward to predict the
device’s output statistics from |¢) and {M,,} using Born’s rule’
plalx) = (P|M,,|p), itisimpossible to deduce ) and {M,,} solely from
the statistics p(a|x). Indeed, different states |¢)) and {M,,,} canyield the
same p(a|x). Inthis setting, even a classical computer is always able to
simulate the quantum process, if its running time is not limited.
Intriguingly, deducing the quantum functionality from the result-
ing classical statistics becomes possible in the so-called bipartite Bell
scenario® (Fig. 1). Here, Victor interacts with two spatially separated
quantumdevices, named Alice and Bob. He poses questions x € J,and
y € Jp to Alice and Bob respectively, who in turn provide answers,
a € O, and b € Og. While Alice and Bob cannot communicate during
this interaction, they may share an entangled quantum state ()5,
which they can measure locally using measurements

{Mgx : a € Op,x € Tp}and {Ny), : b € g,y € Jg} to obtain outputs a
and b. The statistics observed by Victor then follow the distribution
pla,blx,y) = (WM, ® Ny, lh). Some statistics p(a,blx,y) can exclusively
be produced by a specific set of measurements {M,,} and {N,,} ona
specific entangled state |¢) 5 (up to a change of alocal frame of refer-
ence). This phenomenon is known as self-testing* and it relies on key
features of quantum theory such as entanglement’ and incompatibility
of measurements®. Self-testing represents the strongest form of veri-
ficationasit requires minimal assumptions, namely, no-communication
between Alice’s and Bob’s measuring devices and the validity of the
quantumtheory. In particular, in self-testing we do not require access
toany trusted or fully characterized quantum devices, acondition also
known as device independence’.

The quantum mechanical description of the devicesin abipartite
Bellscenariois given by what we call astrategy. Formally, such astrategy
Sisatuple:

8 = (1)ag- My : @ € Op,x € TpL{Nyjy : b € O,y € Tg}),

where [(),,; € H, ® Fg is the shared state and M, = (M} C L(H,)
and 2V, = {Np,} € £(¥(g) are the positive operator-valued measures
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Fig.1|Self-testing in a Bell scenario. Spatially separated, Alice and Bob perform local measurements on a shared state (left, described by 8), giving rise to correlation
p(a,b|x,y). Inthe case of self-testing (right), Victor can classically verify Alice and Bob: the only way for Alice and Bob to produce the correct correlationis by adhering

tothe prescribed specification S.

(POVMs) of Aliceand Bob respectively. Here #¢, /Ftgdenotes the Hilbert
space of Alice/Bob, and £(() is the space of linear operators on 7(.
The resulting measurement statistics:

p(a, b|x’y) = <¢|Ma|x ® Nb|y|(p>

iscommonly referred to as correlation. In self-testing, we can recover
the description of the state and measurements comprising S from
merely observing the measurement statistics p that it produces. So
whenever self-testing holds, we can verify theinvolved state-preparation
and measurement functionalities without any prior knowledge of the
inner workings of the employed quantum devices. Thisleads us to the
following fundamental question of self-testing;:

Question. Which quantum states and which measurements can be
self-tested?

In other words, the above question asks which state-preparation and
measurement functionalities can be verified by a classical user with no
access to trusted quantum devices. To verify (self-test) a given
state-preparation or measurement functionality, we need to construct
astrategy Sthatincorporatesthis functionality and ismoreover deter-
mined (self-tested) by the correlation it produces.

In the bipartite scenario, the question regarding self-testable
states has been answered by a milestone result® that allowed any pure
bipartite entangled state to be self-tested. Recent work showed thatin
the network setting’ it is possible to self-test any entangled multiparty
state'. In contrast to this relatively complete picture for self-testing of
quantum states, the self-testing of general measurements has remained
elusive. Existing protocols primarily focus on low-dimensional quan-
tumsystems or specific higher-dimensional measurements. In the case
of a two-level system, we know how to self-test Pauli measurements®*,
and subsequent work has shown that any two-dimensional projective
measurement is self-testable™. In refs. 12,13 tensor-products of Pauli
matrices were self-tested, and ref. 14 presented a self-test for a par-
ticular pair of d-output measurements. In refs. 15,16, constant-sized
self-testing of measurements satisfying some special property is dem-
onstrated. The verification of measurements has also been considered
in more general scenarios, including verification of POVM measure-
ments in one-sided device-independent settings"” and verification
of entangled measurements in structured networks'®, Self-testing of
arbitrary higher-dimensional measurementsin the standard bipartite
Bell scenario, however, has remained out of reach.

Theissue of complex measurements

Ifastrategy uses complex measurements (measurements withcomplex
matrix entriesinaSchmidtbasis of the shared state), we can take the com-
plexconjugate to obtain adifferentstrategy thatyields the same statistics:

($IMoix ® Ny ) = ($IMajx ® Ny |h)

In general, the complex conjugated strategy (|¢),g, {Mapx}. {Ns|, D)

cannot be obtained fromthe original strategy by alocal change of basis.
Unlike a change of reference frame, complex conjugation does not
have anatural physical interpretation. Hence, complex conjugationis
afundamental obstruction to the verification of complex measure-
ments in the strongest possible sense in the standard two-party Bell
scenario. To verify complex measurements, the usual approach s to
weaken the self-testing definition and consider equivalence up toboth
the change of local frame of reference and the complex conjugate' 2,
More generally, this approach aligns with the concept of convex
self-testing®, allowing Alice and Bob to employ a convex combination
of strategies (in the case of self-testing strategies with complex entries,
areference strategy and its complex conjugate). In this work our goal
is to identify which measurements can be verified (self-tested) in the
strongest form—that s, only up toachange of local frame of reference,
which is not met by complex measurements. A recent work** showed
that only projective measurements fulfil this strict self-testing criterion.
Our findings therefore offer acomprehensive self-testing protocol for
all measurements that are potentially self-testable.

In this work we study the self-testing of measurements in a com-
prehensive (as opposed to example-based) manner, and provide initial
general results for self-testing of measurements. Our specific contribu-
tionsinclude the following:

First, we put forthafully explicit self-testing protocol for any real
projective measurement. Our construction has a question set of cubic
size in d, the dimension of the measurement to be self-tested, and a
constant-sized answer set. Our self-test is also robust to noise.

Second, we formalize the method of post-hoc self-testing and
identify the condition for its application. Post-hoc self-testing occurs
when we can extend a previously self-tested strategy to include an
additional measurement. While there are sporadic examples of this
methodintheliterature,acomprehensive understanding of this phe-
nomenon and whenitoccurs waslacking. Toremedy this, weidentified
acondition under whichaninitial self-test of agiven S canbe extended
toinclude anadditional M. Applying this criterion to aninitial strategy
fromrecent work® allows us to obtain our explicit self-testing construc-
tion for any real projective measurement.

Finally, we develop a new technique of iterative self-testing that
involves the sequential application of post-hoc self-testing. Starting
from any established self-test, we useJordan algebrato characterize the
set of measurements that canbe verified viaiterative self-testing. Itera-
tive self-testingis inspired by the formalization of post-hoc self-testing,
and offers away of developing new self-tests based on pre-existing ones.

Set-up

The observable picture of measurements

Inmany cases, especially when the measurement is projective (thatis,
alloperatorsinthe POVMs are projections), it can be more convenient
to work with generalized observables than with operators of POVMs.
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GivenaPOVM {M, : a € [0,]|0,| — 1]}, its generalized observables are
contractions given by:

[0al-1
Z wajMa’j € [O’ |OA| - 1]
a=0

A(I) =

where w = e2v191, Note that {M,} can be recovered from {49} by

M, = Z‘O*“ ! w94 . S0 {A%} provides an alternative, yet full,

Op
descrllptllon ofthe measurement {M,}. Oneimportant property of gen-
eralized observables is that a measurement {M,} is projective if, and
only if, the corresponding A := A” is a unitary matrix of order |0,]
(seeref.25foraproof; here, the order of Aisthe smallestinteger nsuch
thatA"=/).Inthis case A” = A is the jth power of A, implying that every
projective measurement {M,} is fully characterized by a single operator
A=Y .0°M,. Therefore, we call A the observable of {M_} whenever {M,}
isa projective measurement.

In this work we specify quantum strategies by the tuple:

A ) .
S = (|¢>AB,{A§’) IXETJE OA},{BJ(,) :y€ETgke OB}),
where A = Z|0A| -1 ZjMa\x @y = 210l Bﬁk) - L‘iﬁo‘—l WO Ny,

and wg = 2%, The correlation is also conveniently specified via

[{el? @87 ]0)}

Jj.k.x.y

{E 0o ”kp(ablxw}

Jokx.y

Furthermore, we call 8 projectiveif all the measurementsin S are pro-
jective,anddenoteitby 8 = (|)),g. {Ay : X € Iz}, {B, : y € Jg})forsim-
plicity. Inthis work we shall present our results in terms of observables.

Self-testing

Inaself-testing protocol the verifier Victor wishes to infer the underly-
ing quantum strategy from his observation of correlations, so it is
desiredthat the strategy generating agiven correlation is to some extent
unique. However, there are at least two types of manipulation
of the strategy that do not affect the correlation. First, if we only
choose a different basis, then strategies 8 = (|)g. {A,((f)}, {Bj(,k)}) and

8 =Uy® UB|(,0>AB,{UAA)(/)UZ},{UBBJ(,k)U;})produce the same correla-

tionforany localunitaries U,,Us. Second, if we attach abipartite auxiliary
state |aux ), 5, on which the measurements act trivially, then strategies

8 = (1Pap. (AL 1B D and 8 = (Jaux )5, @), 1 ® AL {1 @ BY})
produce the same correlation. Motivated by the above two manipula-
tions, we say that §isalocal dilation of Sif up toachange of local bases
8 is § plus some trivial auxiliary state. We are now ready to define
self-testing.

Definition1. Astrategy § = (|¢), {A(j)} {B;k)})is self-testedifany strat-

egy S = (|¢), {A(’)} {B(k)})producmgthesamecorrelation as S mustbe

locally dilated to §; thatis, up to change of local bases, A(D = I®A(D

BY = 1@ B} and |g) =

laux ) ® |) for some auxiliary state [aux ).
Results

Webeginby presenting our mainresult: the self-testing of any real pro-
jectivemeasurement. Next, we introduce the methodology employed
to establish this result and outline its proof. Lastly, we propose
the method of iterative self-testing and offer a criterion for its
application.

Self-testing of any real projective measurement
We now show how to self-test anarbitrary real projective measurement.
Specifically, we construct the following self-tested strategy:

Theoreml. Let|®,) = 2}:01 i) \dbethe (canonical) maximally entan-
gled state in dimension d. For any d = 2, we construct d-dimensional
binary observables Ty, ..., Tyqs1y/2 Such that for any d-dimensional

real projective measurement given by its observable O, the strategy:

G
Alice s measurements Bob’s measurements

{To,.... T4, O} Ty, ...

Ta Tarts o Taarnyn—1}

S=|1pq).

is self-tested.

The binary observables T, ..., Tyq41)2-1 correspond to rank-1
projections coming from vectors forming the standard (d +1)-simplex
centred at the origin (their explicit construction is described in Sup-
plementary Section 3.1). Butlet us briefly discuss a few key points about
Theorem 1. First, the observables {7}} are independent of the specific
d-dimensional observable O that Victor wishes to self-test, as long as
dis fixed. One can therefore simultaneously incorporate several new
projective measurements. Second, all f} are binary measurements
(have two outputs), whichmeans that the size of the questionset 7, x 7
is in O(d®), while the answer set is constant-sized. Third, the self-test
fromTheorem1isrobusttonoise:if astrategy producesacorrelation
close to that of 8, then it must be close to § up to a basis change and
enlargement by some trivial auxiliary state. The robust version of
Theorem 2 can be found in Supplementary Section 2.2.

Condition for post-hoc self-testing
The concept of post-hoc self-testing has been implicitly employed
in previous works, such as self-testing of graph states®®, randomness
certification””® and one-sided self-testing""*’. A review paper*’ sum-
marized this technique and referred to it as post-hoc self-testing. In this
section, we formalize the idea of post-hoc self-testing and establish the
necessary condition for its application.

In post-hoc self-testing we consider a scenario where we have

self-tested strategy § = (|¢), {A(j)}x, {B;k)}y) , and we would like to

(¢
self-test an additional measurement {0( )}, where ¢ denotes the out-
come of the additional measurement. We are interested to ask when

{O(e)} can be self-tested by extending 8. In particular, when is

= () 1A 1B

(Flg. 2)? As S is self-tested, Alice has to honestly perform some meas-

0<€>}y)self-tested by the correlationit produces

urement that is a local dilation of {/i(])} producing correlations

(BIAY @ 0y, between AP and 0 Nowif (|4 ® 0y},

canfully characterize {0 }for all£thenBob also has no choice but to

S (¢ & .
honestly perform a local dilation of 0( ), and $' remains self-tested

()

consequently. Whether{(tp|A ® O |1i))} fully characterizes 0(€)will

depend on {A(j)} D), andO The following theorem provides a cri-
terion for post-hoc self-testing when the measurements are
projective.

Theorem 2. A criterion for post-hoc self-testing.Let § = (|() ,{A,},.. {B)})
be a self-tested projective strategy, and let O be the observable of
an L-output projective measurement. Then §' = (|),{A,},.{B,,0})
remains self-tested, if the following holds: for each £ € [0, L - 1], there
exists a positive-definite operator P,such that.

O P, € span ¢ {D/L{D : x,j}, o

whereDisthediagonal matrix D = diag(4,, ...,
coefficients of | ).

A, and A;arethe Schmidt
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Fig.2|Post-hocself-testing. Starting from a self-tested strategy § (left), if it is feasible to infer the new measurement O(e) withinputy,., and output £ from
correlations {((p|A)((f) ® 0©|y)}, then extended strategy 8’ (right) remains self-tested.

The key steps towards Theorem 2 are twisting the tracial inner
product between operators with D, inducing a conformal pairing of
vectors with P,and then leverageing the metric properties of observa-
blesand isometries torecover O . While the positive definite P,renders
condition (1) nonlinear, its existence can be determined via
semi-definite optimization.

While condition (1) can be checked through a semi-definite pro-
gram, the existential nature of Theorem 2 can make it cumbersome to
work with in some applications. To address this issue, we present a
closed-formvariant of Theorem 2 for the special case where | ) = |®,)
is the maximally entangled state and A, and O are binary measure-
ments. This particular formnot only facilitates the proof of Theorem 1,
but also proves useful in the context of iterative self-testing.

Proposition 3. A closed-form criterion for post-hoc self-testing. Let
8 = (194),{A},. 1B} be a self-tested projective strategy where {A,},
arebinary,and let O betheobservableof a binaryreal projective measure-
ment. Then §' = (|§),{A,},.{B,, O},) remains self-tested whenever:

O e sgn(span{l. A, : x}),

where sgn is the extension of the sign function via functional
calculus.Namely, itisgivenbysgn : H = 3.A; =D sgn () v} (v
where {|uj)}j is an orthonormal basis of eigenvectors for H.

The proofs of Theorem 2 and Proposition 3 can be found in the
Supplementary Information. We note that the sgn functionis crucial,
asit produces observables outside the span.

Proof outline of Theorem1

The self-testing result of Theorem 1 follows by applying Proposition3
toaninitial self-tested strategy chosen from ref. 15. Specifically, in ref.
15the authors show that the strategy:

§9 = (|@d>,{fx}dzo’{fy}j:0)

isrobustly self-tested. Here T; are certain binary observables, the same
astheonesin Theorem 1. We introduce the following additional observ-
ables for Bob:

d(d+1) _

N2, =fen(T+ T 1<j< k <di\{sgn(Ty+ T}

We then use Proposition 3 to conclude that the extended strategy:

~(1) _d _ d(d+1)_
§ = (I‘Pd%{Tx} -0y}, _5

remains self-tested.
Next we show that the observables on Bob’s side from strategy

" span the space of all d x d symmetric matrices. Therefore, for any
d(d+1)
binary observable Op;nary, We have Opinary € sgn (span i, Ty}y:é ).

By incorporating O into Alice’s set of observables, the strategy:

) o d G
s = (|¢d>’{rx’ Obinary} :0’{Ty}y=f)

remains self-tested. Finally, if any binary observable can be self-tested,
then any multiple-output one can also be self-tested by regardingit as

acollection of binary observables. Specifically, given any L-output observ-
able 0 = ZZ;L e2ma/Lyr consider binary observables {2M, — I}fl;t).As
every binary observable 2M, — I canbe self-tested, O can be self-tested
as well. This holds for any L>2, so we conclude that:

~(3) N _d B d(d+1) _
§7 = (|‘Pd>’{rx’ Ohy—or 1Ty},

is self-tested for any d-dimensional real projective measurement O,
thus finishing the proof of Theorem 1.

Iterative self-testing

Inthe proof of Theorem 1we sequentially applied post-hoc self-testing
two times to get the final self-testing protocol. Ingeneral, giveninitial
strategy 8 = (¥4, {A}, {B,}), if we post-hocself-test O € sgn (span{/,A,})
on Bob’s side, then we can use {B,, 0} to post-hoc self-test another
measurement O’ € sgn (span{/, B’y, 0}) for Alice. By doing thisin several
rounds, starting froma small set of observables {A,} we may eventually
self-test many additional observables. We call this process iterative
self-testing. A priori it is unclear exactly which measurements can be
reached starting from a fixed self-tested strategy § after many rounds
of iterative self-testing. The main goal of this section is to provide an
easy-to-use criterion for a measurement O to be reachable after an
arbitrary number of rounds of iterative self-testing.
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Given an initial strategy § = (|9,),{A,},{B,}), let S; be the set of
binary observables that can be obtained inthejthiteration of post-hoc
self-testing via Proposition 3. Note that §; = sgn (span {/, 4, : x)and
Sjs1 = sgn(span g(S))) forj=>1. Furthgrmore, we have S; C S, since
sgn (O) = Oforanybinary observable O. Therefore, by iteratively using
this technique, we enlarge the set of self-tested binary observables, S,
ineachstep.

Define V; := span(§;). Then {V};is an increasing sequence of
subspaces of the finite-dimensional real Hermitian matrix space, H;(R),
andeventually stabilizesatV,, = lim;_ ., V; Giveninitialbinary observa-
bles {A,},{B,}, it is natural to ask: what is V.? In the Supplementary
Information we show that V., is the real Jordan algebra generated by
{A,} (ref. 31). Recall that a (unital) Jordan algebra is a vector subspace
ofanassociative algebrathat contains theidentity and is closed under
theJordanproducta x b = %(ab + ba).

Thisyields the following theorem:

Theorem 4. Let § = (|,),{A,}, {B,}) be aself-tested strategy using
maximally entangled state and binary real projective measurements.
Abinary real projective measurement O can be iteratively self-tested if
0 € gA{A,), where JA(A,}) is the real Jordan algebra generated by
{A,}. Moreover, the upper bound on the number of the iterations is deter-
minedby|2log,d .

To argue about many-output (rather than just binary-output)
measurements, we can proceed in amanner similar to thatusedin the
proof of Theorem 1. This leads us to conclude that every L-output
measurement {M,, ¢ € [0, L — 1]} satisfying:

M, e JAGAY Ve e[0,L—1]

canbeiteratively self-tested when starting from a self-tested strategy
8.Inparticular, if JA({A,}) = Hy(R), that is{A,} generates the whole
real Jordan algebra of symmetric d x d matrices, then every
d-dimensional measurement can be self-tested. We show that the con-
dition A({A,}) = Hy(R)isequivalentto {A,}havingatrivial centralizer,
which can be checked efficiently.

Discussion

We have addressed the problem of self-testing an arbitrary real pro-
jective measurement by constructing a self-testing protocol using
binary measurements and maximally entangled states. Our protocol
remains the same for any real projective measurement, provided
that the dimensiondis fixed. The protocol has a O(d®)-sized question
setand a constant-sized answer set. We show that our protocol s, in
principle, robust. While the obtained robustness could be sufficient
for further theoretical results, our analysis is not tight enough to
tolerate realistic noise in current experiments. To obtain experimen-
tally relevant robustness, one should perform a tailored analysis of a
carefully selected set-up, asitis highly unlikely that any analysis that
applies to arbitrary set-ups will ever be sufficiently tight for experi-
mental purposes.

Another contribution of this work is the technique of iterative
self-testing. This offers a convenient method for establishing new
self-tests based on pre-existing ones. Our results show that the set of
self-testable observables includes the real Jordan algebra generated
by the observables that we use for iterative self-testing.

We leave a few open questions and improvements for future
work. Now that we know that all real projective measurements can be
self-tested, one outstanding challenge is to enhance the efficiency—
specifically, the size and robustness of the protocols. It is known that
some high-dimensional states and measurements admit constant-sized
self-tests (forexample, seerefs. 15,16 and refs. 14,32 with constant-sized
question sets). Is it the case that all states and measurements can be
self-tested by a constant-sized protocol? Another open question is
whether numerical techniques, such as the numerical swap method*,

could yield better robustness estimates when our protocol is applied
to concrete target measurements. This could have applications in
verifiable distributed quantum computation®*.

Lastly, from atheoretical standpoint, iterative self-testing is appli-
cable to strategies with partially entangled states, but the underlying
algebraicstructure remains tobe understood. It would alsobeinteresting
to explore beyond the two-party Bell scenario and investigate whether
there are more general scenarios that allow self-testing of complex
measurements in a stronger sense, forexample, where only ameasure-
mentand its conjugate are allowed but not any combination of them®?¢,

Online content
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maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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