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Abstract—The use of one-bit analog-to-digital converter (ADC)
has been considered as a viable alternative to high resolution
counterparts in realizing and commercializing massive multiple-
input multiple-output (MIMO) systems. However, the issue of
discarding the amplitude information by one-bit quantizers has
to be compensated. Thus, carefully tailored methods need to be
developed for one-bit channel estimation and data detection as
the conventional ones cannot be used. To address these issues,
the problems of one-bit channel estimation and data detection
for MIMO orthogonal frequency division multiplexing (OFDM)
system that operates over uncorrelated frequency selective chan-
nels are investigated here. We first develop channel estimators
that exploit Gaussian discriminant analysis (GDA) classifier and
approximate versions of it as the so-called weak classifiers in an
adaptive boosting (AdaBoost) approach. Particularly, the combi-
nation of the approximate GDA classifiers with AdaBoost offers
the benefit of scalability with the linear order of computations,
which is critical in massive MIMO-OFDM systems. We then take
advantage of the same idea for proposing the data detectors.
Numerical results validate the efficiency of the proposed channel
estimators and data detectors compared to other methods. They
show comparable/better performance to that of the state-of-
the-art methods, but require dramatically lower computational
complexities and run times.

Index Terms—One-bit ADC, channel estimation, data detec-
tion, massive MIMO-OFDM, frequency selective channel, Ad-
aBoost

I. INTRODUCTION

UTilization of a large number of antennas at the base sta-
tion (BS) in communication systems has been explored

for the purpose of enhancing data rates and network capacity
[1], [2]. Massive multiple-input multiple-output (MIMO) com-
munication systems have been demonstrated to offer remark-
able advantages, but the hardware cost and high power con-
sumption are two main difficulties (among others), hindering
their commercial usage. To address these issues, first analog-
to-digital converters (ADCs) have been recognized as one of
the parts of the receivers that have high power consumption
and expensive price [3], [4]. Then, employing low-resolution
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ADCs has been suggested as a viable alternative instead of
using high-resolution counterparts [5], [6]. However, the use
of low-resolution ADCs in multi-user MIMO-OFDM systems
poses several challenges in the receiver design. For instance,
the non-linearities caused by few bit quantizers may prohibit
us from exploiting conventional receivers like zero-forcing
(ZF) and minimum mean square error (MMSE) detectors [7].
The reason is that the conventional procedure of isolating
narrowband OFDM subcarries using a discrete Fourier trans-
form (DFT) at the receiver is not valid when low-resolution
ADCs are used. Instead, different receiver architectures need
to be employed/designed to process the baseband time-domain
signals for the tasks such as channel estimation, and/or data
detection.

Channel estimation and/or data detection in massive MIMO
systems with one-bit ADCs have been explored in several
papers, considering the cases of single-carrier (SC) and multi-
carriers (MC) signalling. The authors of [8] have revised the
non-convex optimization problem of the maximum likelihood
(ML) channel estimator and proposed a sub-optimal channel
estimator referred to as near-ML (nML). The same method-
ology has been used to develop the nML-based data detector
as well. Convex optimization approaches have been exploited
in [9] for estimating MC-OFDM channel, whereas a data
detector has been developed based on a soft-output MMSE
algorithm. In [10], the Bussgang decomposition [11] has been
employed to develop Bussgang-based minimum mean-squared
error (BMMSE) channel estimators and data detectors for both
SC and MC-OFDM systems. Analogous to [10], the authors
of [12] took advantage of the Bussgang decomposition to
estimate the optimal nonzero thresholds in the problem of
one-bit quantizer design. Multiple works such as [13]–[17]
have considered the problem of joint channel estimation and
data detection, where the known pilot sequence is augmented
with a portion of detected data to build a longer virtual pilot
sequence and subsequently utilize it to refine the channel
estimate. For instance, the authors of [13] have developed a
bilinear generalized approximate message passing (BiGAMP)
method, while the authors of [16] have proposed a variational
Bayesian (VB) algorithm to do so.

One interesting idea presented by different researchers is to
treat one-bit channel estimation and data detection as binary
classification problems, where the output of one-bit ADCs can
be viewed as class labels. Moreover, a proper transformation
of the known pilots or channel state information (CSI) plays
the role of the classification features, while the unknown
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channel/data vectors act as the corresponding separating hy-
perplanes. For instance, the binary soft-margin support vector
machine (SVM) has been considered by the authors of [17]
and [18] as a powerful method for one-bit channel estimation
and data detection in SC and MC-OFDM scenarios. Although
the soft-margin SVM-based estimators have good properties,
their performance relies on careful hyperparamer selection.
Deep neural networks (DNN) have been also used for one-
bit channel estimation in several works such as [19]–[21].
The main disadvantage of such estimators is that not only
a sufficiently large data set is required for the training pro-
cess, but the offline training procedure needs to be executed
carefully. In [22]–[24], several blind/semi-blind learning-based
data detectors have been presented for massive MIMO systems
that employ one-bit ADCs.

Angular domain channel estimators have been reported in
[25]–[32]. In [25] and [26], compressive sensing (CS) tech-
niques have been adopted to recover sparse millimeter wave
(mmWave) channels quantized by few-bit ADCs. The authors
of [30] have considered the combination of harmonic retrieval
methods with a modified expected-maximization GAMP (EM-
GAMP) to devise an angular domain one-bit mmWave chan-
nel estimation approach called gridless GAMP (GL-GAMP).
For such channels, a sparsity enforcing with Toeplitz matrix
reconstruction (SE-TMR) method was also presented in [31]
recently. Moreover, the authors of [32] have used the Toe-
plotz matrix reconstruction notion from [31] together with
ℓ1 regularized logistic regression classification method [33]
to come up with a novel angular domain channel estimator
called ℓ1 regularized logistic regression with Toeplitz matrix
reconstruction (L1-RLR-TMR) for one-bit mmWave systems.
They also have employed the alternating direction method
of multipliers (ADMM) [34] for solving the optimization
problem of L1-RLR-TMR in an efficient manner.

Despite the significance of scalability and efficiency in
one-bit massive MIMO-OFDM systems, the existing channel
estimators and data detectors may not fulfill the requirement of
having low computational complexity in challenging scenarios
with large number of unknowns. In other words, there is a gap
between the desirable computational complexity and that of
the existing methods to the best of our knowledge. Therefore,
the objective of this work is to fill the aforementioned gap
by proposing one-bit channel estimators and data detectors
that have linear order of computations with respect to the
system parameters including the number of antennas at BS,
the number of users, and the number of OFDM sub-carriers.

In this paper, we develop channel estimation and data detec-
tion algorithms for MIMO-OFDM systems that exploit one-bit
ADCs at the BS. The channel considered here is a frequency
selective channel. Inspired by outstanding properties that
classification/learning-based methods have shown in solving
one-bit channel estimation and data detection, we design Gaus-
sian discriminant analysis (GDA)-based classification method
[35] (known also as linear discriminant analysis (LDA)) and its
approximations as so-called weak classifiers, employed in each
iteration of an adaptive boosting (AdaBoost)-based scheme
[33], [36]. The low computational complexity required for
implementation of both GDA-based classifiers and AdaBoost

make the proposed algorithms efficient, and easily scalable.
In addition, flexibility in selecting the number of AdaBoost
iterations enables us to gain competitive accuracy with low
computational complexity.

The main contributions of our work are the following:

• An AdaBoost-based channel estimation approach for one-
bit MIMO-OFDM system that operates over uncorrelated
frequency selective fading channels is proposed. In each
iteration of the AdaBoost-based approach, the GDA clas-
sification method along with two efficient approximations
are considered as the weak classifiers. These approxi-
mate classifiers are derived by manipulating the GDA
estimator. The combination of AdaBoost and GDA (and
especially its approximations) enables us to estimate the
channel in a remarkably efficient and yet precise manner.
Specifically, using the approximations of GDA as weak
classifiers at the heart of our AdaBoost approach results
in having the linear order of computational complexity
with respect to the problem dimension. This makes the
proposed AdaBoost-based approach a versatile and also
powerful tool that can be used in one-bit MIMO-OFDM
systems with large number of channel entries. Numerical
results validate the efficiency of the proposed AdaBoost-
based channel estimator compared to other existing meth-
ods. Particularly, the AdaBoost-based channel estimators
possess similar normalized MSE (NMSE) in channel esti-
mation as the SVM-based method of [17] and BiGAMP
method of [13], whereas the computational complexity
required to implement our methods is substantially less
than those of the SVM-based and BiGAMP methods in
scenarios with large dimensions.

• We then tailor the main idea of the proposed AdaBoost-
based channel estimator to fit the one-bit MIMO-OFDM
data detection problem. Analogous to the proposed one-
bit channel estimator, we design the data detector as an
AdaBoost-based approach with considering GDA and its
approximations as the weak classifiers in each iteration.
The proposed one-bit data detector has desirable proper-
ties like scalablility (with linear order of computations)
and providing accurate data estimates. These properties
are very useful in feasibility of designing one-bit MIMO-
OFDM systems with high bandwidth and large number of
sub-carriers. Numerical results demonstrate the strength
of the proposed AdaBoost-based data detector compared
to other existing methods.

The rest of the paper is organized as follows. The considered
system model is presented in Section II. A brief review of
GDA and AdaBoost are also presented in Section II. The
proposed AdaBoost-based one-bit channel estimator and data
detector are designed in Section III. Simulation results and
the conclusion are presented in Section IV and Section V,
respectively.

Notation: Upper-case and lower-case bold-face letters de-
note matrices and vectors, respectively, while scalars are
denoted by lower-case letters. The mathematical expectation,
transpose, conjugate transpose, and inverse of a square matrix
are denoted by E{·}, {·}T , {·}H , and (·)−1, respectively,
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while ∥ · ∥2 and ∥ · ∥F denote the Euclidean norm of a vector
and the Frobenius norm of a matrix. The Hadamard product
is denoted by ⊙. The n × n identity matrix is denoted by
In. The operator diag{π} generates a diagonal matrix by
plugging the entries of the vector π into its main diagonal.
The operators ℜ{·} and ℑ{·} return respectively the real and
imaginary parts of the bracketed argument. The function 1{·}
is the indicator function that is equal to 1 if its argument is
true and 0 otherwise.

II. SYSTEM MODEL AND PRELIMINARIES

A. One-Bit Massive MIMO-OFDM System Model

We assume a massive MIMO system comprising of K users,
each equipped with a single-antenna, and an M -antenna BS
where users deploy high-resolution ADCs. Each antenna of
the BS converts the real and imaginary components of the
received signal from the users separately through a pair of one-
bit ADCs. We specifically examine an uplink multiuser OFDM
system with Nc sub-carriers that operates over a frequency
selective channel. The OFDM symbol in the frequency domain
from the kth user is represented by xFD

k ∈ CNc×1. To avoid
confusion, we use the notations “TD” and “FD” to distinguish
between time and frequency domains, respectively. We add a
cyclic prefix (CP) of length Ncp and assume that the number of
channel taps Ltap satisfies the condition Ltap−1 ≤ Ncp ≤ Nc.
It is assumed that Ltap is known.1 Upon removing the CP, the
one-bit quantized received signal at the ith antenna of the BS
in the time domain can be expressed as follows:

yTD
i = Q

(
K∑

k=1

GTD
i,k F

HxFD
k + nTD

i

)
(1)

where F ∈ CNc×Nc denotes the normalized DFT matrix, and
GTD

i,k is a circulant matrix whose first column is defined by
gTD
i,k = [(hTD

i,k )
T , 0, . . . , 0]T . Here, hTD

i,k ∈ CLtap×1 is a vector
that contains the Ltap channel taps associated with the kth

user. The entries of hTD
i,k are considered to be independent and

identically distributed (i.i.d.), generated form the distribution
CN

(
0, 1

Ltap

)
. Moreover, nTD

i ∼ CN (0, σ2
nINc

) represents
additive Gaussian noise at the ith antenna at the BS, whereas
the notation Q(·) ≜ sign(ℜ{·}) + jsign(ℑ{·}) represents the
element-wise one-bit quantizer. The output of the operator
sign(·) is +1 when the argument is a non-negative number,
otherwise, the output is −1.

We stress here that because of the nonlinear distortion
imposed by one-bit quantizers, different OFDM sub-carriers
are not separable by the fast Fourier transform (FFT) operation
as opposed to the conventional MIMO-OFDM systems. As
a result, we are obliged to develop the proposed channel
estimators and data detectors based on the wideband time
domain representation instead of exploiting the narrowband
frequency domain signals associated with each sub-carrier.

1It is very common for wireless systems to be designed based on an upper
bound of Ltap that is derived from measurements.

B. Binary Classification via GDA

GDA (also known as LDA) is a classification approach that
models the training examples associated with each class as
samples of a normal distribution. Consider a training set that
contains m training examples with n features and two classes
denoted by {x(j)}j=1,··· ,m and y(j) ∈ {1,−1}j=1,··· ,m,
respectively. GDA assumes that the corresponding training
examples x(j) for each class of y(j) are normally distributed
with different means µ1 and µ−1, respectively, and the same
covariance matrix Σ. Therefore, depending on y(j), the condi-
tional probability density function (PDF) of x(j) can be given
as one of the following equations:

p(x(j)|y(j) = −1) =
1

(2π)n/2|Σ|1/2
exp

(
− 1

2
(x(j) − µ−1)

T

×Σ−1(x(j) − µ−1)
)

(2)

p(x(j)|y(j) = 1) =
1

(2π)n/2|Σ|1/2
exp

(
− 1

2
(x(j) − µ1)

T

×Σ−1(x(j) − µ1)
)

(3)

To implement binary GDA, we need to estimate µ−1, µ1,
and Σ from the training data. The means and the covariance
matrix can be estimated as follows [35]

µ̂−1 =

m∑
j=1

1{y(j) = −1}x(j)

m∑
j=1

1{y(j) = −1}
(4)

µ̂1 =

m∑
j=1

1{y(j) = 1}x(j)

m∑
j=1

1{y(j) = 1}
(5)

Σ̂ =
1

m

m∑
j=1

(x(j) − µ̂y(j))(x(j) − µ̂y(j))T . (6)

The decision boundary is then given as

hGDA = Σ̂
−1 (

µ̂1 − µ̂−1

)
. (7)

C. AdaBoost

The objective of AdaBoost is to iteratively train a set
of weak classifiers on the same data set to create a strong
classifier. A weak classifier is identified as a classifier whose
classification performance is only marginally better than ran-
dom guessing. A new weak classifier is trained on a weighted
version of the training data set, where the weights associated
with the misclassified examples in the previous iteration are
increased. Given a training set with m examples, AdaBoost
learns a weak classifier in the tth iteration which is denoted by
h(t)(x). The AdaBoost algorithm is outlined in Algorithm 1.
Here, w(t)

j is the weight of the jth example at the tth iteration,
ϵ(t) is the weighted error of the tth weak classifier, and α(t)

is the weight of the tth weak classifier. Moreover, Z(t+1) is
a normalization constant that ensures the weights sum up to
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1. Despite there exists various ways to define the update rule
for w

(t+1)
j , Algorithm 1 employs the exponential function to

do so.
In our derivations, we use GDA and its approximate ver-

sions as weak classifiers, although there are many linear binary
classifiers available in the literature that can be considered
as weak classifiers. The main reason for the aforementioned
choice is that these classifiers can be implemented with low
computational complexities, particularly when the dimension
of the unknown variables scales up.

Algorithm 1 AdaBoost Algorithm
Input: Training set S , number of weak classifiers T .
Output: Final classifier HAda.
Initialize weights w

(1)
j = 1/m for j = 1, 2, ...,m.

for t = 1 to T do
Train weak classifier h(t)(x) on the weighted training set
(S,w(t)).
Compute error as ϵ(t) =

∑m
j=1 w

(t)
j 1(h(t)(x(j)) ̸= y(j)).

Compute α(t) = 1
2 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j = w

(t)
j exp(α(t)1(h(t)(x(j)) ̸= y(j))), ∀j.

Compute Z(t+1) =
∑m

j=1 w
(t+1)
j and normalize weights

as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Output HAda(x) =

∑T
t=1 α

(t)h(t)(x).

III. PROPOSED CLASSIFICATION-BASED WIDEBAND
CHANNEL ESTIMATION AND DATA DETECTION WITH

ONE-BIT ADCS

A. Proposed Classification-Based Channel Estimation

For estimating the frequency selective channels explained in
Section II that is utilized in the OFDM system, the frequency
domain pilot vector xFD

k ∈ CNc×1 is first transformed into
the time domain using the inverse FFT (IFFT) operation. The
resultant time domain vector is then transmitted by the kth

user. The one-bit quantized received signal at the ith antenna
of the BS in (1) can be reorganized as

yTD
i = Q

(
K∑

k=1

ΦTD
k gTD

i,k + nTD
i

)

= Q

(
K∑

k=1

ΦTD
k,Ltap

hTD
i,k + nTD

i

)
= Q

(
ΦTD

Ltap
hTD
i + nTD

i

)
(8)

where ΦTD
k ∈ CNc×Nc is a circulant matrix whose first

column is ϕTD
k ≜ FHxFD

k , ΦTD
k,Ltap

∈ CNc×Ltap denotes
a matrix which contains only the first Ltap columns of
ΦTD

k , ΦTD
Ltap

∈ CNc×KLtap and hTD
i ∈ CKLtap×1 re-

spectively concatenate ΦTD
k,Ltap

and hTD
i,k for k = 1, . . . ,K

as ΦTD
Ltap

≜ [ΦTD
1,Ltap

,ΦTD
2,Ltap

, . . . ,ΦTD
K,Ltap

] and hTD
i ≜

[(hTD
i,1 )

T , (hTD
i,2 )

T , . . . , (hTD
i,K)T ]T .

To simplify our derivations, we use the notation “R” as
subscript when scalars, vectors, or matrices are composed of
real numbers. Therefore, we transform (8) into the real domain
as

yTD
i,R = sign

(
ΦTD

R hTD
i,R + nTD

i,R

)
(9)

where

yTD
i,R ≜

[
ℜ{yTD

i }T ,ℑ{yTD
i }T

]T
=
[
yTD
i,R,1, . . . , y

TD
i,R,2Nc

]T
∈ {±1}2Nc×1 (10)

ΦR ≜

[
ℜ{ΦTD

Ltap
} −ℑ{ΦTD

Ltap
}

ℑ{ΦTD
Ltap

} ℜ{ΦTD
Ltap

}

]
=
[
ϕTD

R,1,ϕ
TD
R,2, . . . ,ϕ

TD
R,2Nc

]T
∈ R2Nc×2KLtap (11)

hTD
i,R ≜

[
ℜ{hTD

i }T ,ℑ{hTD
i }T

]T ∈ R2KLtap×1 (12)

nTD
i,R ≜

[
ℜ{nTD

i }T ,ℑ{nTD
i }T

]T ∈ R2Nc×1. (13)

Note that
(
ϕTD

R,j

)T
with j ∈ {1, 2, . . . , 2Nc} is the jth row

of ΦR here. Additionally, as suggested by (12), estimating
{hTD

i }i=1,2,...,M is equivalent to estimating {hTD
i,R}i=1,2,...,M .

We emphasize that binary classification methods can be
employed for estimating hTD

i,R in (9). Here, ϕTD
R,j and yTD

i,R,j

with j ∈ {1, 2, . . . , 2Nc} serve as the training examples and
class labels, respectively. In other words, (9)-(12) can be
viewed as a binary classification problem with the training
set Si = {x(j) = ϕTD

R,j , y
(j) = yTD

i,R,j}j=1,2,...,2Nc
and the

decision boundary hTD
i,R based on the definitions provided in

the prequel. Hence, we can exploit the GDA classification
method as the weak classifier in each iteration of an AdaBoost-
based approach for estimating hTD

i,R . The computation of the
means and covariance matrix (4)-(6) then should be revised in
the tth iteration of the proposed AdaBoost-based approach as

µ̂
(t)
−1 =

2Nc∑
j=1

1{yTD
i,R,j = −1}w(t)

j ϕTD
R,j (14)

µ̂
(t)
1 =

2Nc∑
j=1

1{yTD
i,R,j = 1}w(t)

j ϕTD
R,j (15)

Σ̂
(t)

=

2Nc∑
j=1

w
(t)
j (ϕTD

R,j − µ̂
(t)

yTD
i,R,j

)(ϕTD
R,j − µ̂

(t)

yTD
i,R,j

)T (16)

ĥ
TD,(t)
i,R =

(
Σ̂

(t)
)−1 (

µ̂
(t)
1 − µ̂

(t)
−1

)
(17)

where w
(t)
j represents the weight of the jth training example

at the tth iteration.
To implement (17), the inverse of the matrix Σ̂

(t)
should

be calculated, which requires the computational complexity
of O

(
(KLtap)

2.373
)

using the Coppersmith–Winograd algo-
rithm. This computational complexity can considerably restrict
the time efficiency of implementing (17), especially when
the multiplication of K and Ltap grows larger. At the same
time, as a weak classifier is required to be slightly better than
random guesses, the accurate knowledge of the inverse of Σ̂

(t)

is not needed. Thus, it is reasonable to consider approximating
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(17) to avoid calculating
(
Σ̂

(t)
)−1

. Towards this end, two
approximations of (17) are introduced in the following.

Approximation 1: As the first approximation, we propose to
modify (16) as

Σ̂
(t)

1 ≜ diag
{
σ̂

(t)
1

}
(18)

where

σ̂
(t)
1 =

2Nc∑
j=1

w
(t)
j

(
(ϕTD

R,j − µ̂
(t)

yTD
i,R,j

)⊙ (ϕTD
R,j − µ̂

(t)

yTD
i,R,j

)
)

(19)

The essence of this approximation is to set all off-diagonal
elements of Σ̂

(t)
in (16) to zero and preserve only its diagonal

elements. In other words, only the diagonal elements of the
original matrix Σ̂

(t)
in (16) need to be computed as the vector

σ̂
(t)
1 in (19), and Σ̂

(t)

1 is defined using σ̂
(t)
1 as (18). Then, (17)

is modified as

ĥ
TD,(t)
i,R,app1 ≜

(
Σ̂

(t)

1

)−1 (
µ̂

(t)
1 − µ̂

(t)
−1

)
(20)

Note that the use of Σ̂
(t)

1 instead of the original Σ̂
(t)

con-
siderably reduces the computational complexity of computing
ĥ
TD,(t)
i,R .

Approximation 2: We propose to set Σ̂
(t)

= I2KLtap in (17).
Then, the modified estimate of hTD,(t)

i,R is expressed as

ĥ
TD,(t)
i,R,app2 ≜ µ̂

(t)
1 − µ̂

(t)
−1 (21)

where the weak classifier of (17) is approximated as the
distance between the mean vectors of the two classes in
(21). We stress here that the latter requires substantially less
computations compared to that of the former.

The steps of the proposed methods are outlined in Algo-
rithm 2.2 It should be noted that Algorithm 1 presents the
generic procedure of the AdaBoost approach for using weak
binary classifiers h(t)(x) to build a strong binary classifier
HAda(x), whereas we exploit the core idea of AdaBoost
to use the weak channel estimates h

(t)
i to build a strong

channel estimate ĥTD
i,R in Algorithm 2. We emphasize here the

difference of h(t)(x) and HAda(x) with h
(t)
i and ĥTD

i,R , that is,
the former represents binary classifier while the latter denotes
the separating hyperplane in a binary classification problem.

Note that a normalization step is applied to the output of the
AdaBoost-based methods outlined in Algorithm 2. The reason
for this is that the estimates provided by these methods only
specify the direction of hTD

i,R , while the magnitude remains
unknown since the one-bit ADCs preserve only the sign of the
received signals. Therefore, βhTD

i,R for any β > 0 will yield
the same yTD

i,R as in (10). Here, since we assume that 2KLtap

elements of hTD
i,R are independent with variance 1/(2Ltap),

the last normalization step is added to ensure that the channel
estimates have squared norm of K.

2Although α(t) = 1
2
ln
(
1−ϵ(t)

ϵ(t)

)
in the original AdaBoost algorithm (refer

to Algorithm 1), we have observed that setting α(t) = 1
4
ln
(
1−ϵ(t)

ϵ(t)

)
in

Algorithms 2 and 3 results in better performance for the problems solved in
this paper.

Algorithm 2 One-bit GDA-AdaBoost Algorithms for Channel
Estimation

Input: Si = {x(j) = ϕTD
R,j , y

(j) = yTD
i,R,j}j=1,2,...,2Nc

for
i ∈ {1, 2, . . . ,M} whose elements are defined in (10) and
(11), and number of weak classifiers T .
Output: ĥTD

i,R for i ∈ {1, 2, . . . ,M}.
for i = 1 to M do

Initialize weights w
(1)
j = 1

2Nc
for j ∈ {1, 2, ..., 2Nc}.

for t = 1 to T do
Use the training set Si to compute µ̂

(t)
−1, µ̂

(t)
1 , Σ̂

(t)
,

and Σ̂
(t)

1 via (14)-(16) and (18), respectively. Then,
compute the tth weak classifier as:

one-bit GDA-Ada
h
(t)
i =

(
Σ̂

(t)
)−1 (

µ̂
(t)
1 − µ̂

(t)
−1

)
one-bit GDA-Ada-1

h
(t)
i =

(
Σ̂

(t)

1

)−1 (
µ̂

(t)
1 − µ̂

(t)
−1

)
one-bit GDA-Ada-2

h
(t)
i = µ̂

(t)
1 − µ̂

(t)
−1.

Compute error as
ϵ(t) =

∑2Nc

j=1 w
(t)
j 1

(
(ϕTD

R,j)
Th

(t)
i ̸= y(j)

)
.

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w(t+1)
j =w

(t)
j exp

(
α(t)1

(
(ϕTD

R,j)
Th

(t)
i ̸=y(j)

))
,

∀j.
Compute Z(t+1) =

∑2Nc

j=1 w
(t+1)
j and normalize

weights as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Construct h̃TD

i,R =
∑T

t=1 α
(t)h

(t)
i , and then normalize as

ĥTD
i,R =

√
Kh̃TD

i,R

∥h̃TD
i,R∥2

.
end for

Remark 1: To ensure the clarity of presentation, we used
a loop to estimate hTD

i,R for i ∈ {1, 2, . . . ,M} in Algorithm 2.
However, it is important to note that these M channel vectors
can be estimated in parallel, resulting in a reduction in the
overall run time of the channel estimation procedure.

Remark 2: The key feature of AdaBoost that allows us
to approximate (17) as (20) and (21) without sacrificing esti-
mation performance is that it can incorporate weak classifiers
that are only slightly better than random guessing and combine
them to form a strong classifier. The approximations of (20)
and (21) are justifiable because they are certainly better than
random guessing, hence they can be treated as weak classifiers.
In this regard, AdaBoost is a powerful approach to build a
strong classifier out of weak classifiers with low computational
complexity.

B. Proposed Classification-Based Data Detection

In this section, we propose AdaBoost-based methods for
one-bit data detection in OFDM systems with frequency se-
lective channels. To begin with, the one-bit quantized received
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signal at the ith antenna of the BS in (1) can be rewritten as

yTD
i = Q

(
K∑

k=1

GTD
i,k F

HxFD
k + nTD

i

)
= Q

(
GFD

i xFD + nTD
i

)
(22)

where GFD
i ≜ [GTD

i,1 F
H , . . . ,GTD

i,KFH ] ∈ CNc×KNc and
xFD ≜ [(xFD

1 )T , (xFD
2 )T , . . . , (xFD

K )T ]T ∈ CKNc×1. The for-
mer represents the pre-estimated/known CSI, while the latter
is the symbol vectors transmitted over Nc subcarriers by the K
users. The objective here is to recover the vector xFD and then
identify the symbols transmitted. Placing all {yTD

i }i=1,2,...,M

in a vector as yTD ≜ [(yTD
1 )T , (yTD

2 )T , . . . , (yTD
M )T ]T ∈

CMNc×1, we obtain

yTD = Q
(
GFDxFD + nTD

)
(23)

where GFD ≜ [(GFD
1 )T , (GFD

2 )T , . . . , (GFD
M )T ]T ∈

CMNc×KNc . The real domain transformation of (23) is given
as

yTD
R = sign

(
GFD

R xFD
R + nTD

R

)
(24)

where

yTD
R ≜

[
ℜ{yTD}T ,ℑ{yTD}T

]T
=
[
yTD
R,1, . . . , y

TD
R,2MNc

]T
∈ {±1}2MNc×1 (25)

GFD
R ≜

[
ℜ{GFD} −ℑ{GFD}
ℑ{GFD} ℜ{GFD}

]
=
[
gFD
R,1,g

FD
R,2, . . . ,g

FD
R,2MNc

]T ∈ R2MNc×2KNc (26)

xFD
R ≜

[
ℜ{xFD}T ,ℑ{xFD}T

]T ∈ R2KNc×1 (27)

nTD
R ≜

[
ℜ{nTD}T ,ℑ{nTD}T

]T ∈ R2MNc×1. (28)

Here
{(

gFD
R,j

)T}
j=1,...,2MNc

is the jth row of GFD
R .

Analogous to the problem of estimating hTD
i,R in (9), the

problem of estimating xFD
R in (24) can be treated as a binary

classification problem where xFD
R serves as the separating

hyperplane between two classes. Therefore, we can consti-
tute the binary classification training set as Sd = {x(j) =
gFD
R,j , y

(j) = yTD
R,j}j=1,2,...,2MNc

based on (24)-(26) with
the aim of estimating xFD

R as the corresponding separating
hyperplane. Thus, the GDA classification method along with
two approximations derived in Subsection III-A can be used
as weak classifiers in each iteration of an AdaBoost-based
approach for recovering xFD

R . In this regard, the counterparts
of (17), (20), and (21) with respect to xFD

R are respectively
expressed as

x̂
FD,(t)
d =

(
Σ̂

(t)

d

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
(29)

x̂
FD,(t)
d,app1 =

(
Σ̂

(t)

d,1

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
(30)

x̂
FD,(t)
d,app2 = µ̂

(t)
d,1 − µ̂

(t)
d,−1 (31)

where

µ̂
(t)
d,−1 =

2MNc∑
j=1

1{yTD
R,j = −1}w(t)

j gFD
R,j (32)

µ̂
(t)
d,1 =

2MNc∑
j=1

1{yTD
R,j = 1}w(t)

j gFD
R,j (33)

Σ̂
(t)

d =

2MNc∑
j=1

w
(t)
j (gFD

R,j − µ̂
(t)

d,yTD
R,j

)(gFD
R,j − µ̂

(t)

d,yTD
R,j

)T (34)

Σ̂
(t)

d,1 = diag
{
σ̂

(t)
d,1

}
(35)

σ̂
(t)
d,1 =

2MNc∑
j=1

w
(t)
j

(
(gFD

R,j − µ̂
(t)

d,yTD
R,j

)⊙ (gFD
R,j − µ̂

(t)

d,yTD
R,j

)
)
.

(36)

Note that w
(t)
j is the weight assigned to the jth training

example in the tth iteration. In addition, the notation “d”
is used as subscript in (29)-(36) to avoid confusion with
channel estimation part’s of equations. Let x(t)

d represent the
estimated signal in the tth iteration using either one of the
weak classifiers in (29)-(31). A normalization step is needed
to match the power of the estimated signal with that of the
actual transmitted signal.3 Then, we have

x̄
(t)
d =

√
KNcx

(t)
d

∥x(t)
d ∥2

= [x̄
(t)
d,1, x̄

(t)
d,2, . . . , x̄

(t)
d,2KNc

]T . (37)

The next step is to map/project the elements of x̄
(t)
d to one

member of the transmitted signal constellations set denoted
by F by solving the following optimization problem symbol-
by-symbol:

x̃
(t)
d,k = argmin

x∈F
|x− (x̄

(t)
d,k + jx̄

(t)
d,k+KNc

)|

for k = 1, 2, . . . ,KNc (38)

where x̃
(t)
d,k is the kth entry of the estimated signal

in the tth iteration. Thus, the signal vector is x̃
(t)
d =

[x̃
(t)
d,1, x̃

(t)
d,2, . . . , x̃

(t)
d,KNc

]T .
Transforming x̃

(t)
d into the real domain as x̆

(t)
d =

[ℜ{x̃(t)
d }T ,ℑ{x̃(t)

d }T ]T , we can obtain ϵ(t), α(t), and w
(t+1)
j

for j = 1, 2, . . . , 2MNc. After executing T iterations, the
AdaBoost output is x̃FD

R =
∑T

t=1 α
(t)x̆

(t)
d . Analogous to (37)

and (38), the final steps are to first normalize x̃FD
R , and then

perform the symbol-by-symbol mapping as follows

x̄FD
R =

√
KNcx̃

FD
R

∥x̃FD
R ∥2

= [x̄FD
R,1, x̄

FD
R,2, . . . , x̄

FD
R,2KNc

]T (39)

x̂FD
k = argmin

x∈F
|x− (x̄FD

R,k + jx̄FD
R,k+KNc

)|

for k = 1, 2, . . . ,KNc (40)

where x̂FD
k is the kth entry of the final estimate. Thus, the

final estimate is x̂FD ≜ [x̂FD
1 , x̂FD

2 , . . . , x̂FD
KNc

]T . The steps of
the proposed data detection methods are listed in Algorithm 3.

3Such normalization is also used in [8] and [17] for example.



vii

Algorithm 3 One-bit GDA-AdaBoost Algorithms for data
detection

Input: Sd = {x(j) = gFD
R,j , y

(j) = yTD
R,j}j=1,2,...,2MNc

whose elements are defined in (25) and (26), and number
of weak classifiers T .
Output: x̂FD.
Initialize w

(1)
j = 1

2MNc
for j ∈ {1, 2, ..., 2MNc}.

for t = 1 to T do
Use the training set Sd to compute µ̂

(t)
d,−1, µ̂(t)

d,1, Σ̂
(t)

d , and

Σ̂
(t)

d,1 via (32)-(36). Then, compute the tth weak classifier
as:

one-bit GDA-Ada
x
(t)
d =

(
Σ̂

(t)

d

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
one-bit GDA-Ada-1

x
(t)
d =

(
Σ̂

(t)

d,1

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
one-bit GDA-Ada-2

x
(t)
d = µ̂

(t)
d,1 − µ̂

(t)
d,−1.

Normalize x
(t)
d as x̄

(t)
d =

√
KNcx

(t)
d

∥x(t)
d ∥2

, and denote the kth

entry of x̄(t)
d as x̄

(t)
d,k for k ∈ {1, 2, . . . , 2KNc}.

for k′ = 1 to KNc do
Solve the optimization problem (38) to detect x̃(t)

d,k′ .
end for
Construct x̃

(t)
d = [x̃

(t)
d,1, x̃

(t)
d,2, . . . , x̃

(t)
d,KNc

]T and x̆
(t)
d =

[ℜ{x̃(t)
d }T ,ℑ{x̃(t)

d }T ]T .
Compute error as

ϵ(t) =
∑2MNc

j=1 w
(t)
j 1

(
(gFD

R,j)
T x̆

(t)
d ̸= y(j)

)
.

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j = w

(t)
j exp

(
α(t)1

(
(gFD

R,j)
T x̆

(t)
d ̸=y(j)

))
,

∀j.
Compute Z(t+1) =

∑2MNc

j=1 w
(t+1)
j and normalize

weights as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Construct x̃FD

R =
∑T

t=1 α
(t)x̆

(t)
d , and then normalize as

x̄FD
R =

√
KNcx̃

FD
R

∥x̃FD
R ∥2

. Denote the kth entry of x̄FD
R as x̄FD

R,k

for k ∈ {1, 2, . . . , 2KNc}.
for k′ = 1 to KNc do

Solve the optimization problem (40) to detect x̂FD
k′ .

end for
Construct x̂FD = [x̂FD

1 , x̂FD
2 , . . . , x̂FD

KNc
]T .

We emphasize here that the loops associated with (38) and
(40) are only included for the sake of presentation clarity
in Algorithm 3, and the symbol-by-symbol detection can
be executed concurrently. It is also worth noting that post-
processing can be performed for refining the outputs of (40) as
have been suggested in [8] and [17]. The former has exploited
the ML criterion to select the final data symbol from a properly
designed data candidate set [8], whereas the latter has resorted
to a minimum weighted Hamming distance-based criterion [37]
to pick up the refined data symbol from a data candidate set.
Despite the efficiency of the aforementioned post-processing
data refinements, we do not use them here and the simulation

results are provided without considering the post-processing
in the next section.

Remark 3: One of the advantages of the proposed
AdaBoost-based algorithms is that the sufficient number of
weak classifiers for obtaining a reasonable accuracy is of order
of a few tens. In other words, increasing T over just a few tens
does not change the performance of the proposed AdaBoost-
based algorithms dramatically. We recommend to set T = 10
for the proposed channel estimators and data detectors because
this value has been found to be effective in reaching accurate
results. The impact of using different values of T for channel
estimation and data detection will be examined in the next
section though.

C. Computational Complexity

Implementing one-bit GDA-Ada, one-bit GDA-Ada-1, and
one-bit GDA-Ada-2 channel estimators described in Algo-
rithm 2 require O

(
TMmax{(KLtap)

2.373, (KLtap)
2Nc}

)
,

O (TMKLtapNc), and O (TMKLtapNc) flops, respectively.
Noteworthy to mention that one-bit GDA-Ada-1 and one-
bit GDA-Ada-2 channel estimators have first-order (linear)
theoretical computational complexity with respect to M , K,
Ltap, and Nc, which is analogous to Bayesian-based methods
[13], [14] (see Table I). However, it will be shown in the next
section that the run times required for implementing one-bit
GDA-Ada-1 and one-bit GDA-Ada-2 channel estimators are
significantly lower than the run time required for implementing
the BiGAMP-based channel estimator though (see Fig. 2).
Moreover, the computations for one-bit GDA-Ada-1 and one-
bit GDA-Ada-2 channel estimators can be straightforwardly
parallelized.

In addition, implementing one-bit GDA-Ada, one-bit GDA-
Ada-1, and one-bit GDA-Ada-2 data detectors presented
in Algorithm 3 require O

(
Tmax{(KNc)

2.373,MK2N3
c }
)
,

O
(
TMKN2

c

)
, and O

(
TMKN2

c

)
flops, respectively. Similar

to the channel estimation case, one-bit GDA-Ada-1 and one-
bit GDA-Ada-2 data detectors have first-order (linear) com-
putational complexity with respect to M and K. However,
they have second-order (quadratic) computational complexity
with respect to Nc. We stress here that although the order of
computational complexity of one-bit GDA-Ada-1 and one-bit
GDA-Ada-2 data detectors is the same as the Bayesian-based
methods [13], [14] (see Table II), it will be illustrated in the
next section that the run times needed for implementing one-
bit GDA-Ada-1 and one-bit GDA-Ada-2 data detectors are
dramatically lower than the run time needed for implementing
the BiGAMP-based data detector (see Fig. 6). In addition, the
computations for one-bit GDA-Ada-1 and one-bit GDA-Ada-2
data detectors can be straightforwardly parallelized.

IV. SIMULATION RESULTS

In this section, numerical results that demonstrate the ef-
ficiency as well as superiority of the proposed wideband
channel estimators and data detectors compared to other
existing techniques are presented. In terms of computational
complexity and run time, the AdaBoost-based methods are
highly efficient, particularly when considering one-bit large-
scale MIMO-OFDM systems. We use T = 10 for the proposed
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Fig. 1. Performance comparison of different channel estimators with K = 2,
M = 16, Nc = 256, and Ltap = 8.

AdaBoost-based channel estimators and data detectors, unless
otherwise stated. For channel estimation figures, orthogonal
pilots are employed analogous to those suggested in [5, Eq.
(23)]. In addition, quadrature phase shift keying (QPSK) con-
stellations are used as the frequency domain symbols in data
detection figures. The hyperparameter C is set to 1 for SVM-
based channel estimator and data detector of [17]. Further-
more, the modified finite Newton (MFN) method [38] is used
for implementing the ℓ2-SVMs as it is one of the most efficient
algorithms [17]. Performance of different channel estimators
and data detectors are compared in terms of normalized MSE
(NMSE) and bit-error-rate (BER), respectively. The former is
defined as

NMSE =
E{∥H− Ĥ∥2F}

KM

where H ≜ [hTD
1 ,hTD

2 , . . . ,hTD
M ] and Ĥ ≜

[ĥTD
1 , ĥTD

2 , . . . , ĥTD
M ]. The block-fading interval is divided

into two parts, where the first part and second part are
used for channel estimation and data detection, respectively.
Noteworthy to mention that the performance of the proposed
one-bit GDA-Ada method (when the covariance matrix has
to be computed exactly) is not reported in data detection
figures as its computational complexity is higher than those
of the proposed one-bit GDA-Ada-1 and one-bit GDA-Ada-2
methods for achieving similar performance.

In Fig. 1, the NMSE of the proposed AdaBoost-based
channel estimators are compared with those of BMMSE
[10], BiGAMP [13], and SVM [17]. It can be observed that
the performance of BMMSE is worse than other methods
tested, while BiGAMP possesses the best performance. The
AdaBoost-based channel estimators are very marginally out-
performed by BiGAMP and SVM that has no effect on the
follow up data detection.

Despite having comparable channel estimation performance,
the proposed one-bit GDA-Ada-1 and one-bit GDA-Ada-2 re-
quire substantially lower computational complexity compared
to those of the SVM-based and BiGAMP-based methods as

Fig. 2. Average run time comparison of the proposed one-bit GDA-Ada-1 and
one-bit GDA-Ada-2 with SVM and BiGAMP in estimating channel between
users and one antenna of the BS vs. the number of users K, considering the
scenario where Nc = 512, and Ltap = 16.

depicted in Fig. 2. We compare the required average run time
for estimating channel between users and one antenna of the
BS (i.e., average run time for estimating hTD

i ’s). Although
the average run times for performing the channel estimation
task are comparable for the one-bit GDA-Ada-1, one-bit GDA-
Ada-2, and SVM-based methods when K ≤ 5, the SVM-based
channel estimator needs much higher computational complex-
ity than those of the one-bit GDA-Ada-1 and one-bit GDA-
Ada-2 methods when K > 5. In addition, the average run
time for implementing the BiGAMP-based channel estimator
is significantly larger for all K’s compared to the average
run times required for executing the one-bit GDA-Ada-1 and
one-bit GDA-Ada-2 channel estimators. We stress here that
this advantage of the proposed methods is rooted in using
low computation demanding techniques as weak classifiers in
Algorithm 2. Moreover, the computational complexity order of
different channel estimators tested is listed in Table I, where
κ(·) represents a super-linear function and I is the number of
iterations required for implementing the BiGAMP method.

TABLE I: Order of Computational Complexity for Different
Channel Estimators.

Method Complexity
BMMSE O

(
M2KLtapNc

)
SVM-based O (MKLtapNcκ(Nc))
BiGAMP O (IMKLtapNc)
one-bit
GDA-Ada O

(
TMmax{(KLtap)

2.373, (KLtap)
2Nc}

)
one-bit
GDA-Ada-1 O (TMKLtapNc)

one-bit
GDA-Ada-2 O (TMKLtapNc)

In Fig. 3, a performance of the one-bit GDA-Ada-
2 channel estimator is presented versus T for SNR ∈
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Fig. 3. NMSE comparison of the one-bit GDA-Ada-2 channel estimators for
different values of T with K = 4, M = 32, Nc = 512, and Ltap = 16.

Fig. 4. Performance comparison between the proposed AdaBoost-based
channel estimators, SVM, and BiGAMP with K = 2, M = 32, Ltap = 16,
and Nc ∈ {256, 1024}.

{−5, 5, 15, 25} dB.4 It can be seen that the channel estimation
accuracy does not change substantially when T > 10 for
SNR ∈ {−5, 5, 15, 25} dB. As a result, opting T = 10 in
Algorithm 2 is a reasonable choice according to Fig. 3.

Fig. 4 compares the NMSE of the proposed AdaBoost-based
channel estimators with SVM and BiGAMP for Nc = 256
and Nc = 1024, where the NMSEs of the methods tested are
decreased for about 4 dB at high SNRs by increasing Nc from
256 to 1024. Analogous to Fig. 1, the proposed AdaBoost-
based channel estimators possess quite similar performance
to the performance of the SVM-based and BiGAMP-based
channel estimators.

Fig. 5 compares the one-bit GDA-Ada-1 and one-bit GDA-
Ada-2 data detectors with the SVM and BiGAMP data detec-

4As the behavior of all proposed Adaboost-based channel estimators with
respect to T follows the same pattern, only the performance of the one-bit
GDA-Ada-2 is shown in Fig. 3 to ensure the clarity of presentation.

Fig. 5. Performance comparison of different data detectors with K = 2,
M = 16, Nc = 256, Ltap = 8, and QPSK modulation.

tors for both cases of estimated CSI and perfect CSI. It should
be noted here that the estimated CSI of each method is found
by their corresponding channel estimators. Moreover, 500
independently generated CSIs are considered for calculating
the BERs. It can be seen in Fig. 5 that the BERs of the
proposed AdaBoost-based data detectors outperform the BERs
of the SVM and BiGAMP data detectors at high SNRs for both
cases of estimated CSI and perfect CSI. In addition, Fig. 5
shows that the performance of the one-bit GDA-Ada-1 method
is slightly better than that of the one-bit GDA-Ada-2 method at
high SNRs. The better performance of the one-bit GDA-Ada-1
and one-bit GDA-Ada-2 methods indicates that the proposed
methods are more robust to/independent of specific channel
realizations than the the SVM and BiGAMP-based methods.
Indeed, the performance of the BiGAMP method, for example,
shows sensitivity to channel realizations because it saturates
and worsens compared to the performance of the one-bit
GDA-Ada-1 and one-bit GDA-Ada-2 methods at high SNRs,
meaning that for some channel realizations the performance
of the BiGAMP method may be significantly worse than that
of the one-bit GDA-Ada-1 and one-bit GDA-Ada-2 methods.

An average run time comparison for implementing the one-
bit GDA-Ada-1, one-bit GDA-Ada-2, SVM, and BiGAMP
data detectors is presented in Fig. 6, where K ∈ {2, 3, . . . , 8}.
For K ≥ 4, the average run times of the SVM and BiGAMP
data detectors are substantially higher than those of the one-
bit GDA-Ada-1 and one-bit GDA-Ada-2 data detectors. The
orders of computational complexity of different data detectors
tested are listed in Table II.

The impact of choosing different T on the performance
of the one-bit GDA-Ada-2 data detector for SNR ∈
{−5, 0, 10, 20} dB is investigated in Fig. 7.5 It can be seen
that the change in BER is only marginal when T > 10 for
SNR ∈ {−5, 0, 10, 20} dB. As a result, opting T = 10 in

5As the behavior of all proposed Adaboost-based data detectors with respect
to T follows the same pattern, only the performance of the one-bit GDA-Ada-
2 is shown in Fig. 7 to ensure the clarity of presentation.
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Fig. 6. Average run time for implementing different data detectors with
various K, Nc = 512, M = 32, and Ltap = 8.

TABLE II: Order of Computational Complexity for Different
Data Detectors.

Method Complexity
SVM-based O

(
MKN2

c κ(MNc)
)

BiGAMP O
(
IMKN2

c

)
one-bit GDA-Ada O

(
Tmax{(KNc)

2.373,MK2N3
c }
)

one-bit GDA-Ada-1 O
(
TMKN2

c

)
one-bit GDA-Ada-2 O

(
TMKN2

c

)

Fig. 7. The impact of different T on the performance of the one-bit GDA-
Ada-2 data detector with K = 4 , Nc = 256, M = 32, Ltap = 16, and
QPSK modulation.

Algorithm 3 is a reasonable choice according to Fig. 7.

V. CONCLUSION

In this paper, we have found out and demonstrated that the
GDA classifier/approximate GDA classifier together with the

AdaBoost technique result in developing efficient and reliable
channel estimators and data detectors, specifically in large
scale scenarios such as MIMO-OFDM systems that operate
over frequency selective channels. It was shown that two of
the proposed AdaBoost-based channel estimators and data
detectors named one-bit GDA-Ada-1 and one-bit GDA-Ada-
2 require dramatically lower run time compared to those of
the BiGAMP-based and SVM-based methods, while providing
comparable/better accuracy. Numerical results were presented
to showcase the efficiency and robustness of the proposed
methods in large scale MIMO-OFDM systems. For one-
bit MIMO-OFDM systems, the use of AdaBoost with weak
classifiers can be viewed as a versatile framework where
any approximate binary classifiers with low computational
complexity can be employed as weak classifiers, resulting in
this AdaBoost framework being a highly promising tool for
dramatically reducing the computational complexity.
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