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Abstract—Codebook-based beam selection is one approach for
configuring millimeter wave communication links. The overhead
required to reconfigure the transmit and receive beam pair,
though, increases in highly dynamic vehicular communication
systems. Location information coupled with machine learning
(ML) beam recommendation is one way to reduce the overhead of
beam pair selection. In this paper, we develop ML-based location-
aided approaches to decouple the beam selection between the
user equipment (UE) and the base station (BS). We quantify
the performance gaps due to decoupling beam selection and
also disaggregating the UE’s location information from the BS.
Our simulation results show that decoupling beam selection with
available location information at the BS performs comparable to
joint beam pair selection at the BS. Moreover, decoupled beam
selection without location closely approaches the performance of
beam pair selection at the BS when sufficient beam pairs are
swept.

I. INTRODUCTION

Millimeter wave (mmWave) multiple-input multiple-output
(MIMO) communications promise enhanced connectivity with
high-fidelity sensor data exchange in vehicular systems [1].
Obtaining the best performance in mmWave MIMO systems
requires configuring transmit and receive antenna arrays, which
is challenging with large arrays and hybrid architectures [2],
[3]. Codebook-based beam training is one approach for con-
figuring mmWave MIMO links by transmitting and receiving
with each beamforming codeword-pair in highly dynamic
vehicular environments [2], [3]. Prior work has demonstrated
how sensory information from localization sensors [4]–[6],
camera [5], LiDAR [6], radar [7] can be leveraged to reduce
the overheads of beam training. Most prior work on ML-based
beam training focuses on a centralized approach where the BS
leverages sensor data to recommend beam pairs to test [4]–[7].
This requires the recommended receive beams to be shared
with the UEs and requires all UEs to have the same codebook
and antenna configuration.

In this work, we develop location-aided beam training
approaches that decouple the beam selection at the BS and
the UE. We consider three scenarios. Scenario 1 represents
our baseline case where the BS determines the beam pairs for
the BS and the UE based on the UE’s location information.
In the scenario 2, the BS selects its transmit beams based on
the UE location. Independently, the UE determines its receive
beams by leveraging its location. In the scenario 3, the BS does
not have the UE’s location and the selected transmit beams

are chosen to serve the region of interest in the urban street.
The UE selects its beams based on its location. We denote
beam selection in the scenario 1 as coupled with location,
and in the scenario 2 and 3 as decoupled with and without
location. We develop ML-based beam selection algorithms
for coupled and decoupled scenarios because ML has been
shown to successfully learn implicit relationships between
beams and location information in site-specific scenarios [8].
The algorithms for scenario 2 and 3 are based on lightweight
ML models for practical deployment at the UE. We generate
ray-traced channel samples in a realistic urban environment.
Accordingly, we compare the three scenarios to quantify
the performance gaps due to decoupling beam selection and
disaggregating the UE’s location from the BS.

There are various approaches for side information-aided,
ML-powered beam selection for vehicular mmWave systems.
Leveraging vehicle location in beam pair selection has been
proposed in [2], [4], [9]. The work shows a decrease in
the overhead, whereas, the algorithms are for coupled beam
selection and are centralized at the BS. The images taken
by a roadside unit (RSU) and the UE’s location were fused
to develop a beam recommendation algorithm in [5]. The
beam selection at the BS is again coupled. Similar to coupled
beam selection methods, LiDAR and location measurements
were processed to predict beam pairs for the BS and the
UE in [6]. Our first contribution compared to [2], [4]–[6],
[9], we propose ML-based algorithms that decouple the beam
selection at the BS and the UE, which might be a practical
approach to incorporate different UE configurations into the
beam training process. Our second contribution is to evaluate
the performance gaps due to the disaggregation of the UE’s
location from the BS by developing lightweight decoupled ML
models compared to [5], [6] that uses LiDAR information,
images. We only focus on the UE’s location information as it
is among the simplest sensory data to process and share.
Notation: A is a matrix, a is a column vector, A is a set
and a, A denote scalars. (·)∗ is conjugate transpose, |A| is the
cardinality of set A, 1(·) is the indicator function and |a| is the
absolute value of a scalar a. × denotes the Cartesian product
of two sets, ⊂ denotes the subset symbol in sets.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formally introduce the system model, the
general beam training problem, and the location-based dataset



to help solve the problem.

A. System model
We consider a vehicular communication system in an urban

street. We assume a BS at the roadside of a multi-lane road
and a communicating vehicular UE on the road. The BS and
the UE are equipped with uniform planar arrays (UPAs) for
analog beamforming. We model a frequency-selective MIMO
orthogonal frequency division multiplexing (OFDM) multipath
channel with K subcarriers. We denote the channel and the
transmitted symbol at the subcarrier k as H[k] and s[k], and
the BS and UE beam codebooks as F and W . We denote the
j-th beamformer at the BS as fj ∈ F , the i-th combiner at the
UE as wi ∈ W and the noise vector as v. The received signal
at the UE on the subcarrier k with (wi, fj) is written as

yi,j [k] = w∗i H[k]fjs[k] + w∗i v[k]. (1)

We denote the effective channel w∗i H[k]fj as heff,i,j [k] and its
estimate as ĥeff,i,j [k]. We denote transmit energy per single-
subcarrier symbol as Es and noise energy per single-subcarrier
as N0. We assume unit power beamformers and combiners.
The average rate Ri,j obtained at the UE with (wi, fj) over
K subcarriers is calculated as

Ri,j =
1

K

K−1∑
k=0

log2

(
1 +

Es

N0
|ĥeff,i,j [k]|2

)
. (2)

The rate expression is computed treating the estimated channel
as the true channel. A more nuanced calculation in [10,
Section 4.8] describes how to incorporate the SNR penalty due
to estimation error and a penalty due to pilot overhead. We find
that extra penalty terms do not impact the rate selection.

Now, we explain the general beam selection problem for any
scenario. Let B denote the set of all beam pair combinations
W×F and S ⊂ B denote the beam pair subset recommended
by a beam selection algorithm for the BS and the UE, then
the throughput ratio [4] is defined as

RT =
max(wi,fj)∈S Ri,j

max(wi,fj)∈B Ri,j
. (3)

We focus on a specific region inside the coverage area of the
BS in the urban street. We denote the set of locations that
a UE might be located as XRoI. The region of interest can
be defined arbitrarily in the coverage region and the problem
formulation is not specific to the region, although the specific
results and algorithms are site-specific. The urban street has
both mobile and static objects. Consequently, the multipath
channel between the BS and a UE is location-dependent and
time-varying. Given a realization of channel for a UE, the
throughput ratio depends only on S . We define the general
beam selection problem as generating an S for a given UE at
` ∈ XRoI such that

argmax
S

RT, subject to |S| = NB. (4)

The main goal in each scenario is to construct an S to
maximize the throughput ratio for a UE that might be located
at any ` ∈ XRoI.

TABLE I
LOCATION-BASED DATASET. THE k-TH ROW CORRESPONDS TO THE RATES

FOR BEAM PAIRS (wi, fj) OF A UE AT [xk, yk].

Location i, j = 1, 1 i, j i, j = |W|, |F|
`1 R1,1,1 Ri,j,1 R|W|,|F|,1
... ... ... ...
`Nd R1,1,Nd Ri,j,Nd R|W|,|F|,Nd

We develop a beam selection method for each scenario to
generate a beam pair subset S . The task of generating S
involves three stages: training, inference, and beam-sweeping.
A location-based dataset is constructed in the training stage.
The beam selection methods are configured using the dataset
to achieve (4). In the inference stage, a subset of beam pairs S
for the BS and the UE in the urban street is generated through
configured beam selection methods depending on the scenario.
In the beam-sweeping stage, each beam pair (wi, fj) ∈ S is
tested between the BS and the UE so that the pair providing
the greatest throughput ratio is found.

B. Beam training dataset

Exhaustive measurements for all beam pairs mapped with
the UE location can be collected to construct a beam training
dataset. The UEs measure their location via GPS or localiza-
tion sensors [1]. The rate for each beam pair (wi, fj) ∈ B for
Nd UEs constitutes a location-based dataset to configure the
methods for the beam selection. We assume that the location-
based dataset illustrated in Table I is available at the BS and
the UE to develop beam selection methods for all scenarios
in the training stage. The location information is encoded as
a vector ` = [x, y]T in Cartesian coordinates, where the BS is
the origin and the road is in the y-axis. We assume that UEs’
heights are the same so we only consider x, y.

III. BEAM ALIGNMENT SCENARIOS

In this section, we explain the training, inference, and beam-
sweeping stages for each of the three scenarios. There are
two key factors that distinguish the scenarios. The first factor
is the availability of UE’s location information at the BS
during the inference stage. The second factor is the type of
beam selection: coupled or decoupled. In all scenarios, UEs
are assumed to have their location information through their
localization sensors.

We achieve beam selection with location by throughput ratio
prediction. Therefore, we transform the dataset of rates in
Table I into the dataset of throughput ratios to be used in all
scenarios. Denote the maximum rate for the n-th row in Table
I as Rmax,n, then throughput ratio for (wi, fj) is calculated
as RT,i,j,n = Ri,j,n/Rmax,n. We define the throughput ratio
vector for the n-th row as rT,n = [RT,1,1,n, ..., RT,|W|,|F|,n]

T,
and construct the throughput ratio dataset.

A. Scenario 1

We first consider a centralized scenario where the BS
determines the BS and UE beams using the UE’s location. The



Fig. 1. Multi-output throughput ratio regression models are shown. Model
(A) represents the regression model for scenario 1. Model (B) represents the
regression model for the BS or a UE in the scenario 2 and a UE in the
scenario 3, where M denotes the beam codebooks, F or W .

BS shares the corresponding UE beams with the UE before
the beam-sweeping stage. This scenario is called coupled beam
selection with location (CBSwL). The problem is to select a
beam pair set S ⊂ B at the BS to optimize (4). Given the
location ` of the UE, selecting the beam pairs having NB
greatest throughput ratios is one possible approach to solve the
problem. We need to predict the throughput ratios for beam
pairs for a specific UE location ` ∈ XRoI.

In the training stage, we develop a regression model g pre-
dicting rT given `, illustrated in Fig. 1-(A). Let Θ1 denote the
trainable model parameters, r̂T denote the predicted throughput
ratio vector, then r̂T = g(`|Θ1). We use ML approaches to
configure model parameters using the throughput ratio dataset
to minimize the sum of prediction loss function L over data
points in Table I

min
Θ1

Nd∑
n=1

L(rT,n, r̂T,n|Θ1, `n). (5)

The regression model g incorporates the dynamic environment
given the location ` into the throughput ratio prediction.

In the inference stage, a UE sends its location information `
with a beam training request to the BS. The trained regression
model predicts the throughput ratios using the location as
r̂T = g(`|Θ1). The selection approach is to construct S
containing beam pairs with the greatest NB throughput ratios.
In this stage, the BS sends beam indices to the UE, requiring
a transmission overhead of |S| log2(|W|) bits. Afterward, the
beam-sweeping stage follows.

B. Scenario 2

Next we consider a decentralized scenario where each of
the BS and UE determines its own beams given the UE’s
location. This scenario is called a decoupled beam selection
with location (DBSwL). In the decoupled scenario, the BS
and the UE select beam subset Sf ⊂ F and Sw ⊂ W both
based on ` to optimize (4) where S = Sw × Sf. Decoupled
beam selection terminates the joint selection of beam pairs
given the location. Accordingly, the UE and the BS cannot
precisely predict the beams in Sf and Sw. Therefore, each
terminal needs to select its combiners or beamformers based
on the information available.

The beam pair with the highest throughput ratio might not
necessarily lead to a reliable link all the time due to the
dynamic environment. Therefore, selecting beamformers and
combiners that yield the greatest throughput ratios may not
lead to a high throughput ratio at the same location over
time. Except for the targeted individually pairwise beam pairs,
the other combinations of beamformers and combiners lead
to bad combinations. Instead, we introduce the approximate
throughput ratio (ATR) for each beam, aiming to provide
resilience to the dynamic environment while achieving a high
throughput ratio. Given the n-th row, the ATR of the combiner
wi is calculated by taking the average of throughput ratios
for (wi, fj) over every fj ∈ F . Likewise, the ATR of the
beamformer fj is calculated over all combiners wi ∈ B. Via
this procedure, ATR datasets for F and B are generated. The
dataset of the BS and the UE consists of ATR vectors, rT,f,n =
[RT,1,n, ..., RT,|F|,n] and rT,w,n = [RT,1,n, ..., RT,|W|,n] for the
n-th row. Two datasets represent the approximate achievable
throughput ratio of beamformers and combiners. Our proposed
solution to the decoupled problem is that the BS and the UE
select beamformers and combiners with maximum ATRs.

In the training stage, we develop decoupled regression
models, gf for the BS and gw for the UE. The regression
models, gf and gw predict rT,f and rT,w given ` for the UE,
illustrated in Fig. 1-(B). Let Θ2,f Θ2,w be the trainable model
parameters, r̂T,f and r̂T,w be the predicted ATR vectors, then
r̂T,f = gf(`|Θ2,f) and r̂T,w = gw(`|Θ2,w). We train the
regression models using the ATR datasets to minimize the loss
between the true ratios and predicted ratios L

min
Θ2,k

Nd∑
n=1

L(rT,k,n, r̂T,k,n|Θ2,k, `n), for k ∈ {f,w}. (6)

Since the location-based dataset contains time-varying mea-
surements, the regression models gf, gw incorporate the effect
of dynamic environment into ATR prediction given a location.

In the inference stage, a beam training request with the
location information ` is sent from a UE to the BS. Sf
and Sw containing beams with the greatest ATRs in r̂T,f =
gf(`|Θ2,f) and r̂T,w = gw(`|Θ2,w) are selected such that
|S| = |Sw × Sf| = NB. |Sf| and |Sw| can take different
values to satisfy |Sw||Sf| = NB. In this scenario, there is no
transmission overhead from the BS to the UE required in the
scenario 1, since the combiners are selected at the UE. After
beam selection at the BS and the UE, beam-sweeping starts.

C. Scenario 3

We consider a decentralized scenario where each of the BS
and UE determines its own beams, but the BS does not have
the UE’s location in the inference stage, while the UE has its
location information. We call this scenario decoupled selection
without location (DBSwoL). Since the BS does not have the
location information of a UE to serve, a reasonable strategy
for the BS is to select beams, Sf ⊂ F to cover the entire
region that the UE might be located. The UE needs to select
Sw ⊂ W based on its location `. The optimization problem in



(4) is to construct a beam pair set as |S| = |Sw × Sf| = NB.
We propose selecting Sw as in the scenario 2 by maximizing
ATR for a specific location ` ∈ XRoI. The beamformer subset
Sf is selected to cover the region of interest in the urban street.

In the training stage, a decoupled regression model for a
UE is developed to predict ATRs for W , r̂T,w = gw(`|Θ3,w)
as in the scenario 2. Using the model, the beams providing
the greatest ATRs are selected for Sw for the UE. The BS
beam selection cannot be conducted for a single UE since the
BS does not have the UE’s location. The multipath channel
characteristics of a small region in the urban street might be
highly correlated over time due to static objects, reflectors in
the environment such as buildings and roads [2]. We incor-
porate this idea by proposing a clustering approach to group
the measurements in the location-based ATR dataset via the
K-means clustering algorithm [11]. K-means clustering helps
to create smaller grids in XRoI. We design a probabilistic beam
selection from each grid to cover the region of interest. Since
the probabilities depend on multiple measurements in a grid,
the approach provides robustness in a dynamic environment.

The training stage consists of clustering and the probability
assignments on the beams. Initially, we divide beamformers’
ATR dataset into C clusters based on the location information.
We introduce a parameter α to represent the significance of the
information a cluster provides. Denoting the number of UEs
in the cluster c as Nc, the significance of cluster c is defined as
αc = Nc/Nd, where Nd is the total number of measurements
in the dataset. This definition assumes that the location-based
dataset inherently represents a realistic UE distribution in the
urban street. Otherwise, α for each cluster can be set to 1
to discard the UE distribution in the dataset. We introduce a
probability measure to compare the beamformers within and
across the clusters based on the significance of each cluster.
Denote the index of the beam with k-th highest ATR for the
n-th row of the dataset in the cluster c as {RT,c,n}k, then the
probability of being k-th best beam for fj is calculated as

P (k)
c (j) =

1

Nc

Nc∑
n=1

1
(
{RT,c,n}k == j

)
. (7)

P
(k)
c (j) incorporates the k-th strongest path for the cluster c.
The beam selection from clusters starts with calculating

P
(k)
c (j) for each beamformer fj ∈ F in the clusters. The

beams having non-zero probabilities are stored in the set Pc,k

for each cluster c. The `-th most probable beam of Pc,k is
denoted as {Pc,k}`, where ` = 1, ..., |Pc,k|. The `-th most
probable beams are selected from each cluster. Some selected
beams may yield high ATRs for other clusters, while some are
good only within their clusters. Therefore, we take weighted
averages of the probabilities of `-th most probable beams using
the significance value of each cluster. This operation measures
the generalizability of a beamformer in other regions. The
idea is to select the most general beams across the clusters.
The beam selection starts with k = 1, ` = 1. The beams are
iteratively added to the Sf for ` = 1, ..., |Pc,k| and for each

k = 1, ..., |F| until |Sf| = NBS. This procedure converges
quickly for the desired value of NBS beams.

In the inference stage, a UE sends a beam training request
to the BS. The BS has its selected beams ready in the
training stage for beam-sweeping since the BS beams are
irrespective of the UE’s location. The UE selects Sw based
on the predetermined |Sw| and ` using gw(`|Θ3,w). There is
no need for any information exchange in this scenario.

IV. SIMULATION RESULTS

We first introduce evaluation metrics and the simulation
environment to generate the beam training dataset. Then we
explain how learning models are trained and selected. Lastly,
we present the performance comparison of the three scenarios.

A. Evaluation metrics

We use throughput ratio and misalignment probability as
evaluation metrics in our simulations. Let N denote the
total number of test UEs selected from different snapshots
of the urban street in Fig. 2. The performance metrics are
calculated over all test UEs. Misalignment probability Pm is
the probability that the beam pair subset does not include the
beam pair with the greatest throughput ratio [2]. Let Sn be the
constructed beam pair subset for n-th test UE, it is defined as

Pm =
1

N

N∑
n=1

1

(
argmax
(wi,fj)∈B

{rT,n} /∈ Sn

)
. (8)

The average throughput ratio over N test UEs is expressed as

RT =
1

N

N∑
n=1

max
(wi,fj)∈Sn

{rT,n}. (9)

Metrics highlight different performances of beam selection.

B. Simulation setup

In our simulations, we use realistic channels generated
from a ray tracing simulator, Sionna [12] in an urban street
environment. We use Blender to import realistic urban streets
with buildings into our scenes. We design cars (width: 1.75m,
length: 4.5m, height: 1.5m) and buses (2.5m, 12m, 3.8m)
with realistic shapes and assign appropriate material properties
such as concrete, metal, glass to the objects in Blender. The
environment in the Fig. 2 consists of a four-lane road where
vehicles are placed with distances drawn from a uniform
distribution. Cars serve as users, while buses serve as natural
reflectors and blockers in the environment.

We generate 500 snapshots with different deployments of
cars and buses in the urban street. Fig. 2 shows an example
snapshot and associated paths between the BS and a UE. The
carrier frequency is 28 GHz. We assume zero-mean additive
Gaussian noise for the thermal noise and the noise figure in
the receiver. An 8 × 8 UPA is mounted on the wall of a
building, positioned 10 meters above ground, serving as the
BS and is tilted down so that boresight points in the street
direction. A 4× 4 UPA is placed on the roof of each car with
a fixed orientation. We use DFT codebooks with the sizes



Fig. 2. One snapshot of the urban street environment created in Blender and
simulated in Sionna. It represents the region of interest in the urban street.
The buses are blockers and support NLOS paths from the BS and UEs.

|F| = 64 at the BS and |W| = 16 at the UE. The total
number of beam pairs in the dataset is |B| = |W||F| = 1024.
We use least-squares (LS) channel estimation with Zadoff-Chu
sequences for throughput ratio calculations [10]. We generate
5700 channels for all cars in snapshots in the Sionna [12].

C. Model selection and training

We design the beam selection algorithm by using ML,
specifically, multi-output throughput ratio regression models
for all scenarios except the decoupled beam selection method
of the BS in the scenario 3. The fact that UE has limited
storage and can employ only a lightweight ML model requires
considering the practical aspects of decoupled beam selection.
Therefore, the UE’s decoupled regression model should be
lightweight yet maintain satisfactory prediction performance.
We compare XGBoost, neural network, random forest, and
lasso linear regression models in the scenario 1 to identify the
best-performing model with minimal parameters. We train and
tune the models using K-fold cross-validation [13], an effective
method to interpret the model’s generalizability.

We reserve 20% of the channel samples as test samples and
use remaining 80% to tune the model parameters via 5-fold
cross validation. We maintain a similar number of trainable
parameters across different learning models to ensure a fair
comparison. XGBoost outperforms the other three in terms
of misalignment probability and throughput ratio with over
7% improvement. Therefore, we use the XGBoost model for
all scenarios. The total number of trainable parameters in the
decoupled regression model at the UE is kept significantly
lower than the coupled regression model at the BS to consider
practical aspects. The UE models of scenario 2 and 3 have a
number of parameters less than 2×|B|, whereas the XGBoost
model in the scenario 1 has 30× more parameters.

D. The comparison of scenarios

Now, we compare three scenarios in terms of throughput ra-
tio and misalignment probability. Fig. 3 illustrates the through-
put ratio comparison of the three scenarios. Our baseline in
the scenario 1 performs quite well, achieving above 90%
throughput ratio in sweeping only 5 beam pairs. Decoupling
beam selection with location performs similarly to the baseline
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Fig. 3. Throughput ratio comparison for the three scenarios. The number
of UE beams, |Sw| is set to 5 for the decoupled scenarios. The increasing
number of beam pairs is due to the increasing number of selected BS beams.
Decoupling beam selection with location has a minor throughput ratio decrease
of less than 7%. Disaggregating location information has a higher decrease,
whereas the proposed solutions achieve a comparable throughput ratio in
sweeping at least 100 beam pairs that are ≈ 10% of total beam pairs.

case with a throughput ratio decrease of less than 7% for
any number of beam pairs. This shows that the proposed
transformation from throughput ratios to ATRs preserves the
information of beam pairs achieving high throughput ratios.
Moreover, sweeping only one beam pair achieves approx-
imately 75% throughput ratio in the beam selection with
location. In parallel, disaggregating the UE location from the
BS in the scenario 3 leads to up to 20% throughput ratio
decrease in sweeping less than 100 beam pairs. These highlight
how impactful the UE’s location in the beam selection is.
Nevertheless, the proposed clustering-based beam selection
algorithm in the scenario 3 incorporates the UE’s location in
the dataset into the beam selection well and quickly recovers
the throughput ratio loss up to selecting 120 beam pairs.
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Fig. 4. Throughput ratios for scenario 2 and scenario 3. The horizontal and
vertical axes represent the number of the selected UE and BS beams. Heatmaps
are useful to identify the required number of BS and UE beams to achieve a
certain performance. For example, 4 BS beams and 3 UE beams are sufficient
to achieve 90% throughput ratio in DBSwL whereas DBSwoL requires 19
BS beams and 3 UE beams, which is equivalent to say 45 more beam pairs
are required compared to DBSwL.
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Fig. 5. Misalignment probability comparison for the three scenarios. The
number of UE beams, |Sw| is set to 5 for the decoupled scenarios. There is
a large gap between the coupled scenario 1 and decoupled scenario 2 and 3.
The decoupled scenarios might not necessarily yield the best beam pair since
they are designed to achieve a high throughput ratio, not the best beam pair.

Fig. 4 illustrates the throughput ratio comparison between
scenario 2 and scenario 3. It shows a significant increase
in throughput ratios from |Sw| = 1 to 5, with less notable
growth from |Sw| = 5 to 7. This shows that 5 beams from
the UEs’ codebook are enough to achieve approximately 95%
of achievable throughput ratio as seen in Fig. 3 and Fig. 4.
Beam selection at the BS without the UE’s location causes
a throughput ratio decrease of over 20% in single BS beam
selection. Selecting multiple BS beams leads to a notable per-
formance increase in scenario 3. This shows the effectiveness
of our clustering approach in leveraging location information
from the dataset to select beamformers, even without the UE’s
location. Moreover, scenario 3 performs almost the same as
scenario 2 after 100 beam pairs. As the number of clusters
increases, the clustering approach recovers the performance
loss as if the UE’s location is available at the BS.

Fig. 5 demonstrates the misalignment probability for the
three scenarios. Scenario 1 achieves significantly lower mis-
alignment probability than decoupled scenarios for any number
of beam pair selections. Even though there is a huge perfor-
mance loss in misalignment probability, not selecting the best
beam pair does not lead to a significant performance loss in the
throughput ratio. This shows there are other suboptimal beam
pairs that still yield a high throughput ratio which is what
our ML methods are designed to achieve. Fig. 3 shows that
the throughput ratio is still near 100% when the misalignment
probability is high. Scenario 2 and scenario 3 perform quite
well in terms of throughput ratio even though they are not able
to include the best beam pair with high probability.

V. CONCLUSION AND FUTURE WORK

In this work, we analyzed the impact of decoupling beam
pair selection and disaggregating location information from the
BS on beam training in dynamic V2I mmWave MIMO com-
munication systems. We proposed location-aided ML-based

beam selection methods for decoupling. The results showed
that ML-based decoupled beam selection with location infor-
mation has almost no performance decrease in throughput ratio
compared to the conventional coupled beam pair selection with
the location. Moreover, the proposed clustering-based beam
selection approach gradually recovers the performance loss,
although disaggregating location has a noticeable performance
loss compared to decoupling beam selection. In summary,
our work provides promising results for decoupling training
between the BS and the UE with or without localization. In
future work, we will expand on this work by analyzing how to
address the practical aspects of decoupled beam training and
how to exploit decoupling for heterogeneous devices.
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