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Abstract—Beam management is the defacto approach for con-
figuring the antennas in 5G MIMO communication systems.
Extending the beam management framework to larger arrays—
also known as extreme MIMO systems—is challenging as the
overheads grow with the array dimensions. One solution is to
make use of the wealth of sensor data that is becoming available
in integrated sensing and communication (ISAC) systems. In
this paper, we propose a neural architecture for codebook
design using environmental context derived from sensor data.
In particular, we combine beamspace transformations with local
occupancy grids obtained through network sensing to maximize
the achievable rate in vehicular operations. Our results show
significant performance gains over traditional codebooks while
requiring less overhead than standard 5G beam management.

Index Terms—6G, Massive MIMO, Extreme MIMO, CSI, Code-
books

I. INTRODUCTION

Communication systems integrated with radar or sensing in-
formation present new opportunities for fast, low-overhead
link configuration. ISAC systems, where the communication
signals are reused for sensing without overhead, have been
proposed for 6G standardization [1]. ISAC systems seek to
obtain sensing information such as user localization, object
detection, and environmental awareness without dedicated
wireless signals. In addition to ISAC, sensing information such
as LiDAR and camera information also present possible data
that can be used to configure the wireless link [2]. Effec-
tively leveraging the environmental information, however, is
challenging because it does not naturally provide complete
CSI nor clearly integrate with the standard beam management
framework used in mobile broadband [3].

Beam management describes the codebook-based process of
obtaining partial CSI through beam training and digital feed-
back [3]. First, beam training is used to improve cell coverage,
enable hybrid arrays, and obtain beamforming gain [4]. Sec-
ond, user equipment (UE) provides feedback corresponding to
beamformed CSI that enables multi-rank communication and
interference mitigation [5], [6]. Applying contextual aware-
ness to these steps requires understanding and integrating the
multipath, frequency-selective environment characteristics into
the codebook design and beam selection processes. While
single-user (SU), line of sight (LOS) communication can be
intuitively configured with environmental sensing, extending

codebook design to multipath environments and multi-user
(MU) is not obvious. Instead, consistent and complete CSI
obtained from channel sounding or raytracing is often neces-
sary to accurately represent the channel [7].

In this paper, we propose a novel context-aware codebook de-
sign algorithm that leverages contextual information available
in vehicular communication systems. The proposed strategy
combines sensing information in the form of occupancy grids
with beamspace representations and end-to-end learning [6]
to learn codebooks that support high-rate SU-MIMO commu-
nications. An occupancy grid is a map of the coverage area
that indicates if a location is blocked or contains a target UE
[8]. The proposed Contextual Codebook Learning algorithm
(CCBL) generates multi-rank codebooks with multi-stream
capability for each user (individually) identified in the grid.

Prior work using contextual awareness for rank-1 communica-
tions has shown that environmental sensing can help improve
beamforming and reduce beam training overhead [8], [9].
Channel mapping and charting ideas have also been proposed
as a method of abstracting environmental context [10], [11].
Prior work, however, has focused on a single user received
power or rank-1 communications which do not show whether
user data rates improved as a result. Prior work has shown
the advantage of environmental context for beam training [8],
[9], but does not consider how dynamic codebooks can be
configured using it. Building on our prior work with codebook
learning [5], we propose a strategy for designing codebooks
to enable full-rank MIMO communications by leveraging
environmental context. Unlike methods in [8] and [9], our ap-
proach dynamically generates multi-rank codebooks, ensuring
low-latency beam management and zero-shot beam alignment.

II. SYSTEM MODEL

We consider a vehicular scenario where a dense, multi-lane
roadway is served by a roadside unit (RSU). Vehicular net-
works are challenging because of the rapid mobility and high
quality of service requirements [9], but the wealth of sensor
data presents an opportunity for new algorithms to improve the
communication link [12]. We assume the RSU is equipped
with a hybrid planar array of size NT = NX × NY with
NT, d digital RF chains and that there are U mobile vehicular
UEs each equipped with a fully digital planar array of size



Fig. 1. An example of environmental context in the form of an occupancy
grid image. The occupancy grid shows the vehicles in the 4-lane road and
highlights which users are active (shown in gray) for the codebook design step
compared to other vehicles that are potential blockers (shown in white). Note
that the image is downsampled by a factor of 8 in the horizontal direction
to reduce computational load and each pixel corresponds to approximately
0.125× 1 m2.

NR = NRX × NRY. We assume U is a dynamic variable and
corresponds to only a small number of vehicles on the roadway
at a time. Following typical mobile communications, we
assume an OFDM channel over T timeslots and K subcarriers
H ∈ CT×K×NR×NT . A typical received signal for a user u
during time-frequency resource t, k with combiner W∗ and
analog/digital precoders FRF

t ,Ft,k and symbol s is then

yu,t,k = W∗ (Hu,t,kF
RF
t Ft,ksu,t,k +Nu,t,k

)
. (1)

With the generic received signal (1), we can overview how the
base station can configure FRF

t and Ft,k using the standardized
beam management procedure.

Beam management, as it is defined in 5G, involves a hi-
erarchical beam search and configurable feedback formats
[3]. In this work, we seek to reduce the complexity and
overhead of beam management using contextual awareness to
preemptively design codebooks that support high-rate MIMO
communication. In prior work, we have found that well-
designed codebooks could be used instead of hierarchical
search with greater performance and orders of magnitude less
overhead [5]. Based on these results, we now propose a beam
management strategy that only uses a single stage of beam
training relying only on CSI-RS.

The process starts by obtaining environmental context, which
we assume corresponds to a 2D occupancy grid as shown in
Fig. 1. Other formats such as 3D occupancy grids or channel
charts are suggested for future work. The occupancy grid,
O, is used to prepare the upcoming codebook BCSI-RS. In
essence, the codebook is assumed to be designed dynamically
to support a set of users identified in the occupancy grid. In
a traditional system, the codebook is dynamically configured
using the hierarchical beam search. In this investigation, we
focus on multi-user codebook design and SU-MIMO data
transmission with extensions to multi-user and multi-cell work
proposed for future work. We assume the beam training
process follows typical procedures which we overview next.

A. Beam training

Beam training is classically performed over a two-tier code-
book search where synchronization signal block (SSB) and
channel state information reference signals (CSI-RS) are trans-
mitted with associated beamformers to determine a multi-
antenna strategy [3]. We will skip the SSB stage since
it provides coarse beamforming information that is already
achievable with the environmental context. CSI-RS are par-
ticularly important in the overall link configuration as they
include pilot symbols for (beamformed) channel estimation
and multi-rank signaling that enables MIMO transmission.
UEs use the received CSI-RS to report the codebook index,
rank information, and optionally precoder matrix information
to the BS. The BS can then use this information either for
data transmission in a SU-MIMO or MU-MIMO format. For
simplicity, we focus on the achievable SU-MIMO rate in
this work, although the codebook must also support multiple
users that may be active in the network prior to scheduling.
Therefore, we now describe the multi-user beam training
process and then the SU-MIMO data transmission.

The first step of the proposed beam training involves the trans-
mission and reception of CSI-RS using each of the precoding
codewords Fi ∈ BCSI-RS. The UE u receives the CSI-RS signal
yCSI-RSi with receive combiner W∗

u,t,k ∈ CR×NR containing
pilot training symbols str

t,k over the R rank precoder as

yCSI-RSi

u,t,k = W∗
u,t,kHu,t,kFis

tr
t,k +W∗

u,t,kNu,t,k. (2)

Note that the precoding is achieved in a hybrid array with
FRF

t F ≈ Fi configured to minimize the difference between
the codebook entry and the achieved hybrid precoder. There
is, however, minimal reconstruction loss because Rank(Fi) ≪
NT, d even with low-resolution phase shifters [13].

For simplicity, we assume an information-theoretically optimal
combining strategy for the UEs based on the embedded pilot
symbols. The UE can then select a CSI-RS according to either
the reference signal received power (RSRP) or higher-level
metrics such as the signal-to-interference noise ratio (SINR).
Because of the focus on extreme MIMO (X-MIMO), we
propose beam selection using the achievable spectral efficiency
arising from the multi-rank SINR as an appropriate metric.
With an optimal combining strategy, the estimated spectral
efficiency (SE) for CSI-RS codeword i is [14]

SECSI-RSi

u,t,k = log2 det
(
I+

PT

E[N2]
Hu,t,kFiF

∗
iH

∗
u,t,k

)
, (3)

where PT /E[N2] corresponds to the ratio of the transmit
power and noise power. Then the selection simply corresponds
to the codeword with the highest spectral efficiency over the
CSI-RS resources TCSI-RSi

,KCSI-RSi

SEi
u =

1

K

∑
t∈TCSI-RSi

∑
k∈KCSI-RSi

SECSI-RSi

u,t,k (4)

pu = argmax
i

SEi
u. (5)



Estimating the spectral efficiency is more computationally
intensive than other metrics, especially for large-scale MIMO
with many receiver antennas. One possible solution would be
to reduce the computational load of calculating the feedback,
which represents a substantial computational load on the UE
[15]. Reducing the feedback calculations and overhead can
provide a significant gain in low-latency and high-mobility
scenarios due to the short channel coherence time.

Codeword selection is part of the minimal feedback a UE
must provide, although feedback for the beamformed channel,
HFpu is supported within the precoding matrix indicator
(PMI) field of the feedback packet. In frequency division
duplexing (FDD) systems it is typically assumed UEs would
provide this feedback but even time-division duplexing (TDD)
systems can benefit from the additional CSI [16]. This feed-
back can be configured in either type-I or type-II formats [17]
where type-II is typically used for MU-MIMO as it allows
for higher resolution feedback [18]. Feedback, however, has
significant overhead and the benefits are not as clear with adap-
tive codebooks [5]. We assume a direct beam training scenario
where users select a beam without additional feedback, thereby
focusing on low-latency scenarios in this work.

B. Data transmission

In the vehicular RSU scenario, the UEs are highly mobile such
that configuring MU-MIMO data transmission with up-to-
date CSI is challenging without high overhead and significant
processing. Therefore, we assume data precoding directly
employs the beam training codewords. From the U users
active in the scene, we assume a random user selection
process such that each user is equally likely to be scheduled
regardless of its CSI. Such an assumption is for simplicity
and to prevent biasing the system towards a greedy selection
process. Furthermore, by selecting a random user, we ensure
that the codebooks are appropriate for any user. Integrating
an advanced scheduler or predictive model into the algorithm
could also be an interesting direction of work.

A user ua ∼ U(1, U) known to the BS is selected as the
active user. The resulting spectral efficiency follows (3) with
the user-reported precoder applied over the entire resource
grid. We further define the effective spectral efficiency as the
total spectral efficiency excluding beam management resources
(TBM,KBM), highlighting performance relative to overhead as

ESE =
1

K

∑
t/∈TBM
k/∈KBM

SEua,t,k. (6)

With the goal of maximizing the ESE, we now present the
context-aware codebook algorithm CCBL.

III. PROPOSED ALGORITHM

In this paper, we propose CCBL, an end-to-end codebook
learning strategy that uses contextual awareness to optimize
multi-user codebooks for SU-MIMO data transmission. In
particular, our proposal optimizes codebooks for high-rate

Fig. 2. A visual dedication of the CCBL algorithm. The network predicts
codebooks to serve the identified users in the occupancy grid and then updates
the model in an end-to-end fashion to maximize the per-user MIMO spectral
efficiency.

and low-latency communication to support vehicular networks.
The challenge in these scenarios arises from the limitations of
current beam management [3] which involves multiple beam
training and feedback steps prior to multi-stream communica-
tion. Furthermore, designed codebooks often seek to maximize
the rank-1 power, which does not necessarily maximize the
MIMO performance. Our proposed CCBL remedies this op-
timization mismatch while also integrating the beam training
and site-specific characteristics into the codebook operation to
obtain rate-maximizing codebooks.

The first step of the CCBL algorithm is feeding the envi-
ronmental context O into a convolutional autoencoder neural
network. The neural architecture is composed of 4 convolu-
tional layers with 5×5 filters and max pooling. The decoding
layers include 4 inverse convolution (convolution transpose in
machine learning (ML) terminology) layers and an additional
convolutional layer to size the outputs appropriately. We
design the outputs to correspond to beamspace representations
[5] which are a visual representation of the beamformers. This
representation was shown to improve learning and improve
generalization performance with a simple matrix multiplica-
tion to transform to and from complex beamformers [5].

We define the transformation matrices UNX,NX,O , UNY,NY,O

where (NX,O, NY,O) are the beamspace samples along the
azimuth and elevation directions [5]. The beamspace-to-
beamformer conversion for the ith predicted codebook entry
B̂sub

i and corresponding beamspace Oi is

B̂sub
i = (U∗

NX,NX,O
)†OiU

†
NY,NY,O

∀i. (7)

The beamspace dimensions (NX,O, NY,O) determine the largest
unaliased antenna array that can be supported, i.e. NX,O ≥
NX, NY,O ≥ NY.

After the outputs of the neural network are transformed into
the new codebook, B̂sub, the end-to-end training strategy is
used to optimize the neural network. Because the codebook
should be capable of serving any of the users and no advanced
scheduler is considered, we evaluate the achievable spectral
efficiency for each user in parallel and determine the loss as
the average over the users. To be precise, we train the neural
network to minimize the spectral efficiency difference between



the maximum SU-MIMO rate (vectorized for all users as r)
and the rate achievable with the codebook as

L(r, {SEpu
u }U ) = 1

U

U∑
u

(ru − SEpu
u )2. (8)

Gradients are backpropagated through the loss, beam recep-
tion, and selection, and finally used to update the model
weights with respect to the occupancy grid. This end-to-end
or metric-based learning is especially beneficial when it is
unclear how the codebook entries should be designed given a
limited number of beams.

IV. SIMULATION SETUP

Simulating spatially consistent and realistic channels is im-
portant for evaluating the proposed codebook algorithm for
vehicular scenarios. We employ the Sionna raytracing simu-
lator [19] along with a custom vehicular overlay described
in detail in [20]. The RSU is located at 10m above the road
height and is equipped with an NT = 16 × 16 array with 16
digital ports. The vehicles are equipped with NR = 4 × 4
arrays and channels are sampled over a short bandwidth
K = 60 resource blocks each corresponding to 12 × 30 kHz
subcarriers. This band represents one physical resource group
of a potentially larger bandwidth. We generate 50 possible
scenes with over 100 initial user locations to form a dataset
of possible configurations. Note that users from different
configurations or scenes cannot be combined as the multipath
channels correspond to the surrounding vehicle placements so
that some vehicles may be blocked by nearby buses [20].

To prepare the training and validation datasets, a scene and
U ∼ U(4, 12) users are selected for a data sample. The
corresponding channels are stored along with a matching
occupancy grid with the selected users highlighted. In addition,
the SU-MIMO rates corresponding to each user channel’s
singular values are stored for end-to-end training. The dataset
is then split into train and validation subsets (80% and 20%
respectively) while a test set is generated independently. All
training is performed until the validation performance stops
improving with learning rate reduction.

V. SIMULATION RESULTS

ML algorithms naturally tend to fit the underlying charac-
teristics in the data and loss function. Because of this, it’s
often the case that ML algorithms show significant gains in
principle but experience catastrophic failures. To counter this,
we carefully evaluate and investigate the CCBL algorithm with
respect to the distribution of results. In particular, we char-
acterize the performance of codebook-based SU-MIMO data
transmission with industry-standard DFT codebooks and the
proposed CCBL codebooks. The DFT codebooks correspond
to potential beams in the direction of the users based on the
occupancy grid, so that the two methods are both using sensing
information for dynamically allocating beams.

Firstly, we characterize the CDF of the spectral efficiency of
CCBL compared to DFT codebooks in Fig. 3. Note that the
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Fig. 3. A graph of the empirical CDF of the SE of CCBL vs DFT codebooks.
DFT codebooks tend to be best suited for sparse and low rank channels which
are not representative of realistic channels even at 28 GHz. We find that DFT
codebooks are adequate but ultimately outperformed by CCBL codebooks that
are designed for the specific environment and mobility patterns.

vehicular RSU scenario has very high SNR due to the large
antenna arrays and the short distance separating the RSU from
the vehicles leading to high MIMO spectral efficiency. It can
be seen from Fig. 3 that CCBL codebooks average more than
9 bps/Hz improvement over DFT codebooks. The proposed al-
gorithm shows substantial improvements over DFT codebooks
in general, arising from the improved beamformer design and
multi-rank support that is atypical of DFT codebooks [6].

While the CDF curve from Fig. 3 provides a high-level
comparison, it is also important to understand the user-for-
user difference in performance. A histogram of the difference
in SE is shown in Fig. 4 with an overlay of the resulting CDF.
It can be seen that the proposed CCBL improves over DFT
codebooks in 95% of cases with the potential to improve SE
by 30 bps/Hz. Based on Fig. 3-4, CCBL codebooks present
a significant benefit in low-latency SU-MIMO scenarios with
contextual awareness.

Finally, Fig. 5 highlights a comparison of the algorithm
performance with different dataset sizes. Neural networks
are often envisioned for large datasets, which may not be
possible to obtain in realistic settings. The end-to-end nature
of CCBL codebooks enables more efficient training [5], [6]
that is especially helpful in data-constrained settings such as
a network operator might experience deploying an RSU. It
can be seen that performance gains with increasing dataset
size are relatively small after 10, 000 training samples. This
highlights the sample efficiency of our proposed CCBL end-
to-end framework on top of its performance capabilities.

VI. CONCLUSION

In this paper, we proposed a dynamic codebook algorithm
using environmental context. This algorithm, CCBL, combines
sensing information with end-to-end learning to generate code-
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Fig. 4. A histogram of the SE difference between CCBL and DFT codebooks.
A secondary axis in red shows the CDF of the performance delta. The
performance difference highlights how often CCBL codebooks are worse than
DFT codebooks, which only occurs ≤ 5% of the time or less. Typically,
CCBL improves performance by more than 8 bps/Hz.
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Fig. 5. A chart of CCBL performance with different dataset sizes. The
performance shows significant gains from 2000 to 10, 000 but little gain
is seen beyond that point. This highlights the effectiveness of the proposed
end-to-end strategy which requires very few data samples to reach nearly the
maximum performance.

books that maximize user spectral efficiency. We found that
this formulation was very sample-efficient and significantly
outperformed traditional codebooks for low-latency high-rate
communications. These results suggest that combining sensing
and AI/ML in 6G can enable new applications with high-
rate communications. The site generalization evaluation of the
proposed algorithm is left as an interesting future work.
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