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Abstract—Unmanned aerial vehicles (UAVs) offer a
means to relay signals around obstacles in millimeter
wave (mmWave) mobile ad hoc networks. Achieving these
benefits, however, requires a dynamic beam management
strategy that efficiently allocates resources for discovering,
configuring, and exploiting communication links. Balanc-
ing these tasks is difficult due to the interplay between
the overhead of beam acquisition and tracking and the
resulting data rate over the link. In this magazine paper,
we showcase how deep reinforcement learning (DRL) can
jointly address the problems of blockage and mobility in
mmWave ad hoc networks. We first summarize the problem
of relay selection with realistic overhead penalties in which
the beam management training time is characterized and
minimized through a sequential decision-making approach.
We then describe how hierarchical learning can be lever-
aged for choosing between distinct frequency bands for
communication by addressing the issues posed by differing
precoding training procedures. We conclude by overviewing
how learning algorithms will be an important tool to
overcome the challenges faced by future ad hoc networks.

Keywords—mmWave MIMO, unmanned aerial vehicle,
beam management, deep reinforcement learning

I. INTRODUCTION

Modern wireless networks require gigabits-per-second
data rates from mmWave communication to enable seam-
less sharing of raw or processed sensor data from various
sources such as cameras, radars, and lidars [1]. Large
throughputs are needed to aggregate shared sensor data
and map a comprehensive “bird’s-eye view” perception
of the surroundings that enhances the decision making
capabilities of devices in the network. In commercial
vehicular communication, such a map can be used to
plan lane changing and acceleration/deceleration [2].
In tactical networks, precise real-time maps enhance
defense efficiency against enemy ground units [3]. While
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the large bandwidths of the mmWave band can be
leveraged to achieve these data rates, mmWave com-
munication is sensitive to outages from blockages and
beam misalignment from mobility. Both mobility and
blockages are prevalent in highly dynamic scenarios,
which means ad hoc networks should be designed to be
especially robust to satisfy high data rate requirements.

UAVs have emerged as a key solution to building
resilient mmWave networks [4]. UAVs exploit high op-
erating altitudes to establish LOS ground-to-air channels
and extend coverage. These aerial platforms prove espe-
cially valuable in ad hoc networks where infrastructure is
sparse, as depicted in Fig. 1. The deployment of UAVs,
however, introduces relay links that must be configured
separately from the main link between the transmitter
and receiver. As illustrated in Fig. 2, establishing a
relay link typically includes the initial discovery of
candidate UAV relays, followed by the selection of the
best relay, and finally, beam configuration with respect
to the selected relay. Link configuration can even include
multi-band operation to increase channel diversity. For
example, the sub-6 GHz band be used as an alternative to
the mmWave band to leverage multi-path rich channels
in cases of high blockage occurrences. Effective relay
link configuration increases both coverage and spectral
efficiency by choosing the best relay depending on the
channel conditions [5].

Relay link configuration and maintenance incurs a
notable amount of overhead from the pilot symbols
needed for channel estimation and precoder training [6].
For example, in Fig. 2, the selected candidate relay
may not be worth switching to because of the over-
head associated with initial access. The main technical
challenge in this context lies in finding the balance be-
tween insufficient beam alignment, leading to inaccurate
relay link estimates due to fast-varying channels, and
excessive beam alignment, resulting in a significant over-
head from the pilot symbols. UAV relay networks face
pronounced challenges, including high UAV mobility,
complex 3D beam alignment, and channel volatility due
to atmospheric conditions at mmWave frequencies [4].
State-of-the-art advancements on UAV networks have
partially addressed such challenges, including trajectory
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Fig. 1: Snapshot examples of UAV relay mmWave links in solid line, blocked mmWave links in dashed line, and
sub-6 GHz coverage in dashdotted line. Rotorcraft UAVs can be distributed as relay nodes in tactical and urban
networks, while fixed-wing UAVs may serve as aerial base stations supporting non-structured ad hoc infrastructure.

or placement optimization, yet less emphasis has been
made minimizing beam management overhead [7], [8].
Although the position information from UAV trajectories
can aid in tracking, it does not decrease the training
time for switching links. Furthermore, minimizing the
beam management overhead is complicated since it is
intertwined with relay link evaluation.

DRL is a flexible framework that can efficiently solve
the relay link selection and configuration problem by
balancing the exploration-exploitation tradeoff. Unlike
conventional signal processing methods, which may
struggle with acquiring accurate channel models, DRL-
based approaches excel with minimal requirements for
online training data derived from system observations.
The online data requirement is especially beneficial since
the rapid dynamics of UAV relay networks can exacer-
bate overfitting concerns of offline learning approaches.
DRL leverages computationally powerful neural net-
works to solve complicated sequential decision problems
by continually adapting based on prior choices. The DRL
framework has proven to be effective in similar dy-
namic settings such as network access, connectivity, and
localization problems in multi-UAV wireless networks
[8]. In the context of UAV relay networks, relay link
selection and configuration involves a large number of
decisions that are difficult to compare without accruing
overhead. A learning-approach can acquire experience
from past decisions to create better communication links
in the future without needing to evaluate all choices.
Building upon the fundamentals of DRL, incorporating
variations such as hierarchical or transfer learning is

the key to designing algorithms that can minimize link
configuration time in UAV relay mmWave networks.

This article presents an overview on using DRL algo-
rithms for beam management in UAV relay mmWave
networks. For the scope of this article, we focus on
data rate maximization as the objective assuming a
link maintenance procedure depicted in Fig. 2. The
procedure assumes a simplistic criterion for UAV tra-
jectory/placement, relying on nearest neighbours. We
first summarize the joint relay selection and beam man-
agement problem and the proposed DRL-based solution
that picks the best relay and triggers beam realignment
based on adaptive threshold learning. We then explore
band assignment, as a complementary direction to relay
selection addressing blockage in UAV relay mmWave
networks, with a hierarchical learning approach. Lastly,
we outline future research directions by pointing out
prospective communication aspects of future UAV relay
mmWave networks and corresponding learning algo-
rithm developments.

II. JOINTLY ADDRESSING BLOCKAGE AND MOBILITY
IN UAV RELAY NETWORKS

In this section, we focus on relay selection and band
assignment for addressing blockage as a subproblem
of candidate selection step of UAV relay link mainte-
nance. We view the relay selection and band assignment
problems as sequential decision making formulation. A
Markov decision process (MDP) can then be leveraged to
represent the learning model [9]. We explain the design
of state, action, and reward that constitute an MDP and
the corresponding learning algorithm.
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Fig. 2: The flow chart of UAV relay link maintenance
procedure that consist of three steps: (1) discovering
the available relays to construct a set of candidates,
(2) selecting the candidate relay to use, (3) configuring
beams with respect to the selected relay. The evaluation
criterion in each step can be influenced by the associated
beam management overhead.

A. Joint relay selection and beam management

Selecting the best relay is a nontrivial task due to the
resources required to probe and establish a link. Even
the act of checking whether a relay could result in a
higher rate than the current link incurs a performance
penalty. In general, there is a tradeoff between the
rate increase from switching to a better link versus the
rate decrease from training overhead. This introduces
two opposing objectives for system design: reducing
overhead and increasing link quality. An optimal relay
selection method should include the penalty from train-
ing overhead to accurately depict how resources spent
on link establishment deteriorate throughput.

Within the network, the objective of a transmitter

communicating with a single receiver is to maximize
the its cumulative data rate. The transmitter can either
establish a direct link to the receiver or an indirect two-
hop link via a relay. The transmitter can function in either
of two transmission modes: data transmission, where it
sends data symbols to the receiver, and beam alignment,
where it either updates the current link or establishes
a new link. At each time instant, the transmitter faces
a sequence of decisions, weighing options of persisting
in data transmission, enhancing the current link through
additional training, or entirely switching to a new relay.
Assuming no data is transmitted during beam alignment,
the objective to maximize data rate will force the trans-
mitter to find a balance between beam management and
data transmission.

DRL can be applied to solve the joint relay selection
and beam management problem by learning a policy
based on prior observations. Three concepts are nec-
essary to specify an MDP and understand DRL algo-
rithms: state, action, and reward. The state represents the
quality of all available communication links, including
beam pairs and achievable spectral efficiency. The action
comprises the index of the selected relay and indicators
for beam training or data transmission. The reward is
determined by the cumulative data rate. DRL algorithms
approach the sequential decision making formulation
through trial-and-error. The aim of the algorithm is to
learn a policy, which maps a state to an action, by
executing actions per state and observing the ensuing
reward. The reward is used to evaluate how good a
policy is, which the algorithm can then use as feedback
to guide the evolution of the policy. One important
benefit of DRL algorithms is their ability to adapt to
dynamic conditions. The optimal decision policy may
change depending on external factors, like the blockage
frequency and the number of candidate relays. A DRL
algorithm is able to continually update the policy based
on recent observations of the environment.

B. Joint band assignment and beam management
Modern wireless networks can leverage multiple op-

eration over multiple frequency bands to ensure robust
and reliable communication. While the aid of relays
can help mitigate the effect of blockages, relays cannot
completely eliminate blockages, for example, in severely
congested scenarios. In these cases, however, systems
can leverage the availability of multipath channels in
the sub-6 GHz band to ensure transmission continues.
These lower frequency channels cannot achieve the high
data rates of mmWave communication due to their lower
bandwidth, but their channel characteristics make them
more resilient. The research challenge lies in effectively
combining mmWave and sub-6 GHz systems to achieve
high average throughput while maintaining a stable link.
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Similar to the joint relay selection and beam man-
agement problem, the transmitter needs to select the
operational band and a beam management mode. A
distinctive research challenge emerges from the different
signal processing architectures employed in the mmWave
and sub-6 GHz band. MmWave systems typically use
hybrid precoding architectures in which the digital and
analog signal processing are separated. This functional
split means that the digital and analog beams must
be configured separately, which generally incurs a high
amount of overhead relative to sub-6 GHz. Fortunately,
both digital and analog precoding can be trained sep-
arately. At lower frequencies, fully-digital precoding is
viable due to the manageable number of antennas. Beam
training at lower frequencies typically involves estimat-
ing the channel using a quantized codebook and feeding
back the information from the receiver to the transmitter.
This procedure is less intensive than mmWave beam
management, which means sub-6 GHz are generally
easier to configure and manage.

The problem of distinctive beam management pro-
cedures in the mmWave and sub-6 GHz band can be
approached by introducing a decision hierarchy in the
DRL algorithm. In hierarchical reinforcement learning
(HRL), as described throughout Algorithm 1, the aim of
the agent is to learn two policies: the upper-level policy
and lower-level policy. The upper-level policy makes
high-level decisions that decompose a task into subtasks,
and the lower-level policy chooses a subtask based on
a goal [10]. Since the beam management procedure
depends on the band of operation, it makes sense to
assign the band assignment problem to the upper-level
policy. Once a band is chosen, the lower-level policy can
choose among the beam management subtasks, which
can include initial access, tracking, or partial training.
By separating the decision into two layers, the algorithm
is able to use a divide-and-conquer approach to learn
effective policies for each problem.

C. Selected numerical results
In Fig. 3, we show a performance comparison be-

tween a DRL-based relay selection algorithm and a few
baselines. The genie-aided policy has perfect knowledge
of the channel information, the optimal threshold policy
applies offline learning based on a fixed offline training
dataset, and the direct policy uses the direct link and
follows the genie-aided policy’s beam management pro-
cedure. Further details on the baselines, exhaustive sim-
ulation parameters, and more results are available in [11]
(and references therein). The DRL algorithm compares
the current link rate to two adaptive thresholds that are
learned over time. The thresholds dictate when the trans-
mitter performs relay switching and/or beam alignment.
Intuitively, these thresholds should change depending on

Algorithm 1 Joint band assignment and beam manage-
ment strategy based on HRL

1: Input: Length of decision horizon, Boolean random
variable RoundSkip

2: Randomly initialize online critic and actor network
for upper-level and lower-level policies

3: for each decision iteration do
4: if RoundSkip then
5: Continue using upper-level action
6: else
7: Aggregate states of the latest consecutive

skipped rounds
8: Set goal as according to importance relabling
9: Set reward as cumulative reward over the latest

consecutive skipped rounds
10: Store upper-level transition in upper-policy’s

experience replay
11: Update actor and critic networks of the upper-

level policy
12: Update band of operation
13: end if
14: Deploy the lower-level policy’s action
15: Obtain the intrinsic reward from the upper-level

policy
16: Update beam management mode
17: Store lower-level transition in lower-policy’s ex-

perience replay
18: Update actor and critic networks of the lower-level

policy
19: end for

the current quality of the network links. The results
show that the DRL algorithm is able to outperform
static policies that do not change over time. The DRL-
based policy achieves a higher spectral efficiency that
an offline-learning approach since the adaptive threshold
can match the dynamic channel.

Fig. 4 depicts the episodic reward comparison between
two HRL and a DRL approach with selected simulation
parameters shown in Table I. Exhaustive simulation
parameters, baselines, and further simulation results are
available in [12]. The HRL approaches outperform the
DRL counterpart both in how fast the episodic rate
reward increases and how much the reward increases.
As DRL algorithms are based on trial-and-error, being
able to uniformly explore the environment is a key
requirement for these methods to work well. Without
hierarchy, the DRL algorithm is limited in exploration
and is unable to fully explore the decision space. HRL
explores more efficiently by letting the upper-level policy
define exploration goals while the lower-level policy
focuses on reaching those goals. The benefits of HRL can
be further improved by leveraging off-policy corrections,
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MmWave band Sub-6 GHz band
Array type Fully-connected hybrid architecture Fully digital architecture

Antenna number 32 × 16 system, 4 streams 8 × 8 system, 4 streams
Bandwidth (OFDM subcarriers) 850 MHz (256) 150 MHz (32)

Codebook type Discrete Fourier transform Type-I precoder matrix indicator

TABLE I: Selected simulation parameters of the joint band assignment and beam management problem.
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Fig. 3: Spectral efficiency comparison between genie-
aided policy, proposed DRL-based policy, and baselines.
The benchmarks include a direct policy, in which relays
are not used, an optimal threshold policy, which decides
to switch when the current link rate falls below a fixed
threshold, and a genie-aided policy. The DRL algorithm
adaptively adjusts its decision-making policy based on
the current channel conditions.

optimizing the update period of the upper-level policy,
and employing action skipping in the upper-level policy
training [12].

Jointly optimizing relay selection, band assignment,
and beam management can be a straightforward exten-
sion based on HRL algorithms. In the following section,
we provide examples of novel challenges and possible
learning approaches.

III. BEAM MANAGEMENT CHALLENGES IN FUTURE
UAV RELAY MMWAVE NETWORKS

In this section, we look into prospective UAV relay
mmWave networks, as illustrated in Fig. 5, focusing on
the new array architectures, network topology, and their
associated issues in terms of learning algorithm designs.

A. Generalized codebook designs

Regardless of the algorithm used to jointly address
blockage and mobility, the codebook employed by
mmWave networks can be a bottleneck of the achiev-
able rate. Current 3GPP mmWave beam management
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Fig. 4: Comparison of episodic reward of DRL algorithm
to HRL algorithms. Compared to the DRL baseline, the
HRL algorithms have a boost in episodic reward of more
than 10 Mbps with efficient exploration. With off-policy
correction based on action relabeling, HRL algorithms
can reach peak episodic reward in less than half episodes
than the DRL counterpart.

standards [2] involve sweeping analog beams over the
angular domain. Large arrays with narrow beam pat-
terns can lead to prohibitively high overhead as beam
alignment becomes more difficult. Furthermore, the use
of frequency-flat phase-shifters in wideband systems can
lead to a phenomenon known as beam squit, where the
beamforming direction skews as the frequency gets far
away from the center frequency. Beam squint leads to a
significant loss of array gain across the entire bandwidth
and reduced data rate. Overall, an innovation in the array
architecture and codebook design is needed to enhance
the rate performance of ad hoc networks.

Frequency-selective true time delay (TTD) architec-
tures can be exploited to both mitigate beam and sig-
nificantly reduce training overhead. TTD beamforming
has been used in radar systems for decades as a way to
combat beam squinting. Recent studies, however, have
also proposed TTD-based multi-frequency probing in
which a beam pattern with arbitrary direction and band
range can be generated [13]. Such beam patterns can
be designed to minimize the overhead induced from ini-
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Fig. 5: Summary of four selected prospective aspects and learning solutions of future resilient and intelligent UAV
relay mmWave networks. Conventional methods are denoted in dotted bubbles with arrows pointing to colored
bubbles representing technical advancements needed for scalable UAV relay mmWave networks.

tial access and beam tracking while minimizing energy
leak to undesired directions. Multi-modal data, such as
images or videos, may be used with DRL algorithms
to construct a TTD codebook, which consists of delay
and phase, based on feedback that advocates data rate
penalizes power efficiency loss.

B. Adaptive arrays

Advances in adaptive arrays have significantly reduced
the operation time required for controlling and switching
beams. One example is the lens array that electronically
steers beams by switching on and off a subset of an-
tennas. Another example is the metasurface reflective
arrays that take input electrical control signals to produce
a desired aperture field. The array examples share the
common operating time ranging in few nanoseconds,
which implies measurements will be streamed to the
DRL algorithms in the same time scale. Typical DRL
algorithms require extensive computation even for a sin-
gle iteration of weight update and gradient computation
that can be as long as several milliseconds. Aggregating
the streamed data to compute a single iteration of DRL
is possible, yet the resulting DRL algorithm may suffer
from slow responsiveness to real-time changes in the
environment. To apply DRL algorithms for the next-
generation arrays, a breakthrough is needed to overcome
the the computational bottleneck of the clock speed of
processors stuck at several gigahertz.

The challenge of accelerating DRL is a complex task
requiring technical contributions from both the hard-
ware and software layers. On one hand, new computing
hardware architectures, such as multicore processors and

field-programmable gate arrays, needs dedicated design
and implementation on UAVs to speed up DRL up to
the nanosecond processing time scales [14]. On the other
hand, reducing computational complexity of fundamental
operations using approximate matrix multiplication and
reducing neural network size with pruning/quantization
seeks attention.

C. UAV swarm communication

UAV swarm communication introduces unique chal-
lenges to form a cohesive system while maintaing com-
munication between the nodes [8]. The computational
complexity will not only scale with the size of the
network, but the candidate selection step will also neces-
sitate more sophisticated methods, including routing and
interference management. Notably, trajectory/placement
control will become increasingly crucial to ensure syn-
chronization among UAVs, and power constraints on
each UAV will become more stringent, especially in
multidirectional communication scenarios such as data
dissemination. In case of a decentralized swarm scenario,
multi-agent DRL can allow each UAV to distributively
execute its policy based on data exchangement between
neighbors. The number of neighbor nodes should bal-
ance the tradeoff between increase in sum reward from
representative cooperation data versus the overhead from
data exchangement between nodes. Conventional DRL
algorithms may be used in UAV swarm scenarios with
centralized control and communication, where simplified
deep learning architectures like binary neural networks
can compensate the higher computational demands.
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D. Limited feedback

DRL algorithms deployed in UAV relay mmWave net-
works operate based on reward in the form of feedback
from receiving nodes. This feedback should be encoded
in bits and sent via a feedback channel, implying that
a tradeoff exists between the feedback accuracy and
overhead. DRL algorithms should incorporate several
feedback parameters in the action to efficiently minimize
feedback overhead while maintaining an acceptable ac-
curacy. The feedback parameters may include but not
be limited to: how often the feedback is sent, what
type of feedback (e.g. channel information or spectral
efficiency) will be used, and the number of quantization
bits used in the feedback channel. DRL should adopt
the methods studied in communication-efficient learning,
such as distributed learning, federated learning, and split
learning, to select the best beam under the feedback
constraints [15].

IV. CONCLUSIONS

In this article, we have discussed the benefits of DRL
in approaching the complicated problems that can arise
in dynamic UAV relay mmWave networks. Sequential
decision-making formulations and DRL algorithms are
useful to identify the main performance bottleneck of
beam management overhead and minimize the overhead.
In cases where the beam management procedure can
vary over decisions, incorporating hierarchical structure
in learning enhances data rate performance. DRL will
become a foundational technology in ensuring scalable
UAV-networks with high data rate, potentially using TTD
codebook construction on nanosecond time scale.
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