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Abstract—Sensor-aided beamforming reduces the overheads
associated with beam training in millimeter-wave (mmWave)
multi-input-multi-output (MIMO) communication systems. Most
prior work, though, neglects the challenges associated with
establishing multi-user (MU) communication links in mmWave
MIMO systems. In this paper, we propose a new framework
for sensor-aided beam training in MU mmWave MIMO system.
We leverage the beamspace representation of the channel that
contains only the angles-of-departure (AoDs) of the channel’s
significant multipath components. We show that a deep neural
network (DNN)-based multimodal sensor fusion framework can
estimate the beamspace representation of the channel using
sensor data. To aid the DNN training, we introduce a novel
supervised soft-contrastive loss (SSCL) function that leverages the
inherent similarity between channels to extract similar features
from the sensor data for similar channels. Finally, we design an
MU beamforming strategy that uses the estimated beamspaces of
the channels to select analog precoders for all users in a way that
prevents transmission to multiple users over the same directions.
Compared to the baseline, our approach achieves more than 4
times improvement in the median sum-spectral efficiency (SE)
at 42 dBm equivalent isotropic radiated power (EIRP) with 4
active users. This demonstrates that sensor data can provide more
channel information than previously explored, with significant
implications for machine learning-based communication and
sensing systems.

I. INTRODUCTION

Hybrid MIMO architectures enable large antenna arrays
to support high-bandwidth applications like mmWave com-
munication. Configuring communication links with hybrid
MIMO architectures in commercial systems like 5G and IEEE
802.11ay make use of beam management protocols [1]-[4].
These protocols follow a two-stage procedure: in the first
stage, known as beam training, the transmitter and receiver
measure candidate beams from codebooks to configure analog
precoders and combiners. In the second stage, with the analog
precoders and combiners fixed, they perform channel estima-
tion and design the digital precoder and combiner for multi-
stream MIMO transmission. Despite the hierarchical nature
of this process, the beam training stage introduces significant
overhead in configuring MIMO communication links.
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Prior work has proposed using out-of-band sensor data
to reduce the beam training overhead by narrowing the set
of candidate beam pairs to try. These sensor data include
position information [5]-[9], radar signals [10]-[15], camera
images [16]-[20] and LiDAR point clouds [21]-[26]. While
some early work used model-based signal processing [10],
[11], most recent approaches leverage machine learning (ML)
to learn the relationship between sensor information and the
optimal beam configuration. Further fueled by the publicly
available datasets like Raymobtime [27], e-FLASH [28] and
DeepSense 6G [29], prior work has also explored using a
combination of position information, camera images, and
LiDAR point clouds to improve the accuracy of sensing-aided
beam prediction strategies [25], [26], [30]-[35].

While existing ML-based approaches [S]-[9], [12], [13],
[15]-[26], [30]-[36] show promise in the single user (SU)
setting, their performance in the MU setting remains unclear
(as summarized in Fig. 1a). Specifically, predicting the optimal
beams for each user equipment (UE) separately might overlook
inter-user interference; a crucial aspect of MU communication.
Therefore, a framework is needed that is specifically designed
for MU setting that leverages sensor data for low-overhead
beam training while considering inter-user interference.

Some prior work has explored ML-based solutions for MU
beam training using the history of channel state information
(CSI) and signal strength measurements [37]—-[41]. There is,
however, limited work that leverages sensor data for MU beam
training. One approach uses camera images for MU beam
training and proposes a two-stage process with user selection
and beam training stages, each using separate DNN mod-
els [42]. That approach, however, is limited by an assumption
of the existence of a single dominant line-of-sight (LOS) path
to each user, which is not realistic in practice [43].

In this paper, we propose using multimodal sensor data —
camera images, LiDAR point clouds, and position information
— for beam training in MU mmWave systems (Fig. 1b). Specif-
ically, we show that these sensors can collectively provide
more information about the AoDs of the significant multipath
components in the mmWave channel than was previously
assumed in prior works [5]-[9], [12]-[19], [22]-[24], [30]-
[35], [44], [45].

To estimate the AoDs of the channel paths from sensor data,
we employ a DNN-based multimodal fusion network similar to
[31]. Instead of identifying a single optimal beam, however,
we aim to identify AoDs of the strong channel paths. This
requires transforming the problem from a classification to a
multi-label identification problem. Thus, each quantized AoD
pair (azimuth and elevation) is treated as a label. This approach
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Fig. 1: Improving MU communication using side-information: (a) Prior work uses single-user codebook prediction that could
suffer from inter-user interference in MU setting. (b) We show that predicting multipath components and using a dedicated
beamforming strategy designed for MU scenario can quadruple the achievable rates for MU systems.

enables a fixed size DNN to predict the AoDs of a variable
number of multipath components.

While the multi-label identification problem offers a basic
methodology for DNN training, it has a limitation. Conven-
tional multi-label identification tasks assume categorical labels
with no notion of proximity between them. The labels can
only be the same or different. Therefore, the samples are
similar only if they share a few identical labels in the ground
truth. In contrast, AoDs of channel paths have an inherent
notion of proximity — they can be closer or farther apart,
not just the same or different. Consequently, there is also a
notion of similarity between the channels, even when their
paths do not share identical AoDs. Furthermore, this notion
of similarity between the channels can also enhance DNN
training by encouraging it to extract similar features from
sensor data when the channels have similar AoDs.

In this paper, we formalize this notion of similarity by
introducing a novel soft encoding for channels. We then define
a metric to measure the similarity between two channels based
on their soft-encodings. We further introduce a novel loss
function called SSCL to aid DNN training by incentivizing the
intermediate features extracted by the DNN network to align
or dis-align in proportion to the similarity of the channels.
SSCL is inspired from supervised contrastive loss (SCL) [46]
which incentivizes the DNN in a similar manner but is
only designed for categorical classes without capturing the
proximity between them. We believe SSCL loss function can
be valuable for applying supervised ML algorithms to practical
systems like wireless communication, where labels deal with
non-categorical data and there exists a notion of similarity
across labels. To the best of our knowledge, this is the first
time such an encoding and loss function have been used for
training supervised ML models.

Finally, we propose a novel MU beamforming algorithm
that uses predicted AoDs of channel paths. Specifically, the
algorithm uses a beamspace representation of the channel con-
taining only the predicted AoDs and designs analog precoders
that avoid simultaneous transmission to multiple users over
the same multipath clusters. As a result, the base station (BS)
can estimate the effective channels for all users simultaneously
with minimal inter-user interference, thus, enabling the subse-
quent design of an optimized digital precoder. We show that
this MU strategy achieves 4 times improvement in the median
sum-SE with 4 active users compared to MU extensions of SU
beam prediction strategies, and significantly reduces the link

establishment overhead.
The contributions of this paper are summarized as follows:

1) We propose a framework for sensor-aided MU beam
training at the BS. We use the beamspace represen-
tation of a channel, which focuses only on the AoDs
of channel paths. We design an ML-based multimodal
fusion network trained using the camera, LiDAR and
position information, and the beamspaces of the asso-
ciated channels. We formulate the problem as a multi-
label identification task with each label representing a
quantized AoD pair (azimuth and elevation).

2) We propose a novel soft-encoding technique and a cor-
responding similarity metric that captures the similarity
between channels based on the proximity of the AoDs
of their channel paths. Furthermore, we introduce the
SSCL, a novel loss function that incentivizes the network
to extract similar features from the sensors for similar
beamspaces. We believe SSCL has broader applicability
to various ML tasks in wireless systems that often
involve non-categorical labels.

3) We present a novel MU beamforming algorithm that
uses the estimated beamspace representations of the
channels to identify the analog precoders at the BS.
Subsequently, conventional preamble-based channel es-
timation techniques and regularized zero-forcing (RZF)
are used to design the digital precoders.

4) We conduct a comprehensive analysis on the Raymob-
time dataset [27], assessing the end-to-end performance
of the proposed sensor-aided MU beamforming against
two baselines, SU approaches extended to MU setting
and Full CSI setting. This evaluation showcases the
ability of sensor data to extract significantly more infor-
mation about channels and the benefit of using a joint
MU beamforming strategy.

Organization: The rest of the paper is structured as fol-
lows: Section II presents the system model and defines the
beamspace of a channel. Section III details the sensor-aided
beamspace prediction, including sensor data preprocessing,
beamspace encoding, the DNN architecture, and metrics used
for training and testing. Section IV describes the MU beam-
forming algorithm that leverages the estimated beamspaces of
the channels for selecting analog and digital precoders to min-
imize inter-user interference across users. Section V presents
the performance analysis of the sensor-aided MU beamforming



strategy. Finally, Section VI provides the concluding remarks
and directions for future research.

Notations: Small bold letters (a) and capital bold letters (A)
denote a vector and matrix, respectively. a,aT,a* denotes
conjugate, transpose, and Hermitian of the vector/matrix a.
[a] denotes the set {0,...,a — 1}. vec(A) denotes the vec-
torization operator on the matrix A s n such that the ¢, j-th
element of the matrix A maps to (¢N + j)-th element of the
column vector vec(A), Vi € [M],j € [N]. The hat & denotes
estimated value of a. 1, denotes the vector of length N with
all elements equal to one and Iy denotes the identity matrix of
dimensions N x N. Finally, ADiff (6, 03) denotes the smallest
absolute difference between two angles 61, 6.

II. SYSTEM MODEL

In this section, we first describe the system model and the
performance metrics used in this paper. We then define the
beamspace representation of a channel.

A. Antenna model

We consider MU-MISO OFDM system. The BS is equipped
with Ng symbol streams and Nyp radio frequency (RF)
chains. It serves U UEs simultaneously using MU beamform-
ing.

In this paper, we only focus on the beam training at the
BS. We assume the UEs are equipped with omni-directional
antennas with the same polarization as the BS antenna array.
Consequently, each UE receives a single symbol stream from
one RF chain of the BS antenna array, resulting in a con-
figuration where Ng = Nrp = U. Extending this paper to
consider UEs with multiple antennas, hence, a MIMO system,
is a potential area for future research.

We assume the BS uses fully connected hybrid antenna
architecture with Nrp RF chains connected to a uniform
rectangular antenna array of N3gq X N elements spaced
at half-wavelength distance apart. The BS antenna array is
positioned on the XY-plane with its broadside direction along
the Z-axis (see Fig. 2a) [9], [47]. We denote the azimuthal and
elevation angles by 6 € [—m,7) and ¢ € [0, 7], respectively,
and define €2, = cosfsin¢, 2, = sinfsin¢. Then, the
Vandermonde vectors along the X and Y directions can be

defined as 1

ax(6,6) = —— [1, e eI WBs =T ()
V “'BS
1 . (Y
ay(ead)) = \/T[l,eiﬁrﬂy, .. .,eij(NBsil)ﬂ—Qy]T. )
BS

The antenna array response matrix, denoted by A(f,¢) €
CNEs*NBs | can be defined as

A(0,9) = ay(0, 9)ax(0,0)". 3)
Using this antenna model, we now define the channel and
signal models.

B. Channel model

We consider the
D-taps as defined
is static over one

wideband channel model with
in [48]. We assume the channel
time slot. At a time-slot n, let

(o)™

ot u,c,e) Vee L), ce[C™] be the gain and
delay of the /-th path in the c-th ray cluster to UE w. Let
(01(;0)!, o™ ) Ve e [L5], ¢ € (€] be the azimuthal and

u,c,l
elevation angles of the ¢-th path in the c-th ray cluster to
UE u. Further, let p(t) denote the pulse shaping function
evaluated at time t. Consequently, the frequency response
of the channel H(™[k] € CN2s*N8s over the sub-carriers
ke{—%2],...,[£52]} can be defined as
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We also denote the vectorized channel vec(H(™ [£]) by h{(")[k]
in the subsequent signal modeling.

C. Signal model

We consider a downlink MU-MISO system with linear
beamforming where each user receives a single data stream
(see Fig. 2b). Let s[k] € CVs*1 be a vector of symbols such
that each element s;[k] denotes the symbol to a UE over the
k-th sub-carrier. We assume E[s[k]s*[k]] = ]\%INS, where P
is the average transmitted power over k-th sub-carrier.

The BS uses hybrid precoding by first digitally precod-
ing each sub-carrier using the digital precoder Fpplk] =

[FYP[K], - Fae[k]] € CVrexNs_followed by the RF pre-
coding (or analog precoding) using the RF precoder Frp =
[flf\F, e ,f%ﬁF] € CNBsNgsxNrr By denoting the additive

Gaussian noise n,[k] ~ N(0,02), the received signal at the
intended UE u can be written as
Yulk] = Wy [K]Frefy" (K]su (k]
U

>

uw'=1,u"#u
Note that the second term in the signal model characterizes the

inter-user interference caused by other active users. We set the
elements of Frp to have a unit magnitude for modeling the
RF precoding by a passive analog phased array. Accordingly,
the choice of Frp, specifically, the phase of each element of
Frr, defines the beam pattern of the BS antenna.

+h;, [k]Fgp Fo” [Klsw (k] + nulk]. (5)

D. Metric: Achievable spectral efficiency (SE)

With the proposed signal model, we now define the achiev-
able sum SE of the system to evaluate the performance of
the MU communication system. Assuming Gaussian signaling
and treating inter-user interference as Gaussian noise, the
achievable SE of the UE w at a time defined as

£ W Fref R 1]

] K-l
R, = — lo 1+
K Z 82 T BB (1|
k=0 h, [k]Frrf, " [K]
(6)
Further, we define the sum-SE of the system as Rg = ) R,,.

P
02 + Nis Zu’;ﬁu

E. The beamspace of a channel

We call the list of AoD pairs of significant paths,
(91(;2@, ,i"z’e) RS [Lgfc)],c € C,E"), in the channel the
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Fig. 2: (a) Geometry of the BS antenna array. (b) Schematic diagram: We consider a MU-multi-input-single-output (MISO)
orthogonal frequency division multiplexing (OFDM) system with a frequency-selective channel model. The BS equipped with
a planar antenna array with hybrid antenna architecture transmits to U = 4 UEs equipped with an omnidirectional antenna
array. Greedily choosing the optimal beam for each UE can introduce significant inter-user interference.

AoD-list of the channel. Further, we let the 2-D angular space
of azimuthal and elevation angles is quantized on the grid
of size Gg x Gy, such that the (4, j)-th index of the grid is
associated to the direction (6;, ¢,), where 6; = é—Zz -, p; =
G- Then, Vi € [Go),j € [Gy), we define the beamspace
representation of the channel as

oy
A(n) e .
G i) = Z zm Z ay(0;, ¢j)x
c=1 uU,C =1

2
A (92?2,47@%1) x ax(0i,¢;)| - (1

The proposed beamspace representation of the channel repre-
sents the expected strength of the channel along the directions
indexed by (i, ) assuming the total gains of all ray clusters
are identical. This beamspace representation of the channel
is a normalized projection of the physical channel on the
oversampled antenna array manifold [49]. This projection
provides a geometric perspective on the channel as observed
by the BS equipped with planar arrays as defined in Section
IT-A. Consequently, the beamspace representation of a channel
also captures the impact of the grating lobes produced by
the planar array. For example, if a beam along the direction
(0, ¢;) produces a grating lobe, and if there exists a path
along the direction of the grating lobe, then the beamspace
representation captures its impact. Furthermore, the beamspace
representation does not contain rapidly varying channel fea-
tures, hence, we characterize it with a frequency flat response.

We acknowledge that there can be a large number of
multipath components in mmWave channels [50]. Hence, a
complete beamspace of a mmWave channel can include a
lot of multipath components which are infeasible to predict
purely from the sensor data. Therefore, we only consider the
L(< L&”g) strongest paths from each ray cluster to define
the truncated beamspace representation of the channel. In this
paper, we show that the multimodal sensors in the system
can estimate the truncated beamspace representation of the
channel (in Section III) and the estimated truncated beamspace
representation can be used for MU beamforming in mmWave
communication (in Section IV). Since all discussion for the
rest of the paper applies to both — truncated and non-truncated

— beamspace representations, we avoid the term truncated for
consistency unless explicitly required.

While the concept of beamspace exists in prior work [49],
our definition diverges slightly. We assume a path gain of unity
for each channel path, and a normalized gain of each multipath
cluster because of the difficulty in predicting path gains solely
from sensor data. Exploring alternative methods for path gain
prediction can be a promising avenue for future research.

Our proposed beamspace representation, focusing solely on
AoDs, aligns with concepts used in prior mmWave channel es-
timation techniques. For instance, compressive sensing-based
approaches include an intermediate step for identifying the
support set of the sparse beamspace representations [51]-[54].
This support set, defined as the indices of the non-sparse
elements in the beamspace representation of the channel, de-
notes the directions of channel paths without their path gains.
Similarly, side-information-aided beamforming solutions use
out-of-band channel characteristics to derive a prior over the
AoDs, essentially creating a prior over the beamspace without
path gains [55]-[57]. These intermediary steps in prior work
can be viewed as a form of beamspace representations without
using the path gains. Like these techniques, our algorithm
also leverages the proposed AoD-based beamspace as an
intermediate step to map sensor data to precoder selection.

ITI. STAGE I: SENSOR-AIDED BEAMSPACE ESTIMATION

In this section, we describe the process of the sensor-
aided prediction of the channel’s beamspace representation.
We begin by describing the sensor data preprocessing and the
encoding techniques for AoDs of the channel paths. We then
present the DNN-based multimodal sensor fusion network and
loss functions employed for network training.

A. Preprocessing sensor data

The method of preprocessing the input data (i.e., sensor
data) has a great impact on the choice of the DNN architec-
ture. Thus, in this subsection, we explain the preprocessing
steps used in this paper and accordingly, present the DNN
architecture in Section III-C.

We consider UEs equipped with a LiDAR device and a
positioning service, while the BS is equipped with a camera.



Given our focus on capturing only the large-scale channel
effects for beamforming and assuming a sufficiently low beam
retraining period (approximately 500 ms) [58], we assume the
sensors capture samples synchronously with a frequency of at
least 10 Hz. We now describe the preprocessing steps for each
sensing modality.

1) LiDAR samples: Each LiDAR sample provides a snap-
shot of the environment surrounding the UE in the form of a
point cloud, where each point represents a reflection of emitted
light pulses. Objects introduce a higher density of points due
to numerous reflections. Therefore, the number of points in a
LiDAR point cloud varies depending on the environment. Such
variable-length inputs raise a challenge for designing DNN
models requiring fixed-size inputs. Thus, the key objective of
LiDAR data processing is to encode the variable-length sensor
data samples into fixed-size samples.

We adopt the standard LiDAR preprocessing method dis-
cussed in [23], [31], [59], which encodes the variable-length
sensor data into a fixed-size 3D matrix. Specifically, we first
define a space corresponding to the BS coverage using the
coordinates (Xmin, Xmax)s (Ymin, Ymax)s (Zmins Zmax)- We
then uniformly partition the 3D space by quantizing each
dimension to by, by, b, levels, respectively. Next, we assign
the value —2 to the bin containing the BS and the value —1
to the bin containing the UE. Finally, for the remaining bins
indexed by (i, ], k) € [b£] x [b5] x [bZ], we assign the value
1 if there exists at least one LiDAR point that falls within the
specific bin.

2) Camera images: The camera captures a visual snapshot
of the environment around the BS in the form of an image.
We assume the BS captures a 180-degree field-of-view (FoV)
using either a single camera or multiple cameras with images
stitched together. In this paper, we resize each 180-degree FoV
image to a grayscale image of size bﬁ x ¢ and normalize the
pixel values between O and 1.

3) Coordinates: We assume that the UEs have position-
ing capability from RF-based localization, Global Navigation
Satellite Systems (GNSS), sensor-based Simultaneous Local-
ization and Mapping (SLAM) [60] or other such methods. In
this paper, we convert the coordinates of UEs with respect to
the BS location and define a one-dimensional input of length 2.

B. Encoding the AoD-list of the channel for training

In this subsection, we first discuss the motivation for using
a novel approach for encoding the AoD-list of the channel and
then propose two encoding techniques. The encoded AoD-list
is used as a “ground truth” for training the multimodal fusion
network described in Section III-C. Accordingly, we assume
that for each sample of the sensor data, the AoD-list of the
associated channel is available during the training process.

1) Motivation: In this paper, we model the task of pre-
dicting AoD-pairs as a multi-label identification problem [61]
due to a fundamental difference between our work and the
prior work like [22], [23], [31], [62]. The prior work have
focused on identifying a single beam (or top-/K beams) from
a codebook based on processed sensor data. Therefore, they
framed the problem as a classification task with each beam

being a class encoded using one-hot encoding. We, however,
focus on identifying the AoD-list of channels with more than
one channel path. Thus, the AoDs of the channel paths can not
be encoded using one-hot encoding. Therefore, we consider a
quantized AoD-pair as a label and treat the AoD-list prediction
problem as the multi-label identification problem with the
multi-label encoding for the AoD-list of the channel.

In addition to the standard multi-label encoding, we also
require an encoding for the AoD-list that can capture a notion
of similarity between channels. For example, a channel path
with AoD (6,¢) = (0°,0°) is closer to the path with AoD
(2°,2°) than (10°,10°). As a result, the channel having only
one AoD (0°,0°) is closer to the channel having only AoD
(2°,2°) than the channel having only one AoD (10°,10°).
The conventional solutions to multi-label identification prob-
lem and multi-label encoding techniques do not model this
similarity between the ground truths, because of the implicit
assumption of “incomparability” across categorical labels.

A common approach to leveraging the similarity of the
ground truth labels is to model the problem as a regression
task. In that case, the DNN model can take the processed
sensor data as input and predict the directions of all channel
paths. A typical mmWave channel, however, can have a
variable number of channel paths, while a fixed-size DNN
can not handle a variable number of outputs.

This motivates us to design an encoding technique for the
AoD-list of a channel that (i) is an extension of multi-label
encoding to allow a variable number of AoDs to be predicted,
and (ii) can capture the notion of similarity across channels.

2) Encoding techniques: We define two types of encoding
for the list of AoDs of channel paths: (@) hard encoding, (b)
soft encoding. See Fig. 3 for a reference.

a) Hard encoding: We define the AoD-pair as a label for
the multi-label encoding. Let (6, ¢, ¢; ¢) denote the azimuthal
and elevation angles (in degrees) of the /-th path associated
with the channel of sample 4. Let () be a quantization
map such that Q(0,¢) = (69,4%) is an index of (6,¢)
quantized on a uniform grid of size (0, ®). We denote the
hard encoding of the AoD-list associated to the sample i
as y; € {0,1}9*?® where yi[ﬁge,qﬁgé] = 1,V such that
Q(Oic, $i0) = (0%, 63).

b) Soft encoding: We define soft encoding as a pertur-
bation on hard encoding (see Fig. 3). Formally, considering a
perturbation range of i%o on hard encoding, we define the
soft encoding of the AoD-list associated to the sample ¢ as
yi[9Q7 ¢Q] -1 min max {ADIH(W7

(£,60,6):Q(0,6)=(02,69) Af2
ADIH(¢7 d)i,f) }
A2 '
®)
This perturbation adds non-zero, linearly decaying values to
angles close to the directions of the channel paths.

Based on the soft encoding of AoD-list, we measure the
similarity between the channels ass%ciated to samples i, j as

N YiYi
A0 33) = 15115 T ©)
The proposed metric measures the overlap of channel path di-
rections within the defined perturbation range. Higher overlap
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Fig. 3: Illustration of hard and soft encoding of the channel’s
AoD-list: The blue squares represent a value of 1, indicating
the presence of a channel path along those specific direc-
tions. The soft encoding incorporates a perturbation range of
A = 10° in both elevation and azimuthal directions. The value
within each square decays linearly from the nearest square
containing the actual channel path direction. While the grid
is shown for a limited area for illustrative purposes, it would
encompass all azimuthal and elevation angle pairs.

in the soft encoding of the AoD-list of two samples within
the perturbation range translates to a higher similarity score.
Additionally, the normalization in the metric ensures that both
channels are weighted equally regardless of the number of
paths they contain. This also guarantees that if one channel
encoding y; has more paths, the other channel y; would
require a higher number of paths in similar directions to get
considered as highly similar.

The hard and soft encodings capture different aspects of the
channel’s AoD-list. Hard encoding defines a clear boundary
between valid and invalid channel directions for a specific
sample, while the soft encoding incorporates the notion of
similarity between different channels even if they are not
identical. In this paper, we leverage both these aspects in DNN
training, employing different loss functions for each encoding,
as detailed in Section III-D.

We can further extend the proposed encoding methods
beyond the current definition of the index for hard and soft
encodings, which represent angle pairs (6,¢) (referred to
as angle-based encodings). As an alternative, we can define
hard- and soft-encoded vectors indexed by quantized triplets
of cosines (sin(f), cos(d),sin(¢)) (cosine-based encodings).
This approach introduces a non-uniform quantization of angles
compared to the uniform quantization used in angle-based
encodings. Intuitively, cosine-based encoding should be a
better choice for training since precoder design depends on
the cosines of angles and not the exact angles themselves.
Accordingly, we evaluate the performance of both angle-based
and cosine-based encodings during the training and testing
phases of the DNN model.

Note that the soft encoding in itself is not enough for
the DNN model to learn the similarity/dissimilarity between
channels. We also require an appropriate loss function for
training DNN, which we propose in Section III-D.

C. Multimodal sensor fusion: Design of DNN

In this subsection, we describe the DNN-based multimodal
sensor fusion model, which leverages the pre-processed sensor
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Fig. 4: Schematic diagram of the proposed DNN-based mul-
timodal fusion network

data and hard- and soft-encoded AoD-lists of the associated
channels. We first outline the schematic of our model, con-
taining unimodal feature extractors and fusion network. We
then describe the two-part structure of the fusion network —
the key novelty of our model.

Our model draws inspiration from [31]. We, however,
modify the hyper-parameters near the network’s head to ac-
commodate the larger output dimensions required for our task.
Similar to [31], our model operates in two stages as illustrated
in Fig. 4:

1) The pre-processed data from each modality is passed
through its corresponding unimodal feature extractor
(detailed in Fig. 5). These extractors generate modality-
specific features.

2) The features extracted from each modality are then
concatenated and fed as the input to the fusion network
(detailed in Fig. 5).

The key novelty in our model is the two-part structure of
the fusion network. Specifically, the first part, called fusion
feature extractor, takes the concatenated features as an input
and generates fusion features of dimension 512. We denote the
fusion features associated with the i-th sensor data sample by
z;. These fusion features are used to incentivize the unimodal
feature extractors and the fusion network to output similar
fusion features for similar channels. We describe the incentive
in Section III-D.

The second part of the fusion network, called tuning head,
uses the fusion features Z; to predict the hard-encoded AoD-
list y; in the form of probabilities denoted by ¥;. We consider
a value greater than 0.5 in ¥; as a positive prediction. Finally,
for each sample 7 associated to UE w and time-slot n, the
estimated ¥, is used to obtain the beamspace representation

of the channel G:‘.SJ”.

D. Loss functions and evaluation metrics

In this subsection, we describe the loss functions used to
train the entire multimodal fusion model, and the metrics used
to evaluate its performance.

1) Binary cross entropy (BCE) loss: BCE loss is used
during training to minimize the disparity between the predicted
AoD-list §; and the ground truth represented by the hard-
encoded AoD-list y;. Mathematically, for a batch of sensor

observations denolted by B, the BCE loss is defined as
BCE(y.9) = ~ 1 > (v log(3:) + (1 — y)log(1 - 4)) -

ieB
(10)
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branches of the unimodal extractors are used to predict the AoD-list of a channel from the respective sensor modality. The
output of the blue-shaded branches of the unimodal extractors are used to feed the fusion model.

2) Supervised soft-contrastive loss (SSCL): SSCL is used
during training to incentivize the DNN to learn the notion of
similarity between channels by encouraging to extract similar
features from the fusion of sensor data for similar channels.
For that, we introduce two objectives on the fusion features Z;
and Z; associated to sensor observations ¢ and j: (i) Aligning
the fusion features Z; and Z; when the corresponding sensor
observations ¢ and j have similar channels, and (ii) dis-aligning
the fusion features Z; and Z; when the observations exhibit
considerably different channels. This allows robust training of
DNN against the noise in the sensor observations, and further
reducing the amount of data required for the training [46].

To formally define SSCL, recall the similarity metric p; ; :=
p(¥:,¥;) defined in (9). Then, for a batch of sensor observa-
tions B, we define SSCL as

SSCL(z, ¥) ! > e 212
29— LS e (BB
B = [T TP Tzl 1211

AT A
Z; Zj

+(1 = pij) exp <|z“1|2||zj|2>} 7
(11)

Z -2 ex ( Z;FZJ' )
5 P ol )

12)
The first and second parts of (11) incentivize the fusion model
to align and dis-align the fusion features depending on the
similarity and dissimilarity of beamspaces in the batch. Not
only that, the incentives for alignment and dis-alignments are
proportional to the similarity and dissimilarity metrics p; ;,
(1—p; ;), respectively. Thus, SSCL proposed in (12) balances
the trade-offs between alignment and dis-alignment of fusion
features.

The proposed SSCL differs from SCL presented in [46] in

how similarity is weighted. Our approach leverages a contin-
uous metric p(y;,y;) to weigh the alignment/disalignment of
fusion features, whereas the original SCL relies on a binary
similarity based on class labels. This fundamental difference
necessitates modifications to the original SCL formulation.
Due to the continuous similarity metric as a weight, the
multiplicative dis-alignment factor in the denominator of SCL
in [46] can not be ensured to be normalized. Thus, we
use an additive dis-alignment factor as in (11) instead of a
multiplicative factor as in SCL [46].

Finally, based on the ground truth encodings (y,y), we use
the sum of BCE(y,y) and SSCL(Z,¥), as the loss function
to train the DNN.

3) Mean angular distance (MAD) metric: MAD is used
during evaluation to quantify the average discrepancy between
the predicted and actual AoDs. To calculate the MAD, we
follow four steps: First, for each predicted AoD pair, we
identify the nearest AoD pair in the ground truth AoD-list.
Second, we compute the angular distance between the true
and predicted AoD pairs. The angular distance is defined as
the inverse cosine of cosine distance between the unit vectors
along predicted and true AoD pairs. Third, we average the
measured distances across all predicted AoDs within a sample.
Finally, we calculate the average of the sample-wise MAD
across all samples in a batch.

4) Mean absolute error (MAE) in cosines metric: Since
the antenna array response vectors depend on the cosine-
triplet of AoD-pairs, defined as (sin(6), cos(f), sin(¢)), MAE
in cosines is used during evaluation to quantify the discrepancy
between the predicted and actual cosine-triplets. The calcula-
tion of MAE in cosines is similar to that of MAD; however,
instead of calculating the angular distance between AoD pairs,
we calculate the L,-distance between the cosine-triplets of
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Fig. 6: Block diagram for determining residual channels of
users based on beamspace estimates: The BS iteratively re-
moves the channel paths that overlap with other UEs to get
the residual channels. These residual channels of UEs are used
to find the RF precoder Frp.

predicted and true AoD pairs.

Remark 1. The number of paths can vary across different
samples. Consequently, MAD and MAE-based metrics, which
depend on predicted angles, are not suitable as loss functions
for DNN training due to challenges with gradient-based back-
propagation. Nevertheless, they remain valuable for assessing
the DNN’s performance in terms relevant to the practical
application.

With the specified design of the network and the loss
functions, we have the first stage of the sensor-aided MU
beamforming: A model to predict the beamspace representa-

tion G, from sensor observations. We report the performance
of training and testing with various sensor modalities in
Section V-D. In the following, we move on to the second stage,
MU beamforming strategy using the predicted beamspaces.

IV. STAGE II: BEAMSPACE-BASED MU BEAMFORMING
ALGORITHM

In this section, we describe the MU beamforming algorithm
that uses the beamspace representations of the users’ channels.
Given the estimate of the beamspace from the multimodal
sensor fusion network, we first introduce the intuition behind
the MU beamforming algorithm followed by the outline.

A. Key intuition behind the MU beamforming algorithm

The algorithm is split into two phases. The first phase
focuses on designing RF precoder from the beamspace repre-
sentations (see Fig. 6). The key idea in this phase is to assign
one transmission direction to at most one UE. For instance,
consider a scenario where the BS communicates with two UEs,
A, B. The beamspaces of their channels are shown in Fig. 7a
and 7b, respectively. Notice that both UEs have an overlapping
multipath component at AoD-pair (45°,90°). The BS starts
with the UE having the least number of predicted paths (in
this case, UE A), selects one direction from its estimated
beamspace, and removes that direction from the beamspaces
of the subsequent users. In this case, for the UE A, the
algorithm selects the (only) direction from its beamspace and
removes that direction from the beamspace of UE B. We call
the resultant beamspaces, the residual channels of UEs. The

Algorithm 1 MU beamforming using the beamspace repre-
sentations (detailed in Section IV-B)
1: Input: An ordered list of UEs U = (uq,...,uy) to
be communicated, sorted in the ascending order of the
number of the predicted paths.

2: Input: Beamspace estimate from sensors G, Yuel
First stage: Determining Frp

3:fori=1,2,...,U do

4:  Estimate residual beamspace G; = G ZZ : G

5:  Find a peak direction in G, denoted by (91, b; )

6:  Design a directional beamformer f*F = vec(A (6;, ¢;)).
7: end for

8: Set Frp = [f1", -+ fn ]

Second stage: Determlmng Fgp

9: BS sets Fpp[k] = Ing, and transmit training sequence to
all UEs simultaneously.

10: UEs estimate the effective channels I:II[k‘] = hl [k]Frp
and feed them back to BS.

11: Using the effective channels, the BS designs RZF digital
precoder Fpp[k] according to (13).

BS then designs the RF precoders, iy A ,fRF that maximize

the transmission energy along the peak of the UEs’ residual
channels. This process allows for assigning only one UE to
each cluster of the channel.

In the second phase of the algorithm, the BS optimizes the
digital precoder Fpp using conventional MU-MISO strategies
based on the estimation of equivalent channel and channel
feedback. Since the dimension of Fpp is significantly smaller
than NZg x NJg, this phase contributes minimally to the
overall overhead.

B. Algorithm outline

The pseudocode of the algorithm is presented in Algorithm
1. Consider the U = Ng = Ngrg number of active UEs. In
the first phase, the BS receives the predicted AoD-list and

the associated beamspace estimates G, of all UEs from the
fusion network. The BS then sorts UEs in the ascending order
of the number of predicted paths. Then for each UE i, the BS
creates the residual beamspace representation, denoted by G,
by subtracting the residual beamspaces of all UEs j < . It
then identifies the directions (6 i) @) associated with the peak
of Gy, and selects 7 = vec(A(6;, $;)) as the RF precoder
for UE i. This process is repeated until all UEs are assigned
an RF precoder.

Once Fgrp is determined, the BS then optimizes Fgp in
the second phase. This process is similar to the procedure
used in preamble-based MU-MIMO channel estimation [37],
[63], [64]. The BS transmits a common preamble seguence

to all UEs. Each UE estimates its effective channel h,, [k] =
h[k]Fgrp, and feeds it back to the BS through the control
channel. Finally, the BS collects the estimated channels from
all UEs, and designs the RZF digital precoder Fpgplk] as
follows

(S5 P A (6] + T ) 8

e (S0 AL+ Tyy)

. (13)

2
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Fig. 7: Intuition behind MU beamforming algorithm: The overlapping directions in the beamspace representation of user A
and user B’s channels are removed from the beamspace of user B. User A gets the priority because it has fewer AoDs. The
resultant beamspace representations are called residual channels and are used to determine the initial RF precoder Frp.

With the chosen precoders Fry, Fgp[k], Vk € [K], the BS can
transmit to all UEs simultaneously.

Remark 2. While our approach and traditional parametric
channel estimation methods [51]-[54] both aim to estimate
AoDs, there is key difference. Conventional parametric channel
estimation relies on training sequences and, thus, requires
an initial beam selection to ensure adequate signal-to-noise
ratio (SNR) for accurate parameter estimation. In contrast,
our method uses out-of-band sensors to predict AoDs, effec-
tively eliminating the need for expensive beam search and
reducing overall system overhead. This distinction highlights
that our sensor-aided approach offers a more efficient solu-
tion compared to traditional parametric channel estimation
approaches.

Remark 3. Using path gains in the precoder design: We
emphasize here that while our approach does not involve
predicting path gains from sensor data and does not use path
gains for designing analog precoders in the first stage, it
uses the path gains for designing the digital precoder in the
second stage. Specifically, the path gains are embedded in the
estimated effective channels of the UEs.

While using path gains in the first stage could enhance
analog precoder design, it would require predicting these
gains purely from sensor data. We believe that predicting path
gains from sensor data presents a promising area for future
research.

V. NUMERICAL RESULTS

In this section, we present numerical evaluation of the
proposed sensor-aided MU beamforming strategy. We first

describe the dataset used for evaluation, followed by a com-
parison of the achieved MU SE Rg with the baselines. We
then discuss the impact of using different sensing modalities
on the performance and compare the performance of MU
communication with the proposed beamforming strategy to
a time-division multiplexed SU strategy. Finally, we quantify
the reduction in the link establishment overhead due to the
sensor-aided beamforming approach.

A. Dataset

To evaluate the performance of the sensor-aided beamspace
prediction model, we use the Raymobtime dataset [27]. This
dataset comprises a collection of synthetic ray tracing datasets
designed for simulating wireless channels. We specifically
employ datasets s008 and s009. These datasets offer a rich
combination of multimodal sensing data, including LiDAR,
camera images, and coordinates, alongside ray tracing-based
channels at 60 GHz for all ten mobile receivers, in a synthetic
3D scenario of the city Rosslyn, Virginia. These datasets
capture 2086 and 2000 scenes, respectively, with each scene
separated by 30 seconds.

Crucially, s008 and s009 datasets include the underlying
mmWave channel associated with each sensing data sample.
This valuable feature allows training and testing of the pro-
posed prediction model using the sensor data as input and the
hard- and soft-encoded beamspace estimates of the underlying
mmWave channels as output. In contrast, other real-world
multimodal sensing datasets such as DeepSense 6G [29] and
e-FLASH [31], used for mmWave beam predictions, only
contain the mapping of the beams in the codebook and
measurements of the received powers, but not the complete
CSIL This limits their use in our work.



Similar to previous work [23], [31], we use datasets s008
for training our fusion model, while s009 is used for validat-
ing the obtained results.

B. System setup and parameters for DNN

Our system uses a BS equipped with 2 x 1 RF chains with
16 x 8 antenna elements for U = 2, and % x 2 RF chains with
4U x 16 antenna elements for U = {4, 6, 8}. The granularity
for the beamspace representation is Gp X G4 = 64 x 32 for
U =2and Gy x Gy = 16U x 64 for U = {4,6,8}. We
consider a total of £ = 25 strongest paths from all ray clusters
combined to define the truncated beamspace of the channel.
Following 5G NR specifications, we use OFDM symbols with
792 subcarriers spaced at 120 kHz [65]. We consider all users
transmit simultaneously on all subcarriers and do not consider
resource allocation over the resource grid.

For LiDAR point clouds preprocessing, we define the cov-
erage space of BS as (Xuin, Xmax) = (744 m, 767 m),
(Yiin, Ymax) = (429 m, 679 m), (Zmin, Zmax) =
(0 m, 10 m). Any points outside this range are removed from
the point cloud. The remaining data is then quantized into
the grid of bS x b5 x by = 20 x 200 x 10 bins in X,Y
and Z directions. The camera images are scaled to the size
bE x bS, = 48 x 81.

Finally, for the angle-based encoding of beamspaces, we
uniformly quantize the azimuthal and elevation angle pairs
into ©® x & = 90 x 45 bins. For cosine-based encoding, we
uniformly quantize the values of (sind,cos6,sin¢) in 40 X
40 x 40 bins. Unless otherwise mentioned, we use angle-based
encoding for the subsequent analysis. For soft-encoding, we
consider the perturbation range of A = 10.

For the training of the DNN model, we use both BCE and
SSCL losses with equal weights. We use the batch size of 32.
We consider an initial learning rate of 0.0001 and reduce it
by a factor of 0.99 when the total training loss has stopped
improving for 10 consecutive epochs.

C. MU spectral efficiency

We evaluate the performance of our complete framework on
s009 dataset. We consider simultaneous transmission to 2, 4,
6, and 8 mobile UEs out of the 10 available in each episode.
For each episode, we consider all possible combinations of
UEs called user-clusters. For each cluster, we use all available
sensing modalities — camera images, LiDAR point clouds,
and coordinates of the UEs — to predict the beamspace of
the channel. We then use the MU beamforming algorithm to
determine the RF precoder Fryr and digital precoder Fgp and
calculate SE R,, achieved by each user u in the user-cluster.
We then select the user-clusters that provide the maximum SE
for each user. Finally, we plot the median and the 25th and
75th percentile values of the sum-SE of all such user-clusters
across all episodes.

We compare our strategy against three baselines:

o Full CSI at the BS: In this scenario, the BS designs Fpp
assuming noise-less channel estimate and a fully digital
antenna array architecture. This represents a best case
scenario for a MU-MIMO communication system.

o Beam prediction: The BS uses the optimal beam for each
UE individually from a DFT codebook. This baseline
represents the best case performance of the state-of-
the-art multimodal sensor-aided mmWave beam training
framework [31] when extended to MU setting without
prediction error.

¢ Ground truth beamspace: The BS has access to the true
truncated beamspace representation, as opposed to the
sensor-aided estimate. This baseline demonstrates the
effectiveness of our MU beamforming algorithm, isolat-
ing the impact of errors in the sensor-aided beamspace
estimates.

It is important to note that noise affects the design of Fgp in
our framework and the baselines except in the full CSI setting,
as it requires estimating the channel using the preamble-based
MU-MIMO channel estimation method. We also emphasize
here that we do not consider the overhead of searching the
optimal beam from the top-K prediction, nor do we consider
the overhead of channel estimation. Our focus for the analysis
is to highlight the sum-SE performance of the proposed
strategy compared to the baseline. Therefore, we assume the
access to an ideal beam predictor that selects the best beam and
the access to noisy channel estimate without any overhead. We
compare the overhead of the proposed strategy with baselines
in Section V-F.

Fig. 8 shows the median sum-SE with 25% and 75%-
tile range achieved in the MU setting with both Frp and
Fpp derived using Algorithm 1. This demonstrates the end-
to-end performance of combining our proposed DNN-based
multimodal fusion network with MU beamforming strategy.
We observe consistently high performance using beamspace-
aided MU beamforming compared to the MU extensions of
SU baseline technique. Note that the performance of the beam
prediction baseline is significantly worse with a high number
of active users, indicating the impact of inter-user interference.
In Fig. 9, we show the empirical CDF of achieved sum-SE at
42 dBm EIRP. We observe that the median MU sum-SE of
the proposed MU beamforming strategy is significantly higher
(up to 4x with U = 4) than the MU extension of SU baseline.

Note that the prediction error in sensor-aided beamspace
estimate, defined in comparison with ground truth beamspace,
only depends on the sensor modalities used during training,
and remains constant across different numbers of UEs. From
Fig. 9, we observe that there is a larger impact on performance
for the same prediction error when using more UEs. This
suggests that the proposed algorithm grows more sensitive
towards the errors in beamspace prediction as the number of
users increases. Notably, in the ideal scenario with known
ground truth beamspace, the system performance is close
to that of a digital MU-MIMO system with a full CSI
setting. This, however, is not the case when using sensor-
aided beamspace estimate. The prediction error can introduce
misalignments or identify sub-optimal directions of multipath
components in the channel. Because this prediction error is
independent of transmit power, the resultant loss of dominant
directions has a proportionally high impact for higher transmit
power. Therefore, we believe that further optimization of the
multimodal fusion network has the potential to improve the
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SE performance of the proposed MU framework.

Finally, we also observe an interesting feature of the Ray-
mobtime dataset from the performance of full CSI in Fig. 9.
We see two distinct groups of user clusters. The top 20%
achieve a sum SE greater than 18 bps/Hz, while the bottom
60% have a sum-SE below 9 bps/Hz. Since we only focus
on user clusters offering the best individual SE to at least one
user, this sharp difference suggests many users have inherently
low SE regardless of other users in their cluster. We believe
this low SE stems from similar AoDs in the channels of these
users. This similarity results in severe inter-user interference,
even with a fully digital antenna system.

D. Impact of sensing modalities

In this section, we analyze the impact of various sensing
modalities on the end-to-end performance of our framework.

We consider all possible combinations of sensor informa-
tion. In the case of unimodal setting, we use the individual
sensor feature extractors as described in Fig. 5 to predict
the beamspace of the channel. In the case of multimodal
setting, we use the multimodal fusion network to predict
the beamspace of the channel. For each case, we train the
model using the dataset s008 using angle-based encoding and
cosine-based encoding of beamspaces. We then evaluate the
performance of the trained models on the test dataset s0009.
The test results, in terms of MAD and MAE in cosines, are
reported in Table L.

We observe that the cosine-based encoding performs sig-
nificantly worse compared to angle-based encoding. This is
due to the huge network size to handle 64000-dimensional
output when using cosine-based encoding as opposed to 7200-
dimensional encoding when using angle-based encoding.

We further use these trained models to estimate the sum-SE
of the system. Fig. 10 shows the MU sum-SE as a function
of EIRP. Compared to the baseline using ground truth-based
beamspace representation, we observe that the combination of
coordinates, LiDAR, and camera performs better than other
combinations. Notably only using camera images at the BS
leads to lower performance compared to the ground-truth
baseline which suggests the sensors at the UEs play significant
role in predicting the information about the channel.

E. Impact of SSCL loss

In Fig. 11, we show the impact of SSCL loss on the
sum-SE of MU communication with U = 4 and 6. We
observe that the SSCL loss is a key reason for the success
of the proposed multimodal fusion network in predicting the
beamspace representation. Since SSCL incentivizes feature
similarities and dis-similarities during the training of the fusion
network, we can recover key features relevant for beamspace
estimation from the sensors, and therefore, achieve higher
sum-SE.



With angle-based encoding || With cosine-based encoding

Sensor modalities | MAD (deg) | MAEIn MAD (deg) MAE in

cosine cosine

Coordinates 7.2821 0.1258 15.2863 0.1380

Image 7.2821 0.1258 15.2863 0.1380

LiDAR 5.8630 0.1101 17.3852 0.1830

LiDAR + Image 8.0177 0.1419 17.8200 0.2041

Coordinates + LIDAR 6.2575 0.1179 15.9807 0.1867
Coordinates + Image 7.2821 0.1258 15.6233 0.1567
Coordinates + LiDAR + Image 6.1026 0.1149 17.3852 0.1830

TABLE I: Test error on s009 dataset across modalities: MAD and MAE in cosines are defined as in Section III-D. Due to a
huge network size, the cosine-based encoding performs significantly worse compared to angle-based encoding.
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Fig. 10: Comparison of MU SE using different combinations
of sensor modalities at 42 dBm EIRP: The error bars show
25%-tile to 75%-tile range. The combination of coordinates,
LiDAR, and camera performs better than other combinations.
Notably only using camera images at the BS leads to lower
performance compared to the ground-truth baseline which
suggests the sensors at the UEs play a significant role in
predicting the information about the channel.
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Fig. 11: Defining the impact of SSCL loss: By contrasting
samples based on their similarity score can help recover
the relevant features from the sensors for the beamspace
prediction, which, in turn, helps with improving achievable
SE using beamspace-aided MU beamforming strategy.

F. Overhead analysis

To further highlight the benefit of our two-stage approach
(sensor-aided beamspace estimation followed by beamspace-
aided beamforming) in contrast with the one-stage sensor-
aided beam prediction strategy, we examine the overhead of
both strategies.

1) Beamforming overhead: Our method leverages sensor
data to determine the RF precoder for all users. Consequently,
the first phase of Algorithm 1 does not introduce additional

overhead to the communication system. In the second stage,
digital precoders are identified by estimating the effective
channels of all UEs through the transmission of SSBs as
specified in the 5G NR standard for mmWave bands. Using
the chosen RF precoders, the BS employing sensor-aided MU
beamforming requires only a single synchronization signal
block (SSB) for all UEs simultaneously. In contrast, a conven-
tional BS without sensor-aided beam prediction must transmit
up to 64 SSBs using different RF precoders to determine the
optimal RF precoder for each UE. Therefore, sensor-aided MU
beamforming can reduce beamforming overhead by up to a
factor of 64.

Moreover, the state-of-the-art sensor-aided SU beam pre-
diction strategy requires testing 10 beams (using 10 SSBs) to
determine the optimal RF precoder for each UE with 90%
accuracy [31]. In comparison, our two-stage approach needs
only one SSB for multiple UEs, reducing the overhead by up to
a factor of 10. We note that the sum-SE results presented in this
paper do not account for beam selection overhead, focusing
instead on the maximum achievable sum-SE. Therefore, in
practice, the benefits of our two-stage approach for MU
mmWave beamforming are likely to be even greater when
considering beam selection overhead.

Finally, the beamforming overhead for designing the digital
precoder Fpp is minimal and unavoidable. It is minimal
because, for Ngr RF chains, the BS only needs to transmit
Nrr OFDM symbols. With a sub-carrier spacing of 120 kHz
for mmWave communication, each OFDM symbol lasts 8.3 ps.
For instance, transmitting to 10 UEs using 10 RF chains would
require just 0.083 ms, which only decreases with increased
sub-carrier spacing. This overhead is unavoidable since the BS
must always adjust the digital precoder based on the phase-
coherent channel estimate, irrespective of the RF precoder
selection process.

2) Computational overhead: Our approach involves two
main sources of computational overhead.

a) The DNN-based multimodal fusion network: We com-
pare the computational overhead of our DNN-based fusion
network with the benchmark fusion network from [31] in
terms of the number of floating point operations (FLOPs).
Specifically, our proposed fusion network requires 33.502M
FLOPs, which is marginally lower than the 42.947M FLOPs
needed by the benchmark network for per-UE beam pre-
diction [31]. Furthermore, the modern low-power GPUs like
NVIDIA Jetson Nano [66], can support hundreds of GFLOPs
per second. Therefore, the inference using our proposed fusion



network only minimally contributes to the processing latency.

b) The matrix operations in Algorithm 1: The first stage
of Algorithm 1, which involves U iterations, each comprising
GgGy subtractions. Thus, the computational complexity of
the first stage scales as O(UGyGy). The second stage of
Algorithm 1 introduces a computational overhead of inverting
a U x U matrix (recall that Ngp = U) for calculating the
RZF digital precoder, which scales as O(U 3). Therefore, the
overall computational complexity of Algorithm 1 scales as
O(UGyG 4 + U?), with a fixed computation requirement for
a given U.

Although our approach introduces additional computational
complexity, it is feasible with modern hardware and can be
executed in real-time. Importantly, it only needs to be applied
at each channel coherence interval (approximately 50 ms),
allowing sufficient time for execution.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the challenge of establishing
efficient links in mmWave MU-MIMO systems by leveraging
ubiquitous sensor data. Our results demonstrate that sensor
data can reveal not just one dominant path, but the directions
of numerous significant paths within the channel. This also
highlights the potential of out-of-band sensors for extracting
rich channel information to aid advance features of communi-
cation systems such as MU-MIMO.

Looking ahead, we identify three avenues for future re-
search. Firstly, an analysis is required to validate the use of
sensors for predicting the gain of the channel paths. The path
gains depend on many factors, including the environment, the
relative phases of different paths within a channel cluster,
the amount of scattering and diffusion from the reflectors,
and even the material types of the reflector. It is not clear
if the sensor data, such as GPS, LiDAR, and camera may
provide the precision needed to accurately infer these factors.
Nevertheless, if the path gains can be estimated from the
sensor data, it can allow prioritizing users based on these gains
rather than on the number of channel clusters. Accurately
predicting channel path gains also holds the potential to
facilitate the allocation of varying numbers of data streams
and adaptable power levels to each user.

Secondly, realizing the real-world implementation of our
approach demands an evaluation on real-world datasets con-
taining complete channel measurements. Existing real-world
multimodal sensor datasets like DeepSense 6G and e-FLASH,
unfortunately, lack complete channel measurements. Hence,
experimental campaigns are required to gather multimodal
sensor data alongside comprehensive channel measurements.

Lastly, for broader deployment of this framework, the
adoption of generalizable DNN training alongside site-specific
model tuning methodologies needs to be considered. Recent
advancements in model-agnostic ML and transfer learning
paradigms present promising avenues for addressing these
challenges. Overcoming these obstacles, in conjunction with
our proposed method, sets the stage for the development
of more efficient and resilient MU mmWave communication
systems.
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