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Abstract—Incorporating the sub-6 GHz band into 5G
networks can improve data rates by leveraging the benefits
of propagation across frequency ranges. Sequential decision
making algorithms such as deep reinforcement learning
(DRL) can adaptively select a band over time to take
full advantage of the multi-band operation. The distinctive
beam management procedure between the sub-6 GHz band
and the millimeter wave (mmWave) band, though, pose a
sample efficiency challenge for DRL algorithms. In this
paper, we use hierarchical reinforcement learning (HRL)
to divide and conquer the joint band assignment and beam
management problem. The proposed HRL-based method
uses rate feedback for intermittent band determination and
frequent beam management mode decisions. We show with
numerical evaluation that the proposed algorithm achieves
a quicker increase in data rate compared to baselines and
identify off-policy correction methods as a key factor for
this enhancement.

I. INTRODUCTION

Multi-band operation in 5G networks can enhance
both data rates from the mmWave band and link re-
siliency from the sub-6 GHz band [1]. While allowing
simultaneous usage of bands in a single time slot offers
greater data rate potential, a sophisticated scheduling al-
gorithm involving high radio-frequency (RF) complexity
may be required. Band assignment, which refers to the
selection of the operating band over time, alleviates the
complexity of multi-band operation and can be suitable
for user devices with low RF processing capability [2].

While several solutions have been proposed for band
assignment [2] (and references therein) they have not
incorporated the overhead of beam management, which
can be a significant bottleneck in achieving high data
rates. The formulation of joint band assignment and
beam management is required, since evaluating a band
involves beam management distinctive across bands.

DRL algorithms are well known in addressing the
exploration-exploitation tradeoff in resource allocation
problems [3]. Beam management in multi-band wireless
networks, though, can be challenging based on tradi-
tional DRL approaches because beam training can only
be performed in one band at a time and the sample
efficiency in each band will be low. HRL is a recent
advancement of DRL that introduces hierarchy in the

learning process [4]. HRL is a viable approach for the
joint band assignment and beam management problem,
as it separates band assignment and beam management,
improving sample efficiency while accommodating dis-
tinct beam management procedures across bands.

In this paper, we propose an HRL-based algorithm
that leverages rate feedback to determine the oper-
ating band and when to perform beam training. We
assume the communication nodes employ codebook-
based beamforming, co-located sub-6 GHz and mmWave
arrays, and Orthogonal Frequency Division Multiplexing
(OFDM). We also assume a fully digital sub-6 GHz array
and a hybrid mmWave array with analog and digital
beamformers. We further assume perfect rate feedback
from the user to the base station without quantization or
overhead. The algorithm employs two policies: an upper-
level policy for band selection and a lower-level policy
to determine the beam training method. The choice of
beam training is guided by comparing the rate feedback
and two adaptive thresholds determined by the lower-
level policy. The band selection is made by the upper-
policy, which aggregates state, goal, and reward over an
adaptive period. The HRL-based method uses the best
known band until the rate feedback deteriorates below
the learned threshold, in which case the algorithm tries
out different band or beam training indicated by the
upper-level and lower-level policies.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume a downlink scenario in a multi-band
MIMO-OFDM wireless network, as in Fig. 1, where
a single base station serves a single mobile user. For
each OFDM time frame, we assume the base station
selects a transmission mode of either beam training or
data transmission. We also assume the base station sends
pilots only during beam training for MBT discrete time
slots. Whenever the mode is data transmission, the base
station sends only data symbols for MDT discrete time
slots. The sequence of modes can be consecutive beam
training, consecutive data transmissions, or alternating
with an arbitrary number of consecutive modes. The
band selection occurs when a new transmission mode is
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Fig. 1: Illustration of an example system model showing two snapshots: (a) the base station operates on the sub-6 GHz band to
serve the user due to a large truck posing as a mobile blockage, and (b) the base station operates on the mmWave band when
line-of-sight is available.

deployed. When the system uses the mmWave band, the
system uses a bandwidth B with K subcarriers. When
the system uses the sub-6 GHz band, the system operates
over a bandwidth B with K subcarriers. Hereinafter, we
underline the sub-6 GHz parameters.

Each node employs a fully connected hybrid beam-
forming architecture in the mmWave band and digital
beamforming architecture in the sub-6 GHz band. Fully
connected hybrid architecture is selected for simplicity
and we plan to extend to partially connected hybrid
architecture for future work. In the mmWave band, we
denote NBS as the number of antennas and NBS,RF as
the number of RF chains at the base station, NUE as the
number of antennas and NUE,RF as the number of RF
chains at the user, and NS as the number of data streams.
We denote FBB[k,m] as the NBS,RF × NS frequency-
selective baseband precoder, FRF[m] as the NBS×NBS,RF
frequency-flat RF precoder, WRF[m] as the NUE×NUE,RF
frequency-flat RF combiner, and WBB[k,m] as the
NUE,RF × NS frequency-selective baseband combiner.
We set power constraint on the base station by de-
noting P [k,m] as the transmit power and constraining
FBB[k,m] such that ∥FRF[k,m]FBB[k,m]∥2F = NS. No
other hardware-related constraints are assumed.

We further assume a time-varying frequency-selective
NUE ×NBS channel matrix H[k,m], where k, m are the
subcarrier and time index. We denote G[m] as the large-
scale fading, n[k,m] as the identically distributed (IID)
noise following the distribution NC(0, σ

2
n ), and s[k,m]

as the symbol vector with E[|s[k,m]|2] = 1. The end-
to-end input-to-output relation in the mmWave band is

y[k,m] =
√
P [k,m]G[m]W∗

BB[k,m]W∗
RF[m]H[k,m]

× FRF[m]FBB[k,m]s[k,m]

+W∗
BB[k,m]W∗

RF[m]n[k,m]. (1)

We use the instantaneous spectral efficiency [5] aver-

aged over the subcarriers, denoted as S[m,H[k,m]], in
defining the performance metric later in (3).

The user measures the instantaneous spectral ef-
ficiency and feedback the rate estimate of current
band and beam, denoted as the beam measurement
SUE[m,H[k,m]], to the base station. We assume the
system uses the beam measurement to determine the best
band and beamformers. The beam measurement at each
time horizon m can be written as

SUE[m;H[k,m]] =
1

K

K∑
k=1

log2(1 + SNReff

× |W∗
RF[m]H[k,m]FRF[m]|2), (2)

where SNReff is the effective SNR accounting for the
MMSE channel estimator under a rectangular Doppler
spectrum [5, Sec. 4.8].

We assume a greedy approach to configure the analog
beamformers FRF[m] and WRF[m] for simplicity, where
distinct beams are used for separate RF chains to achieve
spatial multiplexing gain [6]. To subsequently determine
the digital beamformers FBB[k,m] and WBB[k,m], we
assume the digital effective channel is fed back from
the user to the base station via the random vector quan-
tization (RVQ) codebook [7]. In the sub-6 GHz band,
we presume Type-1 precoding matrix indicator (PMI)
codebook is employed and the PMI feedback indicates
the PMI table index, which includes both candidate
precoders and the channel quantization [8].

The beam training overhead MBT varies over fre-
quency bands as listed in Table I in decreasing order
of length. The mmWave analog beam training overhead
depends on the number NSS of synchronization signal
(SS) blocks per burst and periodicity MSS between
two SS burst exchangements [9]. The sub-6 GHz beam
training overhead depends on the size νPMI of the PMI
codebook and the number κchannel of bits that can be sent



TABLE I: Closed-form expressions of beam training overhead

Beam training type Overhead
MmWave analog MSS⌈νBS νUE/NSS⌉

Sub-6 GHz ⌈log2 νPMI/κchannel⌉
MmWave digital ⌈κRVQ/κchannel⌉

through the sub-6 GHz feedback channel over a single
time slot. The mmWave digital beam training overhead
depends on the number κRVQ of quantization bits of
the RVQ codebook and the number κchannel of bits sent
through the feedback channel per time slot.

The base station aims to maximize the system’s data
rate by selecting the best band of operation and precoder
at each time slot. For each time slot m, we denote the
actions that the transmitter can take as A[m]. The action
dictates a chosen band and also whether to perform beam
training or data transmission. We say the action is a set
including a chosen band b[m] and a beam management
mode nmode[m]. Specifically, we set b[m] = 1 to imply
the mmWave band being the band of operation and
b[m] = 0 to imply the sub-6 GHz band being the band
of operation. We also set nmode[m] = 1 to indicate data
transmission and nmode[m] = 0 to indicate beam training.
The system’s data rate, which is the performance metric
of interest, can be written as

R[m] = (1− b[m])B S[m] + b[m]B S[m]. (3)

We assume that M is finite to keep the cumulative data
rate finite. Denoting the binary variable c(A[m]) = 0
when beam training is in progress and c(A[m]) = 1
when data transmission is performed, the optimization
problem can be written as

max
{A[m]}

M∑
m=1

c(A[m])R[m]. (4)

RL is a well known approach for solving optimization
problems like (4) as in [3] and references therein. Fur-
thermore, the distinct beam management procedures in
the mmWave band and sub-6 GHz band suggest that ex-
ploiting an hierarchical structure in decision making can
further improve the learning algorithm. In this regard,
we propose a HRL-based algorithm in Section III.

III. HRL-BASED ALGORITHM FOR JOINT BAND
ASSIGNMENT AND BEAM MANAGEMENT

HRL algorithms build upon DRL algorithms, which
aim to find the policy that maximizes the cumulative
reward by training neural networks. The key difference
of HRL algorithms to traditional DRL algorithms lies in
the separation of decision layers, which represents the
decomposition of the complex task given to the decision-
making agent. The upper decision layer selects subtasks
to be performed and the lower decision layer executes

the chosen subtask. In the DRL framework, the policy
of the agent maps a state T to an action A and receive
a reward. HRL algorithms, depicted in Fig. 2, extend
the framework to consist the upper-level policy µupper

and the lower-level policy µlower [4]. The upper-level
policy maps a state to a high-level action (or goal), where
the lower-level policy maps a pair (T , g) to an action
A. The environment provides the extrinsic reward rE to
the upper-level policy, whereas the intrinsic reward rI is
given to the lower-level policy by the upper-level policy.

In HRL, the upper-level policy provides its action or
the goal to the lower-level policy per periods Mupper. To
adaptively determine Mupper, we propose the use of round
skipping, inspired by bandit algorithms [10]. Round
skipping ensures a short default period while avoiding
unnecessary goals to the lower-level policy. The round
skipping probability is computed based on the mean
reward and action availability. Specifically, the non-
skipping probability is min{1, MRF

2MRF−1
1

q(A,m)}, where
q(A,m) is the probability that action A is available at
time slot m based on the history up to time slot m.

The state T [m], goal g[m], action A[m], intrinsic
reward rI[m], and extrinsic reward rE[m] of the HRL-
based joint band assignment and beam management
algorithm can be described as the following.

1) States: The state space incorporates the selected
beamformers and feedback used throughout the beam
management procedures as discussed in Section II. The
state can be written as

T [m] =
{
FRF[m],WRF[m], SUE[m],

{
Ĥ[k,m]

}K

k=1
,{

FBB[k,m]
}K

k=1
,
{
P[k,m]

}K

k=1

}
. (5)

Note that the codebook assumption for constructing
the analog beamformers FRF[m],WRF[m], the quantized
feedback channel

{
Ĥ[k,m]

}K

k=1
in the mmWave band,

and the precoder
{
FBB[k,m]

}K

k=1
in sub-6 GHz band

can be used to reduce the state space dimension.
2) Goal: The goal g[m] corresponds to the band of

operation and set to g[m] = b[m].
3) Action: The action space consist of two continuous

variables

A[m] = {τA[m], τD[m]}. (6)

The spectral efficiency feedback SUE[m] at mmWave
is compared with the thresholds to perform one of the
following. When SUE[m] < τA[m], the base station per-
forms analog beam training. When τA[m] < SUE[m] <
τD[m], the base station proceeds digital beam training.
When τD[m] < SUE[m], the base station transmits data
using symbols. At sub-6 GHz, when SUE[m] < τD[m],
the base station processes beam training. When τD[m] <
SUE[m], the base station transmits data using symbols.



Fig. 2: Hierarchy between the upper-level and lower-level
policy in the HRL framework. The upper-level policy generates
goals as its action, which is inputted to the lower-level policy
to determine the action interacting with the environment.

4) Intrinsic reward: The intrinsic reward for solving
(4) can be written as

rI(T [m], g[m],A[m]) = c(A[m])R[m]. (7)

5) Extrinsic reward: The reward provided by the
environment accounts for the upper-level policy period
Mupper such that

rE[m] =
1

Mupper

m′+Mupper−1∑
m′

rI[m
′], (8)

We use deep deterministic policy gradient
(DDPG) [11] to train the upper-level policy µupper

and the lower-level policy µlower. Four neural networks
are trained in DDPG, where each neural network
corresponds to the online actor network θA,ON, the
target actor network θA,TAR, the online critic network
θC,ON, and the target critic network θC,TAR. The actor
networks represent a policy, whereas the critic networks
evaluate a policy. The target networks are delayed
copies of the online networks with slow updates, which
helps to reduce the effects of overfitting and instability.

DDPG uses experience replay that stores a buffer
of experiences to update the neural networks. The ex-
perience replay consist of trajectories, where a single
trajectory is a tuple of the state, action, reward and
successor state. The trajectory of the lower-level policy
is a tuple of (T [m], g[m],A[m], rI[m], T [m + 1]). The
update of the neural networks for the lower-level policy
incorporates the goals in the typical DDPG update.
Specifically, a ξ-element randomly sampled minibatch
is from the experience replay of the lower-level policy,
which we denote as Dlower. Using the minibatch, the
lower-level θC,ON is updated by minimizing the loss
and the lower-level θA,ON is updated with the policy
gradient, and the target networks are slowly updated
from the online networks [4]. We denote such group of
updates as Update(θA,ON

lower ,θ
C,ON
lower ,θA,TAR

lower ,θC,TAR
lower ;Dlower, ξ)

in Algorithm 1. The upper-level policy involves a

transition as a tuple of aggregated state, goal, ac-
tion, and extrinsic reward over the horizon win-
dow of length Mupper The neural network update for
uppper-level policy is similarly performed using Up-
date(θA,ON

upper ,θ
C,ON
upper ,θA,TAR

upper ,θC,TAR
upper ;Dupper, ξ).

When updating the upper-level θC,ON, an off-policy
correction is required to address the varying µlower in a
single upper-level trajectory. We apply the direct impor-
tance correction and goal correction based on importance
relabling as in [4]. Later in the experiments, we use each
off-policy correction methods as baselines.

The upper-level actor-critic update is triggered every
Mupper time slots. If the round-skipping occurs, the band
assignment variable b and goal g is kept constant to be
used in the lower-level policy computation. Otherwise,
the upper-level experience replay is generated by aggre-
gating state, action, and cumulating the environmental
reward over time horizon m, . . . ,m + Mupper. In the
upper-level trajectory, the length of elements are trun-
cated to MRF when Mupper > MRF. For completeness,
the pseudocode is given in Algorithm 1.

Algorithm 1 Joint band assignment and beam manage-
ment strategy based on HRL

1: Input: Length M of decision horizon, Boolean con-
stant UseActionRelabling, Boolean random variable
RoundSkip, Batch sample size ξ

2: Randomly initialize online critic network
Q(s, a|θC,ON) and online actor network µ(s|θA,ON)
with θC,ON and θA,ON for upper-level and lower-level

3: for m = 1, . . . ,M do
4: if RoundSkip then
5: Continue using upper-level action g[m]
6: else
7: Set aggregated state as T agg[m] = T [m′ : m′+

Mupper − 1]
8: Set goal as according to importance relabling
9: Set reward as

∑
rE[m

′]
10: Get successor state T [m+Mupper]
11: Store upper-level transition in Dupper
12: Update(θA,ON

upper ,θ
C,ON
upper ,θ

A,TAR
upper ,θC,TAR

upper ;Dupper, ξ)
13: Update b[m+Mupper]
14: end if
15: Select lower-level action A[m] according to θA,ON

lower
and exploration noise distribution N

16: Set reward rI[m] as in (7)
17: Update nmode[m+ 1]
18: Get successor state T [m+ 1]
19: Store transition (T [m], g[m],A[m], rI[m], T [m+

1]) in Dlower
20: Update(θA,ON

lower ,θ
C,ON
lower ,θ

A,TAR
lower ,θC,TAR

lower ;Dlower, ξ)
21: end for



IV. NUMERICAL RESULTS

In this section, we assess the HRL algorithm on a real-
istic multi-band wireless network. We outline simulation
parameters, baselines, and analyze the results.

A. Simulation setup

We simulate an urban vehicular network consisting
of a static base station with a fixed transmit power
in mmWave and sub-6 GHz bands and mobile vehicle
nodes. We implement the Manhattan mobility model,
which represents urban roads with a typical grid topol-
ogy found in metropolitan cities. To generate vehicle
trajectories, we employ Simulation of Urban MObility
(SUMO) [12]. We set the average vehicle speed as 40
km/h and the vehicle density as 10 vehicles per kilo-
meter. Among the simulated vehicles, we select a single
vehicle to serve as the user. We then apply the SUMO-
generated vehicle trajectory to QUAsi Deterministic Ra-
dIo channel GenerAtor (QuaDRiGa), where QuaDRiGa
generates the channels accounting for the geometric con-
sideration of vehicles acting as reflectors and blockages
[13]. We use the 3GPP 3D Urban micro (UMi) model
provided within QuaDRiGa that determines parameters
such as the path, ray, complex path gain, angle of arrival,
and angle of departure. At sub-6 GHz, we use the ’3gpp-
3d’ type of antenna array provided by QuaDRiGa in
accordance with the 3GPP technical report 36.873 [14].

We assume the number of antennas at the base station
and the user are NBS = 32 and NUE = 16 at mmWave
and NBS = 4 and NUE = 4 at sub-6 GHz. The number
of streams are NS = NS = 4 and the number of RF
chain are NBS,RF = 8 at mmWave. We assume a uniform
linear array (ULA) with half-wavelength spacing used
at mmWave. We assume the mmWave and sub-6 GHz
arrays are co-located and aligned. We select K = 256
OFDM subcarriers at mmWave and K = 32 subcarriers
at the sub-6 GHz band. The sub-6 GHz band has 150
MHz bandwidth and the mmWave band has 850 MHz
bandwidth [15]. In the mmWave band, we apply beam
management with MSS = 1 and NSS = 4. We assume
single bit limited feedback and set κchannel = κchannel =
1. We assume that a discrete Fourier transform (DFT)
codebook is employed at mmWave and the Type-I PMI
codebook is used at sub-6 GHz.

B. Baseline policies and numerical evaluation

We evaluate the cumulative rate as specified in (3). We
approximate the ensemble mean by averaging over 1,000
channel instances generated by SUMO and QuaDRiGa.
For the performance of the learning-based policy, either
DRL-based or HRL-based, we measure the average of
the last 20 iterations out of the M = 200 total iterations
to represent the converged reward.

We compare the proposed HRL-based algorithm to
three baseline policies:

• Genie-aided policy: This algorithm has perfect
knowledge of the channel on both the mmWave
and sub-6 GHz bands. Subsequently, this policy
chooses the data transmission action with the cor-
rect frequency band and the best beam indices.
Thus, the performance achieved by the genie-aided
policy represents the theoretical upper limit of the
system.

• Three-threshold policy: This algorithm applies
DRL using threshold-based actions. The spectral
efficiency feedback is compared to the learned
thresholds to either perform band switching, digital
beam training, analog beam training, or data trans-
mission. The second threshold is masked when the
sub-6 GHz band is selected.

• Greedy policy: This algorithm chooses an action
in each iteration following the genie-aided policy
while being restricted to mmWave. This policy
represents the performance that can be achieved
with beam tracking and alignment alone, without
the aid of a sub-6 GHz band.

Fig. 3 shows the average data rate versus transmit
power, ranging over 5 dBm to 30 dBm. The proposed
HRL-based algorithm outperforms the traditional DRL-
based heuristic. At a high transmit power of 30 dBm,
the HRL-based algorithm shows a 2.7-fold improvement
over the greedy method in contrast to the DRL-based
heuristic getting 0.25-fold gain over the greedy baseline.
This suggests that the HRL-based method effectively
learns the policy by decomposing the joint band assign-
ment and beam management, unlike the DRL approach,
which struggles with the nonstationary action between
the sub-6 GHz and mmWave band.

Fig. 4 displays a comparison of the achieved data rate
over 100 training episodes between the proposed HRL-
based algorithm and the traditional DRL algorithm as a
baseline. Additionally, we implement direct importance
correction as a baseline to examine its impact on the
algorithms’ performance. The results demonstrate that
both HRL algorithms outperform the DRL approach,
exhibiting a substantial increase in average reward.
Among the different off-policy correction methods, ac-
tion relabeling promotes faster convergence, while direct
importance correction results in less deviation of reward.
The DRL-based method takes around 60 episodes to
converge at approximately 6.5 Mbps, whereas the HRL
algorithms can achieve up to 27 Mbps. Notably, the
importance-based action relabeling leads to the fastest
convergence in approximately 20 episodes, while the
direct importance correction method takes around 90
episodes to achieve more than 24 Mbps. We observed
hours of runtime using a simulation environment with
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a GTX 1080 GPU to achieve the 27 Mbps of the HRL
algorithm throughout 20 episodes. Still, base station de-
ployments typically last for tens of years. This indicates
that the investment of time in training is justified by the
long-term performance benefits.

V. CONCLUSIONS

In this paper we formulated the joint band assignment
and beam management problem in 5G networks oper-
ating on the sub-6 GHz band and mmWave band. We
devised an MDP and a corresponding HRL algorithm
that assigns bands followed up by beam management.

The numerical evaluation based on QuaDRiGa-generated
channel showed that the proposed HRL-based method
achieves 1.5-fold data rate gain compared to the tradi-
tional DRL baselines. Furthermore, numerical results on
episodic reward demonstrate that off-policy correction is
a key enabler of the fast reward gains achieved by the
proposed HRL-based algorithm.
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