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Abstract

Photonic curing (PC) can facilitate high-speed perovskite solar cell (PSC) manufacturing because it uses
high-intensity light pulses to crystallize perovskite films in milliseconds. However, optimizing PC conditions is
challenging due to its many variables, and using power conversion efficiency (PCE) as the optimization metric is
both time-consuming and labor-intensive. This work presents a machine learning (ML) approach to optimize PC
conditions for fabricating methylammonium lead iodide (MAPbI,) films by quantitatively comparing their
ultraviolet-visible (UV-vis) absorbance spectra to thermal annealed (TA) films using four similarity metrics. We
perform Bayesian optimization coupled with Gaussian process regression (BO-GP) to minimize the similarity
metrics. Refining PC conditions using active learning based on BO-GP models, we achieve a PC MAPDbI, film with an
absorbance spectrum closely matching a TA reference film, which is further verified by its crystalline and
morphological properties. Thus, we demonstrate that the UV-vis absorption spectrum can accurately proxy film
quality. Additionally, we use an Al-based segmentation model for a more efficient grain size analysis. However,
when we use the optimized PC condition to fabricate PSCs, we find that interaction between MAPbI, and the hole
transport layer (HTL) during PC critically degrades the PSC performance. By adding a buffer layer between the HTL
and MAPbI,, the optimized PC PSCs produce a champion PCE of 11.8%, comparable to the TA reference of 11.7%.
Using UV-vis similarity metrics instead of device PCE as the objective in our BO-GP method accelerates the
optimization of PC processing conditions for MAPbI, films.
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INTRODUCTION

In recent years, the efficiency of perovskite solar cells (PSCs) has improved remarkably, with power
conversion efficiencies (PCEs) reaching up to 26.7%".. Of the primary benefits for perovskites are the low
cost and outstanding optoelectronic properties of solution-processed films, making PSCs an attractive
addition to next-generation photovoltaic technologies””. Perovskite active layers often require a thermal
annealing (TA) step to convert a deposited precursor film into a fully crystalline film that has high
absorbance and large grains, and thus long diffusion length and high mobility*. However, this process
typically takes tens of minutes of annealing at 100 to 150 °C and is a bottleneck for large-scale PSC
manufacturing. Previous works on photonic curing (PC), utilizing a xenon flash lamp to deliver intense
broadband light to the film, reduced the annealing time of perovskite films to ~20 ms'“*. Therefore, this
technique can be a candidate to replace TA in the scale-up manufacturing of PSCs.

All previous works on using PC for crystallizing perovskite films vary only by the amount of time over
which light illuminates the sample, the pulse length (ms), and the energy the light delivers to the sample in
one pulse, the radiant energy (J/cm*)**?. In this work, we use a more sophisticated pulse that includes
micro-pulses (ppulse), which split a single pulse into several smaller sub-pulses with a specified duty cycle.
Using these additional features allows us to shape the temperature profile of the thin film, ultimately gaining
more control over how the film crystallizes. The addition of these two variables requires optimization of a
four-dimensional input space. In the case of problems with only two variables, a typical varying
one-variable-at-a-time approach is often sufficient to properly parameterize the space. However, this
method often fails in higher dimensional input spaces, where the interdependence of the variables requires
an impractically large number of test conditions to confidently reach any conclusion. Xu et al. showed
success in using Bayesian optimization coupled with Gaussian process regression (BO-GP) as an effective
tool to optimize the PC of a different methylammonium lead iodide (MAPbI,) recipe using the device PCE
as the objective for optimization?. While PCE is the ultimate goal of the MAPbI, PC optimization process,
making and testing a set of PSCs can take as long as two days to complete. When coupled with the fact that
each sample needs to be produced numerous times to check for reproducibility, relying on PCE as the
objective function in BO is labor-intensive and time-consuming, presenting a bottleneck in processing
optimization.

Various studies have applied machine learning (ML) modeling along with high-throughput material,
>0l e g., finding optimal triple-cation
perovskite composition using photoluminescence” and employing machine vision and optical imaging of

optical, and electronic characteristics to optimize perovskite materials

perovskite films to predict film quality and estimate short-circuit current density"”. In this work, we
perform BO to optimize PC conditions to crystallize MAPbI, by measuring their ultraviolet-visible (UV-vis)
absorbance spectra, which are used as a proxy for good PSCs. We quantitatively compare the UV-vis
absorbance around the bandgap (600-850 nm) for TA and PC MAPbI, using mathematical similarity
metrics. UV-vis absorbance is chosen because it is a fast material characterization method, in addition to
providing crucial information about MAPDI, thin film properties. Beyond light absorption, shifts and
changes in the shape of the absorbance curve can indicate grain size and uniformity (including the presence
of pinholes, defects, and intermediaries)"?, film thickness"”, and crystallinity"™, which all play key roles in
determining the PCEs of MAPbI, PSCs.

Furthermore, we employ a ML method to improve grain size determination. The usual ASTM E112-13 line
intercept method of grain size determination”" is time-consuming and based on a limited amount of data
from the image. By implementing an Al image segmentation model, we use data from the entire image and
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quickly return average crystal grain sizes that agree with the results for the standard method.

Finally, we fabricate p-i-n PSCs using the optimized PC MAPDbI, condition with a NiO, hole transport layer
(HTL) at the bottom. Unexpectedly, our optimized PC PSCs exhibit significantly lower PCEs than TA
devices despite their similar UV-vis absorbance. Based on the film temperature simulation using Simpulse®,
we hypothesize that this is caused by an elevated MAPbDI, film temperature during PC, resulting in
previously known interfacial reaction between NiO, HTL and the MAPbI, active layer”*!. We find that the
use of a buffer layer on top of the NiO, alleviates this reaction, significantly improving the PCE for PSCs
made with PC MAPDIL..

MATERIALS AND METHODS

Materials

Patterned and unpatterned indium tin oxide (ITO) substrates (10 ohm/sq) were purchased from Kintec.
Lead iodide (Pbl,) was purchased from TCI America and methylammonium iodide (MAI) was purchased
from GreatCell Solar. All other chemicals were purchased from Sigma-Aldrich or Fisher. Chemicals were
used as received unless otherwise specified.

Perovskite film preparation for training dataset

Samples for the training dataset were prepared on unpatterned ITO substrates. The MAPbI, precursor was
prepared using established procedures”". Briefly, equal molar Pbl, and MAI were dissolved in
2-methoxyethanol (2-MOE) to make a 0.8 M solution with 40 mole % of N-methyl-2-pyrrolidone (NMP).
The MAPDI, precursor was deposited onto spinning ITO substrates at 5,000 rpm for 15 s in a N,-filled
glovebox. For thermal annealed (TA) samples, the MAPbI, precursor films were immediately annealed at
100 °C for 10 min inside the glovebox, while the PC samples were transferred to a Pulse Forge Invent PC
tool and pulsed in ambient air with conditions given in Supplementary Table 1.

PSC fabrication

We used patterned ITO substrates to make p-i-n PSCs. The substrates were cleaned sequentially with soapy
water, deionized (DI) water, acetone, and isopropanol, followed by a 20-min UV-ozone treatment. The
NiO, precursor was prepared according to the following instructions. First, 0.1 M nickel nitrate hexahydrate
and acetylacetone in 2-MOE were stirred overnight, and the solution was filtered through a 0.2 pm
polytetrafluoroethylene (PTFE) filter immediately before usage. 60 uL of NiO precursor was spin-coated at
3,000 rpm for 30 s onto each sample followed by drying at 60 °C for 3 min. The temperature was increased
to 150 °C and held for 5 min before increasing to 250 °C for calcination for a further 30 min. The hot plate
was then turned off and the samples were allowed to cool for 20 min.

The samples were then either transferred to a glovebox for MAPbI, precursor deposition or had a Pbl, or a
[2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Acid (MeO-2PACz) buffer layer added. A PbI,
buffer layer was applied by spin coating 0.1 M Pbl, in dimethylformamide (DMF) at 3,000 rpm for 50 s in
an N,-purged glovebox before annealing at 100 °C for 15 min"*®. The samples were then taken out of the
glovebox and rinsed with an additional 1 mL of DMF to remove unbound residual PbI, before being dried
and returned to the glovebox. A MeO-2PACz buffer layer was made by spin coating a 0.5 mg/mL solution
of MeO-2PACz in ethanol at 3,000 rpm for 30 s in ambient air before transferring to an N, glovebox for TA
at 100 °C for 10 min"”.

All samples were then spin-coated with the MAPbI, precursor as described in the previous sub-section.
Subsequently, the electron transport layer (ETL) was deposited by spin coating 20 mg/mL
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phenyl-C,,-butyric-acid methyl ester (PC, BM) in chlorobenzene at 1,200 rpm for 60 s followed by spin-
coating 60 pL of a 0.5 mg/mL bathocuproine (BCP) solution in ethanol at 4,000 rpm for 30 s. The top
electrodes were deposited by thermal evaporation of 100 nm of Al followed by 50 nm of Ag. The diode area
is0.11 cm®

Materials characterization

Device current density - voltage (J-V) measurements were taken using a 2635A Keithly source meter under
an AM 1.5G 100 mW/cm? illumination from an AAA solar simulator (Abet). Using a 0.0491 cm® aperture,
device forward scans were measured using a voltage sweep of -0.2 to 1.2 V with reverse scans sweeping from
1.2 to -0.2 V at 70 mV/s. The following material characterization techniques were taken on TA/PC MAPbI,
film samples on unpatterned ITO substrates. X-ray diffraction (XRD) patterns for each condition were
measured using a Rigaku Mini Flex diffractometer at a scan speed of (3°/min) with Cu Ka radiation (4 =
1.518 A). Scanning electron microscope (SEM) images of MAPbI, films were taken using a Zeiss Supra 40
SEM at an acceleration voltage of 5 kV in a 7:3 InlenseDuo:SE2 mode. Atomic force microscopy (AFM) was
performed on at least three 5 x 5 um® areas using an Asylum Research MFP-3D system. MAPbI, film
thickness was measured using a Keyence optical profilometer (VK-X3100) in a laser confocal mode.
Absorbance data for all TA/PC MAPDI, films was measured using an Ocean Optics USB 4000 spectrometer.

PC on MAPbDI, and temperature simulation

PC of MAPbI, thin films was performed using a 500 V / 3 A PulseForge Invent system with a single lamp
driver. Prior to pulsing a sample, the radiant energy for each PC condition was verified using a National
Institute of Standards and Technology (NIST)-traceable bolometer. Samples were pulsed with the
appropriate PC condition within 30 s after spin-coating. The pulsing procedure would involve securing the
sample face-up onto the PulseForge Invent platform with two magnetic strips. Successful observation of
crystallization is indicated by a color change from light brown to dark brown with a shiny appearance,
similar to fully converted TA MAPbI, films, immediately after PC.

Simulations of temperature vs. time for all PC samples were made using the built-in software SimPulse”.
Simulated temperatures for each condition were taken on a material stack consisting of (from top down)
MAPbI, (270 nm), ITO (155 nm), and soda-lime glass (1.1 mm). MAPDI, film thickness was nominally the
same for all TA/PC annealing conditions [Table 1]. ITO and glass thickness were verified via specifications
provided by the manufacturer. The thermal and optical properties for temperature simulations of ITO and
glass were built into the SimPulse® database. All simulated material properties are available in
Supplementary Table 2.

ML method

Initial sampling

Initial PC conditions were chosen using a quasi-random Latin Hypercube Sampling (LHS) for the four PC
parameters on the PulseForge Invent tool in “upulse” mode. The four input parameters (range, increment)
correspond to the pulse length (10-50 ms, in steps of 0.1 ms), radiant energy (3.0-13.5 J/cm?, in steps of
0.1 J/cm?), number of ppulses (2-30, in steps of 1), and the duty cycle (20%-70%, in steps of 5%). The ranges
were determined by the limit of the instruments or the desired outcome. For example, radiant energy above
13.5 J/cm® completely ablates the MAPbI, films. The ranges and increments for the four inputs result in over
13 million combinations, which is impossible to investigate with traditional methods. A set of 20 initial LHS
conditions was selected from these combinations in a space-filling method to survey the outcomes for the
defined input space [Supplementary Table 1].
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Table 1. A summary of material properties for MAPDbI, thin films produced by TA and the three PC conditions

Annealing Fréchet distance Normalized (110) omus  Average grain MAPDI, film Peak interface
condition similarity MAPDIL, peak intensity (nm) size (nm) thickness (hnm)  temperature (°C)
TA 1.02E-02 1.0 14+1 161+ 61 270£10 100

PC 03 2.84E-02 0.67 22+1  151+52 2707 334

(6.80 J/cm®)

PC 25 1.32E-02 0.85 12+1 223+ 84 263+5 464

(M5 J/cm”)

PC 04 6.35E-02 0.94 15+0 313+121 280+7 509

(122 J/cm®)

MAPbI;: Methylammonium lead iodide; TA: Thermal annealed; PC: Photonic curing.

Similarity metric calculations

Quantitative comparisons between samples made by PC and TA are evaluated using four similarity metrics:
two versions of the Procrustes distance, Fréchet distance, and root mean square distance (RMSD). All
similarity metrics were calculated using prebuilt or user-generated MATLAB functions. Procrustes distance
seeks to measure the dissimilarity between two curves represented by the same number of points by
performing a rotation, translation, and scaling factor to minimize the sum of squares distance®. Curves
that only differ by rotation, translation, or scale factor will have a Procrustes distance of zero. Procrustes
distance was calculated using the built-in MATLAB function “procrustes”. To emphasize the shape of the
absorbance curve due to translational shift, which reflects scattering or band gap change, we modified the
MATLAB function “procrustes” to deactivate rotation and scaling. This is referred to as the modified
Procrustes similarity metric. The discrete Fréchet distance was used to compare two curves with the same
number of points by searching for the minimal “maximum” pairwise distance between the two curves™.
The discrete Fréchet distance, as calculated for this study, is a function that returns the maximum Euclidean
distance between two discretely defined curves with the same endpoints’. RMSD was used as the final
metric to serve as a baseline by simply measuring the average magnitude of the difference between
corresponding points and returning the results as a single number. While cosine similarity is a common
method for comparing curves, it produced similar values for all curves and was not able to provide useful
information. The GP model we developed was designed for maximization, and because our distance metrics
sought to minimize, we inverted the values to properly train the model. To invert and scale each metric, we
took the absolute value of its logarithm. Additional information about scaling is available in Supplementary
Materials. All scripts and functions associated with this study will be available in the GitHub repository (See
Data Availability).

Active learning based on BO-GP models

In the interest of not biasing ourselves with a single metric, we trained four models on all four metrics
described above. The models were built in MATLAB using the “fitrgp” function with all the associated
information about functions and model parameters available in Supplementary Materials. The model was
trained using the Matern 5/2 kernel function with automatic relevance determination (ARD) enabled. ARD
allowed for independent tuning of characteristic length scales and scale factors for each input dimension.
While the GP model can update the kernel hyperparameters as it learns from the dataset">*”, this method
did not work well for our data. When hyperparameters were allowed to be automatically tuned, a severely
underfit model resulted. Therefore, we fixed the kernel hyperparameters by analyzing the variation
amplitude and spacing of data for the four input variables.

A detailed explanation of how the kernel hyperparameters were chosen for each input variable is available in
the Supplementary Materials. Feature importance for the four independently tunable PC variables can be
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inferred by comparing their characteristic length scales. A smaller length scale indicates that the model is
more sensitive to changes in that feature, meaning that small variations in the feature value lead to
significant changes in the model’s output. Conversely, a larger length scale suggests that the feature varies
more slowly and has a less pronounced impact on the model’s predictions. Supplementary Table 3 shows
that the length scale hyperparameters of pulse length and radiant energy are ~2 to 3x shorter than those of
the number of upulses and duty cycle, indicating that pulse length and radiant energy are more important.

The noise variance for each GP model was calculated as the standard deviation for each similarity metric
from the LHS PC condition of which most samples were produced. We consider this value to be the
uncertainty in making reproducible PC MAPbDI, films. Noise variance values were held constant during
active learning iterations as the measurement uncertainty was not expected to change with the addition of
new samples to the dataset. The acquisition function for the models was the upper confidence bound
(UCB). Following the literature">***!, a UCB exploration hyperparameter of b = 1 was used to maintain a
balance between exploration and exploitation when picking the next condition. Each similarity metric
model would suggest a new condition to try; thus, in each BO iteration, we have a total of four new
conditions, one from each GP model. The search for optimized PC conditions is declared successful when a
PC condition produces similarity metric values comparable to the values for two TA MAPbI, films (~10™°
Procrustes distances, < 2.0 x 10 Fréchet distance, and < 2.0 x 10" RMSD); i.e., the similarity is within the
experimental uncertainty.

Grain size determination

In literature, the ASTM E112-13 line intercept method"" is the standard for determining average grain size
for crystalline samples. However, the ASTM method is a cumbersome process that often requires manually
placing several random line segments onto an image and counting the number of grain boundaries that are
crossed. The average for a single image can then be calculated after tabulating the total length of the line
segments and the total number of boundaries crossed. The drawbacks of this method to analyze multiple
images include its time-consuming and tedious nature, the use of only limited data, and possible bias from
the researchers in choosing the lines. In this study, we propose an alternative approach whereby a set of
images of the same size and magnification can be analyzed in minutes. Using an artificial intelligence (AI)
segmentation model derived from Facebook’s open-source Segment Anything Model™ in a Google
Collaborate environment, we can generate masks that correspond to the location of crystalline grains within
an SEM image. We can then extract the size of the grains and quickly display the information within our
script. The results from the AI segmentation model are compared to those from the ASTM E112-13
method. Our AT segmentation method is much faster in processing multiple SEM images and uses all data
in the image.

RESULTS AND DISCUSSION

UV-vis spectra

Supplementary Table 1 displays the input variables of the PC conditions and the four similarity metrics
when compared to the TA sample made at the same time. All PC conditions mentioned in the rest of this
study will be referenced as PC ## where “##” represents the number of the PC condition as labeled in
Supplementary Table 1. The first 20 rows (PC 00 to PC 19) constitute the LHS conditions used as the
training dataset for the initial GPR models. Of note from the LHS conditions was PC 07. Condition PC 07
(13.2 J/cm?) was a particularly high radiant energy pulse that ablated the MAPbI, from the substrate upon
exposure and suggested an upper limit to the allowable radiant energy delivered to the film.
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The first round of GP-generated conditions consists of PC 20 to PC 23 in Supplementary Table 2 and
corresponds to a single new condition picked according to each of the four GP models. The four new
conditions did not add any significant information about the dataset with none of the conditions producing
a film with a new champion distance among any of the metrics. The models were rerun with the addition of
these new data points, and the second round of GP-generated conditions (PC 24 to PC 26) were picked as
the next most promising optimization conditions for the models trained on the first three similarity metrics
(excluding RMSD due to overfitting). Condition PC 25, suggested by the Fréchet distance model, showed a
particularly strong similarity to the TA reference. It was the only condition to achieve Procrustes distance
values of 107" and one of only two conditions to yield Fréchet and RMS distances < 2.0 x 10> UV-vis
spectra of MAPbI, made using PC 03 (6.8 J/cm?), PC 04 (12.2 J/cm?), and PC 25 (11.5 J/cm?®) are shown in
Figure 1. PC 03, PC 25, and PC 04 are chosen to represent PC MAPbI, films produced with low, optimal,
and high radiant energy conditions. PC 03, a lower-energy condition, shows a clear UV-vis shift, although
its Fréchet distance is small [Table 1]. In contrast, PC 04, a higher-energy condition, may appear not too
different from the TA reference at first glance but has a poor Fréchet distance.

The low similarity metrics of PC 25 suggest that we have found an optimized PC condition that can produce
MAPDI, films with the same UV-vis absorption spectrum as the TA sample. To verify the conversion, we
created a final round of conditions (PC 27 to PC 30) that were all picked from the model trained on Fréchet
distances. None of the new four conditions produced similarity metrics better than PC 25, and we
concluded that the model was properly trained. Figure 2A corresponds to the final heat maps of the
expected maximum values of the inverted scaled Fréchet distance in each pair of input parameters of all
available PC conditions with the color-coded points corresponding to each round of LHS and GP-generated
PC conditions with the best condition, PC 25, marked with a “red star”. The calculation of inverted scaled
values of the Fréchet distance is detailed in the Supplementary Materials. Figure 2A clearly shows that the
model has converged to an “optimal area” within the input parameter space. This area generally
corresponds to a condition with a medium pulse length (> 20 ms), relatively higher radiant energy
(9-12 J/cm?), a large number of ppulses (> 20), and a mid-ranged duty cycle (40%-60%). The fact that the
model is neither overfitted nor underfitted in Figure 2A strengthens our confidence that the correct
hyperparameters were selected. The associated parity plot for measured vs. predicted outputs for the Fréchet
distance model is shown in Figure 2B. A slope of near unity and a small y-intercept suggest that the
surrogate model accurately represents the experimental data. The heat maps and parity plots for models
trained on the other three metrics are shown in Supplementary Figures 1 and 2, respectively.

Material properties for photonic cured MAPbDI,

To evaluate the quality of the MAPbI, produced via PC, PC MAPbI, films for the three conditions PC 03,
PC 25, and PC 04 representing films produced with low, optimal, and high radiant energies were examined.
We first performed XRD on all MAPbL, films and a precursor film [Supplementary Figure 3]. For all
annealed samples, tetragonal MAPbI, perovskite is the dominant crystalline feature with strong intensities
displayed for the (110) and (220) major reflections at 14.2° and 28.4°, respectively. The TA sample and the
two higher radiant energy PC samples show a small Pbl, (001) peak at ~12.7°. The lower radiant energy
condition (PC 03) and the precursor film both share a small peak around 8.2°, consistent with an
intermediate MAPbI, phase for 2-MOE-based, NMP-assisted MAPbBL, . Previous works on PC of DMF/
dimethyl sulfoxide (DMSO)-based MAPbI, using radiant energy similar to PC 03 also contained residual
DMSO adducts"". The peak intensity for the (110) MAPbI, crystallographic reflection normalized to the TA
sample served as the benchmark for the crystallinity of PC samples. Table 1 shows that the crystallinity of
PC samples increases with increasing radiant energy.
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Figure 1. UV-vis absorbance curves for TA reference and three PC ITO/MAPbI; samples showing the discrepancy of the curves for
different PC conditions. UV-vis: Ultraviolet-visible; PC: Photonic curing; ITO: Indium tin oxide; MAPbI;: Methylammonium lead iodide.

We measured surface roughness (o) using AFM images shown in Supplementary Figure 4 with the results
available in Table 1. The roughness of the PC 25 MAPbI, was 12 nm, the lowest of the three PC conditions.
Condition PC 03 displays the highest surface roughness. We postulate that this is caused by poor crystal
grain planarization due to the sample not being exposed to enough heat for long enough during
crystallization. Other work has shown that with perovskite thin films, higher annealing temperatures lead to
increased grain size, which in turn reduces the surface roughness™. The high radiant energy sample, PC 04,
also shows a higher surface roughness compared to PC 25 due to a larger number of small Pbl, crystals on
the surface of the film, as evident in the SEM images in Supplementary Figure 5. Rough MAPDI, active
layers have been attributed to reduced adhesion and worse coverage of subsequent ETLs/HTLs"”, and an
increased number of surface defects"™.

The morphology of MAPDI, films is compared in Supplementary Figure 5. The SEM images for two higher
radiant energy conditions, PC 25 and PC 04 [Supplementary Figure 5C and D], show small light-colored
crystals, most likely Pbl,, decorating the MAPbI, grain boundaries, consistent with XRD. Previous work on
PC MAPbI, films made from a DMF/DMSO-based recipe also reported Pbl, crystals when processed with
high radiant energy"”. The SEM images of TA MAPDL films in Supplementary Figure 5A show no obvious
signs of Pbl, on the surface, even though XRD for TA MAPDI, indicates its presence in the bulk, suggesting
that most Pbl, could be located there. Another possible explanation for the observed discrepancy between
XRD and SEM for the TA sample could be a larger beam spot of XRD, which measures a broader area,
whereas SEM analyzes smaller regions of the sample. Furthermore, films produced with PC 25 and PC 04
where the PbL, is present on the surface have a weaker Pbl, (001) reflection compared to the TA reference,
suggesting that Pbl, segregation is kinetically limited, as previously reported”. The MAPDI, film produced
with condition PC 03 shows a rougher crystal morphology [Supplementary Figure 5B] consistent with the
surface roughness results measured by AFM.

SEM grain size analysis using Al segmentation

In this section, we demonstrate the power of using Al segmentation to better quantify the grain size in an
SEM image. Starting with an unedited SEM image [Figure 3A], we compare the conventional process using
the standard ASTM E112-13 line intercept method [Figure 3B] and the new Al segmentation method
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variables; (B) The parity plot comparing the predicted inverted scaled Fréchet distances vs. the experimentally determined inverted
scaled Fréchet distance for all PC conditions. BO-GP: Bayesian optimization coupled with Gaussian process regression; PC: Photonic

curing.

[Figure 3C]. As previously mentioned, the manual ASTM method typically takes tens of minutes to hours to
quantify the average grain size for multiple images. Using the Al segmentation method, we can quickly run
each image through a script that generates masks for each grain in the image [Figure 3C]. The script then
tabulates the size of each grain and outputs the average and standard deviation for each image and for the
whole set of images. Our method of grain size determination is fast (~3 min for five images). Furthermore,
we can compare the amount of data used between the two methods by dividing the sum of the lengths, in
pixels, of the eight random lines used in the ASTM method in Figure 3B by the pixels of the entire image
used in the Al segmentation method. A simple estimate shows that the AI segmentation method uses ~200
times more pixels in calculating the average grain size. This gives us confidence that the grain size and
distribution we obtain using the Al segmentation method reflect the morphology shown in the images more

truthfully.
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Figure 3. (A) An unprocessed TA MAPbl; SEM image; (B) depicts the ASTM E112-13 line method for grain size determination; (C)
shows masks for each grain generated by the Al segmentation model in the image; (D) The average grain diameters calculated using
the Al segmentation model for the four types of MAPbI;. The scale bar in (A)-(C) is 100 nm. TA: Thermal annealed; MAPbI.:
Methylammonium lead iodide; SEM: Scanning electron microscope; Al: Artificial intelligence.

As shown by the red circles in Figure 3C, the current segmentation model has some issues including double
counting masks and poor grain edge detection. We validated and confirmed the accuracy of the model by
first comparing the average grain diameters from the ASTM 112-13 method and our Al segmentation
method. For example, in Figure 3, the grain size for this TA MAPbI, is 146 + 6 nm from the ASTM E112-13
method and 152 + 65 nm from the AI segmentation method, comparable within the standard deviation
range. Note that the larger standard deviation for the Al segmentation method accurately reflects the size
distribution when all grains in the image are used for analysis. Statistical values comparing the grain sizes
calculated from multiple images using the ASTM E112-13 and AI segmentation methods for each annealing
condition are available in Supplementary Table 4.

We also compared the model’s output with an “ideally” segmented SEM image, which was obtained via an
additional manual process to remove all overlapping masks. By removing overlapping masks and
recalculating the grain size, the average diameter only differs by + 5% compared to the automatic Al
segmentation method. Currently, our model works without any image pre-processing and minimal post-
processing, which only removes extreme outliers such as small Pbl, crystals. Further improvement on the
AT segmentation method for grain size determination with pre- and post-processing features is the subject
of future work.

The grain size distributions determined using the AI segmentation method for samples made using different
annealing conditions are shown in Figure 3D and detailed in Table 1. By setting a lower threshold for
masks, most PbI, crystals in PC 25 and PC 04 are filtered out and not confused with MAPbI, grains.
Consistent with the crystallinity data from XRD and the results of a previous study on PC MAPbL ", the
average grain size for photonic cured samples increases as the radiant energy delivered to the sample
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increases. Generally, MAPbI, with larger crystal grain sizes corresponds to better PSC device performance
as larger crystal grains reduce the likelihood of recombination events and trap states at the grain boundary,
resulting in improved charge carrier lifetime and mobility" .

PSCs using optimally photonic cured MAPbDI,

Next, we compare PSC performance for p-i-n type devices made using TA and PC MAPbI, films. NiO, is
chosen as the base HTL. All PC PSCs used the optimized PC condition PC 25. In addition to the annealing
method, the MAPDL/NiO, interface is chemically modified. PSC J-V characteristics for all devices are
shown in Figure 4 and Supplementary Table 5. The champion device J-V curves are shown in Figure 5.

Using NiO, as the HTL, MAPbI, PSCs made by TA show PCEs of 10.3% + 1.0%, while devices made by PC
25 show significantly worse J-V characteristics with an average PCE of 1.19% + 0.75%. The PC PSCs
primarily suffer in short-circuit current density (J,.) with a still significant reduction to both open-circuit
voltage (V) and fill factor, as seen in Figure 4 between black and red. These results are very unexpected as
the Fréchet distance calculated from the UV-vis absorption spectra taken on these devices [Supplementary
Figure 6] is small, agreeing with the results of PC MAPDI, on ITO shown in Figure 1 and Table 1. Thus, the
reduced J-V characteristics are not caused by the PC MAPbI, itself. Since our device structure is p-i-,
MAPDI, is deposited on the HTL, which undergoes the same processing conditions as the MAPbL..
Consequently, there could be an unanticipated problem at the PC MAPbI/NiO, interface.

Previous work showed that MAPbI, and NiO, begin to react at temperatures as low as 120 °C with
significant damage occurring as temperatures approach 180 °C under steady state heating™'. The reaction
causes the decomposition of MAPDL, severely degrading overall PSC J-V characteristics, consistent with
what we see in PSCs with PC MAPbI, on NiO, HTL®. As displayed in Table 1, the peak interface
temperature for condition PC 25 simulated by SimPulse® reaches 464 °C, well above the threshold for
MAPDBI/NiO, interaction. SimPulse® simulated temperature vs. time curve for PC 25
[Supplementary Figure 7] shows that the temperature at MAPbI,/NiO, interface stays above 120 °C for ~154
ms. PC involves non-equilibrium heating, so a direct comparison with TA using hot plates or ovens cannot
be made. Nonetheless, we believe that these elevated temperatures and extended exposure are sufficient to
cause the interfacial degradation using PC 25 as the processing condition for MAPbI, on top of NiO,. We
postulate that adding a barrier layer capable of withstanding high temperatures could buffer the MAPbL,/
NiO, interfacial reaction. Shutting off the undesired reaction could boost device J-V characteristics back to
the level of regular TA counterparts. Previous works have suggested that using a buffer layer can serve as an
effective barrier to improve performance and perverse the long-term stability of perovskite PSCs made with
NiO, HTL"**!. Another set of PC 25 devices using a NiO, HTL and a Pbl, buffer layer were fabricated. As
Figures 4 and 5 show, the Pbl, buffer layer did produce a moderate improvement in device PCE, jumping
from 1.19% + 0.75% to 5.43% =+ 0.43%, but still falling far short of the TA MAPbI,/NiO, reference. These
results give credence to the idea that the issue of decreased J-V characteristics and device PCE is not caused
by the quality of the PC 25 MAPbDI, but more so due to the detrimental interaction of MAPbI, and NiO, at
high temperatures.

Next, we investigated a more recently studied HTL/buffer layer, MeO-2PACz. Depositing MeO-2PACz on
top of the NiO, HTL and processing MAPbI, using PC 25 produce PSC devices with PCEs slightly better
than the TA MAPDL/NiO, reference [Figures 4 and 5, Supplementary Table 5]. Photonic cured PSCs with
NiO, HTL + MeO-2PACz show a ] of 16.5 mA/cm?, closing in on the 17.2 mA/cm® we report for the TA
MAPbBI/NiO, in Supplementary Table 5. The V. and fill factor for the PC 25 sample are boosted slightly
compared to the TA device. To verify that PC 25 is the optimal PC condition for MAPbI, processing, we
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compared PSCs fabricated on NiO, HTL + MeO-2PACz using PC 03, PC 25, and PC 04. The J-V parameters
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[Supplementary Figure 8] show that PSC fabricated on NiO, + MeO-2PACz using PC 25 performed better
than those made using other PC conditions. The results for TA devices fabricated on NiO, HTL + MeO-
2PACz are also included.

CONCLUSIONS

In this work, we demonstrate that UV-vis absorbance can function as an effective metric for training a
BO-GP model to predict optimal PC conditions for making high-quality MAPbI, films. We identified an
optimal MAPbI, PC condition (PC 25), which produces a UV-vis spectrum closely matching that of the TA
MAPbI,, achieving similarity metric values significantly better than other PC conditions. Material
characterization shows that PC 25 produces smooth MAPbI, films with large grains and high crystallinity.
Additionally, we used an Al-based segmentation model to determine grain size from SEM images, offering a
quick and more effective analysis alternative to the standard ASTM E112-13 line intercept method. As a
final test, we present p-i-n PSC results using NiO, as the HTL. Despite the high quality of MAPbI, films
made using PC 25, the PSC performance is degraded due to MAPbL,/NiO, interfacial reaction from PC
processing. Inserting a buffer layer of MeO-2PACz brings average PCEs comparable to that of PSCs made
with TA MAPDI,. These results indicate the importance of a high-quality perovskite active layer and
possible interactions between the active layer and charge transport layers that cannot be predicted by the
quality of perovskite films alone. When developing a ML framework for process optimization, careful
consideration of device architecture and adjacent materials is needed to define the objective for the BO-GP
models.
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