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ABSTRACT

We present a mathematical model of lophotrichous bacteria, motivated by Pseudomonas putida, which swim through fluid by rotating a
cluster of multiple flagella extended from near one pole of the cell body. Although the flagella rotate individually, they are typically bundled
together, enabling the bacterium to exhibit three primary modes of motility: push, pull, and wrapping. One key determinant of these modes
is the coordination between motor torque and rotational direction of motors. The computational variations in this coordination reveal a wide
spectrum of dynamical motion regimes, which are modulated by hydrodynamic interactions between flagellar filaments. These dynamic
modes can be categorized into two groups based on the collective behavior of flagella, i.e., bundled and unbundled configurations. For some
of these configurations, experimental examples from fluorescence microscopy recordings of swimming P. putida cells are also presented.
Furthermore, we analyze the characteristics of stable bundles, such as push and pull, and investigate the dependence of swimming behaviors
on the elastic properties of the flagella.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0228395

I. INTRODUCTION

Flagellated bacteria exhibit distinct flagellar arrangements across
species, resulting in diverse locomotion strategies as they swim.1,2 For
instance, monotrichous bacteria such as Vibrio alginolyticus exhibit a
run-reverse-flick motion,3–6 while peritrichous bacteria such as
Escherichia coli display a run-and-tumble motion, allowing movement
in various directions and enhancing their capacity to explore diverse
environments.7–9 Amphitrichous bacteria such as Magnetospirillum
magneticum possess two flagella at each pole and coordinate flagellar
rotation, which exhibits three modes of motility: runs, tumbles, and
reversals. Asymmetric and symmetric rotations of flagella lead the cell
to run and tumble, respectively.10

Lophotrichous bacteria under investigation in this study, exem-
plified by Pseudomonas putida, are characterized by the presence of a
tuft of left-handed helical flagella attached near one pole of the cell
body. This distinctive flagellation pattern commonly demonstrates
pull-wrapping-push motion, incorporating occasional pauses of motor

rotation.11–14 Push and pull modes are directed movements where the
cell moves forward and backward, respectively. When all motors rotate
synchronously either counterclockwise (CCW) or clockwise (CW), a
cohesive flagellar bundle is formed and propels the cell body either for-
ward by pushing or backward by pulling. While the motors turn CW,
an increase in motor torque triggers the buckling of the flagellar bun-
dle, which then wraps around the cell body.13,15 In this case, the cell
swims straight in a corkscrewed manner, allowing it to change swim-
ming direction, followed by the push mode. It is known that these
smooth run episodes require the ability to form a bundle, which criti-
cally depends on synchronous operation of the flagellar motors. The
formation of a coherent bundle is crucial in bacterial chemotaxis as it
facilitates smooth and efficient swimming in the desired direction.16

Flagellar bundling, characterized by the coordinated synchroniza-
tion of motor rotations, has been extensively studied, primarily within
peritrichous bacteria E. coli (see the literature17–23 and the references
therein). Many factors, such as flagellar geometry, flagellar
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arrangement, counterrotation of the cell body, and hydrodynamic
interactions between the flagellar filaments, have been identified as
contributors to the formation of stable bundles. However, the investi-
gation of flagellar bundling of lophotrichous bacteria remains ongoing,
with a particular interest in elucidating the mechanisms underlying fla-
gellar interactions and the synchronization of flagellar rotations.1,24

In our previous work,15 we built a mathematical model of a
lophotrichous bacterium with a single flagellar bundle, which is repre-
sented as a single filamentous structure, and reproduced a typical
sequence of swimming modes, pull-wrapping-push motion.
Furthermore, we investigated cell reorientation in three dimensions
and found that transitions from wrapping to push modes, with inter-
mittent pauses, determine new trajectories, and the reorientation direc-
tion depends on pause timing and duration. In this work, we extend
our previous model of a swimming lophotrichous bacterium P. putida
in a fluid. This model organism under consideration consists of a
spherocylindrical cell body and two identical flagella for simplicity.
These flagella are affixed perpendicular to the cell surface in close prox-
imity to one pole of the cell body, exhibiting an equal angle relative to
the body axis. It is obvious that more flagella can be attached as
needed. Our investigation focuses on the bundling instability of flagel-
lar dynamics under various conditions of applied torque, direction of
motor rotation, and elastic property of flagella. Additionally, we scruti-
nize stable bundles, with a particular emphasis on pull and push
modes. Finally, while the push, pull, and wrapping modes are well
known from earlier literature,12,13,15 we present experimental evidence
for some of the less common swimming modes that are predicted by
our numerical simulations.

We employ the regularized Stokeslet formulation within the gen-
eral immersed boundary framework, developed by Lim and Peskin,21

Lee et al.,25 Lim et al.,26 and Olson et al.27 This method is useful for
solving the fluid–structure interaction problems in which filamentous
structures are immersed in a viscous fluid. In particular, the method
provides significant advantages, including the ability to accurately
model true fluid–structure interactions with motor-driven flexible fla-
gella based on real bacteria. It also handles neutrally buoyant rigid bod-
ies, ensuring they remain in equilibrium under applied forces and
torques. Additionally, the method is a mesh-free algorithm, which
allows for simulations with an unbounded fluid domain. The rotary
motor generates torque to drive flagellar rotation, and the swimming
motion is determined by the condition that the net force and torque
exerted on the surrounding fluid are both equal to zero.

II. MATHEMATICAL MODEL

Our mathematical model is constructed based on the geometric
characteristics of a micro-organism P. putida, which is a lophotrichous
bacterium that has a rod-shaped cell body and a tuft of flagella
attached near one pole of the cell body. This model organism is
immersed in a viscous fluid and propels itself through the fluid by
rotating flagella. Although P. putida typically has 5–7 flagella,11 for
simplicity, our model assumes the presence of two identical flagella, as
depicted in Fig. 1. Each flagellum is equipped with a rotary motor
embedded in the cell membrane, an elastic helical filament, and a short
flexible hook that links the motor to the filament. Note that the hook is
much more flexible than the helical filament.

We first describe the motion of the cell body, which is neutrally
buoyant and takes the shape of a capsule. The body surface is discre-
tized by nB points and represented by two Lagrangian descriptions,

XB
i ðtÞ and Y

B
i ðtÞ, i ¼ 1;…; nB. The former description XB

i ðtÞ interacts
with the surrounding fluid, whereas the latter description YB

i ðtÞ has no
interaction with the fluid and moves as a rigid body. For each i, the
corresponding points are linked by a stiff spring generating the follow-
ing force:

FBi ðtÞ ¼ aðXB
i ðtÞ � YB

i ðtÞÞ; (1)

where a is a penalty parameter that determines how tightly the two
Lagrangian markers are tied together. This penalty force FBi ðtÞ acts on
YB
i ðtÞ, while �FBi ðtÞ acts on the fluid. In addition, the spring force

FBi ðtÞ induces torque about the centroid of the rigid body, which will
be described below. The reference configuration of the rigid body is
denoted by the time-independent vectors Zi, satisfying

PnB
i¼1 Zi ¼ 0.

Then the configuration of the rigid body at time t, YB
i ðtÞ, is given by

YB
i ðtÞ ¼ CðtÞ þRðtÞZi; i ¼ 1;…; nB; (2)

where CðtÞ is the centroid of fYB
i ðtÞ : i ¼ 1;…; nBg, and RðtÞ is a

rotation matrix.
Now let fB and nB be the sum of all forces and torques, respec-

tively, acting on the body other than those generated from the coupling
springs. Then the force and torque balance equations for the cell body
are given, respectively, as follows:

0 ¼ fBðtÞ þ
X

nB

i¼1

FBi ðtÞ;

0 ¼ nBðtÞ þ
X

nB

i¼1

ðRðtÞZi � FBi ðtÞÞ:

(3)

With XB
i ðtÞ, f

BðtÞ, and nBðtÞ known at any time, we can solve Eqs. (2)
and (3) for CðtÞ andRðtÞ.25

FIG. 1. A schematic diagram of our computational model. Sketch of the initial shape
of the cell body and flagella in the default setting. The inset describes details of the
computational model of the flagella.
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Next, we describe the motion of flagella based on the nonstan-
dard version of Kirchhoff rod theory.26 Each flagellum is represented
by a space curve Xnðs; tÞ and the associated orthonormal triad
fD1

nðs; tÞ;D
2
nðs; tÞ;D

3
nðs; tÞg, n ¼ 1;…; nF, where nF is the number of

flagella, and s is a Lagrangian coordinate along the flagellum,
0 � s � Lh þ Lf , and Lh and Lf are the lengths of the hook and the fil-
ament, respectively. To construct the initial configuration Xnðs; 0Þ, we
use the following reference helical flagellum:

X̂ðsÞ ¼ ðrðsÞ cosðksÞ; rðsÞ sinðksÞ; sÞ; (4)

where k is the wave number, the short hook is assumed to be intrinsi-
cally straight with rðsÞ ¼ 0, 0 � s � Lh, and the filament takes a spiral
form with the radius rðsÞ ¼ Rð1� e�cðs�LhÞ

2

Þ, Lh � s � Lh þ Lf . The
helical radius of the filament gradually increases to R. We set c ¼ 2 for
our model organism. The reference flagellum X̂ðsÞ is embedded into
the cell body, positioned normal to the surface at the onset. At the
motor point Xnð0; 0Þ, the unit tangent vector is aligned with D3

nð0; 0Þ,
while the principal normal and binormal vectors align with D1

nð0; 0Þ
andD2

nð0; 0Þ, respectively.
To describe the forces and torques of nF flagella driven by rotary

motors, we let Fnðs; tÞ and Nnðs; tÞ, n ¼ 1;…; nF, be the internal
forces and torques transmitted across a section of the flagellum, respec-
tively, and let fnðs; tÞ and nnðs; tÞ be the applied force and torque den-
sities, respectively. The balance equations for the linear and angular
momenta are given as

0 ¼ fn þ
@Fn
@s

; 0 ¼ nn þ
@Nn

@s
þ
@Xn

@s
� Fn; (5)

where the internal force and torque can be written in the basis of the
orthonormal triad as

Fn ¼
X

3

i¼1

bi Di
n �

@Xn

@s
� d3i

� �

Di
n;

Nn ¼
X

3

i¼1

ai
@Dj

n

@s
�Dk

n � ji

� �

Di
n;

(6)

where d3i is the Kronecker delta, ði; j; kÞ is a cyclic permutation of
ð1; 2; 3Þ, and jiðsÞ’s describe the intrinsic curvature and twist, which
determine the helical radius and the pitch of the flagellum. These con-
stitutive relations can be derived from a variational argument of the
elastic energy functional given by

En ¼
1

2

ð

X

3

i¼1

ai
@Dj

n

@s
�Dk

n � ji

� �2

þ
X

3

i¼1

bi Di
n �

@Xn

@s
� d3i

� �2
" #

ds;

(7)

where the parameters a1 and a2 are two bending moduli aboutD1
n and

D2
n, respectively, and a3 is the twist modulus. The parameters b1 and

b2 are shearing moduli and b3 is the stretching modulus. In the limit
as bi ! 1, we recover the standard Kirchhoff rod model.26 For sim-
plicity, we assume that a1 ¼ a2 and b1 ¼ b2 in this work.

As a cell moves through fluid, we impose two constraints at the
motor base of each flagellum in order to keep the flagellum attaching
to and being orthogonal to the cell body at the motor points as follows:

f̂ nðtÞ ¼ bðYF
nðtÞ � Xnð0; tÞÞ;

n̂nðtÞ ¼ cðD3
nð0; tÞ � EnðtÞÞ;

(8)

where YF
nð0Þ, n ¼ 1;…; nF, is the chosen surface point at which the

n-th flagellum is attached at the onset, EnðtÞ is the unit normal vector
to the surface at the same point, and b and c are sufficiently large con-
stants to enforce the constraints. For the flagellum n, f̂ nðtÞ and n̂nðtÞ
are added to the applied force fnð0; tÞds and torque nnð0; tÞds in Eq.
(5), respectively, while �

PnF
n¼1 f̂ nðtÞ and �

PnF
n¼1 n̂nðtÞ are added to

the total external force fB and torque nB acting on the cell body in Eq.
(3), respectively.

In order to drive the flagellar rotation by a rotary motor, we dis-
cretize each flagellum denoted by XnðjDs; tÞ, j ¼ 0;…;M � 1, where
Ds is the mesh width along the flagellum, and M is the number of
material points of each flagellum. Then we apply to the ghost point
Xnð�Ds=2; tÞ the following constant torque in the normal direction
EnðtÞ:

Nnð�Ds=2; tÞ ¼ �snEnðtÞ; (9)

where sn determines the direction of rotation and the magnitude of
motor torque. The motor rotates counterclockwise (CCW) when
sn < 0 and clockwise (CW) when sn > 0. Note that the total torque
PnF

n¼1 Nnð�Ds=2; tÞ is applied to the cell body, which results in coun-
terrotation of the cell body.

Finally, the cell dynamics is coupled to the surrounding fluid gov-
erned by the viscous incompressible Stokes equations27

0 ¼ �rpþ lDuþ g; 0 ¼ r � u; (10)

where the fluid velocity uðx; tÞ and the fluid pressure pðx; tÞ are
unknown variables as functions of the Cartesian coordinates x and
time t, and l is the fluid viscosity. The external force density g applied
to the fluid by the immersed cell is given as

gðx; tÞ ¼
X

nF

n¼1

�
ðL

0

�fnðs; tÞð Þweðx � Xnðs; tÞÞds

þ
1

2
r�

ðL

0

�nnðs; tÞð Þweðx � Xnðs; tÞÞds

þ

ðL

0

ð�f rnðs; tÞÞweðx � Xnðs; tÞÞds

þ
X

nB

i¼1

ðL

L0
ð�f rn;iðs; tÞÞweðx � Xnðs; tÞÞds

þ
X

nB

i¼1

ðL

L0
f rn;iðs; tÞweðx � XB

i ðtÞÞds

�

þ
X

nB

i¼1

ð�FBi ðtÞÞweðx � XB
i ðtÞÞ; (11)

where L ¼ Lf þ Lh. We set L0 ¼ 5Ds so that the repulsive force
does not activate near the motor. The first two terms correspond to
the forces and torques generated from the flagella, and the last term
is the force acting on the fluid by the cell body. The repulsive force
functions f rnðs; tÞ and f rn;iðs; tÞ prevent contacts between flagella
themselves, and between the flagella and the cell body, respectively,
given as

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 101917 (2024); doi: 10.1063/5.0228395 36, 101917-3

VC Author(s) 2024



f rnðs; tÞ ¼

ð

C max 1�
jjXnðs; tÞ�Xnðs

0; tÞjj

D
;0

� �� �

�
Xnðs; tÞ�Xnðs

0; tÞ

jjXnðs; tÞ�Xnðs0; tÞjj
ds0

þ
X

nF

n0 6¼ n

n0 ¼ 1

ð

C max 1�
jjXnðs; tÞ�Xn0ðs

0; tÞjj

D
;0

� �� �

�
Xnðs; tÞ�Xn0ðs

0; tÞ

jjXnðs; tÞ�Xn0ðs0; tÞjj
ds0;

f rn;iðs; tÞ ¼ C max 1�
jjXnðs; tÞ�XB

i ðtÞjj

D
;0

� �� �

�
Xnðs; tÞ�XB

i ðtÞ

jjXnðs; tÞ�XB
i ðtÞjj

:

(12)

The constant C determines the strength to keep the distance between
flagella and the cell body with the minimum distance D. Here, a regu-
larized Dirac delta function w�ðrÞ is defined by

weðrÞ ¼
15e4

8pðjjrjj2 þ e2Þ7=2
; (13)

satisfying
Ð

R
3weðrÞdr ¼ 1. The size of e determines the effective radius

of the immersed boundaries.20 In the end, the motion of the flagella
and the cell body are described by

@Xn

@t
ðs; tÞ ¼ u Xnðs; tÞ; tð Þ; n ¼ 1;…; nF;

@XB
i

@t
ðtÞ ¼ u XB

i ðtÞ; t
� �

; i ¼ 1;…; nB;

@Dj
nðs; tÞ

@t
¼ w Xnðs; tÞ; tð Þ �Dj

nðs; tÞ;

j ¼ 1; 2; 3; and n ¼ 1;…; nF;

(14)

where the angular velocity of the fluid w is defined as

wðx; tÞ ¼
1

2
r� uðx; tÞ: (15)

The related parameters are listed in Table S1 of the supplementary
material, and more details about the method can be found in the litera-
ture.21,25–27

III. RESULTS

We classify the swimming modes of lophotrichously flagel-
lated cells with two flagella based on various combinations of the
two motor torques, specifically considering the direction of motor
rotation and the magnitude of the torque. Among the swimming
modes, there are cases in which two flagella form a stable bundle,
which is crucial for many biological processes in flagellated bacte-
ria. We investigate the distinguishing characteristics of stable bun-
dles from one another. Finally, we examine the effect of material
properties of the filament and the hook, particularly when two
motors turn in the same direction with equal magnitudes of
torques.

A. Classification of swimming modes determined

by motor torques

As flagellar motors rotate and generate torques that drive the fla-
gellar rotation, accompanied by counterrotation of the cell body,
hydrodynamic interactions between the flagellar filaments are crucial
for the cell’s motility. Many factors such as geometry and material
properties of the cell also contribute to the cell’s swimming patterns. In
particular, the magnitude of the applied torque by individual motors
and the direction of motor rotation are important factors that deter-
mine the various modes of motility. Figure 2 (Multimedia views)
shows a classification of swimming modes, in which the two flagellar
motors rotate with various combinations of torque magnitude and
rotational direction, and hence the cell attains a steady state motion.
We consider two torque parameters, s1 and s2, with each one ranging
from �0:006 g lm2/s2 to 0.006 g lm2/s2. Here, the positive and nega-
tive values of those parameters correspond to CW and CCW, respec-
tively [see the inset of Fig. 2(a)]. The rest of the parameter values are
being held fixed as in Table S1 of the supplementary material. See also
Table S2 for a comparison of the computational parameter values used
in this work with the corresponding experimental data measurements.

Note that simulation results in Fig. 2 are symmetric about the line
s2 ¼ s1. Note also that our simulations consider motor torques up to
0.006g lm2/s2 (¼6000 pN � nm). This range broadly covers the torque
values found in experiments with different bacterial species [see Beeby
et al.28 and references therein]. Although the torque of the P. putida
motor has not been measured to date, a torque of 2000 pN � nm has
been reported for P. aeruginosa.29 While we cannot expect a quantita-
tive match between the numbers in experiments and numerical simu-
lations, the range of torques considered in our simulations sufficiently
covers the experimentally relevant regime.

When both motors turn CW, i.e., s1 > 0 and s2 > 0, corre-
sponding to the first quadrant in Fig. 2(a), there are four dynamical
regimes of the motion depending on torque magnitudes: jamming,
cylindrical enveloping, pull, and wrapping [see Figs. 2(b)–2(e)].
Jamming is the motion in which two flagella start coiling around each
other but being stuck together before completing a flagellar bundle.
This motion occurs when both torques are very small so that the given
torques are not strong enough to drive flagellar rotation. Cylindrical
enveloping occurs when one torque is very small while the other torque
is relatively large, wherein two flagella keep rotating within the cylin-
drical surface but fail to form a bundle. As both torques increase to
some extent, two flagella form a bundle that is aligned with and rotates
about the body axis, steadily moving the cell backward, called pull.
When both torques further increase, two flagella first form a bundle,
then buckle and coil around the cell body while rotating. This phe-
nomenon is called wrapping. The pull and wrapping modes are fre-
quently observed in the motion of P. putida, and there exists a critical
threshold of torque magnitude that separates pull from wrapping.

When both motors turn CCW, s1 < 0 and s2 < 0, correspond-
ing to the third quadrant in Fig. 2(a), there are three swimming
modes: push, overwhirling, and irregular modes [see Figs. 2(f)–2(h)].
When both js1j and js2j are relatively small, both flagella pump the
fluid behind the cell, attract each other, and eventually synchronize
in phase forming a bundle. This motion exerts thrust on the cell
body and thus moves the cell forward, called push. The push mode
is a typical forward run mode observed in many bacteria such as E.
coli, Vibrio A, and P. putida. If both torque magnitudes become
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larger, the quickly formed bundle buckles drastically and rotate about
the axis of the cell body, which is called overwhirling. Note that there
exists a threshold of torque that separates overwhirling from the
push mode. The irregular mode occurs when one torque magnitude
is small, but the other one is large. The large magnitude of the torque
leads the flagella to overwhirl and to work independently. This mode
of motility becomes more prevalent when the motors spin in oppo-
site directions.

Finally, consider the cases where two motors turn in the opposite
directions with s1 > 0 and s2 < 0. The flagellar interaction results in
four different modes: cylindrical enveloping, semi-wrapping, repelling,
and irregular modes [see Figs. 2(c) and 2(h)–2(j)]. Cylindrical envelop-
ing occurs in general when js2j is very small and the other one is large

as previously observed. Repelling is the motion in which one flagellum
spins CCW to propel fluid behind the cell, while the other flagellum
rotates CW to move fluid toward the cell, resulting in the two flagella
remaining separated while in rotation. This phenomenon occurs when
the magnitudes of both torques are at similar levels, yet they are not
excessively high. As the magnitude of CCW-spinning motor torque,
js2j, increases further while the other remains within a certain range,
the two flagella initially repel each other due to the opposite directional
rotation but then exhibit an erratic movement. This irregularity is
dominant in the region where two motors turn in opposite directions.
Finally, semi-wrapping refers to the motion in which one flagellum
wraps around the cell body while the other flagellum overwhirls, par-
ticularly when s1 is maintained at a larger value.

FIG. 2. Modes of swimming motility determined by motor torques. (a) Classification of swimming modes depending on applied motor torques s1 and s2. Each motor rotates
either CW (positive values of torque) or CCW (negative values of torque), and the hydrodynamic interaction of a cell results in various modes of motility. Nine different modes
are displayed by different colors of markers: (b) jamming, (c) cylindrical enveloping, (d) pull, (e) wrapping, (f) overwhirling, (g) push, (h) irregular, (i) semi-wrapping, and (j) repel-
ling modes. The flagella take the form of a bundle in modes (d)–(g) but not for the rest of the modes. Moreover, the bundles in pull and push modes are the only stable twirled
bundles, while the bundle in wrapping and overwhirling modes buckles and becomes unstable. Circles and squares correspond to bundled and unbundled forms, respectively.
Multimedia available online.
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Fig. S1 of the supplementary material depicts the total elastic
energy along the flagella over time for seven representative swimming
modes, which is calculated by Eq. (7). Time evolution of energies is
illustrated after the stable motion is reached. Here, bending and twist
energies are dominant, whereas the shearing and stretching energies
are negligible. Notably, the wrapping and overwhirling modes experi-
ence buckling instability, leading to substantial deformations and high
elastic energies in bending and twist. Overall, there are four types of
bundled forms: pull and wrapping when both motors turn CW, and
push and overwhirling when both motors turn CCW. The torque level
critically determines whether the bundle remains standing or becomes
buckled. When the magnitude of both motors is relatively small, the
bundle stays positioned behind the cell body, aligning with its axis.
However, as the magnitude increases, the bundle buckles due to the
flexible hook. In the following section, we will delve deeper into the
dynamics of two stable bundles: pull and push modes.

B. Stable bundles: Push and pull modes

When multiple motors rotate synchronously, the flagella form a
stable bundle, aligning with the collective behavior resembling that of a
single flagellum.13 Our simulations corroborate this observation,
prompting a detailed exploration of flagellar dynamics within stable
bundles, particularly in the context of pull and push modes.

Figure 3 (Multimedia view) shows snapshots of the swimming
cells with the passive fluid markers flowing around the flagellar bundle
when the two synchronized motors rotate either CCW (left panel) or
CW (right panel). At onset, the fluid markers are uniformly distributed
on the rectangular plane, as shown in each top inset, and then they
trace flow dynamics around the flagellar bundle. The colored paths
traced by fluid markers depict temporal trajectories, with the leading

position marked in black at this time. Marker trajectories at given
times are projected onto the plane perpendicular to the helical axis, as
shown in each second middle inset. Similar to the behavior of cells
with a single flagellum, a stable bundle rotating CCW pumps the fluid
behind the cell body, thus causing the cell to move forward, whereas a
stable bundle rotating CW pumps the fluid toward the cell body,
resulting in a backward run. In both cases, the bundle is left-handed;
however, the helical pitch and radius become larger in the pull mode
than in the push mode.

Figure 4 shows that the swimming speed and rotation rates of the
motors, and the cell body increase linearly with the applied motor tor-
que in both pull and push modes. This trend agrees with the numerical
observations reported in Park et al.,15 in which a single flagellum was
the subject of investigation. The push mode generally yields higher
magnitudes of rotation rates for both the flagella and the cell body
when subjected to the same torque magnitude. This phenomenon con-
tributes to faster swimming speeds compared to the pull mode. It is
pertinent to note that the swimming speeds of the push and pull
modes of the wild type P. putida are approximately 25lm/s and
30lm/s, respectively, when the flagellar rotation rate reaches around
200Hz,13 which agrees with our simulations.

The difference between the push and pull modes becomes evident
in their configurations. Figure 5(a) presents the degree of intertwining
between two flagella for the two modes by connecting the correspond-
ing material points of the flagella. It is apparent that in the pull mode,
the flagella tend to be more intertwined, while the push mode demon-
strates a phase-locked state. Furthermore, in the pull mode, both heli-
cal pitch and radius increase by 8% and 12%, respectively, compared
to the given intrinsic values, whereas they decrease by 15% and 13% in
the push mode.

FIG. 3. Snapshots of the swimming cells with the fluid markers when the synchronized motors rotate CCW (a) and CW (b). Initially, the markers are uniformly distributed, as
shown in each top inset. Over time, the markers’ trajectories trace the flow around the flagellar bundle, and their projection on the plane perpendicular to the helical axis is dis-
played in each second top inset. The color bar illustrates the time evolution of markers’ trajectories for a duration of 0.0015 s. The magnitude of all the applied motor torque is
set to be 0.00275 glm2=s2. Multimedia available online.
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To further analyze the deformation of one flagellum in each
mode, we compare evolutions of the torsion and energy between push
and pull modes [see Figs. 5(b) and 5(c)]. The torsion value is evaluated
as X ¼ ð@D1=@sÞ �D2, where D1 and D2 represent orthonormal

vectors along the flagellum. Bending and twist energies are calculated
using Eq. (7). In the push mode, the flagellum’s torsion exhibits slightly
higher magnitudes than in the pull mode as the motor rotates. This
indicates that each flagellum in the push mode tends to twist more.

FIG. 5. Comparison of bundle formation between push and pull modes. The applied motor torque for each mode remains fixed at �0.0025 glm2=s2 for the push mode and at
0.0025 glm2=s2 for the pull mode. (a) Comparison of intertwining levels between the push (left) and pull (right) modes. Two flagella of each mode are depicted by helical
curves in yellow and blue, while line segments illustrate connections between corresponding material points of the two flagella for visualization purposes. The bottom insets
exhibit the projection of the respective flagella onto the cell body, with the pole marked by a red dot. (b) and (c) Time evolution of torsion (left), bending and twist energies, and
motor rotation rate (right) of one flagellum for push (b) and pull (c). The color bars show the magnitude of torsion values X along the flagellum over time. The right panels show
the bending and twist energies and the motor rotation rate. The average values of bending and twist energies are 0.0014 glm2=s2 and 0.0015 glm2=s2 for the push mode,
respectively, and 0.0012 glm2=s2 and 0.0011 glm2=s2 for the pull mode, respectively.

FIG. 4. Linear relationship between the applied torque and swimming speed (a), the average of individual motor rotation rate jxmj and the body rotation rate jxbj (b) during
the stable push and pull modes.
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The energies and motor rotation rate in the push mode evolve sinusoi-
dally over time within a narrow range. However, in the pull mode,
they fluctuate across a wide range of values, displaying dynamic
changes. Since CCW and CW rotations of flagella induce fluid pump-
ing in opposite directions, which also leads to wave propagation in cor-
responding opposite directions, these contrasting fluid flows cause
distinct deformation in the flagellar configuration and affect the per-
formance of the motors. In particular, our simulation demonstrates
that the motor’s performance differs significantly, even when the same
magnitude of torque is applied. Note that shear and stretch energies
remain negligible compared to the twist and bending energies through-
out, regardless of direction of motor rotation.

C. Effect of flagellar properties on swimming modes

The material property of flagella, particularly their flexibility,
plays a significant role in bundle formation. We investigate the influ-
ence of flagellar flexibility on flagellar bundling by examining the
steady states of swimming motion. Specifically, we explore the effect of
factors such as the bending modulus of the filament, the presence of
the hook, and the applied torque on these steady states.

When both motors rotate CW with equal torque, the formation of a
bundle requires a minimum torque threshold, as shown in Fig. 6. This
threshold increases with the stiffening of the flagellar filament. In the pres-
ence of the hook, the stiffer hook reduces the minimum torque threshold

required for bundle formation as the filaments become more rigid, owing
to enhanced transmission of motor torque along the filament. In the bun-
dling cases, there is also a critical torque size that separates wrapping from
pull for each bending modulus of the filament, which remains consistent
irrespective of the hook’s compliance [see Figs. 6(a)–6(c)]. However, with-
out the hook, the wrapping mode is not observed within the current range
of the bending modulus of the flagellar filament and the applied motor
torque. This observation underscores the pivotal role of the compliant
hook in deforming a bundle for wrapping motion, consistent with the
findings in Park et al.15with a single flagellum.

When both motors rotate CCW with equal torque, the flagellar

bundle exhibits a push mode for low applied torque and an overwhirl-

ing mode for high torque. The torque threshold for this transition is ele-

vated as the bending modulus of the filament or the hook increases, as

illustrated in Figs. 7(a)–7(c). Note that the hook still maintains greater

flexibility compared to the filament. However, in the absence of the

hook in Fig. 7(d), two new motions emerge: unbundling and folding. In

the former case, two flagella remain separate, maintaining a certain dis-

tance between them while rotating independently, thereby failing to

form a bundle. This motion occurs when the torque is very small, yet

the filament is sufficiently rigid, resulting in weaker hydrodynamic

interaction. In the latter case, two flagella rapidly form a bundle; how-

ever, due to excessive torque and the absence of the hook, the formed

bundle buckles midway rather than near the motor [see Fig. 7(e)].

FIG. 6. Steady states of swimming motion when both motors rotate clockwise. Three different modes are attained, depending on the bending modulus of the filament (a) and
the applied motor torque (s) in the presence (a–c) and absence (d) of the hook. Both motors take the same value of s. Squares and circles distinguish failure and success in
forming stable bundles, respectively.
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IV. SUMMARY AND DISCUSSION

We consider a mathematical model of the lophotrichous bacte-
rium P. putida consisting of a rigid rod-shaped cell body with two
identical flagella positioned near one end of the cell body. For simplic-
ity, these two flagella are embedded normal to the cell surface and are
arranged symmetrically about the body axis, and more flagella can be
attached to this numerical model organism. We primarily classify the
swimming modes under different conditions of applied torque, direc-
tion of motor rotation, and flagellar elasticity. Moreover, we scrutinize
stable flagellar bundles, particularly focusing on push and pull modes.

Despite the close proximity of flagellar motors and the potential
for bundle formation in both clockwise and counterclockwise motor
rotation directions, our model reveals previously unobserved swim-
ming modes in multiflagellated bacteria. These modes can be catego-
rized into two groups based on whether the flagella are formed as a
bundle or not. Representative stable bundle modes include pull, push,
wrapping, and overwhirling, which are distinguished by the torque
threshold and rotational direction. Our simulations demonstrate that
stable bundles can generally form when all motors rotate in the same
direction and their torque magnitudes are within a similar range,
except in the case of the jamming mode; otherwise, they fail to form a
bundle. It was reported that the majority of flagellar motors in P.
putida undergo synchronous reversal of motor rotation direction dur-
ing a transition between swimming modes.13 Disruption of motor syn-
chronization can lead to the failure of stable bundle formation, which

may result in alterations in swimming direction and may also interrupt
chemotactic behavior of bacteria.

Among the various swimming modes, our findings indicate that
three primary swimming modes in bundled forms (pull, push, and
wrapping) are most efficient in terms of swimming speed. The over-
whirling mode, however, shows relatively small displacement as com-
pared to the other bundled forms. This discrepancy may explain why
the overwhirling mode is not commonly observed in natural systems.
Here, we report a rare observation of a P. putida cell in an overwhirling
mode [see Fig. 8 (Multimedia view)]. The cell undergoes a transition
from the pull to overwhirling mode and, after approximately 0.5 s,
switches from the overwhirling mode to the push mode [see panel (a)].
During the episode in overwhirling, the cell exhibits only little displace-
ment, while the entire flagellar bundle is rotating around the cell body
[see the arrow in the left panel of (b)]. As a result, the cell body and fla-
gellar bundle orbit around their common center of mass, which
appears as a periodic wiggling when seen in the plane of imaging. A
space-time plot recorded along the cross-sectional line in panel (b)
illustrates the wiggling motion, where the cell body and bundle pro-
ceed in antiphase, as shown by the overlay of both fluorescence chan-
nels in panel (c). A similar sequence of pull, overwhirling, and push
modes can be also observed in numerical simulations, see the right
panel in (b). Upon a simultaneous reversal of both motors from CW
to CCW rotation, a cell that initially swims in the pull mode will
directly switch to the overwhirling mode, if the CCW torque of both

FIG. 7. Steady states of swimming motions when both motors rotate counterclockwise and take the same value of s. Two different modes are observed as the bending modulus
of the filament (a) and the applied motor torque (s) vary in the presence (a–c) of the hook. In the absence of the hook (d), two new motions emerge: unbundling and folding (e).
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motors is sufficiently large. A subsequent decrease in the CCW torque
will then initiate a transition from the overwhirling mode to the push
mode. Note also that in the simulation, a turning angle of around 90�

is observed during the transition from the overwhirling mode to the
push mode. In contrast to the common directional reversals in the tra-
jectories of swimming P. putida cells, turning angles of 90� provide an
additional degree of freedom that may be beneficial to efficiently
spread and explore the environment.

Jamming is a distinct mode that occurs when both motors turn
CW with small magnitudes, causing the flagella to become tangled
near the motors. Consequently, individual flagella interlock and cannot
be continuously rotated, unlike in other swimming modes. This entan-
glement phenomenon has been reported in both macroscopic experi-
ments and theoretical modeling.18,23,30,31 Furthermore, our simulations
present diverse configurations of unbundled flagella under conditions
that there is a significant difference in motor torques applied to two fla-
gella or when the motors exhibit opposite rotational directions. From
these configurations, the repelling mode is most reminiscent to a flagel-
lar maneuver regularly observed in fluorescence recordings of swim-
ming P. putida cells. Here, it can be frequently seen how the flagellar
bundle is actively driven apart, bringing the smooth swimming loco-
motion to an abrupt halt, for an example, see Fig. 9(a) (Multimedia
views). A numerical simulation of a cell that swims in the push mode,
interrupted by a short episode of repelling, where both motors turn in
opposite direction, closely resembles these experimental observations
[see Fig. 9(b)]. Similar experimental observations have been reported
previously13 and were associated with stop events that are known from

early recordings of cell body trajectories of P. putida cells.32

Additionally, our numerical simulations showed cylindrical enveloping
as well as a semi-wrapping mode in which a single flagellum becomes
unwrapped from a wrapped bundle when the rotational motion of the
bundle is interrupted during the wrapping mode [see Fig. 2(i)].

In lophotrichous bacteria, push, pull, and wrapping swimming
modes, orchestrated by bundle rotation and synchronous motor rever-
sals, are predominant. Each mode mimics a single helix’s behavior,
with CCW or CW bundle rotation inducing wave propagation away
from or toward the motors in the surrounding fluid, respectively.
However, interflagellar dynamics within a bundle present complexities.
Our simulations illustrate that wave propagation toward the motors in
the pull mode induces a greater degree of flagellar intertwist than in
the push mode, in which wave propagation toward the distal end of
the flagella assists in limiting excessive intertwist. Additionally, the
radius and pitch of the bundle helix in the pull mode exceed intrinsic
helical properties, resulting in a further reduction in the degree of fla-
gellar torsion at the individual filament level.

It has been reported that flexural rigidity of flagella plays an
important role in the flagellar dynamics.15,17,33–35 Our simulations also
emphasize the significance of elastic properties of flagella. When all
motors turn CW, a minimal torque is required to prevent the flagella
from jamming at a fixed bending modulus of the filament. This thresh-
old increases as the hook becomes more flexible, while a lack of hook
flexibility increases the likelihood of jamming. When all motors turn
CCW, the threshold of motor torque that separates overwhirling from
push increases as the hook becomes rigid. However, the absence of the

FIG. 8. Experimental evidence of the overwhirling mode. (a) Time-lapse sequence of dual-color fluorescence images (left) and corresponding cartoon representations (right) of
a P. putida cell undergoing transitions from pull to overwhirling and from the overwhirling mode to the push mode. The cell body is displayed in red and the flagellar bundle in
green; scale bar 5lm. (b) Smoothed fluorescence image of a P. putida cell in the overwhirling mode (left; scale bar 2lm) and corresponding snapshot taken from a numerical
simulation (right). (c) Space-time plot taken along the yellow line in panel (b) showing, from left to right, the red and green fluorescence channels and an overlay. Multimedia
available online.
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hook predominantly favors the push mode, except in extreme cases
involving high motor torque and low bending modulus of the filament
or low motor torque and high bending modulus of the filament. This
suggests that lophotrichous bacteria maintain an optimal range of the
hook bending modulus to minimize the possibility of bundling failure
and maximize swimming performance. Given that bundling is
required for transitioning to the wrapping mode in P. putida, which is
a beneficial swimming strategy in its native habitats, the significance of
a flexible hook in P. putida cannot be overstated.

Numerical simulations with multiple flagella are challenging. As a
first step toward simulations of a lophotrichous swimmer, we focused
on a tuft of flagella consisting of only two filaments. This is the most
simplistic minimal model of a lophotrichous swimmer, allowing us to
study basic scenarios of having counter-rotating filaments within the
same bundle (one motor rotating CCW, the other CW) as well as hav-
ing flagella that differ in the magnitude of their torque. We expect that
an increase in the number of flagella will confirm the basic swimming
modes observed here. Depending on the number of flagella that differ
in the sign and magnitude of their torque from the other flagella, the
threshold values for the transitions between the different swimming
modes may change. Additionally, factors such as the distance between
the flagellar motors at the cell pole, the initial angle between two flagel-
lar axes, or variations in helical properties may influence the tendency
of the flagella to form and maintain a synchronous bundle.17,25

Nevertheless, we conjecture that, with small variations in cell geometry,
the types of swimming modes and the transitions between them
remain qualitatively similar to those observed for a swimmer with only
two filaments. To confirm this conjecture, we plan to conduct further
simulations in future studies.

Smooth swimming with a stable bundle relies on the coordinated
behaviors of multiple flagellar motors, facilitated by the cell’s chemo-
sensory system. Our future work will involve integrating a chemosen-
sory system into our model to regulate the speed and direction of
flagellar motors.2,12,14,36 This will deepen our understanding of how
bundle stability influences the chemotactic behaviors of lophotrichous
bacteria, particularly regarding turning angles during mode transi-
tions,12 an area that has received less attention compared to peritri-
chous bacteria. Furthermore, it was speculated that bundle formation
in the pull mode may become unstable under specific conditions such
as high fluid viscosity or proximity to a surface,2,18,23 which may alter
the swimming statistics of a lophotrichous swimmer close to surfaces
and under confinement.37 We plan to incorporate these conditions
into our future study to further explore this instability.

SUPPLEMENTARY MATERIAL

See the supplementary material for tables detailing the parameters
used in the study (Tables S1 and S2), experimental methods (Text S1),
a figure (Fig. S1), and captions for the multimedia videos.
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