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Long-Term Finger Force Predictions Using
Motoneuron Discharge Activities

Yuwen Ruan™, Long Meng™, and Xiaogang Hu

Abstract— Surface electromyogram (EMG) signals have
been a preferred modality for motor intent detections in the
fields of robotic control, rehabilitation, and health monitoring.
However, current EMG-based measurement techniques suffer
a degradation in performance cross session over time due
to factors such as shifts in electrode placement, changes
in muscle states, and environmental noise. To address this
challenge, we developed a novel neural-drive approach, capable
of robust cross-day predictions of individual finger forces.
Specifically, high-density EMG (HD-EMG) data were collected
from flexor and extensor muscles during single-finger and
multifinger tasks. The experimental procedure was repeated
three times (sessions), with an average interval of 6.58 days
between sessions. We first decomposed the EMG signals in a
session to obtain separation matrices that contained motor unit
(MU) information in the EMG signals. We then refined the
separation matrices that accurately reflected individual fingers.
The corresponding separation matrices were applied to EMG
signals in the other two sessions to derive the neural drive for
force predictions of individual fingers. Our results revealed that
the cross-session performance was comparable with the within-
session performance. In addition, the neural-drive approach
can outperform the conventional EMG-amplitude approach,
especially in the cross-session performance. Our developed
approach can enhance the long-term reliability of finger force
predictions and holds potential for various practical applications.

Index Terms— Cross sessions, finger force measurement, motor
unit (MU), neural drive, surface electromyogram (EMG).

I. INTRODUCTION

INGER force control plays an important role in the daily

activities of humans, from grasping objects to perform-
ing intricate tasks requiring dexterity and precision [1], [2].
The capacity to perform controlled finger forces is not only
fundamental to routine physical interactions but also critical
in specialized fields. For example, long-term finger force
prediction plays a crucial role in accurate control over assistive
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robotic hands, such as prostheses or exoskeletons, to achieve
smooth and accurate hand movement such as grasping, hold-
ing, and manipulating objects [3]. In stroke rehabilitation,
long-term monitoring and predicting finger forces can help
clinicians to evaluate neuromuscular recovery and adjust the
intensity of rehabilitation in a timely manner [4]. In gaming,
continuous finger force prediction enables users to manipulate
virtual objects with precise finger movements, facilitating the
implementation of virtual reality applications [5]. Therefore,
finger force predictions have attracted significant interest
among researchers seeking to enhance applications in diverse
fields such as prosthetic limb interactions [6], [7], rehabilita-
tion [8], [9], and human—machine interactions [10], [11], [12].

Traditionally, finger forces are directly measured using data
gloves embedded with integrated force sensors [13], [14].
Although this method offers a direct approach to capturing
force data, it comes with drawbacks. The bulky data gloves
can restrict natural hand movements, thereby compromising
user comfort and the accuracy of force measurement. These
limitations have led researchers to explore alternative methods
for predicting finger forces.

Finger forces are controlled by neural-drive signals, which
are neural commands transmitted from the brain to the muscles
and can be decoded from neural signals measured from the
brain or muscles [15]. Some previous studies [16], [17], [18]
have focused on advancing state-based decoding techniques
that identify brain states associated with finger movements
to decode finger gesture intentions using electroencephalo-
gram (EEG) signals. However, finger-specific force decoding
remains a challenge.

Alternatively, a promising way to decode motion intentions
is to use noninvasive surface electromyogram (EMG) signals
from the muscles. Compared with EEG signals, EMG sig-
nals have shown considerable potential with a considerably
high signal-to-noise ratio (SNR) [19], [20]. These signals
are generated through the mixture of a large number of
motor unit action potentials (MUAPSs) across both tempo-
ral and spatial domains. Because of the direct correlation
between the number of MUAPs at a given time and the
intensity of descending neural-drive signals, EMG has been
used to interpret motion intentions of distinct gestures [21],
[22]. Furthermore, regression analyses have been applied to
establish a continuous relation between macroscopic EMG
features and finger forces [21], [23]. However, leveraging
macroscopic EMG features, such as amplitude, for force pre-
diction faces challenges due to signal crosstalk from adjacent
muscle groups, environmental noise, and the inherent dynamic
properties of MUAPsS, including their superimposition and can-
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cellation. Such factors can bias the prediction of neural-drive
signals [24], leading to large estimation errors in finger force
predictions. In contrast, advancements in flexible high-density
EMG (HD-EMG) electrode recording techniques [25] offer a
more refined approach by capturing motor unit (MU) activities
at a microscopic level. This approach can track the discharge
events of motoneurons, which allows us to predict the descend-
ing neural-drive signals based on MU firing spike trains. The
firing rates of these MUs, which show a linear relation with
neural-drive signals, serve as a detailed microscopic feature
for predicting muscle forces [26], [27]. Although promising
results have been achieved, current neural-decoding research
on force prediction is limited to within-session evaluations.
In EMG-related applications, the performance of pretrained
models significantly degrades over session and time, primarily
due to factors such as variations in EMG characteristics over
time, shifts in electrode placement, and varying environmental
conditions [19]. These limitations necessitate frequent calibra-
tion of the models, which can be inconvenient in practical
scenarios, because the computational load is high or data
labels may not be available. To address these issues and
enhance decoder robustness, it is crucial to establish a robust
decoder viable for cross-session force predictions spanned over
multiple days, without the need of frequent recalibrations.
Specifically, we acquired HD-EMG data in three different
sessions, with an average interval of 6.58 days (6.47 standard
deviation) between sessions, and participants performed either
single-finger or multifinger force production tasks. Data from
each session served as the training dataset, and the data
from the other two sessions were used as the testing dataset.
Using the training dataset, we first extracted the MU pool
using the fast independent component analysis (FastICA)
algorithm. Because it is inevitable that MUs of nontarget
fingers are recruited, we refined the MU pool by removing
MUs of nontarget fingers. The refined MU pool was then
used to predict finger forces across multiple sessions. Our
results show that our developed neural-decoding approach can
accurately predict single-finger and multifinger forces over
different sessions. The key novelty of our study is as follows.

1) We developed a robust neural-decoding approach based
on MU firing activity, and we showed that the novel
algorithm was capable of robust predictions of individual
finger forces across multiple days.

2) Our neural decoder enhanced the stability of EMG-based
intent prediction performance, which minimized the
need for frequent decoder recalibrations, making our
decoder more practical and user-friendly for everyday
use.

3) Our decoder was designed to predict dexterous finger
motor output at the individual finger and simultaneous
multifinger levels, which are essential for daily manual
tasks.

II. METHODS

Fig. 1 illustrates the framework of the neural-drive-based
force prediction. Neural-drive commands were sent from the
brain to motoneurons that innervated the finger flexor and
extensor muscle compartments. To extract these neural-drive
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Fig. 1. Overview of the research framework.

signals, we first obtained the separation matrices containing
the MU pool firing information by decomposing the HD-EMG
signals of the flexor and extensor muscles. Because the
decomposed MU pool contained MUs of different fingers,
we refined the separation matrices to isolate MUs specific
to the target fingers. We then applied the refined separation
matrices directly to HD-EMG data in different sessions. The
obtained binary firing events were summed to derive the
neural-drive signal. We then predicted the forces of individual
fingers using regression functions.

A. Data Acquisition

1) Subjects: Eight neurologically intact subjects (five males
and three females), aged 21-35, participated in this study,
which was approved by the Institutional Review Board at
Pennsylvania State University. All subjects provided informed
consent in accordance with the approved protocols before the
experiment.

2) Experimental Setup: To record EMG signals from the
finger flexor and extensor muscles, we used two 8 x 16 elec-
trode arrays with a single-electrode diameter of 3 mm and an
interelectrode distance of 10 mm. These arrays were placed
on the anterior and posterior sides of the forearm, as shown in
Fig. 1. The position of each electrode array was determined by
palpating the finger muscles as the subjects flexed or extended
their fingers. The EMG signals were amplified and sampled
using the EMG-USB2+ system (OT Bioelettronica) with a
gain of 1000, a passband of 10-900 Hz, and a sampling rate
of 2048 Hz. The reference electrode was placed at the wrist.

To measure the flexion forces of the index, middle, and
ring fingers, we used three miniature load cells (SM-200N,
Interface) with a sampling frequency of 1000 Hz, as shown in
Fig. 1. During the data acquisition, the forearm was supported
in a neutral position, and the wrist was stabilized with two
stiff foam pads to minimize force transmission from the wrist
and other proximal joints.

3) Experiment Procedure: Before the main experiment,
we measured the maximum voluntary contraction (MVC)
finger flexion force. During the experiment, subjects tracked
a predefined force target with a pseudorandom pattern, in the
range of 0%—-50% MVC for each finger. We selected this force
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level because it covered the level of muscle activation in a
majority of the daily tasks while avoiding muscle fatigue.

Each subject performed two types of finger flexion trials:
single-finger trials and multifinger trials. In the single-finger
trials, only one finger followed the trapezoidal force pattern,
and the participants were instructed to avoid co-contraction
of other fingers. Subjects performed three repetitions of the
single-finger trials for the index, middle, and ring fingers.
In the multifinger trials, the index, middle, and ring fingers
were flexed simultaneously, comprising three multifinger trials.
Thus, each session included a total of nine single-finger trials
and three multifinger trials.

To assess the performance of neural-drive-based force pre-
diction cross sessions, three sessions were conducted for each
subject at varied time intervals (6.58 + 6.47 days), depending
on the availability of the subjects.

B. Signal Preprocessing

To reduce noise, the EMG signals were initially filtered
using a fourth-order high-pass Butterworth filter with a cutoff
frequency of 20 Hz. Subsequently, motion artifacts were
eliminated using our previously established method [28].

C. Force Prediction Based on Neural Drive

1) Initial MU Extraction: The EMG signals of the
single-finger trials were used to form the preliminary MU pool.
We first selected the 60 most active channels with the highest
root-mean-square (rms) value out of the 128-channel EMG
signals for the extensor and flexor of each finger to reduce
computational load. The number of channels was determined
based on our previous work [29]. For each session, the rms of
each channel was calculated for every single-finger trial. The
results for the same finger trials were averaged, and the top
active 60 channels were identical cross sessions, which was
necessary for cross-session evaluations.

Motoneuron firing activities were obtained by decomposing
the 60-channel EMG signals using a previously developed
FastICA algorithm [30]. Detailed steps are provided in the
supplementary material. Briefly, we first extended the EMG
signals to increase the number of observations and whitened
the extended signals to remove the correlation between obser-
vations. Then, we performed FastICA to decompose the
signals and obtained the separation vectors and source signals
for individual MUs. Each separation vector represented an
MU, and the corresponding source signal reflected the spike
train of the MU. For binary classification, the source signals
were then transformed into a discharge event train using
the K-means™ clustering algorithm [31]. We removed low-
quality MUs. The silhouette distance of the cluster was then
computed, and separation vectors with a silhouette value below
0.5 were considered to be inaccurate. The inaccurate MUs
were eliminated. This process yielded the initial separation
matrices for individual fingers.

2) MU Pool Refinement: Due to the co-activation of finger
muscles, it is challenging to keep other fingers completely
inactive when flexing a specific finger. As a result, some
MUs in the separation matrix may correspond to MUs of
other fingers. To address this problem, a refinement process
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was applied to identify and exclude MUs not associated with
the target finger. This was done by comparing a correlation
between the discharge activity of each MU and the force
signals from the three fingers. MUs corresponding to other
fingers were removed, ensuring that the refined separation
matrix accurately reflected the target finger muscle activity.

Specifically, the initial separation matrix for finger i (index,
middle, or ring finger) was used to decompose every single-
finger trial, and we then obtained the firing rates of each
MU. For each MU in the MU pool, a linear regression was
performed between the firing rates and the force signals, and
we calculated the R? value of the regression. If the R? value
obtained from trials of other fingers was higher than that from
finger i, it was considered that the MU did not belong to finger
i, and the associated separation vector was removed from the
separation matrix of finger i, thereby giving us the refined
separation matrices specific to individual fingers.

3) Force Prediction: The refined separation matrix was used
to decompose the EMG signals, producing spike trains for each
MU in the MU pool. The spike trains from all MUs were then
summed to represent the populational firing rate, which was
the neural drive for finger force predictions.

The data were divided into training (one session) and testing
sets (two other sessions) to evaluate the force prediction per-
formance (Fig. 2). We multiplied the refined separate matrices
to the testing EMG data. The firing rate of each MU was
calculated. A moving window of 500 ms with a step size of
125 ms was used for the populational firing rate calculation.
The populational firing rate of each window was computed as
the sum of spike trains from all retained MUs in the window.
A Kalman filter was applied to the populational firing rate
to smooth the populational firing rate signals, using a system
matrix of 1, an observation matrix of 1, a system covariance of
0.1, and an observation covariance of 0.5. The corresponding
force signals were also smoothed using the same window.

To predict the forces of finger i, the populational firing
rates of the extensor and flexor were used, due to potential
co-activations of the muscle pairs. Specifically, a linear regres-
sion was performed between the populational firing rates and
force signals of the training dataset

F; () =aDi,ext(t)+bDi.ﬂx(t)+C (D
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where F;(t) is the predicted force of finger i (i = index, mid-
dle, or ring) over time ¢; D; . (t) is the extensor populational
firing rate of finger i; D; gx(¢) is the flexor populational firing
rate of finger i; and a, b, and c are the coefficients of the linear
regression.

The performance of the neural-drive-based force prediction
was then evaluated using the testing dataset. The prediction
performance was assessed by comparing the predicted force
with the actual force by calculating the coefficient of determi-
nation (R?) and RMSE.

4) Complexity Analysis: The computational complexity for
each 500-ms EMG segment during the testing process is
O(k - N -m), where k is the column dimension of the refined
separation matrix, which corresponds to the number of MUs
in the refined MU pool derived from the training data; N is the
number of the extended EMG channels; and m is the number
of data points in each segment. In this study, k = 41.51 =+
15.71, N = 600, and m = 1024.

D. Force Prediction Based on EMG-Amplitude

The force prediction based on conventional EMG amplitude
was also implemented for comparison.

1) EMG-Amplitude Calculation: We used the top 60 most
active channels for the EMG-amplitude-based force prediction,
and the same channel set is used for EMG decomposition in
the neural-drive method. The EMG amplitude was quantified
using rms values using the same windowing procedure as the
neural-drive method (a moving window of 500 ms with a
step size of 125 ms). The EMG amplitude of each window
was calculated as the average rms of the 60 channels of that
window.

2) Force Prediction: The same Kalman filter was applied to
smooth the rms values. The corresponding force signals were
also smoothed using the same windowing and filtering param-
eters. A linear regression was performed between the EMG
amplitude and force signals in the training set, as described in
the following equation:

Fi(t) = aAjex(t) + bAiax (1) + ¢ 2)

where F;(t) is the predicted force of finger i (i = index,
middle, or ring); A;ext(t) is the extensor EMG amplitude of
finger i, A; gx(¢) is the flexor EMG amplitude of finger i; and
a, b, and c are the coefficients of the linear regression.

3) Complexity Analysis: The computational complexity for
each 500-ms segment during the testing process is O(n - m),
where n is the number of EMG channels and m is the number
of data points in each segment. In this study, n = 60 and
m = 1024,

E. Evaluation Protocols

We evaluated the performance of force prediction cross ses-
sions and within session. Two assignment protocols, Protocols
1 and 2, were applied for the assignment of the training and
testing sets. Specifically, for the force prediction on finger
i, the testing set of both protocols included single-finger
trials of finger i and multifinger trials. Protocol 1 included
both single-finger and multifinger trials in the training set,
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while Protocol 2 only included single-finger trials. These
two protocols aimed to evaluate the robustness of the force
prediction model when trained on a comprehensive dataset of
a variety of tasks or a specific dataset of a single task.

1) Cross-Session Validation Protocol: For each subject, the
training and testing sets came from different sessions. The data
from each session was utilized as the training data, and the
data from the other two sessions served as the testing dataset
(Fig. 2). In Protocol 1, all the single-finger and multifinger
trials of finger i served as the training dataset. In Protocol
2, only the single-finger trials of finger i were employed
as the training dataset. The testing dataset included both
the single-finger trials and multifinger trials from the testing
sessions.

2) Within-Session Validation Protocol: We also performed
force prediction within a session to compare with the cross-
session predictions. Both the training and testing datasets
were derived from the same session. For each finger, there
were three single-finger trials and three multifinger trials in
a session. In Protocol 1, one out of the six trials served as
the testing dataset, and the remaining five trials formed the
training set. In Protocol 2, the testing dataset was the same
as Protocol 1, but only the single-finger trials of the training
dataset in Protocol 1 were used for training.

F. Statistical Analysis

The accuracy of force prediction based on the neural drive
and EMG amplitude was evaluated using the RMSE and R?
values. The RMSE and R? values were analyzed using the
Friedman test and Wilcoxon signed-rank test because the data
did not follow a normal distribution. The significance level
was set to 0.05. The Holm—Bonferroni correction was applied
to avoid multiple-comparison errors.

ITI. RESULTS
A. Variability of EMG Signals Across Sessions

Fig. 3 presents the examples of the EMG-amplitude (rms)
distribution for single-finger trials cross sessions for the index
[Fig. 3(a)], middle [Fig. 3(b)], and ring [Fig. 3(c)] fingers. Both
the extensor and flexor muscles were presented. The red point
in each heatmap showed the peak EMG amplitudes. Although
the activation patterns for the same tasks were generally
consistent cross sessions, there were notable differences in
the location of the overall activation area. We quantified the
degree of similarity of the activation pattern using a 2-D
cross correlation between the same type of heatmaps cross
sessions. The average correlation coefficients of the heatmaps
cross session were 0.69 for the index finger, 0.74 for the
middle finger, and 0.75 for the ring finger. The Friedman test
demonstrated there were no significant differences among the
correlation coefficients between different sessions for the index
(x2(2) = 2.62 and p = 0.2691), middle (x2(2) = 2.62 and
p = 0.2691), and ring fingers (x2(3) = 1.62 and p = 0.4437).

B. Representative Results of Force Prediction

Fig. 4 shows the representative predicted forces of the index
finger using the two methods. Due to the similarity among
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the results of the within-session mode with Protocols 1 and
2 and the cross-session mode of Protocol 1, only the results
of the within-session mode of Protocol 1 were presented here.
Compared with the results of the EMG-amplitude method,
the predictions of the neural-drive method exhibited higher
accuracy values. In most training schemes and modes, the
forces predicted by the EMG-amplitude method deviated con-
siderably from the ground truth. However, the forces predicted

using the neural-drive method closely matched the actual
force values. This indicated that the neural-drive-based force
prediction had a better performance than the EMG-amplitude-
based force prediction.

C. Performance of Force Prediction Based on Neural Drive

Fig. 5 summarizes the performance of neural-drive-based
force prediction measured by RMSE across sessions [Fig. 5(a)]
and within a session [Fig. 5(b)]. The results of the correlation
of determination (R?) exhibited a consistent trend with the
RMSE; therefore, only the RMSE results were presented here.
The average RMSE of the cross-session mode was 8.28%
MVC, while the average RMSE of the within-session mode
was 6.43% MVC. The Wilcoxon signed-rank test showed
a significant difference between the force prediction perfor-
mance of the two modes (p = 0.0004).

For force predictions across sessions, the Friedman test
demonstrated significant differences among the different
training schemes for the index finger (x2(3) = 12.15 and p =
0.0069), the middle finger (x2(3) = 21.75 and p = 0.0001),
and the ring finger (x*(3) = 11.85 and p = 0.0079). For
force predictions of all three fingers, “Protocol 1 single-finger
trials” demonstrated the best performance (index: (6.25% =+
0.15%) MVC, middle: (6.52% =+ 0.16%) MVC, and ring:
(7.37% £ 0.24%) MVC). In contrast, the worst performance
was observed in “Protocol 2 multifinger trials” (index:
(10.97% + 0.38%) MVC, middle: (9.46% + 0.32%) MVC,
and ring: (12.08% =+ 0.45%) MVC). The differences in
average RMSE between the best and worst protocols were
4.72% MVC (p = 0.0156) for the index finger, 2.94% MVC
(p = 0.0078) for the middle finger, and 4.71% MVC (p =
0.0156) for the ring finger.

For force prediction within sessions, there were still
significant differences among the various training schemes
for the index finger (x2(3) = 14.55 and p = 0.0022),
middle finger (x2(3) 1995 and p = 0.0002), and
ring finger (x2(3) = 18.60 and p = 0.0003). The force
predictions for all three fingers were consistent. The
best performances were observed in “Protocol 2 single-
finger trials,” with results of (5.21% =+ 0.29%) MVC for
the index finger, (5.13% =+ 0.18%) MVC for the middle
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finger, and (5.87% =+ 0.22%) MVC for the ring finger.
Conversely, the worst performances occurred in “Protocol
2 multifinger trials,” with (8.60% =+ 0.39%) MVC for the
index finger, (7.50% =+ 0.28%) MVC for the middle finger,
and (9.63% =+ 0.46%) MVC for the ring finger. The average
RMSE differences between the best and worst protocols were
3.39% MVC (p = 0.0156) for the index finger, 2.37% MVC
(p = 0.0078) for the middle finger, and 3.76% MVC (p =
0.0078) for the ring finger.

In summary, the neural-drive-based force prediction
algorithm demonstrated a robust performance across various
conditions. It maintained high accuracy and consistency across
sessions and within a session, adapted well to different types
of motor tasks, and performed reliably for different fingers.

D. Performance of Force Prediction Based on
EMG-Amplitude

Fig. 6 summarizes the performance of EMG-amplitude-
based force prediction measured by RMSE across sessions
[Fig. 6(a)] and within a session [Fig. 6(b)]. The trend observed
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in the R? results mirrored that of the RMSE; thus, we only
presented the RMSE results. Training schemes impacted the
prediction accuracy for EMG-amplitude-based force predic-
tion. The average RMSE for the cross-session mode was
11.96% MVC, while the average RMSE for the within-session
mode was 10.28% MVC. The Wilcoxon signed-rank test
showed a significant difference between force prediction per-
formance in the two modes (p = 0.0005).

Across sessions, significant differences were found
among the various training schemes for the index finger
(x%(3) = 17.55 and p = 0.0005), middle finger (x2(3) =
1245 and p = 0.0060), and ring finger x*3) =
1230 and p = 0.0064). For the index finger, the best
performance was observed in “Protocol 2 single-finger trials”
[(8.17% =+ 0.36%) MVC]. For middle and ring fingers, the
best performances were observed in “Protocol 1 multifinger
trials”  (middle: (6.72% =+ 0.32%) MVC and ring:
(7.73% =+ 0.42%) MVC). The worst performances for the
three fingers occurred in “Protocol 2 multifinger trials” (index:
(38.21% =+ 1.65%) MVC, middle: (15.32% =+ 0.93%) MVC,
and ring: (15.04% =+ 0.95%) MVC). The difference in
average RMSE between the best and worst protocols was
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Fig. 7. (a) R? and (b) RMSE obtained with different training schemes of the neural drive and EMG amplitude. Each symbol represents an individual subject.
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30.04% MVC (p = 0.0078) for the index finger, 8.60% MVC
(p = 0.0078) for the middle finger, and 7.31% MVC (p =
0.0078) for the ring finger.

Within sessions, there were significant differences among
different training schemes as well for the index finger ( x2(3) =
22.95 and p = 0.0000), middle finger (x*(3) = 14.85 and p =
0.0019), and ring finger (x2>(3) = 13.35 and p = 0.0039)
based on the Friedman test. The force predictions for all three
fingers were consistent. The best performances occurred in
“Protocol 2 single-finger trials,” with results of (5.04% =+
0.25%) MVC for the index finger, (5.03% =+ 0.30%) MVC
for the middle finger, and (5.34% =+ 0.26%) MVC for the
ring finger. Conversely, the worst performances occurred in
“Protocol 2 multifinger trials,” with (37.53% £ 1.77%) MVC
for the index finger, (14.46% =+ 0.99%) MVC for the middle
finger, and (12.62% =+ 0.91%) MVC for the ring finger.
The average RMSE differences between the best and worst
protocols were 32.49% MVC (p = 0.0078) for the index
finger, 9.43% MVC (p = 0.0156) for the middle finger, and
7.28% MVC (p = 0.0156) for the ring finger.

In summary, the performance of force prediction of the
EMG-amplitude approach heavily depended on the training
protocol. The method showed low robustness when the training
scheme and types of tasks changed.

E. Comparison of the Neural-Drive Method and
EMG-Amplitude Method

We then compared the performance of the two different
methods in different settings. Fig. 7 illustrates the
summary results of different force prediction methods.
The performances were quantified by the correlation of
determination (R?) and RMSE. Fig. 7(a) presents the R?
values for each task. In most cases, R? of force prediction
based on the neural-drive method was higher than that based
on the EMG-amplitude method (p < 0.05), indicating that the
neural-drive method more accurately utilized MU information

TABLE 1

FRIEDMAN TEST RESULTS FOR R? AND RMSE AMONG FOUR COM-
PARISON GROUPS (NEURAL DRIVE/EMG AMPLITUDE AND CROSS
SESSION/WITHIN SESSION) IN EACH TRAINING SCHEMES
(*: p <0.05 AND **: p < 0.01)

Training Scheme LS RMSE
¥ (3) p-value ¥ (3) p-value
Protocol-1 Singlg 21.15 0.0001 17.70 0.0005
Multi 13.95 0.0030 14.55 0.0022
Protocol-2 Single 14.85 0.0019 14.85 0.0019
Multi 20.70 0.0001 20.70 0.0001

to predict forces. As shown in Fig. 7(b), the RMSE obtained
using the neural-drive method was lower than that of the EMG-
amplitude method (p < 0.05). In addition, the RMSE for the
eight subjects was more consistent when using the neural-drive
method, indicating that this method consistently predicted
forces accurately across subjects. This demonstrated the supe-
rior performance and robustness of the neural-drive method.

According to Table I, for the four different training schemes,
significant differences were observed among the different
training models according to the Friedman test in both R?
and RMSE. According to the Wilcoxon signed-rank test,
in all the cases except Protocol 2 of single-finger trials in
the within-session mode, there were significant differences
between the R? obtained by the neural-drive method and the
EMG-amplitude method (Table II). According to Table III,
for the neural-drive method, there were significant differences
between the performance in cross-session mode and within-
session mode in both R? and RMSE. For EMG amplitude with
all the training schemes except for using Protocol 2 to test the
multifinger trials, there were significant differences between
cross-session mode and within-session mode in both R? and
RMSE. However, for the “Protocol-2 multifinger trials,” both
cross-session and within-session force prediction based on the
EMG-amplitude method performed significantly worse than
those based on the neural-drive method.
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TABLE I

WILCOXON SIGNED-RANK TEST RESULTS (p-VALUE) FOR R% AND RMSE
BETWEEN NEURAL-DRIVE METHOD AND EMG-AMPLITUDE METHOD
(*: p <0.05 AND **: p < 0.01)

Training Scheme Task R? RMSE
Single Cfos.s 0.0078 0.0234
Protocol-1 Within 0.0078 0.0078
Muli Cros.s 0.0234 0.7422
Within 0.0156 0.0781
Single CI.’OS.S 0.0391 0.8438
Protocol-2 Within 0.5469 0.5469
Muli Cfos.s 0.0078 0.0078
Within 0.0078 0.0078

TABLE IIT

WILCOXON SIGNED-RANK TEST RESULTS (p-VALUE) FOR R?2 AND RMSE
BETWEEN CROSS-SESSION AND WITHIN-SESSION TASKS
(*: p <0.05 AND **: p < 0.01)

Neural-Drive EMG-Amplitude

Training Scheme

R? RMSE R? RMSE

Protocol-1 Single  0.0156 0.0156 0.0391 0.0391
Multi 0.0078 0.0078 0.0156 0.0156

Protocol-2 Singlfz 0.0078 0.0078 0.0078 0.0078
Multi 0.0234 0.0156 0.4609 0.2500

The testing process of each 500-ms EMG segment using
the neural-drive method required an average of 55.43 ms and
9.67 MB of memory, whereas the EMG-amplitude method
required an average of 0.83 ws and 18.30 bytes of memory.

In summary, the neural-drive method outperformed the
EMG-amplitude method in force prediction based on EMG
signals, demonstrating superior accuracy and robustness.
In most cases, the force prediction performance within a
session was better than that cross sessions. However, the
high decoder accuracy is associated with the cost of high
computational complexity.

IV. DISCUSSION

In this study, we developed a robust neural-decoding
approach feasible for multiday motor intent predictions.
We evaluated the decoder performance for within-session
and cross-session finger force predictions, to demonstrate the
viability of this approach for practical use. Our results revealed
that our method could achieve comparable results to previous
research [27], [29] in within-session force predictions, and
more importantly, we found that our decoder maintained
stable performance in cross-session conditions. Specifically,
we obtained EMG data across three sessions following the
same procedures, decomposed the data from one session using
the FastICA algorithm, and refined the MU pool for accurate
finger force predictions. We then applied the refined separation
matrix to the EMG signals of the other two sessions to obtain
cross-session neural-drive signals in a real-time manner, which
were mapped to individual finger forces using a regression
function. Compared with the EMG-amplitude approach, our
neural-drive method consistently achieved high cross-session
prediction performance, demonstrating robustness and reliabil-
ity for long-term neural-machine interaction without the need
for frequency recalibrations.
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A. Comparison With Previous Studies

Previous studies have aimed to improve the accuracy and
robustness of EMG-based finger force prediction. The majority
of studies focused on finger force predictions within a single
recording session. For example, an earlier study [32] per-
formed force prediction based on EMG amplitude (root mean
square) by exploring different channel merging and selection
approaches. Their models achieved average RMSE values
around 6%-10% MVC. Our models achieved an average
RMSE of around 5%-10% MVC, and the best-performance
protocol achieved an average RMSE of 5.40% MVC. A pre-
vious work [33] combined accelerometry signals with EMG
features for finger force prediction. Their model achieved
an average R’ of 0.93 with the optimal feature set. Our
neural-drive method was based on EMG alone and achieved
an average R’ of 0.90 with the optimal protocol. An earlier
work [34] also employed the neural-drive method to predict
multifinger forces within a session. They constructed the MU
pool using data from single-finger trials along with a subset
of multifinger trials and then applied this MU pool to predict
forces in multifinger trials, achieving an average R* of 0.72.
In our approach, the MU pool was only constructed using
single-finger trials, and the average R? values for multifinger
trials were 0.87 (Protocol 1) and 0.86 (Protocol 2). In the
within-session mode, our neural-drive-based finger force pre-
diction approach achieved performance comparable to that of
previous studies. However, research on cross-session finger
force prediction remains scarce. An earlier study [35] demon-
strated the consistency of MU spike trains across sessions
using elbow flexion EMG data from a single subject, pro-
viding preliminary evidence for the feasibility of applying the
neural-drive-based approach to cross-session force predictions.
Building on this foundation, our study further validated the
superiority of the neural-drive approach in cross-session force
predictions through individual finger force estimation tasks.

In earlier studies [27], [29], [36], we applied the neural-
drive-based approach to both dynamic joint angle estimation
and isometric force estimation within sessions. We tested
various conditions, including flexion and extension movements
for each finger, single-finger and multifinger trials, and dif-
ferent electrode placements. These previous results support
the effectiveness of the approach in achieving continuous
and reliable joint kinematic predictions. In the current study,
we extended the neural-drive method to cross-session force
predictions, and we implemented two protocols to assess
the robustness of the approach across four different cases.
The results show that the neural-drive approach significantly
enhances the long-term reliability of finger force predictions
and holds promise for a wide range of practical applications.
Therefore, these studies together provide valuable insights into
the efficacy and performance of the neural-drive approach for
predicting finger kinematic features.

B. Comparison of EMG-Amplitude and Neural-Drive
Approaches for Force Prediction

For the EMG-amplitude approach, the force prediction
performed better in the within-session evaluation compared
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with the cross-session evaluation. This was because EMG
signals were easily affected by the following factors. First, the
electrode position could have shifted between sessions due to
inconsistent electrode reattachment, which can be indicated by
the shift of activation areas across sessions in Fig. 3. Corre-
spondingly, the electrode shifts can potentially lead to different
overall EMG amplitude over sessions. Second, changes in
the muscle physiological properties due to exercise history
or hydration levels over time could contribute to the varia-
tions of EMG amplitude observed between sessions. Third,
background noise differences across sessions may also lead to
varying SNRs, further affecting the cross-session force predic-
tion performance. Finally, the outlier electrode channels may
be different across sessions due to variations in skin-electrode
contact impedance. The variation in inactive EMG channels
could affect the reliability of the EMG-amplitude force esti-
mation.

In contrast, the neural-decoding approach was relatively
robust over sessions, which can be attributed to the nature
of the binary motoneuron discharge events. Specifically, the
neural-drive signals for the finger force prediction rely on
the binary motoneuron discharge events decomposed from
EMG signals. The binary representation mainly focuses on
the timing of neural events, which tends to be more consistent
despite variations in their amplitude or waveform character-
istics. In addition, the EMG signal variations are less likely
to affect the decoded neural-drive signals. This is because the
binary encoding does not rely on these properties but rather
on the detection of the occurrence of action potentials, thereby
maintaining consistency across different sessions. Moreover,
the EMG decomposition procedure can effectively remove
background noise and motion artifacts. The primary objective
of the FastICA algorithm is to identify and separate statis-
tically independent source components, which isolates actual
muscle activity from various noise sources by maximizing the
non-Gaussianity of the components. When we exclude source
signals with low silhouette values, those poorly separated
sources can be removed [37]. It is worth noting that it was
unexpected that the earlier derived separation matrices can
still reliably function on the new dataset despite variations
in the EMG signals. As shown in our earlier work [38], the
decomposition accuracy did decline after sustained muscle
activations. We believe that the nature of the neural-drive
calculation can tolerate inaccurate spike detections. Namely,
the populational MU firing rate averages the mean firing rate
of multiple MUs in a large window (e.g., 0.5 s), and any small
spike timing errors (considered low decomposition accuracy)
would not be reflected in the overall average firing rate profile.

Similar to the cross-session performance, the neural-drive
approach outperformed the EMG-amplitude approach in the
within-session force prediction performance. In addition to
the discussed factor of surrounding noise, the enhanced per-
formance can be primarily attributed to the effective process
of crosstalk among finger muscle compartments using the
neural-drive approach. Specifically, the spatial proximity of
finger muscle compartments often leads to signal crosstalk,
which consequently results in biased force predictions due
to either overestimation or underestimation of the muscular
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activities using the EMG-amplitude approach. Although the
influence of crosstalk can be reduced by the channel selec-
tion procedure, this interference may still be present in the
remaining channels [34]. As a comparison, the neural-drive
approach classified MUs specific to individual fingers. With
those specific MUs, we can ensure independent prediction
of neural-drive signals for each finger despite closely related
anatomical structures between finger muscle compartments.

C. Comparison of Protocols for Single-Finger and
Multifinger Force Prediction

We systematically investigated the finger force prediction
performance under two protocols. As shown in Fig. 7, the
overall prediction performance of single-finger trials under
Protocol 2 was superior to that observed under Protocol 1,
indicating that Protocol 2 was more effective in scenarios
involving isolated finger movements. However, this advantage
did not extend to multifinger tasks, where the prediction
performance for multifinger force tasks deteriorated under
Protocol 2. The primary reason for this discrepancy lies in the
differences in the training schemes employed by the two pro-
tocols. Under Protocol 2, the models were exclusively trained
using single-finger data. Although this approach optimized the
models for single-finger tasks, it inadvertently led to over-
fitting. Consequently, the models became highly specialized
for single-finger predictions but exhibited poor generaliza-
tion when applied to multifinger trials. In contrast, Protocol
1 adopted a more comprehensive training scheme. The models
were trained using a combination of both single-finger and
multifinger data. This inclusive approach enabled a more
balanced prediction capability, ensuring that the models could
perform well across both types of tasks. The model training
procedure under Protocol 1 minimized the risk of overfitting to
single-finger data, thereby enhancing the generalization ability
of the models.

D. Limitations

Although we have achieved promising cross-session results
with our developed neural-drive approach, it has several lim-
itations. For example, we only considered isometric finger
force. In future studies, we plan to validate our neural-drive
approach for the prediction of finger kinematics during move-
ments. In addition, our focus was limited to the three fingers,
excluding the picky finger and thumb. The picky finger was
not included because of substantial co-activation between the
picky and the ring fingers, which was difficult to separately
predict the forces of each finger. The thumb was excluded due
to its unique anatomy and movements which our forearm EMG
data cannot accurately capture. Future efforts could expand
data collection to include EMG signals from the intrinsic
muscles of the thumb, thereby enhancing the validation of our
neural-decoding approach for thumb force prediction. In addi-
tion, while the neural-drive method demonstrated accurate
and robust long-term finger force predictions, it is associated
with high computational time and memory utility. However,
the computational time (approximately 55 ms) is well within
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the real-time decoding constraint of below 100 ms for real-
time implementations. Finally, we did not address the effect
of muscle fatigue, which could impact the reliability of MU
decomposition due to drift of action potential waveforms.
In future studies, we plan to assess the performance of the
neural-drive approach under these challenging conditions.

V. CONCLUSION

In this study, we evaluated the long-term stability of finger
force predictions using our developed neural-drive approach.
Our neural-drive approach can outperform the EMG-amplitude
approach for both within-session and cross-session evalu-
ation protocols. In addition, we observed less amount of
cross-session performance degradation using our developed
approach than that using the EMG-amplitude approach. The
outcomes offer a reliable neural-decoding approach across
sessions. The robustness of our approach was clearly demon-
strated across various conditions, proving its potential for
practical applications where long-term reliability is critical.
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