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Long-Term Finger Force Predictions Using

Motoneuron Discharge Activities

Yuwen Ruan , Long Meng , and Xiaogang Hu

Abstract— Surface electromyogram (EMG) signals have
been a preferred modality for motor intent detections in the
fields of robotic control, rehabilitation, and health monitoring.
However, current EMG-based measurement techniques suffer
a degradation in performance cross session over time due
to factors such as shifts in electrode placement, changes
in muscle states, and environmental noise. To address this
challenge, we developed a novel neural-drive approach, capable
of robust cross-day predictions of individual finger forces.
Specifically, high-density EMG (HD-EMG) data were collected
from flexor and extensor muscles during single-finger and
multifinger tasks. The experimental procedure was repeated
three times (sessions), with an average interval of 6.58 days
between sessions. We first decomposed the EMG signals in a
session to obtain separation matrices that contained motor unit
(MU) information in the EMG signals. We then refined the
separation matrices that accurately reflected individual fingers.
The corresponding separation matrices were applied to EMG
signals in the other two sessions to derive the neural drive for
force predictions of individual fingers. Our results revealed that
the cross-session performance was comparable with the within-
session performance. In addition, the neural-drive approach
can outperform the conventional EMG-amplitude approach,
especially in the cross-session performance. Our developed
approach can enhance the long-term reliability of finger force
predictions and holds potential for various practical applications.

Index Terms— Cross sessions, finger force measurement, motor
unit (MU), neural drive, surface electromyogram (EMG).

I. INTRODUCTION

F
INGER force control plays an important role in the daily

activities of humans, from grasping objects to perform-

ing intricate tasks requiring dexterity and precision [1], [2].

The capacity to perform controlled finger forces is not only

fundamental to routine physical interactions but also critical

in specialized fields. For example, long-term finger force

prediction plays a crucial role in accurate control over assistive
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robotic hands, such as prostheses or exoskeletons, to achieve

smooth and accurate hand movement such as grasping, hold-

ing, and manipulating objects [3]. In stroke rehabilitation,

long-term monitoring and predicting finger forces can help

clinicians to evaluate neuromuscular recovery and adjust the

intensity of rehabilitation in a timely manner [4]. In gaming,

continuous finger force prediction enables users to manipulate

virtual objects with precise finger movements, facilitating the

implementation of virtual reality applications [5]. Therefore,

finger force predictions have attracted significant interest

among researchers seeking to enhance applications in diverse

fields such as prosthetic limb interactions [6], [7], rehabilita-

tion [8], [9], and human–machine interactions [10], [11], [12].

Traditionally, finger forces are directly measured using data

gloves embedded with integrated force sensors [13], [14].

Although this method offers a direct approach to capturing

force data, it comes with drawbacks. The bulky data gloves

can restrict natural hand movements, thereby compromising

user comfort and the accuracy of force measurement. These

limitations have led researchers to explore alternative methods

for predicting finger forces.

Finger forces are controlled by neural-drive signals, which

are neural commands transmitted from the brain to the muscles

and can be decoded from neural signals measured from the

brain or muscles [15]. Some previous studies [16], [17], [18]

have focused on advancing state-based decoding techniques

that identify brain states associated with finger movements

to decode finger gesture intentions using electroencephalo-

gram (EEG) signals. However, finger-specific force decoding

remains a challenge.

Alternatively, a promising way to decode motion intentions

is to use noninvasive surface electromyogram (EMG) signals

from the muscles. Compared with EEG signals, EMG sig-

nals have shown considerable potential with a considerably

high signal-to-noise ratio (SNR) [19], [20]. These signals

are generated through the mixture of a large number of

motor unit action potentials (MUAPs) across both tempo-

ral and spatial domains. Because of the direct correlation

between the number of MUAPs at a given time and the

intensity of descending neural-drive signals, EMG has been

used to interpret motion intentions of distinct gestures [21],

[22]. Furthermore, regression analyses have been applied to

establish a continuous relation between macroscopic EMG

features and finger forces [21], [23]. However, leveraging

macroscopic EMG features, such as amplitude, for force pre-

diction faces challenges due to signal crosstalk from adjacent

muscle groups, environmental noise, and the inherent dynamic

properties of MUAPs, including their superimposition and can-

1557-9662 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Penn State University. Downloaded on April 02,2025 at 00:50:00 UTC from IEEE Xplore.  Restrictions apply. 



4001910 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025

cellation. Such factors can bias the prediction of neural-drive

signals [24], leading to large estimation errors in finger force

predictions. In contrast, advancements in flexible high-density

EMG (HD-EMG) electrode recording techniques [25] offer a

more refined approach by capturing motor unit (MU) activities

at a microscopic level. This approach can track the discharge

events of motoneurons, which allows us to predict the descend-

ing neural-drive signals based on MU firing spike trains. The

firing rates of these MUs, which show a linear relation with

neural-drive signals, serve as a detailed microscopic feature

for predicting muscle forces [26], [27]. Although promising

results have been achieved, current neural-decoding research

on force prediction is limited to within-session evaluations.

In EMG-related applications, the performance of pretrained

models significantly degrades over session and time, primarily

due to factors such as variations in EMG characteristics over

time, shifts in electrode placement, and varying environmental

conditions [19]. These limitations necessitate frequent calibra-

tion of the models, which can be inconvenient in practical

scenarios, because the computational load is high or data

labels may not be available. To address these issues and

enhance decoder robustness, it is crucial to establish a robust

decoder viable for cross-session force predictions spanned over

multiple days, without the need of frequent recalibrations.

Specifically, we acquired HD-EMG data in three different

sessions, with an average interval of 6.58 days (±6.47 standard

deviation) between sessions, and participants performed either

single-finger or multifinger force production tasks. Data from

each session served as the training dataset, and the data

from the other two sessions were used as the testing dataset.

Using the training dataset, we first extracted the MU pool

using the fast independent component analysis (FastICA)

algorithm. Because it is inevitable that MUs of nontarget

fingers are recruited, we refined the MU pool by removing

MUs of nontarget fingers. The refined MU pool was then

used to predict finger forces across multiple sessions. Our

results show that our developed neural-decoding approach can

accurately predict single-finger and multifinger forces over

different sessions. The key novelty of our study is as follows.

1) We developed a robust neural-decoding approach based

on MU firing activity, and we showed that the novel

algorithm was capable of robust predictions of individual

finger forces across multiple days.

2) Our neural decoder enhanced the stability of EMG-based

intent prediction performance, which minimized the

need for frequent decoder recalibrations, making our

decoder more practical and user-friendly for everyday

use.

3) Our decoder was designed to predict dexterous finger

motor output at the individual finger and simultaneous

multifinger levels, which are essential for daily manual

tasks.

II. METHODS

Fig. 1 illustrates the framework of the neural-drive-based

force prediction. Neural-drive commands were sent from the

brain to motoneurons that innervated the finger flexor and

extensor muscle compartments. To extract these neural-drive

Fig. 1. Overview of the research framework.

signals, we first obtained the separation matrices containing

the MU pool firing information by decomposing the HD-EMG

signals of the flexor and extensor muscles. Because the

decomposed MU pool contained MUs of different fingers,

we refined the separation matrices to isolate MUs specific

to the target fingers. We then applied the refined separation

matrices directly to HD-EMG data in different sessions. The

obtained binary firing events were summed to derive the

neural-drive signal. We then predicted the forces of individual

fingers using regression functions.

A. Data Acquisition

1) Subjects: Eight neurologically intact subjects (five males

and three females), aged 21–35, participated in this study,

which was approved by the Institutional Review Board at

Pennsylvania State University. All subjects provided informed

consent in accordance with the approved protocols before the

experiment.

2) Experimental Setup: To record EMG signals from the

finger flexor and extensor muscles, we used two 8 × 16 elec-

trode arrays with a single-electrode diameter of 3 mm and an

interelectrode distance of 10 mm. These arrays were placed

on the anterior and posterior sides of the forearm, as shown in

Fig. 1. The position of each electrode array was determined by

palpating the finger muscles as the subjects flexed or extended

their fingers. The EMG signals were amplified and sampled

using the EMG-USB2+ system (OT Bioelettronica) with a

gain of 1000, a passband of 10–900 Hz, and a sampling rate

of 2048 Hz. The reference electrode was placed at the wrist.

To measure the flexion forces of the index, middle, and

ring fingers, we used three miniature load cells (SM-200N,

Interface) with a sampling frequency of 1000 Hz, as shown in

Fig. 1. During the data acquisition, the forearm was supported

in a neutral position, and the wrist was stabilized with two

stiff foam pads to minimize force transmission from the wrist

and other proximal joints.

3) Experiment Procedure: Before the main experiment,

we measured the maximum voluntary contraction (MVC)

finger flexion force. During the experiment, subjects tracked

a predefined force target with a pseudorandom pattern, in the

range of 0%–50% MVC for each finger. We selected this force
Authorized licensed use limited to: Penn State University. Downloaded on April 02,2025 at 00:50:00 UTC from IEEE Xplore.  Restrictions apply. 
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level because it covered the level of muscle activation in a

majority of the daily tasks while avoiding muscle fatigue.

Each subject performed two types of finger flexion trials:

single-finger trials and multifinger trials. In the single-finger

trials, only one finger followed the trapezoidal force pattern,

and the participants were instructed to avoid co-contraction

of other fingers. Subjects performed three repetitions of the

single-finger trials for the index, middle, and ring fingers.

In the multifinger trials, the index, middle, and ring fingers

were flexed simultaneously, comprising three multifinger trials.

Thus, each session included a total of nine single-finger trials

and three multifinger trials.

To assess the performance of neural-drive-based force pre-

diction cross sessions, three sessions were conducted for each

subject at varied time intervals (6.58 ± 6.47 days), depending

on the availability of the subjects.

B. Signal Preprocessing

To reduce noise, the EMG signals were initially filtered

using a fourth-order high-pass Butterworth filter with a cutoff

frequency of 20 Hz. Subsequently, motion artifacts were

eliminated using our previously established method [28].

C. Force Prediction Based on Neural Drive

1) Initial MU Extraction: The EMG signals of the

single-finger trials were used to form the preliminary MU pool.

We first selected the 60 most active channels with the highest

root-mean-square (rms) value out of the 128-channel EMG

signals for the extensor and flexor of each finger to reduce

computational load. The number of channels was determined

based on our previous work [29]. For each session, the rms of

each channel was calculated for every single-finger trial. The

results for the same finger trials were averaged, and the top

active 60 channels were identical cross sessions, which was

necessary for cross-session evaluations.

Motoneuron firing activities were obtained by decomposing

the 60-channel EMG signals using a previously developed

FastICA algorithm [30]. Detailed steps are provided in the

supplementary material. Briefly, we first extended the EMG

signals to increase the number of observations and whitened

the extended signals to remove the correlation between obser-

vations. Then, we performed FastICA to decompose the

signals and obtained the separation vectors and source signals

for individual MUs. Each separation vector represented an

MU, and the corresponding source signal reflected the spike

train of the MU. For binary classification, the source signals

were then transformed into a discharge event train using

the K-means++ clustering algorithm [31]. We removed low-

quality MUs. The silhouette distance of the cluster was then

computed, and separation vectors with a silhouette value below

0.5 were considered to be inaccurate. The inaccurate MUs

were eliminated. This process yielded the initial separation

matrices for individual fingers.

2) MU Pool Refinement: Due to the co-activation of finger

muscles, it is challenging to keep other fingers completely

inactive when flexing a specific finger. As a result, some

MUs in the separation matrix may correspond to MUs of

other fingers. To address this problem, a refinement process

Fig. 2. Cross-session flowchart of the neural-decoding algorithm. (a) Initial
MU extraction. (b) MU pool refinement. (c) Force prediction.

was applied to identify and exclude MUs not associated with

the target finger. This was done by comparing a correlation

between the discharge activity of each MU and the force

signals from the three fingers. MUs corresponding to other

fingers were removed, ensuring that the refined separation

matrix accurately reflected the target finger muscle activity.

Specifically, the initial separation matrix for finger i (index,

middle, or ring finger) was used to decompose every single-

finger trial, and we then obtained the firing rates of each

MU. For each MU in the MU pool, a linear regression was

performed between the firing rates and the force signals, and

we calculated the R2 value of the regression. If the R2 value

obtained from trials of other fingers was higher than that from

finger i , it was considered that the MU did not belong to finger

i , and the associated separation vector was removed from the

separation matrix of finger i , thereby giving us the refined

separation matrices specific to individual fingers.

3) Force Prediction: The refined separation matrix was used

to decompose the EMG signals, producing spike trains for each

MU in the MU pool. The spike trains from all MUs were then

summed to represent the populational firing rate, which was

the neural drive for finger force predictions.

The data were divided into training (one session) and testing

sets (two other sessions) to evaluate the force prediction per-

formance (Fig. 2). We multiplied the refined separate matrices

to the testing EMG data. The firing rate of each MU was

calculated. A moving window of 500 ms with a step size of

125 ms was used for the populational firing rate calculation.

The populational firing rate of each window was computed as

the sum of spike trains from all retained MUs in the window.

A Kalman filter was applied to the populational firing rate

to smooth the populational firing rate signals, using a system

matrix of 1, an observation matrix of 1, a system covariance of

0.1, and an observation covariance of 0.5. The corresponding

force signals were also smoothed using the same window.

To predict the forces of finger i , the populational firing

rates of the extensor and flexor were used, due to potential

co-activations of the muscle pairs. Specifically, a linear regres-

sion was performed between the populational firing rates and

force signals of the training dataset

Fi (t) = aDi,ext(t) + bDi,flx(t) + c (1)

Authorized licensed use limited to: Penn State University. Downloaded on April 02,2025 at 00:50:00 UTC from IEEE Xplore.  Restrictions apply. 



4001910 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025

where Fi (t) is the predicted force of finger i (i = index, mid-

dle, or ring) over time t ; Di,ext(t) is the extensor populational

firing rate of finger i ; Di,flx(t) is the flexor populational firing

rate of finger i ; and a, b, and c are the coefficients of the linear

regression.

The performance of the neural-drive-based force prediction

was then evaluated using the testing dataset. The prediction

performance was assessed by comparing the predicted force

with the actual force by calculating the coefficient of determi-

nation (R2) and RMSE.

4) Complexity Analysis: The computational complexity for

each 500-ms EMG segment during the testing process is

O(k · N · m), where k is the column dimension of the refined

separation matrix, which corresponds to the number of MUs

in the refined MU pool derived from the training data; N is the

number of the extended EMG channels; and m is the number

of data points in each segment. In this study, k = 41.51 ±

15.71, N = 600, and m = 1024.

D. Force Prediction Based on EMG-Amplitude

The force prediction based on conventional EMG amplitude

was also implemented for comparison.

1) EMG-Amplitude Calculation: We used the top 60 most

active channels for the EMG-amplitude-based force prediction,

and the same channel set is used for EMG decomposition in

the neural-drive method. The EMG amplitude was quantified

using rms values using the same windowing procedure as the

neural-drive method (a moving window of 500 ms with a

step size of 125 ms). The EMG amplitude of each window

was calculated as the average rms of the 60 channels of that

window.

2) Force Prediction: The same Kalman filter was applied to

smooth the rms values. The corresponding force signals were

also smoothed using the same windowing and filtering param-

eters. A linear regression was performed between the EMG

amplitude and force signals in the training set, as described in

the following equation:

Fi (t) = a Ai,ext(t) + bAi,flx(t) + c (2)

where Fi (t) is the predicted force of finger i (i = index,

middle, or ring); Ai,ext(t) is the extensor EMG amplitude of

finger i, Ai,flx(t) is the flexor EMG amplitude of finger i ; and

a, b, and c are the coefficients of the linear regression.

3) Complexity Analysis: The computational complexity for

each 500-ms segment during the testing process is O(n · m),

where n is the number of EMG channels and m is the number

of data points in each segment. In this study, n = 60 and

m = 1024.

E. Evaluation Protocols

We evaluated the performance of force prediction cross ses-

sions and within session. Two assignment protocols, Protocols

1 and 2, were applied for the assignment of the training and

testing sets. Specifically, for the force prediction on finger

i , the testing set of both protocols included single-finger

trials of finger i and multifinger trials. Protocol 1 included

both single-finger and multifinger trials in the training set,

while Protocol 2 only included single-finger trials. These

two protocols aimed to evaluate the robustness of the force

prediction model when trained on a comprehensive dataset of

a variety of tasks or a specific dataset of a single task.

1) Cross-Session Validation Protocol: For each subject, the

training and testing sets came from different sessions. The data

from each session was utilized as the training data, and the

data from the other two sessions served as the testing dataset

(Fig. 2). In Protocol 1, all the single-finger and multifinger

trials of finger i served as the training dataset. In Protocol

2, only the single-finger trials of finger i were employed

as the training dataset. The testing dataset included both

the single-finger trials and multifinger trials from the testing

sessions.

2) Within-Session Validation Protocol: We also performed

force prediction within a session to compare with the cross-

session predictions. Both the training and testing datasets

were derived from the same session. For each finger, there

were three single-finger trials and three multifinger trials in

a session. In Protocol 1, one out of the six trials served as

the testing dataset, and the remaining five trials formed the

training set. In Protocol 2, the testing dataset was the same

as Protocol 1, but only the single-finger trials of the training

dataset in Protocol 1 were used for training.

F. Statistical Analysis

The accuracy of force prediction based on the neural drive

and EMG amplitude was evaluated using the RMSE and R2

values. The RMSE and R2 values were analyzed using the

Friedman test and Wilcoxon signed-rank test because the data

did not follow a normal distribution. The significance level

was set to 0.05. The Holm–Bonferroni correction was applied

to avoid multiple-comparison errors.

III. RESULTS

A. Variability of EMG Signals Across Sessions

Fig. 3 presents the examples of the EMG-amplitude (rms)

distribution for single-finger trials cross sessions for the index

[Fig. 3(a)], middle [Fig. 3(b)], and ring [Fig. 3(c)] fingers. Both

the extensor and flexor muscles were presented. The red point

in each heatmap showed the peak EMG amplitudes. Although

the activation patterns for the same tasks were generally

consistent cross sessions, there were notable differences in

the location of the overall activation area. We quantified the

degree of similarity of the activation pattern using a 2-D

cross correlation between the same type of heatmaps cross

sessions. The average correlation coefficients of the heatmaps

cross session were 0.69 for the index finger, 0.74 for the

middle finger, and 0.75 for the ring finger. The Friedman test

demonstrated there were no significant differences among the

correlation coefficients between different sessions for the index

(χ2(2) = 2.62 and p = 0.2691), middle (χ2(2) = 2.62 and

p = 0.2691), and ring fingers (χ2(3) = 1.62 and p = 0.4437).

B. Representative Results of Force Prediction

Fig. 4 shows the representative predicted forces of the index

finger using the two methods. Due to the similarity among
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Fig. 3. Distribution of EMG amplitude (rms) when flexing (a) index, (b) middle, and (c) ring fingers in three different sessions. The red points are the
peak positions of the EMG amplitudes. (d) Two-dimensional correlation coefficient (average ± standard error) between heatmaps cross sessions for the index,
middle, and ring fingers.

Fig. 4. Exemplar results of index finger force predictions of a single
trial based on neural-drive method and EMG-amplitude method obtained in
(a) within-session mode with Protocol 1 and (b) cross-session mode with
Protocol 2.

the results of the within-session mode with Protocols 1 and

2 and the cross-session mode of Protocol 1, only the results

of the within-session mode of Protocol 1 were presented here.

Compared with the results of the EMG-amplitude method,

the predictions of the neural-drive method exhibited higher

accuracy values. In most training schemes and modes, the

forces predicted by the EMG-amplitude method deviated con-

siderably from the ground truth. However, the forces predicted

using the neural-drive method closely matched the actual

force values. This indicated that the neural-drive-based force

prediction had a better performance than the EMG-amplitude-

based force prediction.

C. Performance of Force Prediction Based on Neural Drive

Fig. 5 summarizes the performance of neural-drive-based

force prediction measured by RMSE across sessions [Fig. 5(a)]

and within a session [Fig. 5(b)]. The results of the correlation

of determination (R2) exhibited a consistent trend with the

RMSE; therefore, only the RMSE results were presented here.

The average RMSE of the cross-session mode was 8.28%

MVC, while the average RMSE of the within-session mode

was 6.43% MVC. The Wilcoxon signed-rank test showed

a significant difference between the force prediction perfor-

mance of the two modes (p = 0.0004).

For force predictions across sessions, the Friedman test

demonstrated significant differences among the different

training schemes for the index finger (χ2(3) = 12.15 and p =

0.0069), the middle finger (χ2(3) = 21.75 and p = 0.0001),

and the ring finger (χ2(3) = 11.85 and p = 0.0079). For

force predictions of all three fingers, “Protocol 1 single-finger

trials” demonstrated the best performance (index: (6.25% ±

0.15%) MVC, middle: (6.52% ± 0.16%) MVC, and ring:

(7.37% ± 0.24%) MVC). In contrast, the worst performance

was observed in “Protocol 2 multifinger trials” (index:

(10.97% ± 0.38%) MVC, middle: (9.46% ± 0.32%) MVC,

and ring: (12.08% ± 0.45%) MVC). The differences in

average RMSE between the best and worst protocols were

4.72% MVC (p = 0.0156) for the index finger, 2.94% MVC

(p = 0.0078) for the middle finger, and 4.71% MVC (p =

0.0156) for the ring finger.

For force prediction within sessions, there were still

significant differences among the various training schemes

for the index finger (χ2(3) = 14.55 and p = 0.0022),

middle finger (χ2(3) = 19.95 and p = 0.0002), and

ring finger (χ2(3) = 18.60 and p = 0.0003). The force

predictions for all three fingers were consistent. The

best performances were observed in “Protocol 2 single-

finger trials,” with results of (5.21% ± 0.29%) MVC for

the index finger, (5.13% ± 0.18%) MVC for the middle
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Fig. 5. Performance (RMSE average ± standard error) of neural-drive-based
force prediction with different training protocols for single-finger trials and
multifinger trials of the index, middle, and ring fingers across sessions (a) and
within a session (b). ∗: p < 0.05. ∗∗: p < 0.01.

finger, and (5.87% ± 0.22%) MVC for the ring finger.

Conversely, the worst performances occurred in “Protocol

2 multifinger trials,” with (8.60% ± 0.39%) MVC for the

index finger, (7.50% ± 0.28%) MVC for the middle finger,

and (9.63% ± 0.46%) MVC for the ring finger. The average

RMSE differences between the best and worst protocols were

3.39% MVC (p = 0.0156) for the index finger, 2.37% MVC

(p = 0.0078) for the middle finger, and 3.76% MVC (p =

0.0078) for the ring finger.

In summary, the neural-drive-based force prediction

algorithm demonstrated a robust performance across various

conditions. It maintained high accuracy and consistency across

sessions and within a session, adapted well to different types

of motor tasks, and performed reliably for different fingers.

D. Performance of Force Prediction Based on

EMG-Amplitude

Fig. 6 summarizes the performance of EMG-amplitude-

based force prediction measured by RMSE across sessions

[Fig. 6(a)] and within a session [Fig. 6(b)]. The trend observed

Fig. 6. Performance (RMSE average ± standard error) of EMG-am-
plitude-based force predictions with different training protocols for the
single-finger trials and multifinger trials of (a) index, middle, and ring fingers
across sessions and (b) within a session. ∗: p < 0.05. ∗∗: p < 0.01.

in the R2 results mirrored that of the RMSE; thus, we only

presented the RMSE results. Training schemes impacted the

prediction accuracy for EMG-amplitude-based force predic-

tion. The average RMSE for the cross-session mode was

11.96% MVC, while the average RMSE for the within-session

mode was 10.28% MVC. The Wilcoxon signed-rank test

showed a significant difference between force prediction per-

formance in the two modes (p = 0.0005).

Across sessions, significant differences were found

among the various training schemes for the index finger

(χ2(3) = 17.55 and p = 0.0005), middle finger (χ2(3) =

12.45 and p = 0.0060), and ring finger (χ2(3) =

12.30 and p = 0.0064). For the index finger, the best

performance was observed in “Protocol 2 single-finger trials”

[(8.17% ± 0.36%) MVC]. For middle and ring fingers, the

best performances were observed in “Protocol 1 multifinger

trials” (middle: (6.72% ± 0.32%) MVC and ring:

(7.73% ± 0.42%) MVC). The worst performances for the

three fingers occurred in “Protocol 2 multifinger trials” (index:

(38.21% ± 1.65%) MVC, middle: (15.32% ± 0.93%) MVC,

and ring: (15.04% ± 0.95%) MVC). The difference in

average RMSE between the best and worst protocols was

Authorized licensed use limited to: Penn State University. Downloaded on April 02,2025 at 00:50:00 UTC from IEEE Xplore.  Restrictions apply. 



RUAN et al.: LONG-TERM FINGER FORCE PREDICTIONS USING MOTONEURON DISCHARGE ACTIVITIES 4001910

Fig. 7. (a) R2 and (b) RMSE obtained with different training schemes of the neural drive and EMG amplitude. Each symbol represents an individual subject.
∗: p < 0.05. ∗∗: p < 0.01.

30.04% MVC (p = 0.0078) for the index finger, 8.60% MVC

(p = 0.0078) for the middle finger, and 7.31% MVC (p =

0.0078) for the ring finger.

Within sessions, there were significant differences among

different training schemes as well for the index finger (χ2(3) =

22.95 and p = 0.0000), middle finger (χ2(3) = 14.85 and p =

0.0019), and ring finger (χ2(3) = 13.35 and p = 0.0039)

based on the Friedman test. The force predictions for all three

fingers were consistent. The best performances occurred in

“Protocol 2 single-finger trials,” with results of (5.04% ±

0.25%) MVC for the index finger, (5.03% ± 0.30%) MVC

for the middle finger, and (5.34% ± 0.26%) MVC for the

ring finger. Conversely, the worst performances occurred in

“Protocol 2 multifinger trials,” with (37.53% ± 1.77%) MVC

for the index finger, (14.46% ± 0.99%) MVC for the middle

finger, and (12.62% ± 0.91%) MVC for the ring finger.

The average RMSE differences between the best and worst

protocols were 32.49% MVC (p = 0.0078) for the index

finger, 9.43% MVC (p = 0.0156) for the middle finger, and

7.28% MVC (p = 0.0156) for the ring finger.

In summary, the performance of force prediction of the

EMG-amplitude approach heavily depended on the training

protocol. The method showed low robustness when the training

scheme and types of tasks changed.

E. Comparison of the Neural-Drive Method and

EMG-Amplitude Method

We then compared the performance of the two different

methods in different settings. Fig. 7 illustrates the

summary results of different force prediction methods.

The performances were quantified by the correlation of

determination (R2) and RMSE. Fig. 7(a) presents the R2

values for each task. In most cases, R2 of force prediction

based on the neural-drive method was higher than that based

on the EMG-amplitude method (p < 0.05), indicating that the

neural-drive method more accurately utilized MU information

TABLE I

FRIEDMAN TEST RESULTS FOR R2
AND RMSE AMONG FOUR COM-

PARISON GROUPS (NEURAL DRIVE/EMG AMPLITUDE AND CROSS

SESSION/WITHIN SESSION) IN EACH TRAINING SCHEMES

(∗ : p < 0.05 AND
∗∗ : p < 0.01)

to predict forces. As shown in Fig. 7(b), the RMSE obtained

using the neural-drive method was lower than that of the EMG-

amplitude method (p < 0.05). In addition, the RMSE for the

eight subjects was more consistent when using the neural-drive

method, indicating that this method consistently predicted

forces accurately across subjects. This demonstrated the supe-

rior performance and robustness of the neural-drive method.

According to Table I, for the four different training schemes,

significant differences were observed among the different

training models according to the Friedman test in both R2

and RMSE. According to the Wilcoxon signed-rank test,

in all the cases except Protocol 2 of single-finger trials in

the within-session mode, there were significant differences

between the R2 obtained by the neural-drive method and the

EMG-amplitude method (Table II). According to Table III,

for the neural-drive method, there were significant differences

between the performance in cross-session mode and within-

session mode in both R2 and RMSE. For EMG amplitude with

all the training schemes except for using Protocol 2 to test the

multifinger trials, there were significant differences between

cross-session mode and within-session mode in both R2 and

RMSE. However, for the “Protocol-2 multifinger trials,” both

cross-session and within-session force prediction based on the

EMG-amplitude method performed significantly worse than

those based on the neural-drive method.
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TABLE II

WILCOXON SIGNED-RANK TEST RESULTS ( p-VALUE) FOR R2
AND RMSE

BETWEEN NEURAL-DRIVE METHOD AND EMG-AMPLITUDE METHOD

(∗ : p < 0.05 AND
∗∗ : p < 0.01)

TABLE III

WILCOXON SIGNED-RANK TEST RESULTS ( p-VALUE) FOR R2
AND RMSE

BETWEEN CROSS-SESSION AND WITHIN-SESSION TASKS

(∗ : p < 0.05 AND
∗∗ : p < 0.01)

The testing process of each 500-ms EMG segment using

the neural-drive method required an average of 55.43 ms and

9.67 MB of memory, whereas the EMG-amplitude method

required an average of 0.83 µs and 18.30 bytes of memory.

In summary, the neural-drive method outperformed the

EMG-amplitude method in force prediction based on EMG

signals, demonstrating superior accuracy and robustness.

In most cases, the force prediction performance within a

session was better than that cross sessions. However, the

high decoder accuracy is associated with the cost of high

computational complexity.

IV. DISCUSSION

In this study, we developed a robust neural-decoding

approach feasible for multiday motor intent predictions.

We evaluated the decoder performance for within-session

and cross-session finger force predictions, to demonstrate the

viability of this approach for practical use. Our results revealed

that our method could achieve comparable results to previous

research [27], [29] in within-session force predictions, and

more importantly, we found that our decoder maintained

stable performance in cross-session conditions. Specifically,

we obtained EMG data across three sessions following the

same procedures, decomposed the data from one session using

the FastICA algorithm, and refined the MU pool for accurate

finger force predictions. We then applied the refined separation

matrix to the EMG signals of the other two sessions to obtain

cross-session neural-drive signals in a real-time manner, which

were mapped to individual finger forces using a regression

function. Compared with the EMG-amplitude approach, our

neural-drive method consistently achieved high cross-session

prediction performance, demonstrating robustness and reliabil-

ity for long-term neural-machine interaction without the need

for frequency recalibrations.

A. Comparison With Previous Studies

Previous studies have aimed to improve the accuracy and

robustness of EMG-based finger force prediction. The majority

of studies focused on finger force predictions within a single

recording session. For example, an earlier study [32] per-

formed force prediction based on EMG amplitude (root mean

square) by exploring different channel merging and selection

approaches. Their models achieved average RMSE values

around 6%–10% MVC. Our models achieved an average

RMSE of around 5%–10% MVC, and the best-performance

protocol achieved an average RMSE of 5.40% MVC. A pre-

vious work [33] combined accelerometry signals with EMG

features for finger force prediction. Their model achieved

an average R2 of 0.93 with the optimal feature set. Our

neural-drive method was based on EMG alone and achieved

an average R2 of 0.90 with the optimal protocol. An earlier

work [34] also employed the neural-drive method to predict

multifinger forces within a session. They constructed the MU

pool using data from single-finger trials along with a subset

of multifinger trials and then applied this MU pool to predict

forces in multifinger trials, achieving an average R2 of 0.72.

In our approach, the MU pool was only constructed using

single-finger trials, and the average R2 values for multifinger

trials were 0.87 (Protocol 1) and 0.86 (Protocol 2). In the

within-session mode, our neural-drive-based finger force pre-

diction approach achieved performance comparable to that of

previous studies. However, research on cross-session finger

force prediction remains scarce. An earlier study [35] demon-

strated the consistency of MU spike trains across sessions

using elbow flexion EMG data from a single subject, pro-

viding preliminary evidence for the feasibility of applying the

neural-drive-based approach to cross-session force predictions.

Building on this foundation, our study further validated the

superiority of the neural-drive approach in cross-session force

predictions through individual finger force estimation tasks.

In earlier studies [27], [29], [36], we applied the neural-

drive-based approach to both dynamic joint angle estimation

and isometric force estimation within sessions. We tested

various conditions, including flexion and extension movements

for each finger, single-finger and multifinger trials, and dif-

ferent electrode placements. These previous results support

the effectiveness of the approach in achieving continuous

and reliable joint kinematic predictions. In the current study,

we extended the neural-drive method to cross-session force

predictions, and we implemented two protocols to assess

the robustness of the approach across four different cases.

The results show that the neural-drive approach significantly

enhances the long-term reliability of finger force predictions

and holds promise for a wide range of practical applications.

Therefore, these studies together provide valuable insights into

the efficacy and performance of the neural-drive approach for

predicting finger kinematic features.

B. Comparison of EMG-Amplitude and Neural-Drive

Approaches for Force Prediction

For the EMG-amplitude approach, the force prediction

performed better in the within-session evaluation compared
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with the cross-session evaluation. This was because EMG

signals were easily affected by the following factors. First, the

electrode position could have shifted between sessions due to

inconsistent electrode reattachment, which can be indicated by

the shift of activation areas across sessions in Fig. 3. Corre-

spondingly, the electrode shifts can potentially lead to different

overall EMG amplitude over sessions. Second, changes in

the muscle physiological properties due to exercise history

or hydration levels over time could contribute to the varia-

tions of EMG amplitude observed between sessions. Third,

background noise differences across sessions may also lead to

varying SNRs, further affecting the cross-session force predic-

tion performance. Finally, the outlier electrode channels may

be different across sessions due to variations in skin-electrode

contact impedance. The variation in inactive EMG channels

could affect the reliability of the EMG-amplitude force esti-

mation.

In contrast, the neural-decoding approach was relatively

robust over sessions, which can be attributed to the nature

of the binary motoneuron discharge events. Specifically, the

neural-drive signals for the finger force prediction rely on

the binary motoneuron discharge events decomposed from

EMG signals. The binary representation mainly focuses on

the timing of neural events, which tends to be more consistent

despite variations in their amplitude or waveform character-

istics. In addition, the EMG signal variations are less likely

to affect the decoded neural-drive signals. This is because the

binary encoding does not rely on these properties but rather

on the detection of the occurrence of action potentials, thereby

maintaining consistency across different sessions. Moreover,

the EMG decomposition procedure can effectively remove

background noise and motion artifacts. The primary objective

of the FastICA algorithm is to identify and separate statis-

tically independent source components, which isolates actual

muscle activity from various noise sources by maximizing the

non-Gaussianity of the components. When we exclude source

signals with low silhouette values, those poorly separated

sources can be removed [37]. It is worth noting that it was

unexpected that the earlier derived separation matrices can

still reliably function on the new dataset despite variations

in the EMG signals. As shown in our earlier work [38], the

decomposition accuracy did decline after sustained muscle

activations. We believe that the nature of the neural-drive

calculation can tolerate inaccurate spike detections. Namely,

the populational MU firing rate averages the mean firing rate

of multiple MUs in a large window (e.g., 0.5 s), and any small

spike timing errors (considered low decomposition accuracy)

would not be reflected in the overall average firing rate profile.

Similar to the cross-session performance, the neural-drive

approach outperformed the EMG-amplitude approach in the

within-session force prediction performance. In addition to

the discussed factor of surrounding noise, the enhanced per-

formance can be primarily attributed to the effective process

of crosstalk among finger muscle compartments using the

neural-drive approach. Specifically, the spatial proximity of

finger muscle compartments often leads to signal crosstalk,

which consequently results in biased force predictions due

to either overestimation or underestimation of the muscular

activities using the EMG-amplitude approach. Although the

influence of crosstalk can be reduced by the channel selec-

tion procedure, this interference may still be present in the

remaining channels [34]. As a comparison, the neural-drive

approach classified MUs specific to individual fingers. With

those specific MUs, we can ensure independent prediction

of neural-drive signals for each finger despite closely related

anatomical structures between finger muscle compartments.

C. Comparison of Protocols for Single-Finger and

Multifinger Force Prediction

We systematically investigated the finger force prediction

performance under two protocols. As shown in Fig. 7, the

overall prediction performance of single-finger trials under

Protocol 2 was superior to that observed under Protocol 1,

indicating that Protocol 2 was more effective in scenarios

involving isolated finger movements. However, this advantage

did not extend to multifinger tasks, where the prediction

performance for multifinger force tasks deteriorated under

Protocol 2. The primary reason for this discrepancy lies in the

differences in the training schemes employed by the two pro-

tocols. Under Protocol 2, the models were exclusively trained

using single-finger data. Although this approach optimized the

models for single-finger tasks, it inadvertently led to over-

fitting. Consequently, the models became highly specialized

for single-finger predictions but exhibited poor generaliza-

tion when applied to multifinger trials. In contrast, Protocol

1 adopted a more comprehensive training scheme. The models

were trained using a combination of both single-finger and

multifinger data. This inclusive approach enabled a more

balanced prediction capability, ensuring that the models could

perform well across both types of tasks. The model training

procedure under Protocol 1 minimized the risk of overfitting to

single-finger data, thereby enhancing the generalization ability

of the models.

D. Limitations

Although we have achieved promising cross-session results

with our developed neural-drive approach, it has several lim-

itations. For example, we only considered isometric finger

force. In future studies, we plan to validate our neural-drive

approach for the prediction of finger kinematics during move-

ments. In addition, our focus was limited to the three fingers,

excluding the picky finger and thumb. The picky finger was

not included because of substantial co-activation between the

picky and the ring fingers, which was difficult to separately

predict the forces of each finger. The thumb was excluded due

to its unique anatomy and movements which our forearm EMG

data cannot accurately capture. Future efforts could expand

data collection to include EMG signals from the intrinsic

muscles of the thumb, thereby enhancing the validation of our

neural-decoding approach for thumb force prediction. In addi-

tion, while the neural-drive method demonstrated accurate

and robust long-term finger force predictions, it is associated

with high computational time and memory utility. However,

the computational time (approximately 55 ms) is well within
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the real-time decoding constraint of below 100 ms for real-

time implementations. Finally, we did not address the effect

of muscle fatigue, which could impact the reliability of MU

decomposition due to drift of action potential waveforms.

In future studies, we plan to assess the performance of the

neural-drive approach under these challenging conditions.

V. CONCLUSION

In this study, we evaluated the long-term stability of finger

force predictions using our developed neural-drive approach.

Our neural-drive approach can outperform the EMG-amplitude

approach for both within-session and cross-session evalu-

ation protocols. In addition, we observed less amount of

cross-session performance degradation using our developed

approach than that using the EMG-amplitude approach. The

outcomes offer a reliable neural-decoding approach across

sessions. The robustness of our approach was clearly demon-

strated across various conditions, proving its potential for

practical applications where long-term reliability is critical.
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