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Robust and Lightweight Decoder for Unsupervised
Multi-Finger Force Predictions Towards the Internet
of Medical Things-based Applications

Long Meng and Xiaogang Hu, Senior Member, IEEE

Abstract— Finger force monitoring has become increasingly
prevalent in the field of the Internet of Medical Things (IoMT) as
a key indicator of muscle strength and health status, facilitating
remote rehabilitation and personalized health monitoring.
However, existing methods are limited by inaccurate decoding
performance or complex procedures when derived in a
supervised manner. To address these challenges, we developed a
novel unsupervised approach featuring a robust and lightweight
neural-drive decoder for multi-finger force predictions. High-
density surface electromyogram (SEMG) signals were recorded
from the finger extensor muscles during isometric finger
extension tasks. Each MU was then assigned a probability
indicating its association with the target finger, based on its mean
firing rates during the activation periods of individual fingers.
MUs with probabilities exceeding a predefined threshold were
retained for the final force prediction. Our results demonstrate
that the neural-drive decoder achieved a computation time of
68.83+13.63 ms, making it suitable for real-time applications.
Furthermore, our decoder outperformed the SEMG-amplitude-
based approach (R?: 0.79+0.039 vs. 0.64+0.080, root mean square
error: 4.89+0.73 vs. 7.31+1.88 % of maximum force, Pearson
correlation coefficient: 0.87+0.028 vs. 0.76+0.06, mean absolute
error: 3.86+0.62 vs. 6.08+1.51 % of maximum force). The
developed neural decoder demonstrated advantages over the
state-of-the-art neural decoders in terms of accuracy, training
procedures, and practicality. Additionally, our approach
exhibited robust performance across various probability
thresholds, data sources, and background noise, highlighting its
potential for finger force monitoring applications in diverse
IoMT scenarios.

Index Terms—Finger force monitoring, hand function,
unsupervised neural decoding, Internet of Medical Things
(IoMT), finger co-activations.

This study was supported in part by the National Science Foundation
(CBET-2246162, 11S-2330862, 11S-2319139) and the Department of Defense
(W81XWH2110185). (Corresponding author: Xiaogang Hu,).

Long Meng is with the Department of Mechanical Engineering,
Pennsylvania State University-University Park, PA, USA (e-mail:
Imm7405@psu.edu).

Xiaogang Hu is with the Department of Mechanical Engineering,
Pennsylvania State University-University Park, PA, USA, and also with the
Departments of Kinesiology, and Physical Medicine & Rehabilitation, the
Huck Institutes of the Life Sciences, and the Center for Neural Engineering,
Pennsylvania State University-University Park, PA, USA (e-mail:
xxh120@psu.edu).

[. INTRODUCTION

INGER force control is a critical metric for assessing

muscular strength and health. Finger force monitoring

has become increasingly popular in the field of Internet
of Medical Things (IoMT), which is the systematic integration
of the Internet of Things (IoT) technologies and MedTech
tools [1]. It has the potential to enhance remote rehabilitation
and personalized health monitoring. Normal hand function
guarantees manual dexterity for coordinated and skilled
movements, enabling precise control for a variety of daily
activities. However, individuals with musculoskeletal
disorders, such as stroke [2], [3], spinal cord injury [4] or
rheumatoid arthritis [5], often experience impaired hand
function, including reduced force strength. The impairment or
loss of hand function greatly impacts the quality of life, as it
affects the ability to perform daily tasks independently. These
individuals typically require assistance for normal daily living.
Generally, isometric finger force control can indicate the level
of independence in activities of daily living (ADL) [6], [7] and
is associated with the upper-limb function and performance
tests [8], [9]. Finger force monitoring plays a crucial role in
the IoMT framework by enabling continuous assessment of
the skeletal muscle conditions [10]. This is especially
important for individuals undergoing rehabilitation due to
neurological or musculoskeletal conditions. Continuous
monitoring enables early detection of changes in hand
function, which is vital for timely adjustment of intervention
strategies [10]. This technology not only supports remote
rehabilitation by providing detailed, real-time feedback to both
patients and therapists but also enhances personalized health
monitoring [11]. Accordingly, physicians and therapists can
design, adjust, and optimize rehabilitation programs more
effectively, leading to better patient outcomes. Additionally,
the ability to monitor finger force remotely reduces the need
for frequent hospital visits, making the rehabilitation process
more convenient for patients [12].

Most studies employed data gloves integrated with force
sensors for finger force monitoring [5], [12], [13], [14], due to
their ease of use and implementation. However, several
limitations must be considered before use: 1) Data gloves can
be cumbersome and interfere with natural hand movements,
reducing comfort and affecting the accuracy of hand
monitoring; 2) Achieving an optimal fit for a data glove,
crucial for ensuring measurement accuracy, is challenging; 3)
Data gloves may be wunsuitable for specific clinical
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populations, such as individuals with an arm amputation.
Considering these limitations, researchers are exploring
alternative approaches for finger force monitoring. Extracting
neural-drive signals (i.e., descending commands from the
brain to the muscles) from multiple sources, including the
brain [15] and muscles [16], is a promising method to predict
finger forces. Specifically, many studies [17], [18], [19], [20]
focused on developing and optimizing state-based decoding
techniques to enhance motion intention performance
recognition by distinguishing various brain states related to
finger movements. However, the reliance of these studies on
invasive techniques and animal models necessitates further
validation, posing barriers to widespread use. Although non-
invasive brain-machine interface (BMI) techniques [21], [22]
using electroencephalogram (EEG) signals have been
developed for finger force decoding, they face challenges such
as low robustness, mobility limitations, and user discomfort
issues. Additionally, scalp EEG generally has a low signal-to-
noise ratio, complicating the discrimination of various brain
activities [23].

Alternatively, surface electromyogram (sEMG), collected
from the skin surface, serves as a promising physiological
signal with a relatively high quality and can be easily
employed to capture neural-drive signals. SEMG signals are
formed by the temporal and spatial summation of hundreds of
motor unit action potentials (MUAPs) that originate from
motor unit (MU) activations [24]. The number of MUAPs in a
certain timeframe correlates with the intensity of the
descending neural drive signal to the muscles. This makes
sEMG signals suitable for motion intention decoding [25],
[26]. A prevailing strategy for finger force predictions
involves performing regression analyses to continuously map
representative features (e.g. SEMG amplitudes) to finger force
[26], [27]. However, finger force prediction using
macroscopic features is constrained by crosstalk between
adjacent muscles or muscle compartments, motion artifacts,
MUAP superimposition, and background noise. These sources
of interference can lead to under- or over-estimation errors,
thereby degrading the accuracy of finger force predictions.

In contrast, the advent of flexible high-density sSEMG (HD-
SEMGQG) electrodes facilitated the development of finger force
prediction from a microscopic perspective at the MU level
[28]. Generally, the spinal motoneurons receive excitatory
neural input from the brain, and the populational MU firing
rate is proportional to the neural drive. The populational firing
rate, closely associated with finger forces, has been identified
as a preferred feature for continuous and concurrent prediction
of finger force. To obtain a finger-specific MU set, one
prevailing strategy [29] was to decompose the sEMG data
during the movement of a target finger. However, non-target
fingers may be co-activated biomechanical and neural
coupling across fingers, thereby leading to non-target MUs
being unintentionally included in the target-finger MU set.
This can lead to inaccurate predictions of target finger motor
output. To enhance the MU set specificity, several studies
[30], [31], [32] required subjects to intentionally avoid co-
activations of non-target fingers and applied a MU refinement
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Fig. 1. General framework of the unsupervised neural-drive approach
for multi-finger force predictions. An 8x20 HD-sEMG electrode
array was attached to the forearm muscle for sSEMG data collection.
We first decomposed the SEMG data to form a MU pool for the
target finger. Given that the MU pool contains plenty of MUs
associated with non-target fingers, we assigned each MU a
probability to indicate its degree of association with the target finger.
Then, we performed the MU selection procedure to retain MUs that
exceeded the predefined probability threshold. The retained MUs
were used for finger force predictions.

procedure to exclude non-target finger MUs. However, as it
was inherently difficult to completely avoid co-activations of
non-target fingers, this approach was challenging to
implement in practice. Even with careful instruction and
training, it still required significant time and effort to
successfully obtain such single-finger data. In addition, the
MU refinement procedure in those studies retained MUs
closely associated with the target-finger force without
considering the degree of correlation, potentially retaining
interfering MUs. Furthermore, the MU refinement procedure
was conducted in a supervised manner, relying on finger force
data to calculate MU correlation. This limited the algorithm
applicability to individuals with impaired motor functions,
such as amputees and stroke survivors. Recently, a promising
unsupervised neural decoder was developed via a two-stage
MU refinement procedure (1. MU clustering and labeling, and
2. MU weighting). However, single-finger data were still
required for the MU extraction. Moreover, the two-stage MU
refinement procedure could benefit from further simplification
to enhance its efficiency and applicability. An alternative
unsupervised neural decoder [34] attempted to share MUs
obtained from non-target fingers. However, this sharing
procedure significantly increased the number of MUs used for
finger force predictions, leading to high computation time,
which are infeasible for real-time applications. Additionally,
MU initial sources were still extracted from single-finger
trials. Consequently, our study was motivated by the need for
an accurate and efficient unsupervised neural-drive decoding
approach to monitor finger forces in IoMT, with the aim of
simplifying the data requirements for decoder training,
enhancing the accuracy of force prediction, and ensuring
robustness against non-target MUs and variations in
background noise.
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Accordingly, we introduced a new probability-based
strategy, as illustrated in Fig. 1. Specifically, we performed
initial MU extraction directly using HD-sEMG data when
multiple fingers were active. Unlike previous study [30], the
raw MU pool obtained from the multi-finger data included a
large number of MUs associated with multiple fingers.
Correspondingly, we developed an effective probability-based
strategy to refine the MU pool. The probability of a MU being
related to the target finger was calculated based on the average
firing rate distribution during the desired activation periods of
each finger. Then, MUs were retained if the probability was
above a predefined threshold. Our developed approach can
achieve an accurate prediction performance of multiple finger
forces with strong generalization across various probability
thresholds, background noise and data sources for initial MU
extraction and probability calculation, which has the potential
to be implemented in real-time IoMT applications.

The main contributions of the current study include:

1) We developed a novel unsupervised neural-drive
decoding approach for multi-finger predictions that achieved
consistently high prediction accuracy, suitable for scenarios
where finger forces were either unmeasurable or inconvenient
to obtain, such as amputees controlling their prostheses.

2) Our decoder training eliminated the need for isolated
single-finger tasks by allowing co-activations of non-target
fingers. This greatly simplified the data collection process,
making the training setup more efficient and less restrictive.

3) The neural decoder was characterized by strong
robustness against interference from non-target MUs, task
variations, and background noise. This robustness was
consistent across a wide range of probability thresholds.

4) The computation time and required computational
resources were suitable for real-time applications in loMT.

II. MATERIALS

A. Subject Information

For this experiment, we enrolled seven participants,
including six males and one female, aged between 21 and 35
years, with no reported history of muscular or neurological
conditions. They were either faculty members or graduate
students at a university. Before participating, subjects signed
an informed consent form to acknowledge their
comprehensive understanding of and agreement to the
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Fig. 2. Multi-finger force trajectories. (a) The two-finger trajectory.
The plateau periods are 2 s-4 s and 8 s-10 s for the first finger and
the second finger, respectively. (b) The three-finger trajectory. The
plateau periods are 2 s-4 s, 8 s-10 s, and 14 s-15 s for the first,
second, and third fingers, respectively.

research objectives, their rights and potential risks. This study
protocol has been approved by the Institutional Review Board
of the Pennsylvania State University (Approval Number:
STUDY00021035).

B. Data Acquisition

In the experimental setup, subjects were free to adjust the
chair height for optimal comfort. Their forearms were
positioned neutrally on the table, and their wrists were kept in
a neutral position to minimize contamination of finger force
measurements.

1) Force Measurement

The experiment involved four fingers (i.e., index, middle,
ring, and pinky fingers). Each finger was fastened to a
miniature load cell (SM-200N, Interface) for force
measurement, which recorded at a sampling frequency of 1000
Hz. At the beginning of the experiment, subjects were
instructed to perform their maximal voluntary muscle
contraction (MVC) in the extension direction using each
finger sequentially, which was used to normalize the forces of
the corresponding fingers. Note that the MVC normalization
procedure was employed to ensure forces from different
fingers of different subjects fell within a unified range,
allowing for intuitive comparison and presentation. In
practice, we do not need to measure the MVC for the
normalization procedure. Previous studies have reported a
strong enslaving effect between the ring and pinky fingers
[35], [36], [37]. Based on the sEMG recordings, we also

(b) Testing procedure
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(a) Training and refinement procedures

Fig. 3. Flowchart of the unsupervised algorithm for neural decoding. For finger [, the channels and corresponding separation matrix for (b) the
testing procedure were obtained from (a) the training and refinement procedures, where | € {index, middle,ring — pinky}.
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observed similar activation patterns in the extensor digitorum
communis (EDC) muscle compartments of the ring finger and
the pinky finger [38]. Therefore, we required subjects to
extend the ring and pinky fingers simultaneously, with their
forces aggregated as the ring-pinky finger [30]. As shown in
Fig. 2, the multi-finger forces included two-finger trials and
three-finger trials. A total of 24 (3 combinations X 8§
trials/combination) trials were performed for the two-finger
task with a duration of 12 s. The sequence of the two involved
fingers was randomly assigned (Fig. 2(a)). Each finger
followed a trapezoid trajectory in succession with a 1 s rest
provided between trajectories, similar to that of the three-
finger task. A total of 8 trials were performed for the three-
finger tasks with a duration of 18 s. For a natural interaction,
subjects performed the multi-finger tasks based on their habits,
without specific requirements such as avoiding the co-
activation of non-target fingers.

2) sEMG Data Acquisition and Preprocessing

To reduce skin-electrode impedance, we cleaned the
extensor digitorum communis (EDC) muscle with alcohol
pads. Then, as shown in Fig. 1, an 8 x 20 high-density
electrode array (3 mm diameter, 10 mm inter-electrode
distance) was attached to the EDC muscle. The array
placement area was determined by palpating the EDC muscle
during finger extensions. During the experiment, monopolar
SEMG data were collected at a sampling frequency of 2048 Hz
using the EMG-USB2+ (OT Bioelettronica, Torino, Italy) with
a gain of 1000 and a pass band of 10-900 Hz. Subsequently,
we applied an sEMG-specific artifact removal approach [39]
to eliminate motion artifacts with a maximal fidelity of sSEMG
signals preserved.

III. METHODS

A. Unsupervised Neural Decoding Algorithm

As shown in Fig. 3, our developed algorithm consisted of
two main parts: 1) the training and refinement procedures, and
2) the testing procedure. For a fair comparison with the
previous study, we adopted the same validation strategy
(stratified 4-fold validation protocol) to avoid the in-sample
optimization bias. Multi-finger trials were divided into the
training dataset (three folds for the channel selection, initial
MU extraction, and MU refinement) and the testing dataset
(one fold for the performance evaluation). Each fold took
turns to serve as the testing data, and we obtained results from
all four folds, which were then averaged as the results of

predictions, we first obtained the raw MU pool (corresponding
separation matrix: B;; ) using the FastICA-based sEMG
decomposition for finger [, where | € {index, middle, ring —
little}. Then, we conducted the probability-based MU pool
refinement procedure to obtain the refined MU pool
(corresponding separation matrix: B,;) by calculating the
probability of each MU and retaining those exceeding a
predefined threshold. Instead of using the FastICA-based
decomposition algorithm, we directly applied B,; to
decompose the testing dataset for potential real-time
applications. The detailed steps are described below.
1) Initial MU Extraction
The initial MU extraction was performed following the
flowchart shown in Fig. 4. As suggested by previous
studies [24], [40], [41], [42], we conducted the initial MU
extraction using the FastICA algorithm [43] because of its
high computational efficiency and decomposition
accuracy. For finger [, we first calculated the average root
mean square (RMS) value of sSEMG signals during the
plateau period of this finger across the training dataset
with finger [ activated. Then, we ranked the 160 channels
by RMS values in descending order. The 60 channels with
the highest RMS values were selected for decomposition
[30]. The channel selection procedure can improve
computational  efficiency without sacrificing the
decomposition accuracy [24]. To increase the number of
observations, we performed the channel extension by a
factor of 10 [30]. The extended signals were then
whitened to reduce the inter-observation correlation.
Lastly, we applied the FastICA algorithm to decompose
the whitened signals. The parameter setting of the
FastICA algorithm was based on previous studies [24],

[30]; Specifically, the contrast function G (x) = §x3 was

used for fast convergence. The number of iterations was
set to 200 with K-means++ applied for the clustering
procedure. Because not all decomposed MUs were of
high quality, we removed those with low silhouette (SIL)
values, a metric correlated with decomposition accuracy.
The SIL threshold was set as 0.5 to ensure decomposition
accuracy while reserving sufficient MUs for neural-drive
estimation. In addition, among the decomposed MUs,
some MUs may be duplicates due to the channel-
extension and iterative separation procedures. Therefore,
we identified duplicate MUs if over 80% of their
synchronized spike trains matched within a 2.5 ms
window for any pair of MUs [30]. The duplicate MU with

individual subjects. To implement multi-finger force .

) P € a smaller SIL value was removed. After the low-quality
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Fig. 4. Initial MU extraction. [ € {index, middle, ring — pinky}.

Authorized licensed use limited to: Penn State University. Downloaded on April 02,2025 at 00:52:21 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2024.3520990

5

\ DecomposedMUs 3 /' o, vy separation vector  Training dataset SPike trains and time Kalman-filtered 0 )
1 MU e ¥ A E ! courses of firing rates|| courses of firing rates .. et |

. I I
MU 1 B2} e, €11 W _ . ([l

______________ - Chl 60~ W 'M =i ) 8 24 8.10 1416 Softmax
: 0 9 18 . . P target
MU, @ Jriat, SR~ o [T

‘—I\_/[ij— o e i k Chl 60 : ‘0 5 10 E 2 4 8 10 Retain MU, | Discard MU,
! separation vectors! "o ” " . i . i
:MU 1 : . 0 5 1i0 : el . (f P, 11rge ™ Prure) | (Otherwise)
s s, 1 200 400 600 - chnlt , rialn
: : Extended Channel | " 2" Chl GOM =0m 10 > "I"ime (ss) 10
! 200 400 600 - W Target Finger Plateau I Non-Target Finger2 Plateau
i Extended Channel, Time (s) Time (5) Non-Target Finger1 Plateau

MU pool refinement

Decompose training dataset using one separated vector fromB;; —) Calculate the MU probability for the target finger

Fig. 5. MU pool refinement. [ € {index, middle, ring — pinky}, and pyp,.s denotes the probability threshold.

and duplicate MU removal procedure, the decomposed
MUs were pooled together to form the raw MU pool. The
corresponding separation vectors were concatenated as a
separation matrix (termed B, ). Detailed algorithmic
steps are presented in Section A of the supplementary
material.

2) MU Pool Refinement

As at least two fingers were activated in each multi-finger
trial and co-activations were allowed, the inclusion of MUs
associated with non-target fingers was inevitable. Therefore,
we conducted an MU pool refinement procedure to identify
and exclude these MUs based on their probabilities of
association with the target finger. As shown in Fig. 5, the
following steps were conducted:

Step 1: Apply the separation matrix (B, ;) to decompose the
training dataset. Although the FastICA algorithm is efficient
for sSEMG decomposition, the computation time remained too
high to satisfy real-time implementations. Therefore, we
directly employed the separation matrix By, to decompose
sEMG signals and obtain the spike train &;,,; (i =
1,2,..,ny;; k = 1,2,...,m), where ny; denotes the number of
separation vectors in B, ;, m denotes the number of trials used
in the training dataset.

Step 2: Convert t;; 1; to the time course of firing rates
(fir11)- The spike train t;; 1; was segmented using a 0.5-s
sliding window with a 0.1-s sliding step. Then, the firing rate
within each sliding window was calculated and concatenated
over time as f x 1;.-

Step 3: Smooth the time course of firing rates. The obtained
fir1 was then smoothed using a Kalman filter to address
sporadic, large-amplitude, and isolated fluctuations in the time
series [44]. The observation covariance, system covariance,
observation matrix, and system matrix were set to 0.5, 0.1, 1,
and 1, respectively. The same parameter settings were applied
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in subsequent analyses.

Step 4: Calculate the mean firing rate across the plateau
periods. For the i-th separation vector in B, ;, we obtained m
time courses of firing rates. Then, we calculated FR; 74rger by
averaging the mean firing rates during the plateau target
activation periods of the target finger across m time courses of
firing rates. Note that the plateau only reflected the desired or
target force level not the actual force. Similarly,
FR; non—target1 @0d FR; Non—target2 Were calculated for the i-
th MU during the other two non-target finger plateau periods,
respectively.

Step 5: Compute the probability of each MU specific to
finger [. We used the softmax function to compute the
prObabili‘fy (pi,Target) as

eFRi,Ta‘rget

. = 1
pL,Target eFRi,Ta'rget+eFRi,Non—Target1 +eFRi,N0n—target2 ( )

Step 6: Refine the raw MU pool. A probability threshold
(Dthresn) Was set to retain MUs with p; rarger > Dinresn- We
performed a sensitivity analysis on the threshold as described
later in Section III-B. The retained MUs were pooled together
to form the refined MU pool, and the corresponding separation
vectors were concatenated to form the separation matrix (B ;)
of the refined MU pool.

3) Force Prediction

Considering that neural-drive signals typically exhibit a
linear correlation with finger force [30], we built three linear
regression models to individually predict the forces of the
three fingers. Although measured forces were employed for
mapping the neural-drive signals to the forces, the measured
forces were not involved in any critical steps of the training
and refinement procedures. In practice, users can customize
the force prediction models to their subjective perception of
force levels without the measured forces. In addition, to offer
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Fig. 6. Force prediction for finger . | € {index, middle,ring — pinky}. @: apply the separation matrix to SEMG signals after channel

extension and signal whitening procedures.
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a fair quantitative comparison with other approaches and an
intuitive presentation of the prediction performance, we also
used the measured forces for the performance evaluation of
force predictions, which is not needed for practical use.
Specifically, we conducted the following steps for the force
prediction of finger [ (as shown in Fig. 6):

Step 1: Decompose the testing dataset. Similar to the
refinement procedure, we directly employed the refined
separation matrix B,; to obtain source signals for a time-
efficient decomposition.

Step 2: Convert the decomposed source signals to spike
trains.

Step 3: Obtain the time courses of firing rates of individual
MUs Fy; = [f120f220 Fi20 s Fny21], Where n, denotes
the number of retained MUs.

Step 4: Calculate the neural-drive signals (populational
firing rate) as

Dy =%ifia 2

Step 5: Smooth D, using the Kalman filter.
Step 6: Use the same sliding window strategy to process the
measured force of finger [.
Step 7: Predict the force of finger [ using a linear regression
model.
Force, = a;D; + b, 3)

where Force; represents the predicted force for finger [, a;
and b; denote the corresponding slope coefficient and
intercept, respectively.

We used four complementary metrics for force prediction
performance evaluation: the coefficient of determination (R?),
the root mean square error (RMSE), the Pearson correlation
coefficient (PCC), and mean absolute error (MAE), which can
be defined as:

S, 0i-9)?
RZ =1 —=i 1WVi™Vi 4
T, 0i-9)? )

1 ~
RMSE = _[-3iL,(yi — 9:)? (5)
PCC = — 210N _ ©)

o2 s 005y
1 ~

MAE = -¥i1ly; — 9il (7)

where y; and p; represent the measured value and the
predicted value of the ith observation, respectively. ¥ =

~

%Z?ﬂ Vi, ¥ = %Z?:l ¥; represent the average measured value
TABLE I
PROTOCOLS FOR THE INCLUSION OF NON-TARGET
TRIALS. THE SYMBOLS “v” AND “x” REPRESENT THE

INCLUSION AND EXCLUSION OF NON-TARGET TRIALS IN
THE CORRESPONDING PROTOCOLS, RESPECTIVELY.

Initial MU extraction
with non-target trials

MU probability assignment
with non-target trials

Protocol 1 N N
Protocol 2 N X
Protocol 3 X v
Protocol 4 X X

and predicted value, respectively. n is the number of
observations.

B. Decoder Robustness Evaluation
1) Sensitivity Analysis of Probability Thresholds

In our study, to enhance the accuracy of force predictions,
each MU was evaluated to determine its probability of
association with the target finger [, and a probability threshold
was established to retain MUs with probabilities above the
threshold. To comprehensively explore the effects of different
probability thresholds on force predictions, we experimented
with a wide range of threshold values, ranging from 0 to 0.9 in
increments of 0.1 (10 thresholds), and included finer
granularity thresholds such as 0.95, 0.99, 0.995, and 0.999 as
the threshold approached 1. This systematic investigation can
provide valuable insights into the robustness of force
prediction under different probability thresholds. It also
enabled us to identify an optimal threshold that minimized
prediction errors while maintaining a sufficient number of
MUs, ensuring the generalizability and practical utility of the
developed decoder.

2) Inclusion of Non-Target Finger Trials

In our study, we defined the term 'robustness' as the ability
to ensure accurate and reliable force predictions despite
changes in probability thresholds, task variations and
background noise. Specifically, in the training dataset, the
two-finger trials that excluded the target finger [ were termed
non-target trials. The force prediction performance may be
affected by the trial source for two key procedures (i.e., the
initial MU extraction and the MU probability assignment).

e In the initial MU extraction stage, we pooled the
MUs extracted from the training dataset together to form
the raw MU pool. However, most MUs decomposed from
non-target trials were not closely associated with the
finger l. Therefore, we explored the decoder robustness to
non-target MUs by comparing force prediction
performance with and without including the non-target
trials for the initial MU extraction.

e For the MU probability assignment, the probability
calculation was based on the average firing rates observed
during the force plateau periods of three fingers.
Correspondingly, we investigated the decoder robustness
by including and excluding the non-target trials.

We assessed decoder robustness against non-target MUs
and trials by evaluating the effects of including or excluding
them during the initial MU extraction and probability
assignment procedures. This involved comparing force
prediction performances across four different protocols, as
detailed in Table 1.

3) Robustness Under Background Noise Conditions

In practice, the neural decoder is intended for use in
common daily scenarios, where the environment often
contains uncontrollable interference, with background noise
being one of the most common sources. Therefore, we tested
our neural decoder under different noise conditions to evaluate
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its robustness. Since the acquisition of training data was
performed under a minimum level of background noise to
avoid low-quality signals, we intentionally introduced
Gaussian noise to the testing dataset to simulate the
unpredictable and challenging conditions of real-world
environments. A total of four noise levels, defined by signal-
to-noise ratios (SNRs) of 5 dB, 10 dB, 15 dB, and 20 dB, were
examined. For each SNR level, Gaussian noise was added to
each channel individually, ensuring that the SEMG signal in
each channel did not exceed the target SNR. The noisy sSEMG
data were then fed into the trained neural decoders for
evaluation.

C. Comparison with sSEMG-Amplitude-Based Force
Predictions

As indicated by the early work [45], the SEMG amplitude
has been preferred over various time-domain and frequency-
domain features. In this study, we conducted two different
sEMG-amplitude-based approaches for comparison. We
applied the same validation protocol and parameter settings (if
any) as the developed unsupervised neural drive approach if
not specified.

For the first approach, the number of SEMG channels for
the muscle strength calculation was fixed at 60 (termed the
SEMG60 method), after removing motion artifacts and
powerline noise. The rationale for selecting 60 channels rather
than using all 160 channels is that most SEMG activities can
be captured by 60 channels [30]. Additionally, channels
located outside or on the edges of the activation area, which
often have low RMS values, contributed little to finger force
predictions. Specifically, the following steps were conducted
for the force prediction of finger I € {index, middle, ring —
pinky}.

Step I: Calculate the average RMS value of SEMG signals
during the plateau period of the finger [ across the training
dataset.

Step 2: Rank all channels from high to low based on the
calculated RMS values and select the top 60 channels (Cgg ;)
with the highest RMS values.

Step 3: For a testing trial, calculate SEMG amplitude (RMS)
for each channel using the same sliding window strategy (0.5-
s sliding window with a 0.1-s sliding step) as the neural-drive
approach, and average across the 60 channels, which
generated an overall time course of the SEMG amplitude for
finger I (Ago)

Step 4: Smooth the Ag,; using the same Kalman filter as in
the neural-drive approach.

Step 5: Use the same sliding window strategy to process the
corresponding measured force of finger [, resulting in F;.

Step 6: Build a linear regression model between the filtered
RMS of sSEMG Ag,; and the segmented measured force F.

Following the basic procedure of the first approach
(sEMG60 method), the second approach further refined the
60-channel pool, termed the sEMG-Ref method. We
conducted the refinement to reduce crosstalk interference that
could bias force predictions due to substantial channel overlap
between fingers [38]. Furthermore, the number of active

channels for different fingers may vary due to the different
spatial distributions of muscle compartments. The channel
refinement strategy was conducted after Step 2 of the SEMG60
method as:

Step 1: For the target finger [; ([;=Index, Middle, or Ring-
Pinky), calculate and smooth the time course of the sEMG
amplitude, resulting in a; ;;, where i = 1,2, ...,60.

Step 2: Process measured forces of three fingers using the
same sliding window procedure, obtaining Fi,gex, Fmiddle and
FRing—Pinky-

Step 3: Conduct a linear regression between a;;; and
processed finger forces, deriving the coefficient of
determination R? (11,1, =Index, Middle or Ring-Pinky)

l,ll—lz
between the i-th channel in Agp;; and the measured force of
finger [,.
Step 4: Exclude the i-th channel from Cqyy if RY,_;, <

Rfll_ 1, and [y # ;. The retained channels were used for force

prediction following procedures outlined in the sEMG60
method.

D. Statistical Analysis

For the confidence interval (CI) analysis, we employed a
bootstrap technique to randomly select 1000 sample sets from
the obtained results for calculating the 95% CI of correlation
and prediction error values. For the significance analysis, we
adopted the Repeated Measures Analysis of Variance
(ANOVA) and #-test for pairwise comparisons if the compared
groups satisfied the normal distribution (p > 0.05 in the
Shapiro-Wilk test) and the sphericity assumption (p > 0.05 in
the Mauchly's test) [46]. Otherwise, we employed non-
parametric analysis approaches (Friedman test and Wilcoxon
signed-rank test) [47]. To minimize errors from multiple
comparisons, we applied the Holm-Bonferroni correction
where applicable. In this study, we set the significance level at
0.05 and reported only adjusted p-values.

IV. RESULTS

A. Decoder Robustness Evaluation

To evaluate the decoder robustness against various
probability thresholds, we analyzed force prediction
performance across a range of thresholds. Similarly, to assess
the decoder robustness against the non-target MUs and trials,
we evaluated force prediction performance variations across
four protocols, distinguished by whether non-target trials were
included or excluded during the initial MU extraction and MU
probability assignment procedures. Fig. 7 shows the trends of
R?, RMSE, PCC, and MAE, respectively, as the probability
threshold increased from O towards 1. Accordingly, we
summarized the ranges of the four metric values, along with
their corresponding probability thresholds, in Table II for all
protocols.

In Fig. 7(a) and Fig. 7(c), the mean R? and PCC increased
rapidly across all four protocols to reach a plateau from prp;es
= 0 to 0.1. This plateau was sustained across the probability
threshold range up to 0.9 for all protocols, indicating strong
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Fig. 7. Multi-finger force predictions using different probability
thresholds. Performance metrics R?, RMSE, PCC, and MAE are
shown sequentially in (a)-(d). The dashed box in the inset of each
subfigure indicates enlarged areas of the probability threshold
ranging from 0.5 towards 1 for a clear demonstration of minor
variations.

decoder robustness to probability thresholds for the R? and
PCC metrics. Then, the mean R? and mean PCC decreased
slightly after pyp,es = 0.9 for all protocols.

In Fig. 7(b) and Fig. 7(d), the mean RMSE and MAE for all
four protocols decreased sharply from prp,es = 0 to 0.1. Then,
the mean RMSE and mean MAE tended to stabilize across the
remaining probability threshold range up to 0.9 for all
protocols, indicating strong decoder consistency for the RMSE
and MAE metrics. Following that, the mean RMSE and mean
MAE exhibited a slight increase for all protocols.

Overall, for all performance metrics, the force prediction
performance using all four protocols demonstrated strong
robustness across a wide range of probability thresholds. In
addition, the results revealed that the force prediction
performances using all four protocols were similar after
Prires = 0.1, demonstrating the decoder effectiveness against
non-target MUs and trials used for the MU probability
calculation.

B. Computational Efficiency Evaluation

The term "lightweight" in this study was used to describe our
computational processes requiring minimal computation time
and resources. Considering the critical importance of
computational efficiency in [oMT applications, we evaluated the
computation time of our developed approach. The computational
efficiency analyses were performed on an AMD Ryzen 7 6800H

(@) 459
1204}

92

60

Computation Time (ms)

50!

0 02 04 0.6 08 1

Probability Threshold

Fig. 8. Evaluation of computational efficiency. (a) Variation in
computation time. (b) Variation in MU numbers. The dashed boxes
in the insets of (a) and (b) indicate enlarged areas on the probability
threshold ranging from 0.5 towards 1 for a clear demonstration of
minor variations.

b e = -
0 02 04 006 08
Probability Threshold

@ 3.2 GHz, using MATLAB R2023a (The MathWorks Inc.,
USA) as the implementation software.

Real-time performance was evaluated via pseudo real-time
testing, where data segments (simulating data buffer in the real-
time data acquisition system) were fed to the algorithm
sequentially. As illustrated in Fig. 8(a), computation time
decreased sharply across all four protocols as the probability
threshold increased from O to 0.1, then continued to decline at a
reduced rate beyond this point. The longest computation time for
Prhres = 0.1 across all four protocols was 87.8+£12.4 ms, which
met the real-time requirements (an ideal loop delay ranges
between 100 ms and 150 ms [48], [49]), demonstrating high
computational efficiency across all four protocols and a wide
range of probability thresholds (pypres = 0.1).

Generally, the number of MUs used for the decomposition has
a large impact on the SEMG decomposition duration and the
required computational resources. Therefore, we investigated the
MU number variation as the probability threshold increased. Fig.
8(b) shows that the number of MUs significantly decreased as
the probability threshold increased from 0 to 0.1, then continued
to decrease at a slower rate, indicating a stable computational
load in terms of MU numbers for prp.es = 0.1 across all
protocols.

In summary, a clear pattern of improved computational
efficiency was present as the probability threshold increased,
especially from 0 to 0.1. The acceptable computation time and
MU numbers for prp,es underscored the practical applicability
of our developed decoder across all four protocols, justifying the
term “lightweight”.

C. Effects of the Probability Thresholding Strategy

Fig. 9 and Table III present force prediction performance
without the probability thresholding strategy (i.e., using the raw
MU pool) and using this strategy with critical probability

TABLE I
MEAN VALUE RANGES OF FOUR METRICS (R?, RMSE, PCC, and MAE). THE VALUES IN PARENTHESES REPRESENT THE
PROBABILITY THRESHOLDS USED TO ACHIEVE METRIC VALUES LISTED OUTSIDE THE PARENTHESES.

R? RMSE (%MVC)

PCC MAE (%MVC)

Protocol 1
Protocol 2
Protocol 3
Protocol 4

0.4872 (0) — 0.7947 (0.9) 4.8484 (0.9) — 10.0471 (0) 0.6400 (0) — 0.8703 (0.5)
0.4866 (0) - 0.7932 (0.9) 4.8732 (0.9) — 10.0497 (0) 0.6392 (0) — 0.8704 (0.9)
0.5273 (0) - 0.7917 (0.9)  4.8893 (0.9) — 9.4415 (0) 0.6751 (0) — 0.8695 (0.6)
0.5273 (0) - 0.7914 (0.9)  4.9046 (0.8) — 9.4497 (0) 0.6748 (0) — 0.8698 (0.9)

3.8265 (0.9) — 8.2514 (0)
3.8451 (0.9) — 8.2496 (0)
3.8623 (0.8) — 7.7349 (0)
3.8715 (0.9) — 7.7408 (0)
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Fig. 9. Force prediction performance evaluation using the
probability thresholding strategy. Specifically, performance without
the probability threshold and with the probability threshold using
two critical thresholds of 0.1 and 0.9 are evaluated using (a) R?
metric, (b) RMSE metric, (¢) PCC metric, (d) MAE metric, (e)
computation time, and (f) MU number analyses. In (a) to (d), results
in the same color denote the same subject. In (), red lines indicate
median values. In (f), the length of the error bars represents the
standard deviation. * denotes 0.01<p<0.05, ** denotes
0.001<p<0.01, *** denotes p<0.001.

thresholds, termed Prob-0.1 (probability threshold of 0.1, which
is the inflection point) and Prob-0.9 (probability threshold of 0.9,
which represents the point of best performance in most cases).
Although similar performance was achieved using all four
protocols, we selected protocol 3 here due to its relatively low
computation time and a small number of MUs.

As shown in Fig. 9(a) to Fig. 9(d), for all performance metrics,
force prediction performance using both the Prob-0.9 and Prob-
0.1 approaches were significantly better than without the
probability threshold (all p < 0.05). Similar conclusions were
observed for the comparisons of computation time and MU
numbers (as shown in Fig. 9(e) and Fig. 9(f)), demonstrating the
effectiveness of the developed strategy.

For the force prediction performance comparison using critical
probability thresholds, no significant difference was detected in
the four metrics between the Prob-0.9 and Prob-0.1 approaches
(allp < 0.05). In terms of computation time and MU numbers,
the Prob-0.9 approach outperformed the Prob-0.1 approach
(computation time: p = 0.023, MU numbers: p < 0.001),
indicating that satisfactory results can be achieved with less
computation time and resources.

D. Comparison with Prevailing Approaches

To further demonstrate the superiority of the developed
approach, we conducted force prediction performance

TABLE III
EVALUATION OF FORCE PREDICTION PERFORMANCE
WITHOUT PROBABILITY THRESHOLD AND WITH
PROBABILITY THRESHOLDS OF 0.1 AND 0.9 (RESULTS
PRESENTED AS MEAN + STANDARD ERROR, VALUES IN
PARENTHESES REPRESENT 95% CI)

Prob-0.9 Prob-0.1 Raw MUs

R2 0.794+0.039 0.784+0.055 0.53+0.078

(0.77-0.82) (0.75-0.82) (0.48-0.59)

o 4.89+0.73 5.04+0.73 9.44+1.59

RMSE (OMVC) 4 43.543)  (453-554)  (8.32-10.50)

PCC 0.87+0.028 0.87+0.037 0.68+0.067

(0.85-0.89)  (0.84-0.89)  (0.64-0.72)

0 3.86+0.62 3.98+0.59 7.73+1.36

MAE (%MVC) (3.47-4.32)  (3.58-4.40) (6.79-8.64)
Computation 68.83+£13.63  80.35+13.43  122.92+19.70

Time (ms) (60.31-78.91) (72.18-90.54) (110.68-137.59)
59.84+1890 76.36+19.69 145.46+30.57
Number of MUs

(47.96-73.81) (64.16-91.23) (126.17-167.35)

evaluations using the developed neural-drive, SEMG-Ref, and
SEMG60 approaches, as shown in Fig. 10 and Table IV. The
parameter configuration for the neural-drive approach was a
probability threshold of 0.9 under protocol 3 (same setting as
the Prob-0.9 in Section 3.3) due to its ability of accurate
prediction performance and high computational efficiency.

Fig. 10(a) and Fig. 10(b) present two representative force
prediction examples using the three approaches to visually
demonstrate their predictive capabilities. The neural-drive
approach can accurately predict the force of each finger in
scenarios where only one finger was activated at a time, as
shown in Fig. 10(a). In the case of co-activation of multiple
fingers, Fig. 10(b) demonstrates that the neural-drive approach
can also accurately predict the force exerted by each finger in
scenarios where fingers were activated simultaneously. In
contrast, the force predictions using the sEMG-Ref and
SEMG60 approaches were greatly affected by the activation of
non-target fingers, leading in a large deviation from the
measured forces.

As shown in Fig. 10(c) to Fig. 10(f), the statistical analysis
revealed significant differences for R? (Friedman test:
x%(2)=12.29, p=0.0021 , w partial=0.7347), RMSE
(ANOVA: F(2,12)=20.7, p < 0.001, n? partial=0.7753), PCC

(Friedman  test:  x%(2)=1229 , p=0.0021
n?_partial=0.7347), and MAE (ANOVA: F(2,12)=22.8, p <
TABLE IV

EVALUATION OF FORCE PREDICTION PERFORMANCE
USING THE DEVELOPED NEURAL-DRIVE METHOD, THE
SEMG-REF METHOD, AND THE SEMG60 METHOD
(RESULTS PRESENTED AS MEAN + STANDARD DEVIATION,
VALUES IN PARENTHESES REPRESENT 95% CI)

Neural drive  SEMG-Ref  sEMG60
R2 0.79+0.039 0.64+0.080 0.50+0.12
(0.77-0.82)  (0.59-0.69) (0.44-0.59)
4.89+0.73 7.31+1.88 9.41+2.47

RMSE (%MV . - -
SE (%WMVC) (4.43-5.43) (6.05-8.57) (7.75-11.05)
PCC 0.87+0.028 0.76+0.060 0.65+0.095
(0.85-0.89) (0.72-0.80) (0.60-0.72)
3.86+0.62 6.08+1.51 7.89+2.09

MAE (%MV - - -
(%MVC) (3.47-4.32) (5.07-7.09) (6.47-9.28)
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Fig. 10. Comparison of the developed neural-drive method, the SEMG-Ref method, and the sEMG60 method. (a) A representative
demonstration of the force prediction where only one finger was activated at a time. (b) A representative demonstration of the force prediction
where more than one finger was activated simultaneously. (c) to (f) show R, RMSE, PCC, and MAE values for force predictions, respectively.
In (c) to (f), dots of the same color represent results from the same subject. (g) to (j) illustrate R2, RMSE, PCC, and MAE values for the force
prediction performance of each finger, respectively. In (g) and (j), the error bars represent the standard deviation. * denotes 0.01<p<0.05, **
denotes 0.001<p<0.01, *** denotes p<0.001.

0.001 . n? partial=0.7917), indicating exceptionally large | Neural-Drive SEMG-Ref SEMG60]
effect sizes (as suggested by [50]). Further post-hoc analyses
demonstrated that the R? and PCC values obtained using the (@) (b)616
neural-drive method was significantly higher than those using 0.8 >
the SEMG-Ref and sEMG60 methods (all p < 0.05 ). o5 e 512
Similarly, the RMSE and MAE values obtained using the - <
neural-drive method was significantly lower than those using 0.4 =8
the SEMG-Ref and SEMG60 methods (all p < 0.01). E
As shown in Fig. 10(g) to Fig. 10(j), force prediction 0250 15 20 45 10 15 20
performance was also compared for individual fingers. For the © SNR(@B) (g SNR (dB)
R? metric in Fig. 10(e), significant differences were found for 0.95
the index finger (y¥2?(2) =8.86, p = 0.012) and the ring- 0.85 912
pinky finger (F (2,12)=20.7, p < 0.001). Further post-hoc o S
analyses revealed that R? values obtained using the neural- E 0.75 X
drive method was significantly higher than those using the 0.65 = 6
SEMG60 method for both the index finger and the ring-pinky =
ﬁnger (both p < 0.95). In addition, .the. R? value; obtained 0.55 5 10 15 20 =3 5 10 15 20
using the neural-drive method was significantly higher than SNR (dB) SNR (dB)

that using the SEMG-Ref method for the ring-pinky finger Fig. 11. Performance evaluation of finger force prediction under

(p <0.001). Similar results were observed for the RMSE  varying noise levels. Each dot represents the average result for each

(Fig. 10(h)), PCC (Fig. 10(i)), and MAE (Fig. 10(j)). subject. Lines connect the average results of each method across
varying noise levels.
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As shown in Fig. 11, the prediction performance of our
neural decoder remained stable across varying noise levels,
demonstrating its strong robustness to noise interference. In
contrast, both the SEMG-Ref and sEMG60 approaches
exhibited a decline in prediction performance, as indicated by
the R?, RMSE, and MAE metrics, especially when the SNR
decreased from 10 dB to 5 dB. For the PCC metric, the
prediction performance of both sEMG-amplitude-based
approaches remained relatively stable across varying SNR
levels. This was mainly because the PCC metric measured
relative trends between the predicted and measured forces,
rather than their absolute accuracy. For each evaluation
metric, our neural decoder significantly outperformed both
SEMG-Ref and sSEMG60 approaches across all examined SNR
levels (all p < 0.01).

V. DISCUSSION

In this study, we aimed to develop an unsupervised, robust,
and lightweight neural-drive decoder capable of efficiently
predicting dexterous multi-finger forces. Building on a
previous study [30], we took a critical step forward by
customizing the decoder for potential loMT-based finger force
monitoring applications. Specifically, we derived the raw MU
pool directly from multi-finger data, without intentionally
avoiding non-target MUs. Our developed decoder effectively
quantified the degree of association (probability) between each
MU and the target finger using its firing rate distribution.
Subsequently, MUs with probabilities exceeding the
predefined threshold were retained for dexterous multi-finger
force predictions. The results demonstrated the feasibility of
our developed decoder for reliable finger force monitoring.

A. Effects of Probability Thresholds

Compared with force predictions using raw MUs, force
prediction performance significantly improved with the
application of a probability threshold, primarily due to the
effective removal of interfering MUs. Although raw MUs
were derived using sEMG data collected from specific
channels of the target-finger, the inclusion of numerous non-
target MUs was unavoidable due to the following reasons: 1)
We acquired the raw MU pool using multi-finger data, which
included the activation of at least two fingers. 2) Different
fingers shared several common active electrode channels,
because the muscle compartments of the fingers are spatially

~038
=
=07
5
LR
i‘g, : Protocol 1
éﬁ% 05 -Protocol 2
o |y 065 e | memee Protocol 3
=
£ 04
=) Protocol 4

0 02 04 06 08 1
Probability Threshold
Fig. 12. Average R? values between the firing rate of each MU and
the corresponding target-finger force.
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close. In general, these interfering MUs, being closely related
to other fingers, contribute little to the target-finger force
prediction. To illustrate this point more clearly, we calculated
R? values to quantify the correlation between the firing rate of
each MU and the corresponding target-finger force, then
averaged the R? values of all MUs retained for the force
prediction. As shown in Fig. 12, the average R? value was the
lowest when pyp,es = 0 under any protocol, revealing a large
presence of interfering MUs. AS prp,es increased from 0 to
0.1, the average R? value increased significantly, indicating
the effective removal of interfering MUs.

B. Robust Prediction Across Probability Thresholds

Finger force prediction performance (across all four metrics)
tended to be stable for pry,.s = 0.1, indicating a generalized
performance across a wide range of thresholds. This can be
explained as follows. Some MUs contributed to multi-finger
forces, resulting in the co-activation effect. Relatively low MU
probabilities indicated high co-activation levels with the target
finger. However, the quantity of those MUs was far smaller
than that of MUs specific to the target finger, as shown in Fig.
12. For example, the average MU numbers only decreased
from 76 to 60 when prp,es increased from 0.1 to 0.9 under
protocol 3. Thus, the effect of these MUs was limited to some
extent, resulting in stable performance for prp,es = 0.1.

Fig. 7 shows high robustness to the interferences of non-
target MUs and trials. For prp.es = 0 (i.e., the raw MU pool
without refinement), better prediction performance can be
achieved when only trials with the active target finger were
used for the initial MU extraction (protocols 3 and 4),
compared with when all trials were used (protocols 1 and 2).
This improvement was due to a reduced number of non-target-
specific MUs, which contributed little to prediction
performance. These MUs can be largely removed after
applying the probability threshold (i.e., prpres => 0), thereby
effectively eliminating the performance gaps between
protocols. In addition, the MU probability was calculated
based on the average firing rates during the plateau activation
of each finger. The average firing rates during plateau periods
were not affected substantially by the inclusion of non-target
trials, thus the calculated prediction probability did not change
much.

C. Comparison with Prevailing sSEMG-Amplitude-Based
Approaches

The overall force prediction performance of our neural-drive
approach was significantly better than that of sEMG-
amplitude-based approaches, which can be attributed to
inherent limitations of the sSEMG-amplitude-based method. As
mentioned above, the muscle compartments of the fingers are
spatially close, and they partially overlap when observed from
the skin surface. Crosstalk from non-target compartments can
corrupt some sEMG signals, leading to inaccurate force
predictions. Although channel refinement in the sEMG-Ref
approach can reduce the crosstalk effects, the remaining
channels may still be affected by this interference. In contrast,
the neural-drive approach evaluated MU probabilities and
removed MUs closely associated with non-target fingers to
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TABLE V
COMPARISON OF OUR NEURAL DECODER WITH PREVIOUS STUDIES.

Zheng et al. [30] Rubin et al. [31] Roy et al. [32] Meng et al. [33] This study
Unsupervised? No No No Yes Yes
Training Data Full
Allowing %Zo-activati}c;n? No No No No Yes
Predicted Force Type Multi-finger Single-finger Single-finger Multi-finger Multi-finger
R? 0.71+0.11 Unreported Unreported 0.77+0.036 0.79+0.039
RMSE (%MVC) 5.88+1.34 5.40+0.23 5.01+£0.56 5.16+£0.58 4.89+0.73

minimize crosstalk from non-target muscle compartments.
Furthermore, sSEMG-amplitude-based approaches were built
on sEMG amplitudes, which were easily affected by
background noise. This led to performance degradation,
especially in challenging scenarios with high noise levels, as
illustrated in Fig. 11. In contrast, the neural-drive approach
predicted finger forces from a microscopic perspective.
During sEMG decomposition, we identified two distinct
clusters for each source signal. The cluster with a higher
amplitude corresponded to the MU discharge events, while the
other represented baseline noise, which was excluded from
further analyses. The effective noise removal contributed to
stable prediction performance under noisy conditions,
demonstrating the robustness of the neural-drive approach in
maintaining decoding accuracy despite varying levels of noise
interference.

D. Comparison with Neural-Decoding Approaches

To demonstrate the superiority of our decoder, we conducted
a comparison on the performance and characteristics of our
neural decoder with recent state-of-the-art neural decoders
from previous studies, as summarized in Table V. Specifically,
Zheng et al. [30] ensured accurate force predictions by
developing an effective neural decoding approach, which
obtained target-finger-specific MU pools via carefully selected
data sources (i.e., isolated single-finger movements) and MU
refinement in a supervised manner. Built on this strategy,
Rubin et al [31] demonstrated that MU decomposition was
robust to forearm postural differences, as evidenced by the
similar performance of finger force predictions across
postures. To improve the decoding efficiency, Roy et al [32]
employed a convolutional neural network using the neural-
drive signals as ground truth to directly extract these neural-
drive signals from sEMG data for single-finger force
predictions. Although the developed neural decoding was
promising, we further advanced the neural decoding approach
by developing an unsupervised framework that eliminated the
need for finger forces during decoder training. In addition, to
train the neural decoders, previous studies [30], [31], [32]
required subjects to perform single-finger tasks with
intentional efforts of avoiding co-activations of non-target
fingers. However, such single-finger tasks were inherently
challenging to perform due to the intricate neural and
mechanical interconnections among fingers, which naturally
led to co-activations. Instead, we performed MU extraction
directly using multi-finger trials, which were straightforward
and natural for users to perform.

For performance comparison of finger force prediction
performances, our decoder achieved a higher R? and a lower

RMSE. This could primarily be due to the effective
calculation of MU probabilities and removal of interfering
MUs via our MU refinement procedure, as demonstrated in
Fig. 12. In addition, as shown in Table II, the finger prediction
performances were stable even when we intentionally
introduced non-target finger MUs, further demonstrating the
robustness of our decoder to non-target MUs. In comparison,
for each MU, the supervised MU refinement strategy
calculated the correlation (R?) between the firing rate of this
MU and the force of each finger. If the correlation for the
target finger was the highest, the MU was retained regardless
of the actual correlation value. This approach could retain
interfering MUs with the highest correlation, thereby
degrading the performance of finger force predictions.
Recently, an unsupervised neural decoder was developed [33].
However, this study faced challenges similar to those
encountered in previous supervised research, i.e., the
requirement for isolated single-finger data to train the decoder.
To further obtain MUs specific to a target finger, the MUs
were grouped into three clusters, and the MU set with the
highest mean population firing rate was selected. Those
selected MUs were weighted based on the frequency of being
retained across trials. In comparison, our newly developed
MU refinement was more intuitive and straightforward for
practical use. Our approach has been proven to be
computationally efficient, performed well across a wide range
of probability thresholds, robust to task variations, non-target
MUs, and background noise.

E. Computational complexity analysis

In the training phase, as demonstrated in Section B of the
supplementary material, the total computational complexity
for the FastICA iterations was O(m-ng-N?) +0(m ny-1-
D - N). The symbols are defined in Table VI.

For the MU refinement procedure, we first decomposed the
training trials using the obtained separation matrix (B;;) to
accelerate the sEMG decomposition process and extract
source signals. The total complexity of this step was O(m -
ny;- D+ N). The main computational complexities for the
remaining procedures were as follows: 1) Spike train
calculation: O(m - ny; - N); 2) Firing rate calculation: O(m -
ny; - N); 3) Plateau-period mean firing rate calculation: O(m -
ny; - P); 4) MU probability calculation: O(M) and 5) MU
refinement: O(M). Compared with the FastICA iterations, our
developed refinement procedure did not increase the overall
complexity. The dominant complexity remains O(m - n, - N2)
+0(m-ny-1-D-N).
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TABLE VI
DEFINITIONS AND VALUES OF COMPUTATIONAL
PARAMETERS
Notations Descriptions Value
m Number of training trials 24
ny  Number of initially set MU sources per trial 200
N Number of sSEMG data points per trial 234 6587 66 4?:
D Number of extended SEMG channels 660
I Maximum number of iterations for each MU 50
ny Number of separation vectors in By ;  145.46+30.57
ny, Number of separation vectors in By ; 59.84+18.90
P Number of plateaus in training trials 60
Ny Number of sSEMG data} points in each 1024
segmentation

* 24576 corresponds to two-finger trials, and 36864 corresponds to
three-finger trials.

In the testing phase, 0.5-s segments of sEMG data
(Np=1024) were processed at each step for finger force
predictions, with an average of 59.84+18.90 MUs (n,;)
retained for finger force prediction, as shown in Table III. The
computational complexity is primarily determined by the
decomposition of testing trials, which has a complexity of
O(ny,; D - Np). This results in an average computation time
of 68.83+13.63 ms (as shown in Table III), demonstrating its
feasibility for real-time applications.

F. Limitations

Although this study has taken a step forward towards finger
force monitoring applications, this study focused solely on
isometric contractions. In the future, we will validate our
developed approach for dynamic contractions. In addition, this
study did not include force prediction for the thumb due to its
distinct anatomical structure and movement capabilities. The
subsequent experiment will consider related physiological
structures for the thumb force prediction. Furthermore, the
participants were healthy individuals, we will validate the
performance of our decoder on populations with hand
disabilities or impairment, such as individuals with stroke or
amputation. Lastly, computation time was obtained via pseudo
real-time testing, where data segments were sequentially fed
into the decoder. In future experiments, we will validate our
decoder with data collected in real time.

VI. CONCLUSION

In this study, we developed an unsupervised neural-drive
decoder for multi-finger force predictions. The new decoder
demonstrated robustness across various probability thresholds
(for MU pool refinement), data sources (for initial MU
extraction and MU probability calculation), and background
noise. Our results show that the derived MU probability can
effectively capture the association between each MU and the
target finger. By employing this strategy, we successfully
removed MUs specific to non-target fingers, thereby leading
to accurate force prediction performance. Additionally, the
highly efficient computation under various protocols and
probability thresholds offered a practical solution for real-time
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force monitoring applications in IoMT, holding potential to
facilitate rehabilitation and health monitoring for individuals
with hand disabilities. The ability of our decoder to accurately
predict multi-finger forces in an unsupervised manner has
profound implications for remote rehabilitation. It enables
clinicians to monitor the recovery process in real time and
adjust therapeutic interventions dynamically, thereby
broadening the accessibility of rehabilitation services,
particularly for individuals in remote or underserved regions.
These advancements underscore the potential of our decoder
to be implemented in the IoMT frameworks that require
efficient, reliable, and adaptive solutions.
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