BLOCH VARIETIES AND QUANTUM ERGODICITY
FOR PERIODIC GRAPH OPERATORS

By
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Abstract. For periodic graph operators, we establish criteria to determine
the overlaps of spectral band functions based on Bloch varieties. One criterion
states that for a large family of periodic graph operators, the irreducibility of
Bloch varieties implies no non-trivial periods for spectral band functions. This
particularly shows that spectral band functions of discrete periodic Schrodinger
operators on Z¢ have no non-trivial periods, answering positively a question asked
by Mckenzie and Sabri [Quantum ergodicity for periodic graphs, Comm. Math.
Phys. 403 (2023), 1477-1509].

1 Introduction and main results

Algebraic and analytic properties of both Bloch and Fermi varieties play a crucial
role in the study of spectral theory of periodic Schrodinger operators and related
models. We refer readers to a recent review [18] which focuses on techniques
arising from Bloch and Fermi varieties. In the continuous setting, Bloch and Fermi
varieties are often analytic. For discrete periodic graph operators, both Bloch and
Fermi varieties are algebraic in appropriate coordinates.

Recently there have been remarkable developments in using various tools such
as algebraic methods, techniques in geometric combinatorics and theory in complex
analysis of multi-variables to study the (ir)reducibility of Bloch and Fermi varieties,
isospectrality, density of states, and critical points of spectral band functions of
periodic graph operators [4, 5, 7, 8, 10, 11, 13, 17, 19, 20, 21, 22, 23, 24, 26, 27].

The main goal of this paper is to develop tools from algebraic geometry arising
from Bloch varieties to understand overlaps and periods of spectral band functions
of periodic graph operators. One of our motivations comes from a recent arxiv
preprint of Mckenzie and Sabri [25], where they proved the quantum ergodicity for
a family of periodic graph operators under an assumption on overlaps and periods
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of the spectral band functions.! As corollaries, we give criteria to verify for which
periodic graphs, the assumption is satisfied.

Our main results are general and independent of periodic graph operators.
Assume that A = A(z) is a Q x Q matrix and each entry of A(z) is a Laurent
polynomial of z = (21, 22, - .., za) € (C*)?, where C* = C\{0}. Let z; = ™,
j=1,2,...,dand A(k) = A(z) with k = (k1, ko, . . ., k).

Obviously, A(k) is periodic with respect to k. In the following, A(z) and A(k)
are always the same (with respect to different variables). Assume that for any
k € R?, A(k) is Hermitian. Denote by ljf;(k), keRY j=1,2,...,d, eigenvalues
of A(k) in the non-decreasing order:

(1 Mty < 250 < - < 28k, keRY
For any = (1, 72, ..., a) € C4 and ¢ = ({1, 2, . . . Ca) € C4, let

nO =01, mi, - - Nala)-

Denote by 0, and 1, the zero vector and unit element in C?: 0; = (0, 0, ..., 0) and
l,=(1,1,...,1).

Definition 1. We say the spectral band functions of A(k) have no non-trivial
periods if the following statement holds. If forsome a e R? and s, we {1, 2, ..., O},
the set

) (ke R : 25 (k+a) = 2¥(k)}
has positive Lebesgue measure, then we must have a = 0; mod 74 and s = w.

Since there are only finitely many choices of s, w € {1, 2, ..., O}, the spectral
band functions of A(k) have no non-trivial periods if and only if for any a € R?
with a #0; mod 74, the set

3 S1(a) = {k € R? : there exist s and w such that Ak +a) =217 k)}
has Lebesgue measure zero, and the set
4) S, = {k € R? : there exist distinct s and w such that Ay(k) = 24 (k)}

has Lebesgue measure zero.

In July 2022, Mostafa Sabri asked me a question (see Question 1 below) whether or not discrete
periodic Schrodinger operators on Z¢ satisfy the assumption, which he and Theo McKenzie need to
establish quantum ergodicity. I became interested in this problem and finally wrote this paper.
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Let
®)) Pa(z, A) =det(A(z) — Apxp)-

Note that P 4(z, 1) is a Laurent polynomial in z and a polynomial in 4. Let fPlA (z, A),
1=1,2,..., K be the non-trivial irreducible? factors of P4(z, 1):

K
(6) Paz )= (D2 ] Putz D).
=1

It is easy to see that 9’54(2, A) must depend on A. Since P 4(z, 4) is a polynomial
in 1 with the highest degree term (in 1) (—1)242, we can normalize P/(z, 1) in
the following way: P/, (z, 1) is a Laurent polynomial in z and a polynomial in 1,
and the coefficient of highest degree term of 4 is 1.

We say P 4(z, 4) is square-free if for all distinct /; and l, in {1,2, ..., K},

(7 Pl (z, 1) # P2z, A).

Given a € R? with a # 0, mod Z¢, we say P,(z, 1) satisfies condition C, if
forall/; and L in{1,2,...,K},

® Pz, 1) £ PR Oz A),
where = (eZm‘al , 627Ti0!2, e, eZm’ad).

Theorem 1.1. The following statements hold:
(1) Foralla #0; mod Z%, P4 (z, A) satisfies C,, ifand only if S\ (a) has Lebesgue
measure zero;
(2) Pal(z, A) is square-free if and only if S has Lebesgue measure zero.

Remark 1.1. From the proof of Theorem 1.1, one can see that
e for any a € RY with a #0,; mod Z4, either S;(a) = R or Leb(S|(a)) = 0;
e cither S, = R or Leb(S,) = 0.

Theorem 1.1 immediately implies
Corollary 1.2. Assume that P 4(z, 1) is square-free, and for any
=100 -5 Ca) € T\ 1)
with |l =1,j=1,2,...,d, andanyly and l, in {1,2,...,K},
9) Pz, )£ P2 Oz ).

Then the spectral band functions of A(k) have no non-trivial periods.

2Non-trivial Laurent polynomials mean non-monomials, that is, monomials are units in the Laurent
polynomial ring.
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LetL$ ={0,1,...,N—1}<.
Corollary 1.3. Given any m = (my, my, ..., my) € L4\{04}, let
C(ma N) — (6271'1""71’ 6271'1‘%’ o €2ﬂi%).

Assume that there exists No such that for any N > Ny, any m € LE\{0,}, and any
l], 12 in{1,2,...,K},

(10) P (z, 2) # PE(c(m, N) Oz, 2).

Then for any s, w € {1,2,..., 0},

#r e L (50 — 2y =0)

(11) lim sup 0,
N—o0 meL, N?
m#od
wherer = (ri,ra,...,¥q).

For the Laurent polynomial, irreducibility implies square-free, so Corollaries
1.2 and 1.3 imply

Corollary 1.4. Assume that P 4(z, 1) is irreducible and for any
=100 -5 Ca) € T\ 1g)
with |Gl=1,j=1,2,...,d,
(12) Palz, D) #PalC Oz, A).

Then the spectral band functions of A(k) have no non-trivial periods and for any
s,we{l,2,...,0}

#{re Ly : (5 —28(E) =0}

lim sup 0
- .
N—o0 meLy, N
m#Od

Theorem 1.5. Assume P 4(z, 1) is irreducible. Then for any a # 0 and any
a € R4 the set

(13) {k € R? : there exist s and w such that Ak +a) =23 (k) + a}

has Lebesgue measure zero.

In [25], under the assumption (11), Mckenzie and Sabri proved the quantum
ergodicity for periodic graph operators. Roughly speaking, quantum ergodicity
means that most eigenfunctions on periodic graphs are equidistributed. We refer
readers to [25] for the precise description of quantum ergodicity.
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Now we want to discuss the applications of our main results to quantum ergodic-
ity. In this paper, we focus on Corollary 1.4. The requirement (12) is easy to verify.
So the only restriction of applying Corollary 1.4 is the irreducibility of P 4(z, 4). In
applications, starting with a periodic graph operator H and Floquet—Bloch bound-
ary condition (depends on k € R or z € (C*)¢), we obtain a matrix A(k) (A(z)).
The irreducibility of P(z, 1) in Corollary 1.4 essentially (up to multiplicity) means
the irreducibility of the Bloch variety of H (modulo periodicity):

(14) B={(k,2) e C"" : =", Py(z, 1) = 0}.

Recently, the author applied algebraic methods to obtain more general proofs of
irreducibility for Laurent polynomials, including proving the irreducibility of Bloch
and Fermi varieties (Fermi variety is the level set of the Bloch variety) for discrete
periodic Schrédinger operators in arbitrary dimension [20], which previously were
only studied in two and three dimensions [1, 14, 2, 16, 3]. The approach in [20]
has been developed by Fillman, Matos and the author to prove the irreducibility of
Bloch varieties for a large family of periodic graph operators [10]. So Corollary 1.4
may be applicable to many models (see Remark 1.2). In the following, we only
discuss one case in detail: discrete periodic Schrodinger operators on Z<. In [25]
Mckenzie and Sabri asked a question:

Question 1. Do discrete periodic Schrodinger operators on Z¢ satisfy the
assumption (11)?

As an application of Corollary 1.4, we answer Question 1 positively.

Let us give the precise definition of discrete periodic Schrodinger operators
on Z“. Given positive integers q,j=12,....,d,1etI' =qiZ D q2Z & - - - ® qaq”.
We say that a function V : Z¢ — R is I'-periodic (or just periodic) if for any y € T,
V(in+y)=V®n).

Let A be the discrete Laplacian on Z¢, namely

(Awmy= > u@),

[In'—n|l1=1

where n = (ny, na, ...,ng) € 24, n' = (ny, nh, ..., 0 € Z¢ and

d
lIn' —nlly = |n; — nl.
i=1

Consider the discrete Schrodinger operator on Z4,
(15) H=A+YV,

where V is I'-periodic.
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Let{e;},j=1,2,...,d, be the standard basis in VAE
e =(1,0,...,0), e=(0,1,0,...,0),..., e;=(0,0,...,0,1).
Let us consider the equation
(16) (Aw)(n) + V(n)u(n) = lu(n), neZ¢,
with the so-called Floquet—Bloch boundary condition
(17) u(n + qje)) = zju(n) = ™ u(n), j=1,2,...,d, andn e Z°.

Let Dy(k) (Dy(z)) be the periodic operator A + V with the Floquet-Bloch
boundary condition (17) with respect to variables k (variables z). Dy (k) can be
realized as a Q x Q matrix, where Q = q1¢> - - - g4. Let l{,(k),j =1,2,...,0be
the standard spectral band functions of A + V (applying (1) with A(k) = Dy(k)).

Corollary 1.6. For any discrete periodic Schrodinger operators A +V, we

have that for any s, w € {1,2, ..., 0},
#{re Ly (5 — ) =0}
N4 B

(18) lim sup 0.

N— oo
meL,

m#0q
Remark 1.2. e Corollary 1.6 answers Question 1 positively.
e Following the proof of Corollary 1.6 step by step, one can show that Schro-
dinger operators with periodic potentials on the triangular lattice (see [10]
for the precise definition) satisfy (18).

Finally, we remark that in this paper, we discuss (see Theorems 1.1 and 1.5)
overlaps between two spectral band functions by shifting the quasi-momenta and
locations of bands, namely A% (k + a) and A} (k) + a. Overlaps between two spec-
tral bands [ming 43 (k), max; A3 (k)] and [ming A} (k), maxg A5 (k)] (related to the
discrete Bethe-Sommerfeld conjecture) have been studied in [12, 15, 6, 9].

2 Proof of Theorem 1.1, Corollary 1.3 and Theorem 1.5

Proof of Theorem 1.1. Recall that o # 0, mod Z%, ¢ = ¢*™ and z; = €™,
j=1,2,...,d. Let
Pa(k, A) =Pa(z, 1) = det(Ak) — AI).

Note that P4(k, 1) is analytic.
If P4 does not satisfy C,, then there exist [y and I, in {1,2,..., K} (I; may
equal /) such that

(19) Pz, 1) =P Oz ).
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This implies that for any &, A(k) and A(k + o) have at least one common eigenvalue
and hence there exist s, w such that 13 (k + a) = 1{ (k). Therefore, S;(a) = R4,
Simple calculations imply that

Si(a) = {k € R? : there exist s, w such that Ak +a) = 27 (k)}
(20) = {k € R? : and there exists 4 such that P4(k, 1) = Ps(a + k, ) = 0}
= Proj,{(k, 1) € R : Py(k, 1) = Pa(a + k, A) = 0},

where Proj, is the projection to k variables.

If P4 satisfies C,, we have that for any /; and L, in {1,2,...,K},
{(z,2) € (C) x C:P%(z,4) =0} and {(z, 1) € (C)! x C: P2 (; ©®z, 4) = 0} are
not identical, where ¢ = (e2™*1, ¢?7i®2__ ¢%%i%a) and hence the algebraic variety
{(z, 1) iPi}L(z, A) = Tﬁ((@z, A) = 0} has algebraic dimension d — 1. We conclude
that the algebraic variety {(z, 1) : Pa(z, 1) = P4(¢ © z, 1) = 0} has algebraic
dimension d — 1. This implies that {(k, 1) € R : P,(k, 1) = Py(a + k, 1) = 0}
has real (analytic) dimension at most d — 1. By (20), one has that S;(a) (as a subset
in R9) has Lebesgue measure zero. We finish the proof of part 1.

If P4 is not square-free, then there exist distinct /; and I in {1, 2, ..., K} such
that
1) Phz. ) = Phi(z ).

This implies that for any k, A(k) has repeated eigenvalues and hence there exist
distinct s, w € {1, 2, ..., Q} such that (k) = 1% (k). Therefore, S, = R9.

It is clear that
S, = {k € R? : there exist distinct s, w such that Ay(k) = 25 (k)}

={ke R? : A(k) has repeated eigenvalues}

= {k € R? : there exists A such that P4(k, 1) = 8, Pa(k, A) = 0}

= Proj,{(k, 1) € R : Py(k, 1) = 8, Ps(k, 1) = 0}.

(22)

If P4 is square-free, then the algebraic variety
{(z, 1) : Pa(z, ) =08,Palz, 1) =0}
has algebraic dimension d — 1. This implies that
{(k, 2) € R Pa(k, ) = 8;Pa(k, 1) = 0}

has real (analytic) dimension at most d — 1. By (22), one has that S, (as a subset
in R9) has Lebesgue measure zero. We finish the proof of part 2. (|
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Proof of Corollary 1.3. Let

_ m
U_Ngvomg%&(]v)'

m7#0,

Applying Part 1 of Theorem 1.1 with all & = § with m € L4\{04} and N > Ny, U

has Lebesgue measure zero. Therefore, for any s, w € {1, 2, ..., O} one has that
#{re Ld 25 (MY — Jw(iy=0 1 ;
i, o A SHHCEI D=0 1 o
23 N_)OOmeLj\l, N4 N—>oo N4 y N
( ) m=A0, reLy
=0,
where yy is the characteristic function. O

Proof of Theorem 1.5. From the proof of Part 1 of Theorem 1.1, it suffices
to show that for any a # 0 and any ¢ € C¢ with IGl=1,j=1,2,...,4d,

(24) Paz, ) £ PaC Oz, A+a).

Simple calculations imply that

(25) Pa(z, 2) = (=12 + TrA@)(=1)2 ! + Lo.t

and

(26)  PA(C Oz A+a)= (=2 +(=0a+TrA( O (=M% + Lo,

where l.o.t contains terms of 4 with degree less than or equal to Q — 2. Obviously,
constant terms in both TrA(z) and TrA(¢ © z) are the same. Then TrA(z) and
—Qa+ TrA(¢ © z) are different functions. Now (24) follows from (25) and (26).0J

3 Proof of Corollary 1.6

In this section, we first recall some basics. We refer readers to [20] for details.

For n = (ni,na, ...,ng), let 2" = ' ---z;'. By abusing the notation, denote

q=(q1,q2, . ..,qq). Let V(n), n € Z% be the discrete Fourier transform of { V(n)}.
Define

(27) Dv(z) = Dy(z?),
and

(28) Py(z, 1) =det(Dy(z, A) — AI) = Py(24, A).



BLOCH VARIETIES AND QUANTUM ERGODICITY 679

Let

where0 <n; <q;—1,j=1,2,...,d.
By the standard discrete Floquet transform (e.g., [20, 18]), one has

Lemma 3.1. Dy (2) is unitarily equivalent to By + By, where By is a diagonal
matrix with entries

d
, . 1
(29) Bo(n;n') = <Z<,0’,,,.Zj + 4—)>5n,n’a
=1 pz‘lj '
(30) By(n:n') = V(ng — ny,ny —ny, ..., ng— Ny,
and

0<nm<g—1, 0<n<q-—1, j=12,...,d

In particular,
Pyv(z, A) = det(By + By — AI).

Let

G31) en= 1 ((jzj;p{ljzj)—/1>.

Ofnij]'—l
1<j<d

Proof of Corollary 1.6. Recall that Py(z, ) is irreducible [20, 10]. By
Corollary 1.4, it suffices to verify that for any ¢ = (¢1, (2, . . ., g) € CI\{14} with
IGl=1j=12,...,4d,

(32) Py(z, 1) # Py Oz, 4).

It suffices to prove that forany ¢ = (¢1, (2, - . ., (q) € C? with IGl=1,j=1,2,...,d
and ¢? # 14, one has that

(33) Pu(z, 1) # Pv Oz, A).

By (31) and Lemma 3.1, h(z, 4) is the highest degree component of Pyiz, 1.
Therefore, to prove (33), it suffices to show that for any ¢ = (¢1, &2, ..., ¢4) € C?
with || =1,j=1,2,...,d and {? # 14, one has that

(34) h(z, A) £ h( Oz, A).
Assume that

(35) h(z, A) = (¢ Oz, ).
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Substituting A = Zil zj in (35), one has that i(z, 2y + 22 + - - - + z4) = 0 and hence
WOz, z1+22+--+24) =0.

Then there existnj, j=1,2,...,d with 0 < n; < g; — 1 such that

d d
Z 3 = Z PijCij-
Jj=1 Jj=1

.
—2mit

This implies §; = e 9,j =1,2,...,d and hence ¢? = 1;,. We reach a
contradiction. O

Acknowledgments. This research was supported by NSF DMS-2000345,
DMS-2052572 and DMS-2246031. I would like to express my sincere gratitude
to Mostafa Sabri for drawing my attention to Question 1 (see footnote 1), many
valuable discussions on this subject and comments on earlier versions of this paper.

REFERENCES

[1] D. Bittig, A Toroidal Compactification of the Two Dimensional Bloch-Manifold, Ph.D. thesis,
ETH Zurich, 1988.

[2] D. Bittig, A toroidal compactification of the Fermi surface for the discrete Schrodinger operator,
Comment. Math. Helv. 67 (1992), 1-16.

[3] D. Bittig, H. Knorrer and E. Trubowitz, A directional compactification of the complex Fermi
surface, Compositio Math. 79 (1991), 205-229.

[4] G. Berkolaiko, Y. Canzani, G. Cox and J. L. Marzuola, A local test for global extrema in the
dispersion relation of a periodic graph, Pure Appl. Anal. 4 (2022), 257-286.

[5] N. Do, P. Kuchment and F. Sottile, Generic properties of dispersion relations for discrete periodic
operators, J. Math. Phys. 61 (2020), Article no. 103502.

[6] M. Embree and J. Fillman, Spectra of discrete two-dimensional periodic Schrodinger operators
with small potentials, J. Spectr. Theory 9 (2019), 1063—1087.

[7] M. Faust and J. Lopez-Garcia, Irreducibility of the dispersion relation for periodic graphs,
arXiv:2302.11534 [math.AG]

[8] M. FaustandF. Sottile, Critical points of discrete periodic operators, arXiv:2206.13649 [math-ph]

[9] J. Fillman and R. Han, Discrete Bethe—Sommerfeld conjecture for triangular, square, and hexag-
onal lattices, J. Anal. Math. 142 (2020), 271-321.

[10] J. Fillman, W. Liu and R. Matos, Irreducibility of the Bloch variety for finite-range Schrodinger
operators, J. Funct. Anal. 283 (2022), Article no. 109670.

[11] J. Fillman, W. Liu and R. Matos, Algebraic properties of the Fermi variety for periodic graph
operators, J. Funct. Anal. 286 (2024), no. 4, Paper No. 110286.

[12] N. Filonov and I. Kachkovskiy, On spectral bands of discrete periodic operators, Comm. Math.
Phys. 405 (2024), no. 2, Paper no. 21.

[13] L. Fisher, W. Li and S. P. Shipman, Reducible Fermi surface for multi-layer quantum graphs
including stacked graphene, Comm. Math. Phys. 385 (2021), 1499-1534.



[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

BLOCH VARIETIES AND QUANTUM ERGODICITY 681

D. Gieseker, H. Knorrer and E. Trubowitz, The Geometry of Algebraic Fermi Curves, Academic
Press, Boston, MA, 1993.

R. Han and S. Jitomirskaya, Discrete Bethe—Sommerfeld conjecture, Comm. Math. Phys. 361
(2018), 205-216.

H. Knorrer and E. Trubowitz, A directional compactification of the complex Bloch variety, Com-
ment. Math. Helv. 65 (1990), 114-149.

C. Kravaris, On the density of eigenvalues on periodic graphs, SIAM J. Appl. Algebra Geom. 7
(2023), 585-609.

P. Kuchment, An overview of periodic elliptic operators, Bull. Amer. Math. Soc. (N.S.) 53 (2016),
343-414.

W. Li and S. P. Shipman, Irreducibility of the Fermi surface for planar periodic graph operators,
Lett. Math. Phys. 110 (2020), 2543-2572.

W. Liu, Irreducibility of the Fermi variety for discrete periodic Schrodinger operators and
embedded eigenvalues, Geom. Funct. Anal. 32 (2022), 1-30.

Wencai Liu, Topics on Fermi varieties of discrete periodic Schrodinger operators, J. Math. Phys.
63 (2022), Article no. 023503.

W. Liu, Fermi isospectrality of discrete periodic Schriodinger operators with separable potentials
on Z?, Comm. Math. Phys. 399 (2023), 1139-1149.

W. Liu, Fermi isospectrality for discrete periodic Schrodinger operators, Comm. Pure Appl.
Math. 77 (2024), 1126-1146.

W. Liu, Floquet isospectrality for periodic graph operators, J. Differential Equations 374 (2023),
642-653.

T. Mckenzie and M. Sabri, Quantum ergodicity for periodic graphs, Comm. Math. Phys. 403
(2023), 1477-1509.

M. Sabri and P. Youssef, Flat bands of periodic graphs, J. Math. Phys. 64 (2023), Article
no. 092101.

S. P. Shipman, Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators, J.
Spectr. Theory 10 (2020), 33-72.

Wencai Liu
DEPARTMENT OF MATHEMATICS
TEXAS A&M UNIVERSITY

COLLEGE STATION, TX 77843-3368, USA

email: liuwencai1226@gmail.com, wencail@tamu.edu
(Received November 27, 2022 and in revised form April 27, 2023)



