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Abstract

Power is becoming a scarce resource for data centers, raising
the need for power adaptive system design—the ability to dy-
namically change power consumption—to match available
power. Storage makes up an increasing fraction of total data
center power consumption. As such, it holds great potential
to contribute to data center power adaptivity.

To this end, we conduct a measurement study of power con-
trol mechanisms on a variety of modern data center storage
devices. By changing device power states and shaping IO, we
achieve a power dynamic range of up to 59.4% of the device’s
maximum operating power. We also study power control
trade-offs, including throughput and latency. Based on our
observations, we construct storage device power-throughput
models and discuss the implications on power adaptive stor-
age system design.

CCS Concepts: « Hardware — Enterprise level and data
centers power issues; » Information systems — Storage
power management.
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1 Introduction

Power management has become a focus of modern data
center operations. On short timescales, data centers over-
subscribe power to support higher load within existing
power infrastructure [18, 39]; adaptation here needs to occur
in milliseconds. In the medium term, power availability
can vary due to internal factors like power rail failures [9]
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and external factors like the share of renewable energy
in the power supply and the impact of weather on grid
demand and supply [1, 2]. On longer timescales, the increased
computational and storage demands of data centers are
outpacing the ability of grids to supply highly reliable power
to meet those demands [14]. For all three reasons, data center
operators increasingly must actively manage power and
contribute to demand response programs [20, 40].

We believe that now is the time to build power-adaptive
storage systems to help address these issues. A power-
adaptive storage system can adjust power consumption on
varying timescales to match available supply!. The fraction
of power consumed by storage in the data center is increas-
ing. When hard disk drives (HDDs) were prevalent, storage
made up around 10% of the total data center power draw [29].
Flash-based solid-state drives (SSDs) now make up a large and
increasing share of storage in data centers to meet the need
for low-latency, high-bandwidth, and high-access rate stor-
age [22, 43, 44]. While SSDs consume similar or less power at
idle than HDDs, their peak active power can be 2 the peak ac-
tive power ofhard disks for the same storage capacity [44]. Fur-
thermore, the active power of data center SSDs has more than
septupled in the last decade: early SSD generations consume
about 3.4W [24] and current devices consume about 25W [27].
As such, understanding the power characteristics and control
mechanisms of modern storage devices isbecoming important
as a step towards controlling power usage in the data center.

To that end, we carry out a measurement study of modern
data center storage devices. We explore the potential of
shaping IO (e.g., sequential and random IO, IO chunk sizes)
and using device power control mechanisms to tune storage
device power usage as a function of available power. We
build a measurement infrastructure to study the impact of
IO size and queue depth on power usage for both random
and sequential IO. With these measurements, we construct
a power consumption model of each device. Our models
quantify the power/performance trade-off, allowing storage
system designers to make informed choices about how to
respond to power reduction events while respecting the
performance guarantees provided to users.

'Power adaptivity is related to but different from power proportionality,
the design of storage systems whose average power use scales up and down
with workload intensity [3, 34, 36, 37].
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Specifically, we find that device power control and shaping
IO can halve a device’s idle power and enable a power
dynamic range of up to 59.4% of the device’s maximum active
power. However, applying these mechanisms blindly can
cause device throughput to drop precipitously, to 1/25 of
maximum. We thoroughly study these trade-offs and analyze
the implications for the storage system, such as IO traffic
shaping, power-aware IO direction to a subset of active
devices, and leveraging asymmetric [O.

We summarize our contributions as follows:

e We conduct a systematic study of power consumption
of three enterprise-grade SSDs and one enterprise-grade
HDD handling various microbenchmarks.

e We discuss the implications of our observations on the
design of power-adaptive storage systems.

e We present the design of a power measurement system
that can work with enterprise-grade SSDs and HDDs to
collect device power draw with a sub-10 ms period and an
accuracy within 1% relative error.

2 Power Characteristics of Storage Devices

The dynamic range of storage device power can be consid-
erable. For example, in a storage server with 16 SSDs, each
SSD can have an idle power of 5W and an active power of
23W (e.g., the Samsung PM1743 [27]). The total idle storage
device power is 80W and the active power can be up to 368W.
This range is comparable with the power dynamic range of
the host server without storage devices.

Modern storage devices have built-in power control
mechanisms [11, 25]. These mechanisms include low-power
idle modes and, for SSDs, caps on the operating power of the
device. Storage device power can also be modulated through
storage IO operations issued by the host. These mechanisms
are important tools for building power-adaptive storage
systems, but they come with performance trade-offs that
must be considered. We explore their effect for HDDs and
SSDs—the most prevalent data center storage devices—in this
work. In this section we give a brief overview of how power
is consumed in these storage devices.

Hard disk drives. To achieve low IO latency, HDD
platters must rotate constantly; most disks support a single,
constant rotation rate. As a consequence, HDDs have a
narrow power dynamic range during normal operation.
HDDs support low-power states that typically flush any
buffered data in the device’s on-board DRAM and spin the
disk down, i.e., halt platter rotation [16]. However, IO issued
to a spun-down disk experiences orders of magnitude higher
latency than a normal IO while the disk spins back up.

Solid-state drives. Because SSDs do little work while
in an idle state, they tend to have a lower idle power than
HDDs. The high capacity and high throughput served
by SSDs means that their absolute power consumption is
typically higher than HDDs. Further, techniques to increase
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Figure 1. Power measurement infrastructure.

SSD density such as stacking and richer encodings tends to
increase maximum SSD power demand.

Like HDDs, SSDs can be put into a low-power standby
mode, which uses one-tenth of the power of the device at
idle [25], or powered down entirely. Because SSDs have no
mechanical parts, transitioning into and out of low-power
or powered-down modes takes milliseconds, and hence
has a much smaller impact on latency than it does for
HDDs [12]. An SSD may also have different power states,
each of which caps the device’s average power draw at a
specified limit within any 10-second period. For instance, the
Samsung PM1743 SSD has a typical read power of 23W and
a typical write power of 21.1W [27]. It can be power-capped
to consume a maximum of 9W, around 40% of its uncapped
maximum power draw and 1.8X its idle power draw of 5W.
The host selects a power state through the NVMe power
control interface [11]. Power capping may reduce throughput
and increase latency depending on the workload.

3 Power Measurement Study

The goal of our study is to determine to what extent storage
devices can be power adaptive. To answer this question,
we first determine the power dynamic range of a variety of
representative storage devices, including SSDs and HDDs. We
then explore different ways to control power consumption
within this range and determine the effectiveness and
trade-offs of each method.

Measurement infrastructure. In order to measure the
power draw of a storage device, we must separate its power
usage from the computer’s other components, e.g., the CPU
and DRAM. Existing power reporting mechanisms like IPMI
do not break out storage device power. Thus, we design our
own measurement infrastructure as shown in Figure 1.

To support a wide range of drives ((5)), we build our toolkit
for three prevalent interface types: SATA, PCle, and NVMe
(M.2,U.2,E1.S, etc.). SATA provides easy physical access to
the power wires, which we instrument directly. For PCle
devices, we use a PCle riser card ((¢)) with external power
supply wires that fully power the device, and instrument the
external power supply wires. Because all NVMe interfaces
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Label Protocol Model Measured Power Range
SSD1  NVMe Samsung PM9A3 3.5-13.5W

SSD2 NVMe  Intel D7-P5510 5-15.1W

SSD3  SATA Intel D3-P4510 1-3.5W

HDD SATA Seagate Exos 7E2000 1-5.3W

Table 1. Evaluated storage devices.

are pin-compatible with PCle, we use a PCle transformer
card to transform NVMe into PCle (i.e., U.2 to PCle card).
We measure power by instrumenting the power wires with
shunt resistors ((1)). The shunt resistor Rspyn transforms the
current signal I to a differential voltage signal, following the
voltage drop on the resistor being AV =1-Rgp,,,;- The power
is then calculated by P =U - I where U is the voltage of the
power wire. We use a 0.1Q resistor along with a differential
signal amplifier ((2)) to mitigate noise in the measurements.
The voltage signal can be measured by oscilloscope or
analog-digital converters (ADCs). We use the ADC ((3)) to con-
nect to our data logger to sample power data at millisecond
scale. The ADC is set to sample the voltage signals at 1 kHz.
An Arduino UNO ((@) is used to configure the ADC and read
the voltage values measured by the ADC, then send them to
a data logging computer. With a 24-bit ADC, we achieve less
than 1% of measurement error, sampling at millisecond-scale.
We use a Texas Instruments ADS1256 ADC and an Arduino
UNO R3 for data collection and transmission. The workload
generation computer is a Dell Precision Tower 5810 with Intel
XeonE5-1603 v3 CPUand 16GB RAM. This computer supports
PCle 3, which has limited bandwidth compared to some of our
SSDs. We find that read bandwidth cannot always be saturated.
However, this should not affect the outcome of our study.

Storage devices. The storage devices used in the
experiments are listed in Table 1, including the power range
measured by our experiments. We cover recent storage de-
vices that are common in data centers, including devices with
SATA and NVMe interfaces, as well as HDDs and SSDs. The
devices are all marketed for the data center and can be found
within typical server configurations (e.g., by Supermicro [32]).

Workloads. To measure the power drawn by a storage
device under different operating conditions, we test random
and sequential reads and writes, variable IO chunk sizes,
and variable IO queue depths. We generate workloads with
fio 3.28 [4]. The IOs are submitted asynchronously and
directly to the device, bypassing the OS page cache. By testing
random-only and sequential-only workloads, we evaluate
workload extremes to get the boundaries of power dynamic
range. We test 6 different chunk sizes from 4KiB to 2 MiB.
We experiment with 6 different IO depths from 1 up to 128.
Each experiment issues requests for one minute or until the
requests total 4 GiB, whichever comes first.
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Figure 2. Random write power use during one experiment
(chunk size 256 KiB, queue depth 64).
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Figure 3. SSD2 random write average power under different
power states.

3.1 Power Measurement Example

Figure 2a shows an example of the power measurements
collected over a single experiment with our power measure-
ment system. It shows that there is substantial variability
in power usage over small timescales. Figure 2b shows a
violin plot of the distribution of power measurements for
various storage devices during the same experiment. Some
devices have more power variability than others. Horizontal
lines within the distribution show both median and mean,
which nearly overlap. Without our measurement system’s
millisecond-scale sampling rate, these details in device power
consumption could not be captured and analyzed.

3.2 Power Measurement Results

Two types of mechanisms influence storage device power
consumption: (1) in-device mechanisms (e.g., standby modes
and device power states that cap power), and (2) IO shaping
(i.e., IO chunk size and queue depth). We systematically study
to what extent these mechanisms can control storage device
power and their trade-offs.

3.2.1 Power Capping. NVMe SSDs support power
capping, where an active device limits average power
consumption to a specification.

Benefit. Device power use cannot exceed the cap. For
instance, SSD2 implements three power caps: psO limits
maximum power to below 25W (the maximum device
power), psl to 12 W, and ps2 to 10 W. Figure 3 shows average
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Figure 5. SSD2 random write latency (queue depth 1).

power when these caps are in effect. As we saw in Figure 2,
instantaneous power can differ from average power.

Trade-off. While power capping is efficient in controlling
power usage, it hurts performance. Figure 4 shows through-
put in ps1 and ps2. Write workloads suffer a significant drop
compared to that of ps0. For instance, the performance of
sequential writes in ps1 and ps2 is merely 74% and 55% of
that of ps0, respectively.

The influence of power capping on read and write through-
put differs. We compare sequential write (Figure 4a) and read
(Figure 4b) throughput between power states. For sequential
writes, there is a 26% (45%) drop in throughput from ps0 to
psl (psl to ps2). For sequential reads, the trend disappeared:
capping from ps0 to ps1 (ps1 to ps2) results in minimal drop
in throughput. A similar trend in the impact of the power cap
on IO throughput is also seen for SSD1. This difference makes
a power cap more effective for read-intensive workloads.

As shown in Figure 5, average random write latency
changes with the power cap by up to 2x. Tail latency
increases dramatically. For ps2, tail latency increases by a
factor of up to 6.19X relative to ps0.

Non-trade-off. In terms of read workload latency, there
is no noticeable difference in average latency and 99% latency
between different power states as shown in Figure 6. This
is because reads at queue depth 1 do not create enough load
on the device to be power capped.

3.2.2 Low-Power Standby. To reduce power further,
HDDs can spin down and SSDs can disable interface
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functionalities [6], called standby. While ubiquitous in HDDs,
standby is rarely supported in data center SSDs. To evaluate
the potential for SSD standby mode, we experiment with a
desktop SSD, the Samsung 860 EVO [26].

Benefit. Standby can double a device’s power dynamic
range. We measure our HDD’s standby power consumption
at 1.1 W, compared to 3.76 W at idle, saving 2.66 W. This is
comparable with the savings between idle and active of 5.3 W.

Similarly, SSD idle power is cut in half with standby (Fig-
ure 7). Aggressive Link Power Management (ALPM) (8, 17],
a power management protocol for SATA devices, allows us to
set standby mode. When we activate ALPM’s lowest-power
mode (SLUMBER), the Samsung 860 EVO SSD’s power con-
sumption decreases to 0.17 W from an idle power of 0.35 W.

Trade-off. Entering and exiting standby takes time. We
observe that HDD spin-down and spin-up takes up to 10
seconds. SSDs can transition quickly—the EVO transitions
within 0.5 seconds—but can consume additional power
during the transition (Figure 7). In practice, requests issued
while a device is in standby may incur additional latency,
though for SSDs the added latency is often negligible [33, 34].

3.2.3 10 Shaping. IO size and queue depth provide the
most fine-grained way to control active power, as shown in
Figures 8 and 9.

Benefit. Compared to chunk sizes of 2 MiB, 4 KiB chunks
consume up to 30% less power. Compared to large IO depths
of 64, an IO depth of 1 consumes up to 40% less power.

Trade-off. On the flip side, 4 KiB chunks have up to 50%
performance loss, while an IO depth of 1 may provide only
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Figure 10. Power-throughput model for random write.

10% of the performance. Therefore, when considering 10
shaping to control storage device’s power consumption, the
trade-off between power and throughput must be carefully
considered to minimize impact on storage system QoS.

3.3 Power-Throughput Model

Putting together the experimental results, we can form a
power-throughput model of each device under the explored
power control mechanisms. To show one example of the
storage power and throughput dynamic range, Figure 10 plots
the normalized power and throughput with respect to each
device’s maximum average power and maximum throughput
under a random write workload across all combinations of
power control mechanisms (device power control and IO
shaping). Each point in the plots represents one combination
of a storage device or the device’s power state, and the IO
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shaping on that device. The maximum power dynamic range
is obtained by SSD2 with a range of 59.4% of its maximum
power. The largest performance trade-off is observed in the
HDD where throughput can drop to 4% of the maximum.
Using the power-throughput relationship captured in these
plots, a power-adaptive storage system that operates under
certain power and performance constraints can find the
configuration of power cap and IO shape for each device to
meet these constraints.

For example, for SSD1, assume the device is operating at
queue depth 64 and chunk size 256 KiB, which corresponds to
the point in Figure 10a with 3.3 GiB/s write bandwidth (99.5%
of maximum throughput) and 100% maximum average power
at 8.19 W. For a power reduction of 20%, the model suggests
a reduction of 40% in throughput, with a queue depth of 1
and chunk size of 256 KiB. The storage system can use this
information to decide that it can curtail 40% x 3.3 GiB/s =
1.3 GiB/s in best-effort load to provide the same service for
high-priority load under the 20% power reduction cap. In this
case, it may only enter this configuration if it has 1.3 GiB/s
of best-effort load available. As seen in the figure, the model
generalizes across storage devices. In scenarios with multiple,
heterogeneous devices, power-throughput models of multiple
devices can be combined to derive the performance Pareto
frontier of device configurations under a power budget.

4 Impact on Power-Adaptive Storage Systems

This study investigates mechanisms for controlling power
usage of storage devices and the extent to which those
mechanisms improve the power dynamic range of storage
devices. Our experiments confirm that storage power
consumption can be controlled with device power control
and IO shaping. Because cloud operators control hardware
and the lower levels of storage stacks, operators can use
similar power models, as derived through our experiments,
as a foundation for power-adaptive storage systems, using
SLOs and power budgets as inputs. Here we discuss the
trade-offs inherent in such control and the implications for
power adaptive storage system design.

Power-aware I0 redirection. As we observe in §3.2.2,
HDD standby and spin-up take seconds, which adds to the
latency of data access, posing a risk of violating latency
guarantees to applications when putting HDDs in standby
mode to save power. SSDs have a much shorter wake-up
time, as low as sub-millisecond. If workloads can be classified
and IO requests directed to active devices in a power-aware
manner, the standby period of the inactive storage devices
can be maximized without QoS impact (cf. SRCMap [36]).
Similarly, in tiered storage, the longer standby/spin-up
latencies of HDDs may be masked by temporarily absorbing
writes with SSDs. Power-aware caching and prefetching
may mask read latencies for data stored on standby devices
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(cf. EXCES [35]). Operators can leverage power when it is
abundant to reorganize data into appropriate tiers.

Power-capping and IO shaping. Our measurements,
summarized in §3.3, show that power capping and IO shaping
can be used to reduce storage power but with a relatively large
impact on throughput. To walk this trade-off intelligently,
storage system developers can use our power-throughput
models to determine appropriate power caps and IO shaping
on storage devices under performance constraints, to
minimize throughput impact when reducing power usage. In
tiered storage, weaker SLOs for slower tiers may allow opera-
tors to apply power-adaptive mechanisms more aggressively
on those tiers. Operators can match the power-performance
models with performance guarantees to determine when and
how to apply these mechanisms to different tiers. For latency,
a similar model can be drawn from the measurement results.

Leveraging asymmetric IO. Given the different perfor-
mance trends in read versus write workloads when the device
is power capped, segregating write traffic to a small set of
disks, while power capping the remainder, is a possibility.
Leveraging this form of asymmetric IO can reduce power
consumption while minimizing the influence on storage
system QoS. In tiered storage, directing writes to lower
storage tiers when power is constrained can also be applied
to reduce storage power consumption.

4.1 Broader implications.

Transitioning to power-adaptive storage. There are
serious consequences to incorrectly controlling power, such
as bringing down power infrastructure in the data center or
violating agreements with the grid. As such, it is necessary
to carefully roll out any power-adaptive storage system.
A power-adaptive storage system could be designed for
incremental deployment at the sub-rack granularity, i.e.,
below the lowest tier of the data center power hierarchy [19].
Local failures of the storage system to control power can
safely be identified before a failure threatens to exceed the
power budget of rack-level breakers. For the same reason,
small-scale test deployments should be distributed among
power domains so that coordinated failures of deployments
to reduce power do not overwhelm a single domain. As con-
fidence in small-scale deployments is achieved, the size of the
power-adaptive storage system can be gradually increased.

Implications on broader data center power manage-
ment. Interaction with other power control mechanisms for
other system components should be assessed. For instance,
if the power consumption of other components is reduced,
how does that affect the power consumption of storage?
Will it change the preferred mechanism for reducing storage
power? For example, CPU throttling to reduce CPU power
usage may in turn reduce request rates to storage. In this
case, IO redirection together with putting devices on standby
may be preferred over IO shaping, because lower IO request
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rates may mean devices can remain in standby mode for
longer. Further, the order in which power control techniques
are applied to different components (CPU, storage devices,
networking devices, etc.) can impact which techniques are
most effective, opening up an area of further study.

5 Related Work

There is a large body of work from the last decade mea-
suring the power and energy characteristics of storage
devices [5, 28, 30]. Prior work investigates power and energy
characteristics of HDDs, including the effect of spin-down
on power use [15, 16]. Measurement studies investigate
the impact of SSDs’ internal architecture on power and
energy [7,41,42]. Grupp et al. characterized the power of flash
operations on SLC and MLC devices [10], but did not look
at workload-level impacts on device power usage. Our study
draws inspiration from this prior work, including the design
of our measurement system [5, 42]. We add to these findings
by investigating modern storage devices, including the high-
capacity NVMe devices used in data centers today, and by
focusing on the mechanisms for adapting device power usage.

Other prior work models SSD power consumption, using
SSD power measurements to parameterize or to validate
models [7, 21, 23]. Such work typically does not report
power measurements in detail. As observed by others [5],
simulations often do not accurately model device behavior;
hence we carry out a measurement study in this work.

More recent work measures whole-system power while
handling storage workloads, investigating the impact on
power of device type [12]; IO interfaces, submission and
completion mechanisms [13, 31]; and IO schedulers [38].
Investigations into system power are complementary to
our work. Understanding device power is necessary for
large-scale data center storage systems where a significant
percentage of power is drawn by storage devices.

6 Conclusion

Through a thorough measurement study, we characterize the
power control dynamic range of modern data center storage
devices. We find that device power states and IO shaping
can halve idle power and achieve a power control dynamic
range of up to 59.4% of a device’s maximum operating power.
We observe the throughput and latency trade-offs when
applying these mechanisms, we build a power-throughput
model across storage devices, and we discuss implications
on power adaptive storage system design.
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