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The present paper is devoted to the study of the long term dynamics of
diffusion processes modelling a single species that experiences both demo-
graphic and environmental stochasticity. In our setting, the long term dynam-
ics of the diffusion process in the absence of demographic stochasticity is
determined by the sign of Ag, the external Lyapunov exponent, as follows:
Ag < 0 implies (asymptotic) extinction and A > 0 implies convergence to a
unique positive stationary distribution pq. If the system is of size 6% for small
€ > 0 (the intensity of demographic stochasticity), demographic effects will
make the extinction time finite almost surely. This suggests that to understand
the dynamics one should analyze the quasi-stationary distribution (QSD) e
of the system. The existence and uniqueness of the QSD is well known under
mild assumptions.

We look at what happens when the population size is sent to infinity, that
is, when € — 0. We show that the external Lyapunov exponent still plays a
key role: (1) If Ag <O, then ue — §p, the mean extinction time is of order
|Ine| and the extinction rate associated with the QSD ¢ has a lower bound

of order |1n €| ; (2)If Ag > 0, then e — w1, the mean extinction time is poly-

nomial i in = > and the extinction rate is polynomial in €2. Furthermore, when
Ag>0 we are able to show that the system exhibits multiscale dynamics: at
first the process quickly approaches the QSD ¢ and then, after spending a
polynomially long time there, it relaxes to the extinction state. We give sharp
asymptotics in € for the time spent close to jte.

In contrast to models that only take into account demographic stochastic-
ity, our results demonstrate the significant effect of environmental stochas-
ticity—it turns an exponentially long mean extinction time to a sub-
exponential one.

1. Introduction. One of the most important questions from population dynamics is fig-
uring out when a species persists or goes extinct. For deterministic models, persistence is
usually quantified via the existence of an attractor that is bounded away from zero (the extinc-
tion state). In this setting extinction can only happen asymptotically as time goes to infinity.
However, any realistic ecological model has to take into account various intrinsic and extrin-
sic random environmental fluctuations. Usually there are either ecological models that take
into account environmental stochasticity that arises due to fluctuations of the environment,
or models from population genetics that focus on demographic stochasticity, which arises
because of the randomness due to reproduction in a finite population. There are few analytic
models which account for the effects of both types of stochasticity.

If the system is of size Elz for some small € > O (intensity of the demographic noise), the
presence of demographic effects will make the extinction time finite almost surely. As a result,
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in order to gain some information about the behavior of the process before extinction, it is
natural and useful to look at quasi-stationary distributions (QSDs) [12, 43], that is, stationary
distributions of the process conditioned on not going extinct. A key problem is to study
scaling limits of systems that have QSDs and see what happens with the family of QSDs as
the intensity of the demographic noise is sent to zero.

The main goal of this paper is to analyze the dynamics of systems that have both types of
stochasticity and can be modelled by stochastic differential equations (SDEs). We focus on
the QSD and the extinction time as well as related quantities such as the extinction rate and the
exponential convergence rate to the QSD, and investigate their asymptotic properties as the
intensity of the demographic noise vanishes—a particular emphasis is put on the connections
to properties of the limit system. Models with both types of stochasticity are more realistic
as natural systems usually experience both types of randomness. The sharp criteria we find
for the persistence and extinction of species are therefore more relevant to the modelling of
natural ecosystems—see [16, 22].

Systems perturbed by either the environmental or demographic stochasticity have been
attracting a lot of attention. If one looks at models that only have environmental stochasticity,
there already exist many sharp results in the literature. In the one-dimensional setting, a full
classification is possible by the well-known scale function and speed measure description of
diffusions [3]. In the multi-dimensional setting things are more complicated. Some general
theory for the existence and uniqueness of stationary distributions can be found in [34], while
the most up to date results for Kolmogorov systems are in [1, 24, 25].

For models with only demographic stochasticity, asymptotic properties of QSDs and re-
lated quantities as the intensity of the stochasticity vanishes are often the focus of studies.
They have been investigated for randomly perturbed dynamical systems and rescaled Markov
jump processes. The first work seemingly dates back to [27], where the author studied the
stochastic Ricker model. This work was generalized in [38, 49] to randomly perturbed inter-
val maps that apply to density-dependent branching processes. Further generalizations were
considered in [18, 31], where general randomly perturbed maps are studied and applied to
many population models. These works illuminate two fundamental properties when the un-
perturbed deterministic system has a global attractor which is bounded away from extinction:
(1) QSDs tend to concentrate on the deterministic attractor as the noise intensity vanishes.
(2) The extinction rate associated with a QSD is exponentially small with respect to the sys-
tem size (i.e., the reciprocal of the noise intensity squared), and therefore, the extinction time
grows exponentially with the system size if the initial distribution is given by the QSD. Con-
centration properties of QSDs as in (1) are in line with that of stationary distributions for
randomly perturbed dynamical systems (see, e.g., [19, 28, 29, 35-37]). For the latter in the
case that the unperturbed system has simple dynamics, significantly more refined results are
available in the literature (see, e.g., [2, 13, 44, 51]).

Rescaled absorbed birth-and-death processes whose mean-field ODEs have a global
asymptotically stable equilibrium have been investigated in [7-9]. In one dimension, the ex-
ponential asymptotic of QSDs and associated extinction rates are established in [7]. When
the equilibrium is nondegenerate, these results are improved in [8] by determining the sub-
exponential terms, implying in particular that QSDs converge to the Dirac measure at the
equilibrium in a Gaussian manner. In higher dimensions, the aforementioned two fundamen-
tal properties are obtained in [9]. It is worthwhile to point out that the problem in higher
dimensions is much more challenging due to the irreversibility and the lack of simple recur-
sive formulas for QSDs. In [8, 9], the authors also characterize the two-scale dynamics of the
solution processes by deriving sophisticated estimates quantifying the distance between the
distribution of the solution and the convex combination of the extinction state (more precisely,
the Dirac measure at the extinction state) and the QSD.
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In [32, 48, 50] the authors consider one-dimensional absorbed singular diffusion pro-
cesses of generalized logistic type with small demographic noises—these models can be
derived as diffusion approximations of one-dimensional rescaled absorbed Markov jump pro-
cesses arising from population dynamics and chemical reactions. When the unperturbed or
mean-field ODE has a unique positive equilibrium (which must be globally asymptotically
stable), results comparable to those contained in [8] are established. In particular, the noise-
vanishing asymptotic of QSDs and associated extinction rates are determined up to the sub-
exponential terms, and the two-scale dynamics of the solution process is characterized. The
noise-vanishing asymptotic of QSDs and associated extinction rates extends to the case where
the unperturbed ODE has multiple positive stable equilibria. We point out that while QSDs
for many types of processes have been extensively studied (see [5, 12, 47, 54] and reference
therein), the fundamental theory of QSDs (i.e., the existence, uniqueness and convergence)
for absorbed singular diffusion processes was unavailable until the work [5]. Since then, there
have been significant new developments (see, e.g., [6, 12, 23, 26, 41, 43, 45]).

There exist relevant works on overdamped Langevin equations restricted in a bounded
domain and killed on its boundary [4, 14, 15, 40, 42]. In [42], the author derived the ex-
ponential asymptotic of the extinction rate (more appropriately, the exit rate for a diffusion
process exiting from a bounded domain) and the asymptotic of the principal eigenfunction of
the generator in the deepest well of the potential, leading to the sub-exponential asymptotic of
the QSD in that well. These results are greatly improved in [4] under generic assumptions on
the potential function. In a series of works [14, 15, 40] examining exit events and the Eyring—
Kramers formula, the sub-exponential asymptotic of the exit rate plays a significant role in
computing the asymptotic of transition rates and determining the asymptotic exit distribution.

This paper is a first step towards generalizing the theory of randomly perturbed dynamical
systems without absorbing states and randomly perturbed dynamical systems with absorbing
states and only demographic noises to a theory of randomly perturbed dynamical systems
with absorbing states and multiple types of noise. Inspired by the aforementioned theories
of noise-vanishing asymptotics of stationary distributions, QSDs, and related quantities, and
motivated by the fact that real systems are subject to both intrinsic and extrinsic stochastic
perturbations, we intend to establish an analogous theory for dynamical systems under both
environmental and demographic noise perturbations, and study the effects of both types of
noises.

In the present paper, we consider one-dimensional SDEs with both environmental and
demographic stochasticity:

dXE = b(XE)dr + 0 (XE)dB, + e Ja(XE)dW, in [0, 00),

where the coefficients b, o and a satisfy natural assumptions. Let 7;; = inf{t > 0: X7 =0} be
the extinction time of X7 . It is finite almost surely. Denote by L. the self-adjoint extension in
L2u%) := L*((0, 00), uf dx) of the generator of X¢, where u? is the nonintegrable Gibbs
density of X as it grows like % as x — 0. The spectrum of L, is purely discrete. Depending
on the dynamics of the limiting SDE, which only has an environmental stochasticity term:

dX? =b(X))dt +0(X")dB; in[0,c0),
we are able to prove the following results (with rigorous statements given in Section 2):
’ 2
(I) Suppose Ag :=b'(0) — % > 0 so that X? has a unique stationary distribution g

that does not put mass on the extinction state 0.

e The unique QSD . of X; converges to wo as the intensity of the demographic noise

goes to zero, that is, € — 0. The associated extinction rate A. | is given by the principal
4'0)
eigenvalue of —L,, and is polynomially small in € with leading order A¢ | ~ €0’ ©F
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€

T§
e The normalized extinction time 73 [TG]
of mean 1 as € — O Moreover, the mean extinction time E§[7(5 | depends polynomially on

the system size = L with leading order

converges weakly to an exponential random variable

2 (0)

46’ (0 _
EE [TG] ~ 1 ~ 62 ‘a’((())\)z — (i) |0/(0)‘2
0 )“e,l 62

The polynomial asymptotics of the extinction rate A1 and the mean extinction time
E[ T ] are significant changes from that of models having only demographic noise, see
[18, 32, 48], where the dependence on the noise intensity is exponential. This shows that
environmental stochasticity has a significant impact on the time-scales of the dynamics.
The fact that the dependence changes from exponential to polynomial in the presence of
environmental stochasticity has been recently showcased empirically and numerically in
simple ecological models [16, 22].

e The eigenfunction ¢, 1 of —L, associated with A ; converges, after appropriate normal-
ization, to 1 as € — 0. The second eigenvalue A, > of —L, satisfies

0< hmlnfk6 2 <limsup ¢ < 00,
—0 e—0
yielding in particular the uniform spectral gap infe (Ac 2 — Ae;1) > 0.
e The distribution of X7 satisfies the multiscale estimate:

(L1 |PSIXE € o] — [ctee ™1 e + (1 — ctce™11)80] |y < Ce e,

where . is the integral of the appropriately normalized ¢. ; with respect to the initial
distribution, and the constant C depends on the initial distribution but is independent of €.
This estimate together with information about A¢ 1, A¢ 2 and ¢¢ 1 allows us to quantify the
multiscale dynamics of X; as follows. If ¢ is such that L Lt L 5, then [|[PELX]
o] — Me Jlltv < 1, that is, the distribution of X; is close to the QSD /,Le If # is such that
> )\6’1, then ||[P{[Xs € o] — SolllTv < 1, that is, the distribution of X gets close to &o,
the Dirac mass at the extinction state.

The estimate (1.1) is powerful—it has the convergence result of the normalized extinc-
€

1

L T§ . . . e reT . .
tion time ST and the asymptotic reciprocal relationship E¢[7(7] T as immediate

consequences.
(IT) Suppose Ag < 0 so that X? goes extinct as t — 00.

e As € — 0, we have u. — §p. The extinction rate A. | vanishes as € — 0 and has a lower

1
bound of order el

e The mean extinction time is of order | In€|, that is, E{[7;] ~ |In€].

The quantity Ag is often referred to as the stochastic growth rate (it is also called the
invasion rate or the external Lyapunov exponent)—it determines the stability of the extinction
state O for X 9. As Ay increases and crosses 0, the stable extinction state loses its stability and
bifurcates into an unstable extinction state and the globally asymptotically stable persistent
state wo. As it is seen from (I) and (II) such a bifurcation has a strong effect on the asymptotics
of the extinction rate A ; and the mean extinction time Eq[7(;].

To this end, we briefly comment on the ideas, methods and techniques used to establish the
above results, as well as the difficulties overcome in the course of the proof. We pay particular
attention to the comparison with the model that only has demographic stochasticity, that is,

dX¢ =b(XE)dt +eJa(XE)dW, in[0,00).
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For clarity, we assume b is just the standard logistic growth rate function with x, being the
only positive zero. Denote by L. the self-adjoint extension of the generator of X ¢. Under
natural assumptions on a, the spectrum of L is purely discrete. Denote by ):e,] and 5»6,2 the
first two eigenvalues of —L..

It is known (see, e.g., [4, 32, 42]) that the asymptotic of Xe,l and 5\6,2 are respectively
determined by the potential function V := — [ gds and the vector field b at x,. More

precisely, lim¢_, ¢ % In ):e,l = V(x*), and lim¢_, ¢ Xe,z = —b'(x4). The behavior of A¢ | and
Ae.2 1s completely different: we can show in the case A > O that the leading asymptotic
of A¢1 is determined by b’ and o at the extinction state 0. This shows that environmental
stochasticity significantly alters the “hidden mechanisms” which affect the mean extinction
time.

Denote by Ly the self-adjoint extension of the generator of X ?. One expects that the asymp-
totics of A¢ 1 and A, 7 are governed by the spectral properties of —L. However, this is not
clear at all because of the singular limit “lim¢_.o L = Lo”. The coefficient of the second-
order term of L. has a first-order degeneracy at 0, while that of £y has a second-order
degeneracy at 0. One of the unpleasant consequences of this singularity is that the struc-
ture of the spectrum of L differs significantly from that of L. The reader is referred to
Remark 3.1 for details.

Proving that infe A¢ 2 > 0 is hard in part due to the singularity of the limit “lim¢_.0 Le =
Ly”. The way we prove this builds on the simple fact that the eigenfunctions associated
with A¢ 1 and ¢ are orthogonal. Assuming the failure of infe ¢ 2 > 0, we manage to
show the loss of the orthogonality of eigenfunctions. A crucial ingredient leading to this
contradiction is to acquire certain compactness of appropriately normalized eigenfunctions
associated with A1 and A¢ 2.

Given the fact that eigenfunctions of —L¢ span Lz(uf), the multiscale estimate (1.1) fol-
lows essentially from the eigenfunction expansion of the Markov semigroup P associated
with X7 before hitting 0, saying particularly that all the terms in the estimate arise natu-
rally except the property that the constant C on the right hand side is independent of €. The
key to obtaining this is to derive good pointwise estimates of P Q5 f for f € C,((0, 00))
by lifting the integrability, as we know || PS¢ Q§||Lz(ugc)ﬁLz(uéc) < e <2 from PF being
generated by L., where Qf is the spectral projection of L, corresponding to eigenvalues
0 (Le) \ {—Ae.1}. This, however, is not an easy job due to the degeneracy of L, at 0 and the
singularity of u% at 0. We overcome the difficulties by examining the Schrédinger opera-
tor and the associated semigroup that are respectively unitarily equivalent to £, and Pf.
It is the blowup feature of the potential of the Schrodinger operator that helps to lift the
integrability and reach the goal.

The asymptotic of the extinction rate A 1 in the case A > O is tackled from two perspec-
tives. The first approach uses only the classical variational formula. A careful analysis of
the eigen-equation (written in the quadratic form) near the extinction state O allows us to
derive the sharp lower bound. The analysis extends to the case Ag < 0. A nonsharp up-
per bound is obtained by constructing test functions. The other approach, which leads to
the sharp asymptotic, builds on two independently established results: the asymptotic re-
ciprocal relationship E[7(5] ~ A:—l and the sharp asymptotic of Eq[7(y]. The former is an
immediate consequence of the multiscale estimate (1.1) as mentioned in (I). The latter is
achieved by a probabilistic approach that extends to the case Ag < 0.

The preprint [53] has recently come to our attention. The authors have been able to prove

results analogous to ours for a specific stochastic SIS epidemic model in randomly switched
environments. The SIS model is described by a multitype birth-and-death process XX in a
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randomly switched environment—the infection and recovery rates depend on the state of a
finite Markov process, which model the environment, whose transition rates in turn depend
on the number of infected individuals. The total population size K is fixed and the authors
show that as K — oo the process converges to a piecewise deterministic Markov process
that lives on a compact state space. The behavior of the limiting process is determined by
the top Lyapunov exponent, A, of the linearized system. The authors are able to show that as
K — oo the time to extinction is, when A < 0, at the most of order In K and, when A > 0,
at least of polynomial order in K. We note that our results are for SDEs and are significantly
sharper.

The paper is organized as follows. In Section 2 we offer the rigorous mathematical setup
of the problem and exhibit our main results. Section 3 offers some preliminary results that are
needed for the main results. The analysis of the tightness and concentration of the measures
e as well as the proof of Theorem A are provided in Section 4. Section 5 deals with the
proof of Theorem B which is about the asymptotic bounds on the first two eigenvalues Ac |
and Ao of the generator. The multiscale dynamics of Xy and proof of Theorem C appear
in Section 6. Section 7 is about the asymptotic of the mean extinction time E{[7(5] and the
proof of Theorem D.

2. Mathematical setup and main results. We consider the following family of SDEs:

(2.1) dXS =b(XE)dt +o(XE)dB; + € Ja(XE)dW; in [0, 00),

where 0 < € < 1 is a small parameter, b,o : [0,00) — R, a : [0,00) — [0,00) and B,
W, are two independent standard one-dimensional Brownian motions on some probability
space. Here, o d B; models environmental stochasticity and € \/a d W, represents demographic
stochasticity. Hence, € stands for the intensity of the demographic stochasticity. We point out
that €2 is inversely proportional to the population size, and hence, tends to 0 as the population
size goes to infinity.

Throughout this paper, we make the following assumptions on the coefficients b, o and a.

(H) The functions b : [0, 00) —> R, ¢ : [0, 00) - R and a : [0, c0) — [0, 00) are assumed to
satisfy the following conditions:

(1) b e CY0,00)), b(0) =0, b’ (0) > 0, and limsup,_, ., b(x) <0;
(2) o € C?([0, 20)), 0(0) =0 and o' (0) # 0;

(3) a € C%([0, 00)), a(0) =0, a’(0) > 0, and a > 0 on (0, 00);

(4) there holds

a(x) ! bx) . xbx)

oo, m = l1im 3 = —
X—00 |0(x)| X—>00 g (x)

limsu <
x—)oop 0’2()6)

. o?(x) {a’(X) IG’(X)I}_
im sup max{ ——, =0 and
X—00 |b(x)| a(x) |0()C)|

2
. " 2 " / _
hxnisolép 700 max{a”(x), (07 (x))", [b'(x)|} = 0.

(H)(1) says that b is a logistic-type growth rate function—these types of growth rates play
an important role in many biological and ecological applications. In particular, b(x) looks like
b’ (0)x around 0 and the per-capita growth rate at zero is positive, b’ (0) > 0, something which
ensures persistence if there is no demographic or environmental stochasticity. (H)(2) is satis-
fied if o (x) = xf (x) for some f € C 2([0, 00)) and often appears in modeling environmental
stochasticity. We note that in most applications one has o (x) = ox for some o > 0. (H)(3)
assumes that a is degenerate at 0 and behaves like a’(0)x near 0. It is worthwhile to point out
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that the singularity of a at O causes the nonintegrability of the Gibbs density near 0, and thus,
leads to substantial difficulties in the analysis of (2.1). The condition limsup,_, ., b(x) < 01in
(H)(1) and the growth conditions on a, b and o in (H)(4) guarantee (2.1) forms a dissipative
system. Other conditions in (H)(4) restricting the derivatives of a, b and o2 near oo are mild
technical assumptions. The assumption (H) applies in particular to the logistic diffusion:

dX[:Xz([,L—KXt)dt-i‘O'XtdBt+€\/')/Xtsz in [0, OO)
and the stochastic theta logistic model (with 6 > 0):
dX,=X;(n—«X?)dt + o X, dB, + €/yX;dW, in [0, 0).

Denote by X; the diffusion process on [0, co) generated by solutions of (2.1). For singular
diffusion processes like (2.1), the strong uniqueness is ensured by the well-known Yamada—
Watanabe theory [55, 56]. Moreover, X; gets absorbed by the absorbing state 0 in finite time
almost surely (see, e.g., [5, 30]), leading eventually to extinction dynamics. However, X can
display long interesting dynamics before hitting 0. To capture such dynamics, we use quasi-
stationary distributions of X;—these are initial distributions of Xy on (0, o) such that the
distribution of X conditioned on not reaching O up to time # is independent of r > 0.

Let T;j be the first time that X; hits O (often called the extinction time), that is,

Ty =inf{r > 0: X; =0}.

Then, IP’;[TO€ < oo] =1 as mentioned above (see also [30], Chapter VI, Section 3), where
IP7, the law of X7 with initial distribution 4. The associated expectation is denoted by Ef . If
p = 8, we simply write P{ =P§ and E{ =Ej .

DEFINITION 2.1 (Quasi-stationary distribution). A Borel probability measure pe on
(0, o0) is called a quasi-stationary distribution (QSD) of X7 if

IP’ZE[Xf € BTy >t]=pc(B) Vi=>0,BeB((0,00)),
where B((0, 00)) is the Borel o -algebra of (0, co).

The general theory of QSDs (see, e.g., [12, 43]) says that if u. is a QSD of X7, then there
is a unique number A1 > O such that 7§ is exponentially distributed with rate A¢ | provided
X{§ ~ Me, that is,

(2.2) P [T5 > t]=e7*1" Vr>0.

For this reason, A 1 is often referred to as the extinction rate.

Following [5], we check that under (H), X; admits a unique QSD u. with a positive C 2
density u. (see Lemma 3.4 for details). Moreover, the associated extinction rate A 1 is given
by the principal (or the first) eigenvalue of —L., where L, is an appropriate extension of the
generator of X{ and acts on functions in C 2((0, 00)) as:

(2.3) Lcp= %(eza +0%)¢" +bp' Vo e C*((0,00)).

The rigorous definition of L. is given in Section 3.1. In addition, the spectral gap between
the first and second eigenvalues, A 1 and A 2, of the operator —L, characterizes the expo-
nential convergence rate of }P’Z[X i € o]t < Ts]tothe QSD fie as t — oo whenever the initial
distribution p is compactly supported in (0, 00).

The main goal of this paper is to analyze the combined effects of environmental and de-
mographic noises on population persistence and extinction. In order to achieve this, it is of
paramount importance to investigate the asymptotic properties of (e, A¢,1 and A¢ 2 as € — 0.
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We are able to provide detailed information about the diffusion process X; governed by the
QSD fte, and to characterize the extinction time 7§ (especially, the mean extinction time
E.[7;]) as well as the global multiscale dynamics of X?.

Investigating the asymptotic properties of X7 and related quantities (i.e., e, Ae,1, Ae,2 and
T5) as € — 0 leads naturally to the limiting equation of (2.1), namely,

(2.4) dX?=b(X%)dt +0(X°)dB, in]0, c0).

Intuitively, the first step towards a good understanding of these asymptotic properties is to
acquire relevant information about the diffusion process X on [0, co) generated by solutions
of (2.4). It is worthwhile to point out that X ? behaves fundamentally different from X over
large time scales. For instance, if X 0—x¢ (0, 00), then X? does not reach the absorbing
state 0 in finite time almost surely, that is, X* > 0 P,-a.e. for all # > 0 (see Proposition 3.1).
Moreover, the spectral structure of the generator of (2.4) differs very much from that of the
generator of (2.1), that is, L. More precisely, the latter is purely discrete (see Lemma 3.1),
while the former is not (see Remark 3.1).

The dynamics of X? is very well understood. Following, for example, [17, 24, 33], we
define the stochastic growth rate (also called invasion rate or external Lyapunov exponent)

o’ (0)1?
o

In population dynamics, the condition Ag > 0 implies that a species tends to increase when
it is at a low density, and therefore, persists in the long run (see [17, 24, 33]). The following
sharp threshold result is part of Proposition 3.1:

(2.5) Ag:=b'(0) —

e if Ay <0, then & is the only stationary distribution of X?;

e if Ag > 0, then X" admits a unique positive stationary distribution o with a positive den-
G

sity ug € C2((0, 00)) given by the normalized Gibbs density, namely, ug = W,
0 "L1((0,00))
where
1 o b
(2.6) u§ = —e 17" in (0, 00).
o

More detailed information is given in Section 3.4. Our main focus is on the case Ag > 0—in
this setting the persistence of a species whose dynamics is modelled by (2.4) becomes a
transient property when the model (2.1) is used. This is how things usually behave in nature
where a population persists for a long time after which it eventually goes extinct. Our purpose
is to give quantitative and qualitative characterizations of this phenomenon. We are also able
to establish interesting results in the case Ag < 0, demonstrating significant changes as A
crosses 0, where a bifurcation occurs.

Our first result addresses the limiting behaviors of . as € — 0. The space C%((0, 00)) is
equipped with the topology of locally uniform convergence up to the second derivative.

THEOREM A. Assume (H).

(1) If Ag <0, then lim¢_,¢ fooo ¢due =0 forany ¢ € Cp([0, 00)) with ¢ (0) =0.
2) If Ao > 0, then lim¢_, o te = o weakly, and lime_gue = ug in Cz((O, 00)).

Given the aforementioned sharp threshold result of X and the fact that X¢ is a small ran-
dom perturbation of X? (or, (2.1) is a small random perturbation of (2.4)), the conclusions
from Theorem A are expected and look pretty straightforward. This, however, is completely
deceptive from a technical perspective, especially in the case Ag > 0. Indeed, when Ag > 0,
it is not hard to show that any limiting measure of {u¢}e must be g (up to multiplication
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by a constant), and hence, the weak convergence lim¢_,o e = o follows if {ue}e is tight.
The tightness of {u.}. comes from studying their concentration near 0 and oco. The con-
centration near oo follows mainly from the dissipativity and is obtained by means of the
usual technique on the basis of Lyapunov-type functions (see Proposition 4.1). Establishing
the concentration near O is however troublesome due to the following technical problems:
(i) both the vector field b and the noise terms o and €./a vanish at 0; such degeneracies are
known to cause difficulties in the analysis and are often avoided in the literature when treating
noise-vanishing problems; (ii) techniques based on Lyapunov-type functions do not apply be-
cause of the demographic noise term which causes the finite time extinction of X¢; otherwise,
a unique nontrivial stationary distribution would exist, instead of the QSD. These issues are
circumvented by a two-step approach: an e-dependent upper bound of u. is first established
(see Lemma 3.5); it is followed by an argument of maximum principle type (see the proof
of Proposition 4.2). As a result, we establish in Proposition 4.2 the following concentration
estimate of the densities {u¢}¢:

C
supuc(x) < —  Vx € (0,x,)
€ X
for some k € (0, 1), x, > 0 and C > 0. Such an upper bound is more or less inspired by the
200)
expectation lim¢_,ou¢ = uq and the behavior of u near 0, that is, ug(x) ~ Cox1c’©F ~ as
x — 0 for some Cp > 0. Note that under the assumption Ag > 0 one has 2 — |§l'7((()())\)2 1

Our second result establishes asymptotic bounds for A ; and A. 2, the first two eigenvalues
of —L.. Throughout this paper, for positive numbers A, and B, indexed by €, we write

Ae = B, Ac ,Se B, and A Ze B,

if lim¢_, ¢ % =1, limsup,_, % <1 and liminf._,¢ % > 1, respectively.
€ € €

THEOREM B. Assume (H). Then, lime_, o Ae,1 = 0. Moreover, the following hold.

(1) If Ao <O, then there is C > 0 such that A¢.1 Ze \lg—el
(2) If Ao > 0, then:

e foreach O <y <K 1, there holds

WO 1) 20O 4
O < aep <o UV ior

(1+y)
€
e 0 <liminf, ,gAep <limsup._ gAie2 < 00.

REMARK 2.1. We offer some comments regarding Theorem B.

(1) We first exhibit the significant effects the environmental noise o (X;)d B; has by com-
paring (2.1) with

(2.7) dX¢ =b(X5)dt +eJa(XE)dW, in [0, 00).

Just like X7, the diffusion process f(f reaches the extinction state O in finite time almost
surely and admits a unique QSD with extinction rate ):6’1 with —5\6,1 being the first eigen-
value of the (appropriately extended) generator of (2.7). It is shown in [32], Theorem A, that
lim. % In ):6,1 = —d for some d > 0 that can be computed in terms of a and b. In particu-
lar, 5\&1 is exponentially small in €. Hence, the asymptotic of A¢ 1 is fundamentally different
from that of )16, 1, manifesting the significance of the environmental noise. More importantly,
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turning an exponentially small extinction rate into a sub-exponentially small one, greatly im-
proves the observability of the extinction of a species, making (2.1) a much better model than
2.7).

The effects of the environmental noise extend to the extinction time, especially, the mean
extinction time, thanks to the relationship between the extinction time E{[7(5 | and the extinc-
tion rate A¢ 1. See (2.2) and Corollary A.

(2) When Ag < 0, we believe that the lower bound of order |1— for A¢ 1 is sharp in

the sense that there is C > 0 such that el Se Thnel ne‘. We offer some further explanation in

Remark 2.2 after Corollary B.
(1—y) 4p'(0)

4,,, (0‘)"'“’)'2 for each

0 < y < 1 in Corollary B. This says that the leading order of A ; is €©’©2 ~. The reason
why we still include this as a main result is that its proof, relying only on the classical vari-
ational formula, is elementary, while the proof of Corollary B uses heavy machinery (see
comments after Corollary B for details).

(4) When A > 0, the asymptotic bounds of A 1 and A¢ > imply that infe (Ac 2 — Ac 1) > 0.
As mentioned earlier (or see Lemma 3.4), Ac » — A¢ 1 is the exponential convergence rate of
PLIXT € oft < Ts5] to je as t — oo whenever the initial distribution 4 is compactly sup-
ported in (0, 0o). These facts tell us that the distribution of X; quickly approaches ¢, then
stays close to ue until the time scale A , after which it finally relaxes to the extinction state.
The multiscale dynamics is precisely characterlzed in Theorem C.

(3) When Ag > 0, the upper bound of A 1 is improved to A¢ | Sc €

In our third result, we characterize the multiscale dynamics of the distribution of X7 in
the case Ag > 0 as described in Remark 2.1(4). Denote by ¢ 1 the positive eigenfunction
of —L. associated with A, 1 subject to the normalization ||¢e 1|2 wb) = 1 (see Lemma 3.1).
Let P((0, o0)) be the set of Borel probability measures on (0, c0). For u € P((0, 0o)) and
for any measurable function f : (0, 00) — R we write (u, f) = [5° f du.

THEOREM C. Assume (H) and Ag > 0. For any K CC (0, 00), there is C = C(K) >0
such that

sup  [PE[XF € o] — [e7 1 (i, e ) pte + (1 — e (1, 0t 1))80] |y < Ce e
HEP((0.00))
supp(u) CK

holds for all t > 0 and 0 < € K 1, where ac 1 := ||pe 1111 (MEG)Q’)G’] satisfies

limae 1 =1 locally uniformly in (0, 00).
e—0

Built on the eigenfunction expansion of the Markov semigroup associated with X before
hitting 0, Theorem C establishes a sharp estimate quantifying the total variation distance be-
tween the distribution of X; and the convex combination of the QSD . and the extinction
state 8g. The locally uniform limit lim¢_, ¢ ot 1 = 1 and the fact that the constant C is indepen-
dent of € are what make this estimate powerful. Together with the asymptotic bounds of A ;
and A, 2 in Theorem B(2), Theorem C has the following important dynamical implications:

O] ) )

e if 7”7 <t~ are such that lim,_,ote * = 00 and lim¢_,0 A¢, 1t =0, then

lim  sup sup PE[X€ c o] — o
0 e 121 rEP(O, oo))” ulXi € o] = pelry
supp(u) CK



POPULATION DYNAMICS UNDER STOCHASTICITY 5625

3

o if te( is such that lim¢_, o A¢ 12e7 = 00, then
lim  sup sup [P [X] € o] — 8oy =0.
0 et 00y HEP((0,00))
supp(u)CK

Theorems B(2) and C have as immediate consequences the expected but far-reaching
asymptotic reciprocal relationship between the extinction time 7;j and the extinction rate

€

Ae 1, and the asymptotic distribution of the normalized extinction time Ee?%.
COROLLARY A. Assume (H) and Ay > 0. For each u € P((0, 00)) having compact sup-
port in (0, 00), there exists C = C(u) > 0 such that
|IP’Z[T0E >1]— e ey, ae )| < Ce 2 VYi>0and0<e <1,

or equivalently,

)‘e.2t

|PZ[A€,1T5 >t]—e (e )| < Ce "l Vi>0and0 <e < 1.
In particular:

o limeo Py [ 1Ty > 1] = e~ locally uniformly in t € (0, 00);

~ _1 .
b EZ[TOE] Ye T
o lim._, P [EET[Te > t] = e~ locally uniformly in t € (0, 00).

PROOF. Let p be as in the statement. Since Pj[X; € (0,00)] = P}[T§ > 1],
e ((0,00)) =1 and §0((0, o00)) = 0, we apply Theorem C and the definition of the total varia-
tion distance to find some C = C(,u) > O such that [P}, [T > t] — el (i, ae )| < Ce*e!

for all ¢ > 0. Replacing ¢ by - o leads to

re2

P [he Tg > 1] — e {poaen)| < Ce 7et’ Vi >0,

In particular, lim¢_, ¢ IP); [Ae,1T5 > t] = e~ locally uniformly in 7 € (0, 00).
Integrating the above inequality with respect to ¢ over (0, co) yields
)"6 1

62

|)"€,1E;[T()€]_<M’a€,l>| C

This together with Theorem B(2) and lim¢_ (i, @ 1) = 1 (by Theorem C) implies that
lime_, AeylE;[Tog ] = 1. The remaining result follows immediately. [l

Corollary A says in particular that the normalized extinction time i weakly converges

ES [TE
to an exponential random variable of mean 1 as € — 0. The asymptotlc reciprocal relation-
ship [E€ [To] Roe L is a fundamental principle connecting the asymptotics of ¢ [To] and

Ae, 1—thls allows usmg information about one of these quantities to analyze the other one.
In particular, (nonsharp) asymptotic bounds of the mean extinction time E¢[7;] in the case
Ao > 0 can be obtained from the asymptotic bounds of A¢ 1 in Theorem B(2). However, we
wanted to improve this and get sharp bounds.

Our last result is devoted to the investigation of the sharp asymptotic bounds of the mean
extinction time E¢[ 7 ].

THEOREM D. Assume (H). The following hold for each u € P((0, 00)) having compact
support in (0, 00).
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1. If Ag <O, then there exist C1, Ca > 0 such that
Cillne| Se B [Ty ] Se CalInel.
2. If Ao > 0, then for each 0 < y < 1,

/ /
2-(1=1) 50 2149 50
€ o’ (0)|% 56 E;[TOE] SE € lo’(0)12

Theorem D is established by adopting a probabilistic approach focusing on analyzing the
behaviours of X§ near 0. It is independent of Theorems A—C.

As an immediate consequence of Corollary A and Theorem D(2), we get the following
sharp asymptotic of A¢ ; when Ag > 0, improving the one given in Theorem B(2).

COROLLARY B. Assume (H) and Ao > 0. Then, for each 0 < y < 1,

4'0) o 1=y 'O _
O < Aoy e R 2,

(I+y)
€

REMARK 2.2.  When Ag < 0, we are unable to establish the relationship E;[Toe] Re ﬁ

for 11 € P((0, 00)) having compact support in (0, 00), and hence, can not apply Theorem D(1)
to conclude % Se he1 Se |1i—25\ Nonetheless, we believe that the lower bound for A ;
obtained in Theorem B(1) is sharp.

3. Preliminary. This is a service section. We collect basic materials for later purposes.

3.1. Generator, spectral theory and dynamics. In this subsection, we present some gen-
eral results about the spectral theory of the generator of X; and the dynamics of the corre-
sponding semigroup.

We start with the rigorous formalism of the generator of X§. Set

*bh
Ol =e’a+0° on [0, 00), Ve :=—/ —ds on (0, 00).
1 O¢

Thanks to (H), we have

. b
G limac=0? inC3(0,00),  limV. =—/ 2 ds in C2((0,00)).
€— 1 O

li
e—>0

Consider the symmetric quadratic form & : C§°((0, 00)) x C5°((0, 00)) — R defined by

1 o0
E )= /O acd'W'uldx Y.y € CE((0.00)),

where

e b
G. ie_zvE _ iezjl ads

ul = in (0, 00)
O¢ O¢

€
is the nonintegrable Gibbs density. The nonintegrability of uS comes from the singularity of
order % near 0. Recall ug from (2.6) and note that clearly one has
(3.2) limuf =u§ in C?((0, 0)).

e—>0

This fact is frequently used in the sequel. Under (H), it is not hard to check that the form
&c is Markovian and closable (see, e.g., [20]). Its smallest closed extension, still denoted
by &, is a Dirichlet form with domain D (&) being the closure of C§°((0, 00)) under the
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norm || ¢, == ||¢||’iz(u5) + Ec(¢, ¢), where L2(uf) := L?((0, 00), u% dx). Denote by
(Le, D(L¢)) the nonpositive self-adjoint operator associated with (&, D(Ec)), that is,
Ee(P, ) =(—Led. ¥)12u5) Yo € D(Le), ¥ € D(Ee),
where
D(Le):={ue D(&):3f e L*(uf) st. Ec(u, ¢) = (f, $)120,0), V¢ € D(E)}.

It is informative to mention that
1
Lop= 5(&1 +02)¢" + by’ Vo e C§((0, 0)).

The operator L. is a self-adjoint extension in Lz(uf) of the generator of (2.1).
In the next result, we collect basic properties about the spectrum of — L, and the semigroup
generated by L.

LEMMA 3.1 ([5, 32]). Assume (H). For each 0 < € < 1, the following hold.

(1) —L¢ has purely discrete spectrum contained in (0, 00) and listed as follows: i¢ 1 <
)\.e!2<)\.€,3 <-.--—> OQ.

(2) Each Xe; is associated with a unique eigenfunction ¢e; € D(Le) N Ll(uf) N
C2((0, 00)) subject to the normalization ||¢c ; ||L2(u§) = 1. Moreover, ¢c1 > 0.

(3) The set {¢p¢i,i € N} forms an orthonormal basis 0fL2(ug).
(4) Lc generates a positive analytic semigroup (Pf);>0 of contractions on Lz(uf) having
the stochastic representation (or Feynman—Kac formula):

Pff =E[f(X{)iaqe] VS e L*(ul)NCp((0,00)) and t > 0.

(5) Foreachk eN, f € Lz(uf) andt > 0,

k—1
(3.3) PEf =Y e (f, beid 126 bei + P QLS
i=1

where Qf is the spectral projection of Le corresponding to {—\¢ j}j>k. Moreover,
—Ae
| POk ||L2(u§)—>L2(u§) <e M, 120,
(6) For each f € Cp((0, 00)), the stochastic representation in (4) and (3.3) hold point-

wisely.

The following result addressing the uniform-in-e boundedness of the ith eigenvalue of
— L is useful.

LEMMA 3.2.  Assume (H). For each i € N, there holds limsup,_, o Ae i < 00.

PROOF. Let {¢¢}reny C C((0, 00)) satisfy supp(¢e) C (£, € + 1) and ||¢g||Lz(ug;) =1.
We find from (3.1) that the limit y; := lim¢_. Ec (¢¢, ¢¢) > O exists for each £ € N.

Fix i € N and set S; := span{¢q, ..., ¢;}. Since —L is self-adjoint in Lz(uEG), the Min-
Max principle says in particular

(—Le§. $) 12(5) ACKD
Ae,i < max 3 =max ————.
PESi ||¢||L2(u60) peS; ”¢”L2(u§)
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Note that each element ¢ € S; can be written as ¢ := ng;] cedpe for some cp € R, £ =
I,...,i. As the supports of {¢¢}, are disjoint, we calculate ||<,z>||2 = Zle:lc% and

. L2(uf)
Ec(@, ) =20 2E(¢e, ). Tt follows that
Sho1 il (S0 ) _

T T eR =1 i Sh_yc? =1,

leading to limsup,_, g Ac; <maxe=1, ;ye. O

3.2. Schriodinger operators. In this subsection, we follow the canonical procedure (see,
e.g., [5]) to derive the Schrodinger operator that is unitarily equivalent to £, and establish
some properties of its potential. These results will play a significant technical role in the
sequel.

Note that X} has the same distribution as the solution process of

(3.4) dX¢=b(XE)dt ++ae(X§)dW, in [0, c0),
where W, is a standard one-dimensional Brownian motion. Consider the change of variable

X1 x 1
=& (x):= ds:/ —ds,
Y =6 /(; e 0 veZa+o?

Clearly, & is increasing and satisfies & (04) = 0. Set ye oo := &c(00). Then, & : (0, 00) —
(0, ye,00) is invertible. Its inverse is denoted by & L0, Ye.00) = (0, 00). This is the canoni-
cal transform converting the SDE (3.4) into the one with the simplest noise coefficient. More
precisely, applying 1t6’s formula, we find that Y := &, (X ;) solves

x € (0, 00).

(3.5) dYf =qc(Yf)dt +dW,,

where g 1= (- — %) 0 £
qG o @ 4\/0[—E € .
Set v¥ := WY Jac) o £ and L?(v9) := L?((0, Ye.00), v¥ dy). The generator of (3.5) is
given by

y 1 d?

d .

It is straightforward to check that ,c§ is unitarily equivalent to L. More precisely, there holds
UL = EZUE, where Uk : Lz(uf) — Lz(vf), fr= fo ‘;‘6_1 is unitary.

Now, consider the Schrédinger operator

S 1 d2 1 2 / : 2

(3.6) L= 24y E(qe () +4:(»)  in L7((0, ye,00))-
It is not hard to check that (Lﬁ{ = Eff]e, where U, : Lz(vf) — L2((0, Ye.oo))s f > fiJve
is unitary.

We include the following commutative diagram for readers’ convenience:

Ue Ue
L?wf) —=  L*wf) —5  L*((0,ye.0))

Jae i c l cs

U, U.
L*wf) —5  L28) —= " L*((0, ye.00))-
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We point out that rigorous definitions of £} and £5 can be done using quadratic forms as
done in Section 3.1 for L. By the unitary transforms, the domains of EZ and EGS are respec-

tively given by UcD(L,) and f]e U:D(L), and the dom~ains of quadratic forms associated
with Lg and £§ are respectively given by U, D(&¢) and U U D(Ee).
The potential of the Schrédinger operator Ef is denoted by

1
We:= (a2 +40) on (0, ye.00).
Some elementary properties of W, are collected in the following result.

LEMMA 3.3.  Assume (H). The following hold.

3l o ; bal | p?
(1) 2W€ OEG— 16‘15 —T—f—b —I—f—a.

(2) There exist y; € (0, 00) and C > 0 such that infe W (y) > %for all y € (0, y1].
(3) There exists x, € (0, 00) such that

b*E ()
We(y) > m Vy € [£c(x4), Ye,oo) and 0 < € K 1.

(4) The family {W¢}¢ is uniformly lower bounded, that is, inf min W¢ > —oo0.

PROOFE. (1) Straightforward calculations yield

b? _bag e 2 Y ba., o |all?
< _— o = _——_— = — —_—.
v 2o l6a.  Te°%¢ 2ac 4 8a
The expression for W, follows immediately.
(2) Thanks to (H)(1)-(3) and Taylor’s expansion at x = 0,

€2

qe OEG—

ac(x) = €2a(x) + o2 (x) = €2d’ (0)x + ( a”(0) + |o'(0)] )x2 + o(x?),

ol (x) = €2d'(x) 4 20 (x)o” (x) = €%a’ (0) + (2a" (0) + 2|o” (0)|})x + o(x).
o (x) =€%a" (x) +2(|o’ @) |* + o (x)0” (x)) = €2a"(0) + 2|0’ (0)|* + 0(1) and
b(x) =b'(0)x + o(1).
For fixed § € (0, %) (to be specified), we find 0 < ¥ < 1 such that

ae(x) O‘é(x)
l1-60<—5——<1+439, 1-68<
~e2a'(0)x + ~ €2a'(0)

lal ()| < 3|o/(0)}2, b'(x)>0 and 0<b(x)<2b'(0)x Vxe(0,ke?).

<1+,

Hence, with y = &.(x),
Blag (> af(x)  b)al(x)

2We(y) = 16a (x) 4 ote (x)
N2 2.7 /
> 3(1 —6)° €2a’(0) B é}a/(O)}z B 26" (0)(1 + §) Vi (O, /cez).
16(1 +6) 4 (I—=46)
Since
3, .0 2000)(1+8) d(0) 1 eza’(O) 2
4_1’6 )"+ 1—9 < ™ <ﬁ x Vx € (0,ke”),
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where the first inequality is due to the smallness of «, we arrive at

3(1-8)% €%/ (0) 1 €d(0) 162 (0)

2W, = Vx € (0, k€?),
f(y)—16(1+5) X 18 «x 9 «x x € (0.xe)
where we fixed § so that ((11 +58)) = 9 in the equality.
Note that
x d 2
y=t0o= [ Y
0 V(1+8)ea’(0)s /(14 8)€2a’(0)
leading to
2We(y) = ! AU 4 ! Yy € (0, y1)
== A S ) ’
“ —9<1+6>e Oy 91 +sy? oY
where y| 1= \/% SE(Kez). This proves (2).
2 /
(3) Obviously, 2W, o & > Z — % — —E + b'. By (H)(4), there is x, > 0 such that
b2 3b? g |b| of b
= 40_2, — = 80’2 and Z —-b < m m (X*, OO)

Then, 2W, > 1:7 é;_l in (§, 1(x*) o0), verifying (3).

(4) Let x, be as in (3). The assumption (H) implies supyq , ;max{|e/]|, |b'], lha ‘} < 00.
The conclusion then follows from (1) and (3). [

Lemma 3.3 says that the potential W, is lower bounded and satisfies W¢(y) — oo as
y — 0" and Ye 0o+ Classical spectral theory of Schrodinger operators then ensures that the
spectrum of —Ef is purely discrete, and so is that of —L, by the unitary equivalence. This is
the idea in [5] of obtaining the spectral structure of — L.

3.3. Quasi-stationary distributions. The existence and uniqueness of QSDs of X{ and
their properties are investigated in [5] (see also [6, 12, 23, 26, 39, 41, 43, 45, 52]). We sum-
marize relevant results in the following lemma. Denote by L} the Fokker—Planck operator
associated with X7, namely,

1
Lip=5 (@)= (bg) Ve C2((0, 00)),

where we recall o, := €2a + o2, Recall from Lemma 3.1 that Ae.1 and A¢ o are the first two
eigenvalues of —L.. The associated normalized eigenfunctions are denoted by ¢, 1 and ¢¢ 2
with ¢¢ 1 > 0.

LEMMA 3.4 ([5]). Assume (H). For each 0 < € < 1, X7 admits a unique QSD . with
the extinction rate A¢ 1. Moreover, |1 admits a positive density ue € C2((0, 00)) satisfying

¢e,lueG
Ipetll 1,6,

support in (0, 00), then for any B € B((0, 00)),
lim %<2~ V(P [XS € Blt < Tg] — jue(B))

t—00
S endp ((ﬂB,¢e,2)L2(,,g) (s fe)r20g) (L e, 2>Lz(uc>)
fooo ¢€,l du ||¢e,l||L1(u§) ”¢e l”Ll(uG)

Liue = —he 1ue and given by ue = . In addition, if u € P((0, 00)) has compact
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We point out that djue = ue dx being a QSD of X; is a direct consequence of Lemma 3.1.
Verifying the uniqueness is however much more challenging. In [5], the authors achieve this
by exploring the so-called “coming down from infinity” saying that co is an entrance bound-
ary for X7, and obtain a necessary and sufficient condition. As a result, they show for any
initial distribution p© € P((0, 00)) the conditioned dynamics IP’Z[X,6 € o|t < T converges
to u. under the topology of weak convergence as t — oo. This can be improved to expo-
nential convergence with rate A¢ 2 — A 1 if @ is compactly supported in (0, 0o) as stated in
Lemma 3.4.

The next result is a stepping stone to obtaining finer results of the QSD ., or its density
u. near 0.

LEMMA 3.5. Assume (H). For each 0 < € < 1, there holds limsup, _, ju(x) < oo.

PROOF. It is actually a special case of [50], Corollary 3.1. Indeed, the authors consider
in [50] the following SDE:

(3.7) dX, =b(X,)dt +eJa(X,)dW;,

where b : [0, 00) — R satisfies b € C([0, 00)) N C!((0, 00)), b(0) =0, b(x) > 0 for all 0 <
x < 1,and b(x) <0 forall x > 1, and a : [0, 00) — [0, 00) satisfies a@ € C%([0, 00)), @(0) =
0,a > 0on (0,00) and fol ﬁ ds < 00. See [50], (A1) and (A3); these are assumptions on

a and b needed to prove [50], Corollary 3.1. Assuming the existence of a QSD ji. with
density ii. (whose regularity is guaranteed by the elliptic regularity) and extinction rate A,
the authors show that limsup,._, ite (x) < oo. The proof given in [50] is analytic and utilizes
the eigen-equation satisfied by ii., namely, %(&fte)” — (l;fte)/ = —Lﬁg. In particular, the
proof is insensitive to the form of the noise term in the SDE (3.7). It is crucial to mention that
the above result is pointwise in €.

In our case, Lemma 3.4 says that u. obeys Lfue = —Ac, jue, that is, %(aeue)” — (bue) =
—Ae 1Ue. It is easy to see from (H)(1)—(3) that b and "‘7{ (= %(eza + o)) satisfy conditions for

~ 2 - .
b and S-a. As aresult, we conclude limsup, g ue(x) <oo. [

3.4. SDE with only environmental noise. In this subsection, we consider the SDE (2 4),
whose solutions generate the diffusion process X;. 0 Recall from (2.6) that “0 = 2e2 I 7 ds
in (0, 0o), which is a nonnormalized and not necessarlly integrable Gibbs densuy associated
with (2.4) or X?.

The following lemma addresses the integrability/nonintegrability of ug . Recall that the
external Lyapunov exponent A is defined in (2.5).

LEMMA 3.6. Assume (H). Then, u§ € L'((1, 00)), and u§ € L'((0, 1)) if Ao > 0 and
u§ ¢ L'((0, 1)) if Ao <0,

PROOF. We first prove ug e L((1, 00)). Note that u((); = el where =2/ %ds —
Ino2. Clearly, f' = 2b (” ) . Since hm SUP,_, oo IbI K‘;; l—0 (by (H)(4)) and b(x) < O for
x> 1, there is x; > 1 such that f' < 2 in [x1, 00). Thus, ug G (x) < exp{f(x1) —i—f1 —ds}

for all x > x1. Thanks to lim,_, oo iﬁ’g; = —o0 (by (H)(4)), we find M > 1 and x, > x| such
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iﬁ—g; < —M for x > xp. It follows that

that

X b x]
ug(x)fexp{f(x1)+/xz;ds—M/x —ds}

2 N

=exp{f(x1) + /):2 %ds}(i)_M Vx > xp.

X2

The integrability of ug in (1, oo) follows.
Thanks to (H)(1)—(2), the Taylor expansions of b and o near 0 give ug (x) = xV in the
vicinity of 0, where y = lil/’(/(()())l)z — 2. It follows the integrability (resp. nonintegrability) of ug

in (0, 1) when Ag > O (resp. Ag <0). U

The next result concerning the global dynamics of X? is classical (see, e.g., [17, 24, 33]).

PROPOSITION 3.1. Assume (H). Then, for any u € P((0,00)) and t > 0, there holds
X? > 0 P, -a.e. Furthermore, the following hold.

(1) If Ag < 0, then &y is the unique stationary distribution of X?. Moreover, for any | €
P((0, 00)), lim; 00 X =0 P, -a.e.
) If Ao > 0, then X? admits a unique stationary distribution |y with a positive density
G
“o

up € C2((0, 00)) given by the normalized Gibbs density, that is, ug = . Moreover,

”ug ”Ll ((0,00))
there is some vy > 0 such that for any i € P((0, 00)), there exists C = C () > 0 such that

IPO[X) € o] — o]y < Ce™?" Vi >0.

Denote by L the Fokker—Planck operator associated with X 9 that is,

1 1 /
Lip = 5(0%) — (b)) Vo € C*((0,00)).

We need the following uniqueness result about solutions of the stationary Fokker—Planck
equation Lju = 0.

LEMMA 3.7. Assume (H)(1)-(2) and Ao > 0. If u € C2((0,00)) N L1((0, 1)) solves
ou =0, thenu = CuOG for some C € R.

PROOF. Since Lju = %(021/{)” — (bu)’ = 0, we integrate to find C; € R such that
%(azu)/ —bu= %Cl, which is rewritten as (o2u)’ — %(qu) = C. Applying the variation
of constants formula yields the existence of C, € R such that

Ci [* 2L C x b
u(x) = —;/ ezf»" 248 dy + —iez‘[l e Cil(x) + Czug(x) Vx € (0, 00).
o= J1 o

By Lemma 3.6, ug e L'((0, 1)). We show that I is not integrable near 0. Then, the as-

sumption u € L'((0, 1)) implies that C| = 0, leading to the conclusion.

Let 0 < § < 1 and set k := %. Note that ¥ > 1 due to Ag > 0. By (H)(1)—(2),

there exists x, € (0, 1) such that b(x) < (1 +8)b'(0)x and 1 —§ < o) 1 + 6 for all

= lo/(0)Px% —
x € (0, x4). Then, we derive from

* b x  (14+86)Dd (0
/_ZdSZ/ (+—)()2ds=fln<f> VO<x <y <x,
y O y (1 =38)]o’(0)]s 2 \y
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Xx x b Xx K ke 1 1
/ eZIy —zds dy > / (i) dy = * ( — 1) Vx € (0, xy).
. x \y Kk — 1 \xv—1 x&=

From which, it follows that

that

* X K
10 > 1 xezf).a%dsdyz 1 X ( 1 )
o2(x) Jx (14 8)|0’(0)[2x% k — 1 \xk—1  yx-l
1 (1 xK—2> Vi € 0. %)
= — X y Xx).
(1+8)k — Do’ O \x  xt! .

Since I < 0 in (0, x), the nonintegrability of I near O follows. This completes the proof. [J

Denote by L the generator associated with X; O that is,

Lo = %qs” +bg Ve C3((0,00)).

The generator Lo extends to a self-adjoint operator in Lz(ug ) := L%((0, 00); ”0 dx). The
rigorous formalism can be done using quadratic forms as it is done for L. in Section 3.1. We
end up this subsection with some discussion regarding the spectral properties of £y. While
not needed in the sequel, this will provide evidence that the spectrum of L. (in particular,
Ae.1 and A 2) behaves in a nontrivial way as € — 0.

REMARK 3.1. Note that the coefficient of the second order term of L. vanishes like

c’a (O)x as x — 0, while that of £ vanishes like () (O)) )" x2 as x — 0. This singular limit of
Le as € — 0 accounts for the nontrivial behaviour of the spectrum of L. as € — 0. Below are
some consequences.

(1) Unlike L, o (Lo)—the spectrum of Lo—is not purely discrete. To see this, we modify
calculations in Section 3.2 to convert Lo to an unitarily equivalent Schrédinger operator.
Since % is nonintegrable near 0, we consider the change of variable

2|
y=§o(X)1=f1 ;dS, x € (0, 00).

Clearly, & is increasing and satisfies §y(0+) = —o0. Set yp o0 := &§p(00). Then, & : (0, c0) —
(=00, y0,00) 1s invertible. Its inverse is denoted by &, I Then, YlO = 50()(9) solves

(3.8) dy? = qo(Y?)dt +dWw,,

where go := (£ —3/) £ Setv§ = w§o)o go—‘ and L2(v§) := L*((—00, y0,00), 0§ dy).
Note that Up : (uo) — Lz(vo) f— fo 50 and Uo (vo) — Lz(( 00, ¥0.00))>

fef ,/vg are unitary transforms. The operator LS = ljoUOEOUO U0 turns out to be
a Schrodinger operator on (—00, y9,) and is given by

2
s 1d

1
D=3 gy ~ 3@ T a00))  in L2((=00,yo.0)):

It is easy to check that the potential Wy := %(qg + qé) of —Eg satisfies Wy(—o0) € R and

Wo(30,00—) = 00. Hence, the spectrum of Eg is not purely discrete; neither is the spectrum
of ﬁo.
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(2) When Ag < 0, the bottom of the spectrum of Ly is positive, namely, info (Lg) > 0.
Clearly, info (Lg) > 0 as Ly is self-adjoint and nonnegative. To see 0 ¢ o (Ly), we note that
two linearly independent solutions of Lou = 0 are givenby u; =1andup = [ e I j_g “ g y.
It is elementary to verify that lim, _, o+ u2(x) exists and is negative. Since u((); ¢ L'((0,1)) in
this case by Lemma 3.6, we conclude u1, us ¢ Lz((O, 1), ug dx). Moreover, it is not hard to
see that uy € L?((1, 00), u§ dx) and us ¢ L((1, 00), u§ dx). Hence, Cuy + Couz ¢ L*(uf)
for any (C1, C2) # (0, 0), implying 0 ¢ o (Lp).

Theorem B gives lim¢_,9 A1 =0, saying that the limit of the principal eigenvalue A of
L is not an eigenvalue, but a generalized eigenvalue of L.

(3) When Ag > 0, 0 = info (Lp) is a simple eigenvalue with constant eigenfunctions.
However, obtaining information about the bottom of the rest of the spectrum, namely,
info (Lo) \ {0}, is difficult. Given the complicated structure of o (L), it is even hard to de-
termine whether info (Lg) \ {0} is an eigenvalue. This is what prevents us from establishing
a more precise asymptotic of A¢ 2 beyond what we were able to show in Theorem B(2).

4. Tightness and concentration of QSDs. In this section, we study the tightness and
concentration of p as € — 0, and prove Theorem A in particular. We study concentration
properties of u. near co and O in Sections 4.1 and 4.2, respectively, leading to the tightness
of {it¢}e. Theorem A is proven in Section 4.3.

4.1. Concentration near infinity. We prove the following result addressing the concen-
tration of . near oo. The proof mainly uses techniques on the basis of Lyapunov-type func-
tions.

PROPOSITION 4.1.  Assume (H). Then, limy_, oo sup, (e ((x, 00)) =0.

PROOF. SetV:=-—/[] Gb—z ds in (0, 00). Then,

E2
ﬁev:E(

b 2N/ b 1/b 2y/ b2

LR W T
o o2 2\ o2 o2

Thanks to (H)(4), we find some Ny € N such that L.V < —%22 in (Ng, 00). As V(00) = o0

by (H), there is ng > 1 such that {ny < V} C (Ny, 00), and hence,

2

b
“4.1) LV <——— in{ny<V}L
202

Let {¢}n>n, be a sequence of smooth and nondecreasing functions on (0, 0o) satisfying

0’ xe(oﬂno)’
Ln(x) = {x, x€(mo+1,n), and ¢ <0 on[n,n+2].
n+1, xem+2,00),

In addition, we let {¢,}, coincide on [0, ng + 1].
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Due to V(00) = oo and (H)(1)—(2), the function ¢,(V) — (n + 1) is twice continuously
differentiable and compactly supported. As L ue = —Ac 1u. (in the weak sense), we derive

0= / {n(V) (n+ 1)]146 dx + )»6,1/0 [{n(V) —(n+ 1)]146 dx
1 00
=f [c,;mcgvnt—aez,;/(V)!V’rZ}ue dx et [ 1a(V) = 4+ Ducd
0 2 0
</O°[g/(V)£ Vol ;”(V){V/}Z]u dx
=Jo n € 2 %en €
- [c,;mﬁev + %ae;,g’(vnvwz}uedx,

{no<V=n+2}

where we used A¢1 > 0 and ¢, — (n + 1) < 0 in the inequality, and &, = 0 on (0, np) and
¢, =t/ =0on (n+2,00) in the last equality.
We deduce from ¢, = 1 on [ng + 1, 7], ¢, > 0 and (4.1) that

/ g“,/l(V)EeVue dx
{no<V<n+2}

= e (V)LeVuedx + LeVuedx
{no<V=<no+1}U{n<V <n+2} {no+1<V=<n}

E/ LVuedx
{no+1<V=<n}

1/ . b?
< —5((’1 inlfoo) ;)Me({no +1<V <n}).
0 5

As ¢ =0on[ng+ 1,n] and ¢, <0 on [n,n + 2], we find

Ce
uedx < —2",
2 {no<V <no+1} 2

eé‘y/,/(v) | vV | Ue

/{no<v<n+2} 2

where Ce , = MaX{ <V <ng+1} Xe |§,/l’(V)||V’|2. Hence, we find

. b?
pe(tno+1 =V} = lim pe({no + 1=V <nj) < Cﬂ"(mof‘]foo) a—)

Recalling that ¢, is independent of n on [ng,no + 1] and sup6 o is locally bounded on

(0, 00), we find sup, ,, Ce » < 00. Since (H) ensures limy_, bz((x)) = 00, there must hold
lim;;;— o0 SUp, e ({no + 1 < V}) = 0. The conclusion follows. [

4.2. Concentration near the extinction state. We prove the following result quantifying
e or ue near 0 in the case Ag > 0.

PROPOSITION 4.2.  Assume (H) and Ag > 0. Then, there are k € (0,1),x, >0and C >0
such that

C

supue(x) < = Vx € (0, xy).
€

=

In particular, limy_, o sup, e ((0,x)) =0.

We establish some results before proving Proposition 4.2. The following result addressing
the limit of A¢ 1 as € — 0 is the general part of Theorem B.
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THEOREM 4.1. Assume (H). Then, lim¢_,9 A1 =0.

PROOF. We extend u. to be a Borel probability measure on [0, 0o) by setting e ({0}) =
0. Proposition 4.1 ensures that {u}c is tight as Borel probability measures on [0, oo0). We
assume, up to a sequence, that u. weakly converges to some Borel probability measure jt,
on [0, 00) as € — 0. Since limsup,_,yA¢,1 < 00 by Lemma 3.2, we assume without loss of
generality that lime_0Ac 1 = Ay > 0.

Let f :[0, 0c0) — R be bounded and uniformly continuous. We claim that

4.2) B, [f(X))]=e™ /(;OO fdu, Yt>0.

Setting f = 1 yields 1 = e~ for all ¢ > 0, resulting A = 0. The theorem then follows.
It remains to prove (4.2). Fix any ¢ > 0. Note that for any § > 0,

[E[f (X5)] = B[ (XD)]]

€\ _ 0 €y _ 0
sfle_xgwlf(x,) F(x%)|dP, + ‘X;_X9|§6|f(x,) £(X9)|dP,

<201 ool | max X5 — X7| > 5] + f|xe_xo|<5‘f(xf) — F(X)|dP.

As (2.1) is a small random perturbation of (2.4), we apply [19], Theorem 2.1.2, with standard
modifications to find

lim IP’x[ max | X¢ — X9| > 8] =0 locally uniformly in x € [0, 00).
e—0 0<s<t ’

The uniform continuity of f implies

lim lim sup |£(XE) — £(X%)|dP, =0 locally uniformly in x € [0, 00).
80 0 Jixf-x{|<s

Hence, we arrive at lime_, o E$[ f(X])] = Ex[f(X9)] locally uniformly in x € [0, 0o). It fol-
lows that

timsup [~ [ES[(X0)) ~ Bl £ ()]l e

e—0

A
<limsup | [E{[£(XF)] — Eo[ £ (X])]| die + 211 flloc x limsup e ((4, 00))

e—0 JO e—0

=<2[ flleo Supﬂe((A, OO)) VA > 0.
€
Thanks to Proposition 4.1, we pass to the limit A — oo to find

timsup B[ (X7)] - Eo[£ (X)]] dne =0.

e—>0

The regularity of b and o ensures that E.[f(X?)] € Cp([0, 00)). Hence, the weak limit
lime_, 0 e = 4 implies that lime_, g fooo E.[f(X?)] die = fooo E.[f(X?)] d L. As aresult,

5, (0]~ B LF (X))
< [ ESLA (X))~ Bl (X)) e

* ‘/()OOE‘[f(X?)]dﬂe - fOOOE-[f(XtO)]d/L* —0 ase—0.
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Considering the facts Ef,_[f(X])] = el [ fdue, lime_o [5° fdue = J5° f duy and
lim; Xej = Ay, we deduce

o0 o0
[ (X)) = lim B [F(X0)] = Tim e~ [ fdue =1 [ f e
e—>0 e—0 0 0
leading to (4.2). This completes the proof. [

The next technical lemma is needed.

LEMMA 4.1. Assume (H) and Ao > 0. Then, there is ky € (0, 1) such that for any k €
(ky, 1), there exist xy, > 0, €, = €,(k) > 0 and C = C(k) > 0 such that

Lix®<—Cx™* in(0,xy), Ve € (0, €).

€

PROOF. Letk € (0, 1). Straightforward calculations yield

2 A/ 2N/ 2
k(k+1 b
E:xk=|:6—a//+(a )" gl kk+ Do _b/+k_]xk
2 2 X 2x2 X
(4.3) )
+ [716(1{ +Deta keza/]xkl.
2x
We see from (H)(1)—(3) that for 0 < x < 1
@?" (0% k(k+Do?> kK=3k+2 , o
_k = O 1 s
2 P ) 7 1T OF +e
b k(k+1 k(k—1
Wk 4oy, KD K )(a/(O) +o(1)) <0.
X 2x 2
It follows from (4.3) that
2 k> —3k 42
Lix* < [?a ++|0/(0)|2—(1—k)b’(0)+0(1)]x_k VO <x < 1.

Since lim¢_, ¢ % sup(g.1)a = 0, the conclusion of the lemma follows if we show the existence
of some k, € (0, 1) such that

2 _
4.4) #kﬂ(mf —(1—=k)b'(0) <0 Vk € (ky, 1).

Since Ag > 0, there exists 8, > 0 such that 5'(0) > (% +84)|0’(0)|, and thus,

W| ‘O -~ k)b/(O)S%(k—1)(k—1+25*)|0,(o)|2'

Setting k. := 1 — 26, leads to (4.4). [

Now, we prove Proposition 4.2.

PROOF OF PROPOSITION 4.2. By Theorem 4.1 and Lemma 4.1, there are k € (0, 1) and
x4 > 0 such that
(4.5) (LF +ren)x ¥ <0 in (0, x,).

Set v, := xu,. The fact u, > 0 and Lemma 3.5 imply that

0< 11m1nfv€ (x) <limsupve(x) < hm xK x lim supue(x) =
x—0 -0 x—0



5638 HENING, QI, SHEN AND YI

That is,
(4.6) lim0 Ve(x) =0.

Noting that (L} + A 1)ue =0 (by Lemma 3.4), u, = x *ve and
1 1
(LE4 e 1)ue = Eaeug + (e, — b)uc + (Eag —b + )\e,l)ue,
we calculate

1
0= (L4 re1)ue :x_k<§ozevg + (el — b)vé) 4 Ve (LF 4 he1)x ™ 4 e (—hxTF ol

Multiplying the above equation by x* and rearranging the terms, we arrive at

1 k L+ he1)xk
4.7) —aev] + <(x2 —b— —%)vé + (LetAe)x
x

3 ve =0.

Xk

Note that (L + A¢.1)ue = 0 is the same as %(aeué)/ + [(% —b)ue) + rejue =0. Consid-
ering the first limit in (3.1) and Theorem 4.1, we apply Harnack’s inequality to find C; > 0
(independent of €) such that

4C, % 4C
1 2 d 1

sup ue <Ci xinxf* Ue < L, Ue x < .
(B, %) 73 Ko S F

— k 4Cy (x\k
Hence, sup(zy ) ve = SUp(y 3 X tte = "L (5"

Due to (4.5), the coefficient of v¢ in (4.7) is negative on (0, x). Given (4.6), we apply the
maximum principle to ve on (0, %) to conclude that max g, %) Ve = Ve (%) < %(%)k . The
conclusion follows from the relation u. = ;’—i O

4.3. Proof of Theorem A. (1) If Ap <0, we extend p. to be a Borel probability measure
on [0, c0) by setting e ({0}) = 0. Arguments as in the proof of Theorem 4.1 show that up to
a sequence ue weakly converges to some Borel probability measure p, on [0, c0) as € — 0.
Moreover, £, [¢ (X?)] = fooo ¢duy forallt >0 and ¢ € Cp([0, 00)).

Since Proposition 3.1 says lim;_, s X? =0 P,-a.e. for any x > 0, we deduce from
the dominated convergence theorem that f0°° dpduy =lim, o Ky, [gb(X?)] = ¢ (0) for all
¢ € Cp([0, 00)), leading to wy = . As a result, lim¢_,o e = 69 weakly, and in particular,
lime_0 f5° ¢ dpe =0 for all ¢ € Cp([0, 00)) with ¢(0) = 0.

(2) If Ag > 0, Propositions 4.1 and 4.2 ensure the tightness of {u¢}e. We assume up to
a sequence that u. weakly converges to some Borel probability measure ., on (0, c0) as
€ — 0. By Lemma 3.4, the density u, of u. satisfies %(aeue)” — (bue) + Ae1ue = 0. This
together with the first limit in (3.1) and Theorem 4.1 implies that 11, must satisfy L{u =0 in
the weak sense, that is, fooo Lopduy, =0forall ¢ € C&((O, 00)).

We claim p, admits a nonnegative density u, € C2((O, 00)) and lim;_, o ue j = U in
C2((0, 00)). Then, Lius =0, and hence, u, = uo and py = o by Lemma 3.7. That is,
Wo is the unique limiting measure of {u¢} and lim¢_, o ue = ug locally in C 2((0, 00)), giving
the desired result.

It remains to prove the claim. Let Z| and Z» be open intervals in (0, oo) and satisfy 7| CC
Zr CC (0, 00). Given (3.1) and Theorem 4.1, we apply Harnack’s inequality to u. on Z; to
find C; = C1(Z1,2») > 0 (independent of €) such that

Ci Ci

supue < Crinfue < — Ucdx < —.
1 IZ1| Jz, |Z11

i I
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2supy, Ue 20C . .
——1L— <=L __ Thatis, is
mle ug - |7y mle ug {¢E}E

locally uniformly bounded. In comparison with the expression for u. given in Lemma 3.4, we
readily see that ¢ is a positive eigenfunction of — L, associated with A, 1, and hence, satisfies
%ae ¢! +bgp. = —hc,1¢e. Given the first limit in (3.1) and Theorem 4.1, we apply the classical
interior Schauder estimates to {¢¢} to arrive at sup, supz(|¢.| + @7 | + |¢)'|) < oo for any
7 CC (0, 00). An application of the Arzela—Ascoli theorem then yields the precompactness
of {¢.}e and {¢}¢ in C(Z). Since Z cC (0, 00) is arbitrary, we may assume without loss of

generality according to the diagonal argument that ¢ locally converges to some nonnegative

Setting ¢, := ;‘—g, we find from (3.2) that supz, ¢ <

¢+ in C2((0, 00)) as j — oo. Thanks to (3.2) and the weak limit lim;— o0 fe; = px, We find
dity = uydx with u, := ¢>*ug and u converges to u, in Cz((O, o0)) as € — 0. This proves
the claim, and thus, completes the proof.

5. Asymptotic bounds of the first two eigenvalues. This section is devoted to the proof
of Theorem B. The asymptotic bounds of the first and second eigenvalues are respectively
treated in Sections 5.1 and 5.2.

We start with a technical result that is frequently used in the sequel. It says that appropri-
ately normalized eigenfunctions of —L, have uniform-in-e small tails (against a weight) near
0o, and is only used for eigenfunctions associated with the first two eigenvalues.

LEMMA 5.1.  Assume (H) and fix i € N. For each 0 <€ <1, let q;e,i be an eigenfunction
of —L. associated with the eigenvalue A¢ ;. If sup, f;;o |Pe.i |2u§ dx <1 for some xo > 0, then

m ~
lim su N2uC dx =o0.
Jim sup [ i u

PROOF. Set ¥ ; 1= UE UGQNSE,,-, where l~]€ and U, are unitary transforms defined in Sec-
tion 3.2. Then,

Ec(x2) ) oo s
5.1) / Vel dy=f (BeiPuldx <1 Vxo<x1 <x2 < o0,
€ X1

&e(x1)

where the inequality is a result of the assumption. Moreover, —Ef Vei = Ac.iVe.i, thatis,

1 .
(5.2) _Ewé/,, + Wewe,i = )\e,iWe,i in (0, ye,oo)-

Fix some integer no > xo + 1. Let {n,},>n, be a sequence of functions in C§°((O, 00)),
take values in [0, 1] and satisfy

_ 2, x€l[ng—1,nol,
0, € (0, 1) U (2n, 00), 0 0
=10 Y €O = DUE e, Ly < 13
17 -xe(n()’n)a K} XE[H,ZH].
n

In addition, we require {1,},>n, to coincide on (0, ng]. Clearly, as n — oo, 1, converges
(uniformly in (0, M) for any M > 0) to some function n € C*°((0, co0)) taking values in
[0, 1] and satisfying 1 = 1,41 on (0, ng] and n =1 on (ng, 00).

Set fine = 1 © £, Obviously, fine € C5((0, ye,00)) With supp(ijn.e) C (5c(no —
1), Ye.00). Multiplying (5.2) by ﬁ,%’ <Ve,i and integrating over (0, ye o), we find from inte-
gration by parts and (5.1) that

1 Yeoo ;12 Yeoo - , Ye, 00 2 2
5 0 nnye‘wé,lw dy+ 0 nn,énn,e‘{pé,l’lp‘e’idy—k 0 nn,eWEIwe,” dy

_ . Ye, 00 - . 2d . Ye, 00 . 2d .
= he.i ) Mp.elWeil”dy < Aei [Yeil dy < Aei.

< (no—
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An application of Holder’s inequality yields

)’e,oo~ ~ , 1 Ye, 00 - ) % %
[ it cviveads| = (5 [ neviPay) (2 [l oveaay)

)7
<3 [T R Py [ Prveay

Absorbing 7 fye °° ﬁ,zl AVl |2 dy and dropping the remaining ; fyE > ﬁ,% Wl 1> dy yield

Ye, 00 ~
(5.3) /O P2 Welvre| dy<xe,+/ 17, [PlwePdy.

Since ﬁ;,e = (/%) 0 Se_ and {n,},>n, coincide on [ng — 1, np], we see from the first
limit in (3.1) that there is M > 0 such that

sup |ﬁ;le}: sup |m,|v@e <vVMi  ¥n > no.

[ (no—1),8c(np)] [no—1,n0]

Thanks to (H)(4), we can make ng larger if necessary to ensure the existence of some M, > 0

b
such that o < M>0? and |‘;| < ﬁ in (ng, 00). As |n,| < = on [n, 2n], we derive that

forn > ng and y =& (x) € [§c(n), £ (2n)],
17| = [, () [Ve (x) < _,/aé(x) <4 ¥ 4\/_|0§Cx)|

Therefore,

|b(x)]
2V2l0 (x)|

B y 2 5 &c(2n) - 2 2
/ 17, PlesPdy = / 17, Plves] dy+/ 17, Plves2dy
6”07 Se(n

Ee(no) 5 1 [ b2o&]!
lef Weildy+ o [ 225y Pdy
Ec(no—1) 8 Jec(ng) 020 &
1 roo b2 s 1
<M+ - 71|wel| dy,
8 5&(”0)0' Ose

where we used (5.1) in the last inequality. It follows from (5.3) that

ye,oo~ &9 bz 5 1
[ e Wiveildy <rei+ Mt g [ TPy
0 8 Jec(ng) 02 0 &
1 o b2o& !
<omi+ o [ TSy Py,

8 Ee(”O)O' Osg

where we assumed without loss of generality that limsup, _, A¢; < M| in the last inequality
(ensured by Lemma 3.2). Since n, 1 n as n — oo, letting n — oo in the above inequality
leads to

Yeuso 1 [ brog !
[T WPy om0 Py,
0 8 Jec(np) 02 0 &

where ¢ :=no Se_l satisfies 77 = 1 on [£:(n0), Ye.00). By Lemma 3.3(3), we can make ng

205—1

larger if necessary so that W, > Aflzﬁ in (c(n0), Ye,c0)- As a result,

1 [ brog ! 1 o brog !
- — dy <2M; + - —_— d
4 Jt, (ng) 020& 1|¢ez| y 1 8 Je.no) J2OS_I|¢“| Y.
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Hence, we see from (5. 1) that

1 00 1 Ye,00 bzog 1
g 2|¢ez|” dx_g L )07};__1le1| dy <2M,,
no e(no O Ge

giving ]Z‘X’ |q~5€,,-|2u€G dx < _fmiM‘b for any z > ng. The conclusion follows immediately
Nf(z,00) o2

from the fact lim,_, o ((Z )) = 0o ensured by (H)(4). This completes the proof. [

5.1. Asymptotic bounds of the first eigenvalue. Note that the limit lim¢,oAe,1 = 0 has
been established in Theorem 4.1. In the rest of this subsection, we prove finer asymptotic
bounds of the first eigenvalue A 1 of —L, stated in Theorem B.

The asymptotic bounds of A1 under the condition Ag > O stated in Theorem B(2) is
restated in the following result.

THEOREM 5.1.  Assume (H) and Ao > 0. For each 0 <y < 1, there holds

4’0 ( - 21/ (0)
'O T < A1 S EO

I+y)
€

PROOF. The upper bound and lower bound are treated separately.
Upper bound. As the first eigenvalue of the self-adjoint operator —L¢, A 1 admits the
variational formula

Jo- aelgPug dx 5" 19cPe™" dx

(5.4) her= in - ,
“Ugenen [ loPuldx T X P Le Ve dx

where ¢ € C§°((0, 00)) is nondecreasing and satisfies

0, 0 , 2
e (x) = PSS and o< . <= on (e, 2e).
1, x>2e, €

By (H)(1), b > 0in (0, x,.) for some x, > 0. Split =V, = [{* Zds+ [ Zds =: Ac+ Be.
Clearly, B is increasing in (0, x,). Hence,

2 v 2 2 v 4 aa. [* 2B 4 2A.4+2B.26)
(5.5) / |p.|"e 6alx:/ pL]"e™ " dx < e f/ e e dx < —effleTlelEE)]
0 € € €

€
and
R N 17 24, [ 1 2B
f |pe|"—e “"cdx >e f/ “dx
0 o 2 O
(5.6) ‘ C |
_ 62A6+235(26)/ 2B () =2Bc26) 4,
2¢ Qe(X)
As Ag > 0, there is yp > 0 such that xk =« (y) := W > 1 for all y € (0, y9). By

(H)(1)—(3), we can make x, = x,(y) smaller if necessary so that
bx) - y)b'(0)
ac(x) ~ €2a'(0) + o’ (0)%x

As a consequence, we find

and  ac(x) < (14y)(2d' 0)x+|o” (0)]*x?)  Vx € (0, x,).

o (1L=p)b'(0)
2¢ €2a’(0) + |0/ (0)|%s
2d'(0) + 107 (0)Px

€
=xl Vx € (2¢, x4),
IS0 T2 O 26

2B (x) — 2B (2¢) > 2
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leading to
/oo 1 Biw-2B.e g,
2¢ e(x)
> / 5 (€2d/(0) + o’ (0)2x)* ! 1
T 14y Jy (€2d'(0)+ 2|0’ (0))¢ x
LT ! ]K mn(z/(O)—|—| "(0)]2x)< /X*ld
1 € a o —ax
~ 14y Le2a'(0) + 2¢|0’(0)]? o] X
_ K / 2k—1
> 1 1 ] |:x*|0 0] } 2
14y Le2a’(0) 4 2¢|o’(0) 2 2
In2 [x4o’(0)2 7% ! C’
> - ] [3¢|o” (0)[*] 7 =: —L.
1+yL 2 ek

Hence, we see from (5.4), (5.5) and (5.6) that A¢ | Se Cp e ™ I for some C, > 0. Since this is
true for all y € (0, yp), the constant C,, can be replaced by 1, establishing the upper bound.

Lower bound. Recall from Lemma 3.1 that ¢ ; is the positive eigenfunction of — L asso-
ciated with A, ; and satisfies ||¢¢ 1]l L2) = 1. In particular,

o0
(5.7) het = Eeldet. der) = / ¢! 1[e=2Y dix.

Let0 < 8 <« 1. By Lemma 5.1, there is x* _x*(a) > 1 such that [ ¢ 11?u8 dx < 8. Then,

(5.8) L= lge 2200, < 8 + f $etPme Ve d.
€ 0 ¢

By Lemma 3.5, there are C¢ > 0 and x. > 0 such that u, < C, in (0, x¢). This together

with ue = 2l L o=2Ve (by Lemma 3.4) yields ¢e.1 < Cellde.11l1.,6,2ce>% in (0, xc).
ll e, 1||L1(MG) ac® (ug)

Since a¢ = €%a 4 o and V. (04) = f -~ ds < 0o, (H)(2)-(3) ensures the existence of C, >
0 such that ¢ 1(x) < CGCé”QSe’l”Ll(uEG)x for x € (0, x¢). In particular, ¢¢ 1(0+) =0, and
hence, ¢¢ 1 = [g #.| dx. This together with (5.8) and Holder’s inequality yields

L (e Ve Ve dy‘ b v gy

1_8</ e (x)

x X 1
[ ([t om) e
0 MO RSN

o0
= (./0 |¢é,1<y>|2e‘”f(”dy)16’

where 7, = f(f* fo ﬁeZ[Vg WM=Ve®1 gy dx. 1t then follows from (5.7) that

(5.9) hey > 20

. 1= Ie .

To finish the proof, it suffices to derive an appropriate upper bound for Z.. From (H)(1)—(3)
we find x, = x4(8) > 0 such that

b(x) < (148)b'O)x and €%a(x)+02(x) = (1—8)x[¢2d'(0) + |0’ (0)|*x] Vx € (0, x,).
Clearly, x, < x*. We write

X x* x 1
(5.10) T, = (/0 +/ )/0 —— (x)ez[Ve@)—Ve(xﬂ dydx =1, +11,.
X €
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We first treat I.. Note that for 0 <y < x < x,,

b'O)(1+8) [+ 1
V. -V < d
(5.11) R (1-5 Jy €O+ ©OPs”
’ _ K €40 +]0"O)Px
S 27 €2 (0) + 107 (0)2y’
where « := % > 1 due to the assumption Ag > 0. It follows that
Xe px 1 24’ (0) + |0/ (0)|2x 1¥
Le 5/ / 2 2 [ 2 2 ] dydx
(5.12) 0o Jo (1—=23)x[ea’(0)+ o’ (0)|*x]Le=a’(0) + |0’ (0)[7y

_ 1fhWﬂ®Hd@wr*
T 1=68Jo

. /Ox[eza/(O) + |6 O)2y] ™ dy dx.

Clearly, [;[e%a’(0) +]o’(0)[>y]™* dy < [€*a’(0)]“x. Calculating the integral and drop-
ping the negative term (due to ¥ > 1), we find

/ -2
y < h&[eza/(o)]l—x'

(5.13) /Ox[eza/(O) +[o'O)*y] ™ d 1

Thus, for any y € (0, 1),

* —K / —K /0 _2 / —K 1_V
/O [€2a'(0) + |0/ (0)|*y] ™ dy < ([¢%d’(0)] x)V(%[eza o] )
— C1€2—2K—2yxy’

where C; := [a’(0)]' 7|6’ (0)|2Y =D (x — 1)Y~!. It then follows from (5.12) that

X
I <i€2—2x—2y/ 212 (0) + o’ (0) ] dx
0

€ = 1 _ 8
(5.14) i y
= ﬁeZ—%—ZV [620’(0) + ‘0/(0)‘2)6*]’(_1)6—* < Czez_zk_zy’
where Cy 1= 21|57 (0)[2k—D x <~ 1H7

(1-9)y
Now, we treat II.. By (5.11), for x € [xy, x™),

X b X b d
V. -V = R | f 7
G(y) €(x) /;} €2a+o_2 S+ v €2a+02 N

2 / 2 *
0 0 * 1o
€“a’'(0) +10"(0)"x« / %ds Vy € (0. x,),
xe O

Eln
2 €2a'(0)+ 10’ (0)%y

=
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and Ve (y) — Ve(x) < f;;* % ds for y € [x,, x). Hence, there are C3, C4 > 0 such that
(5.15)

I, =/x (/x*+/x>;ez[ve<y>—ve<x>] dy dx
Xy 0 Xx Olg(x)

* 2 2 x*
S/x fx* 1 [6 a'(0) + |0’ (0)] X*Tezfx* 2 gy dx
xe JO Oe(X)
x* px

€2a’'(0) + |0’ (0)|%y
1 1|
+/ / —ezfx* o2 dsdydx
Xy X ae(x)
x* 1b| s
_ [620/(0) + {G/(O){Zx*]’cezf"* o7 ds /

Xx
bl ge (X x —x
+ezf** o2 ds/ - tdx
Xx aé(x)

X

: 1 X »
i [ B0 OB ayas

1
o2(x)

x* 160 x*
< 2[|O_/(0)|2x*]KerX* 2 ds /
X

*
2 gy (1
et s >—dx
Xy O (X)

/Ox* [24/(0) + |0’ (0)*y] ™ dydx

X
= [ [ + o' @] dy + Ca.
Applying (5.13) to the integral [;* [€2a’(0) + |o/(0)|?>y]~* dy, we find for some Cs > 0,

/ 0 -2 _
I < C3%[62al(0)]1 “4Cy<Cse*
K —_—

This together with (5.10) and (5.14) leads to Z, < (C3 + Cs)e>~2~2Y  Thanks to (5.9), the

20O+ anq the arbitrariness of 0 < § Klandy €

conclusion follows readily from x = o O (1—3)

0, 1. O

Theorem B(1) regarding the asymptotic lower bound of A, ; under the condition Ag <0
is restated as the next result.

THEOREM 5.2.  Assume (H) and Ao < 0. There exists C > 0 such that ¢ 1 2 ¢

~€ |lne|"

PROOF. We proceed as in the proof of the lower bound in Theorem 5.1. As Ag < 0, we

let 0 < § < 1 be such that k := 2048)b'O)

= U)o’ OF < 1. Following arguments leading to (5.9), we
find

5.16 A >
( ) €1 = Ie

for some x* = x*(8) > 1, where Z. = [ Ji fmeZWe@)*Ve@)] dydx. Due to (H)(1)—(3),
there exists x, = x4(8) > 0 such that

b(x) < (1+48)b'0)x and €%a(x)+02(x) > (1—8)x[€a'(0)+|o'(0)|*x] Vx € (0, x,).
We split

X x* x 1
(5.17) T, = (/0 +/ )/0 —— (x)ez[Ve@)—Ve(x)] dydx =1, +11,.
X €
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We first treat I.. Since forany 0 < y < x < x4

b (0)(1 4 6) 1 k. €2d'(0) + |0’ (0)[%x
ds=—1n ,
1—8 Jy a0 +16' 02" 2 €2d(0)+ [0’ (0)y

Ve(y) = Velx) =

we deduce

(5.18)

=" ! [eza’<0>+|o O }
““Jo Jo (1-08)x[e2a'(0) + |o7(0)|>x]Le2a’ (0) + o/ (0) ]2y
_ 1 / [€%a'(0) + |/ (0)[2x ]!

| )

X

fox [€2d'(0) + |o" (0))*y] “ dydx

/x* le a/(0)+|o/(0)|2 17! ([€2d'(0) + |0/ () Px]' ¢ — [€2a(0)]'~ 4
T 1-3 (1 =)o’ (0|

] €%a’(0) 1w
(1—5)(1—K)|0/(0)|2f0 E[l_<e2a/(0)+|o/(0)|2x> }dx

lo’ (@)1 2xs

B 1 g 1( - 1 )
_(1—5)(1—K)|0’(0)|2/0 x ! (I4x)!=* a

1 /1 1 -l
= dt s
(1 =81 =)o’ ) W (1—1)
2d'(0)
where the first equality follows from straightforward calculation, the second one is a result
of an obvious change of variable, and the third one is due to the change of variable ¢ = ﬁ
Since = 1 < 1fort € (0, 1), we deduce

1 1 —¢lx 1 1 lo” (0)|2x,

tf/ —dt=In{14+ ———— | <3|ln¢|,
0 a-n PO €?a'(0)

- 2d0) i@

which together with (5.18) leads to

(5.19)

1L < 1 =:Cq|1 .
S U=nU —oop e = crlinel

Now, we treat II.. Direct computation yields

/(;x*[eza/(o)+{0/(0)}2y]—xdy§ q [€2a/(0)+|0_/(0)|2x*]1—/c

1
0l O)
2 / —K
< GTooeoplle OFs]

This together with similar arguments leading to (5.15) yields Il < C; for some C; > 0. As
a result of (5.17) and (5.19), Z. < Ci|In€| 4+ C> < 2Cy|In€|. From which and (5.16), the
conclusion follows. [

5.2. Asymptotic bounds of the second eigenvalue. The purpose of this subsection is
to prove the asymptotic bounds of A. > stated in Theorem B(2). Clearly, it follows from

Lemma 3.2 and the following result.

THEOREM 5.3.  Assume (H) and Ay > 0. Then, inf, ¢ 5 > 0.
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We establish some lemmas before proving Theorem 5.3. Recall from Lemma 3.1 that
Ae.2 > Ae.1 > 0 are simple eigenvalues of —L, and have eigenfunctions in D(L¢) N L' (u?) N
C2((0, 00)). Fori =1, 2, let qNSGY i be an eigenfunction of —L, associated with A ; and satisfy
the normalization

(5.20) 16e.ill1¢0.2:8) + I1Pe.i 1721 00yug) = 1-

Such a normalization is chosen to acquire certain compactness of {¢~>€,,~}6 that plays a key
role in the proof of Theorem 5.3. Moreover, we let ¢.,1 > 0. Direct calculations show that
U= Peiul satisfies

(5.21) Liuei=—heille.

The first lemma establishes an upper bound for |u, 2| near 0.

LEMMA 5.2. Assume (H). For each y > 0 and 0 < € < 1, there exist C = C(e,y) >0
and x4 = x4(€) > 0 such that |ue 2(x)| < Cx_%_y Jor x € (0, x,).

PROOF. Set ¥ := Ue Ueqze,z, where UE and U¢ are unitary transforms defined in Sec-
tion 3.2. Then, . » satisfies —Efx{re,z = Ae2V¥e 2 in (0, Ye o0), that is,

1 .
(5.22) _Ewéiz + Wewe,Z = )Ve,Zwe,Z in (0, ye,oo),

where we recall that y¢ oo = f0°° —L gs. By (H)(2)—-(3), Ye.c0 increases to oo as € — 0.
’ Jeta+|o|? ’

Fix n« € (0, 1) (whose exactly value is to be determined) and 0 < 8, < 1. Let {n5}o<s<s,
be a family of functions in C3°((0, 1)), take values in [0, n,] and satisfy

09 y € (09 8)9 2
ns(x) = €<28 1) 057;357 on [8,28] and
(5.23) e Y )

1
5] <4n. on [—,1>.
2

Multiplying (5.22) by ng Ve 2 and integrating by parts yield

1/l 5 1 i
5/ R dy+/ nwe,zngwg,zdwf WengWe > dy
(5.24) 0 0 0

1
:)“6,2/0 n§|1//6,2|2dy-
An application of Holder’s inequality and (5.23) yields
! ’ogl e 2007 |2 ! 712 2
5 Move2nsVenrdy| < ; 5| Weal dy + A 5| 1We 21° dy

42
52

1 rl 5 25 1
< Z/o 3| Wil dy + /8 Ilﬂe,zlzdy+16nﬁfl [We2|* dy.
2
Thanks to Lemma 3.3(2) and (4), we can find C > 0 and M > 1, and make §, smaller if

necessary (all independent of €) such that W¢(y) > % > & for y € (§,28) and 6 € (0, §4)
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and We + M > 1. Setting 1, := m1n{4f 4«[} we derive

! N 1 C 2 1 ! 2
[ sveanivlody| < g [ dlvialdy+ o | " ealdy+ 3 | Weal’dy

SZ/O ns| e dy+5/0 (We + M) 2| dy.

It then follows from (5.24) that

e 2007 |2 1 : 2 2 M ! 2 2
) 5| Vel dy+3 A We + M)nsleal™dy = | hea+ = A N5 |Ve2l”dy,

and thus,

1
3 [P+ [Py = (rea+ 2 )2 [ sl

Note that it suffices to prove the result for each 0 < y « 1. Let y be such a num-
ber. As limsup,_,gAe2 < 00 (by Lemma 3.2) and [[¥e 2|l 2o, Yeo)) = ||¢€ 2||L2(MG) < 00,

the Sobolev embedding theorem gives ||ns e, 2|| “V([o ] <Cy ||g1)€ 2||L2(MG) for some C; =

D
C1(y) > 0 (independent of §). In particular,

~ 1 1
O] = Cilldealizggyt ™ vy (0.5).

As ns converges to 1, on (0, %), we let § — 07 in the above inequality to find

Ci, -~ 1 1_ 1
Vo] = el = oyt wye (0.7),
*
where Cy = Ca(e, y) := & ||<]3€,2||Lz(u€c). Setting x§ 1= Sgl(%), we see from u. o = qse,zuf
and¢€2_ 1U l1//62that
_3 1_ _3 .
(5.25) el = Wep o bclac eV < 8277 (2a) Te™Ve in (0, x5).

Since lim_,¢&c(x) = oo for any x > 0, there must hold lim._,ox{ = 0. Hence, a(x) >
2a’(0)x for x € (0, x5). Then,

Bt 2

< — — V 0, x5).
As V! = —% <0 near 0, V is nonincreasing in (0, x{). It follows from (5.25) that
22 171 -3 Ve c
e 2(0)| < Cz( /(O)> [2 (O)X] ) = T Vx € (0, x).

This completes the proof. [

The following result is in preparation for the contradiction arguments for q~5€,i to be used
in the proof of Theorem 5.3.

LEMMA 5.3. Assume (H) and Ay > 0.

(1) lim,—osup, [§ ¢e.1uC dx =0. )
(2) Iflime_0Xe 2 =0, then lim,_osup, [§ |Pe 2|uS dx = 0.
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PROOF.  As lime_.0Ae,1 = 0 by Theorem 4.1, the proof is done if we show that for i =
1, 2, the condition lime_, o ¢ ; = O implies lim,_, o sup, J§ |de.i|uS dx = 0. As uc,; = e iul,
it is the same as showing

z

(5.26) lim sup lue ildx =0.
=0 ¢ Jo

We proceed as in the proof of Proposition 4.2. Given lim¢_,g A ; = 0, we apply Lemma 4.1
to find for fixed k € (%, 1) the existence of x1 € (0, 1) such that (L} +)L€,,~)x_k < 01n (0, x1).
Setting ve ; 1= z%',’;, we compute using (5.21)

(LF 4 hei)x K

k ve,; =0 1n (0, 00).
X

1 k
(5.27) Eaevé{i + (aé —b— ;ae)vé’i +

Note that lim,_¢|ve;(x)| = 0. Indeed, Lemma 5.2 implies that there are C. > 0
and x. > 0 such that |uc;(x)| < Cox—1%+D) for x e (0, x¢). Hence, limy_|ve;(x)] <
C. limy_ o xF—2%+2) — .

Let x> € (0, x1). Note that the equation (5.21) can be written as

1 1 '
(5.28) E(aeu;,-),—i- [(Ea; —b)ue,i] + Aeitte,i =0.

Due to the first limit in (3.1) and lim¢_ Ae; = O (by assumption), we apply the classical
interior De Giorgi-Nash—Moser estimates (see, e.g., [10, 21]) in (3 3ﬂ) to find C > 0 (in-

27072
dependent of €) such that
3x 3x
C 7 C (7. ¢ C
sup e il < — . lue,ildx = — o |Peilue dx < —,
(32 5, X2 JF X2 /% *2
777

where we used the normalization (5.20) in the last inequality. Hence, |vc ; (x2)] < Cxlzc -1
Since v, ; satisfies (5.27), limy—0 ve,; (x) =0 and (L + Ag,i)x_k < 0, we apply the max-
imum principle to ve ; in (0, x2) and conclude that SUPye(0,x,) [Ve,i (X)] = |ve i (x2)| = C x’z‘_l,

leading to |uc ; (x)| < Cxlz‘_lx_k for x € (0, x»). Thus,
2 2 2
202G 2 k—1 /XZ —k C 1
/(; |¢€,l|u6 X /(; |Me,l| X =Cxy 0 X X 1 _kX2

Since the above estimate holds for any x, € (0, x1) and is uniform in 0 < € < 1, we arrive at
(5.26), and hence, proves the lemma. []

The monotonicity of ¢~)€,1 1s addressed in the next result.

LEMMA 5.4. Assume (H). There holds (j;é > 0.

PROOF. Note that ¢ | satisfies Le¢e | = _)\é,ld;é,l’ or (e_zqugé D'=— %Ae,le_zquze,l.
Since &67 1 >0, e 2Ve (;321 is strictly decreasing.

Suppose on the contrary that <l~5;,1(x0) < 0 for some xg € (0, 00). Then, there is x; > xg
such that

eI () <TG () <0 V>,

yielding q;é,l(x) < ez(vf(x)f‘/e(x‘))q;é,l(xl) for x > x1. As Ve(x) — Ve(xy) = — ;1 %ds -
00 as x — 00, we find ¢, | (x) — —00 as x — 00, and hence, limsup, _, ., ¢ 1(x) = —o0,

contradicting @1 > 0. Hence, ¢/ ; >0. O
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The last lemma is elementary.
LEMMA 5.5.  Assume (H). Then, sup, [{°u8 dx < oco.

PROOF. By (H)(1)(4), there exist x; > 0 and €, > 0 such that b < 0 and €?a 4 0% < 202
in (x1, 0o) for all 0 < € < €,. Therefore,

x b
uf(x) = exp{Z/1 Py ds — ln(eza(x) + az(x))}

X1 b x b
fexp{Z/I mds} X exp{/x1 Fds —lnaz(x)} Vx > x.

Obviously, the conclusion follows if we show f exp{ fo 2b >ds — In o2(x)}dx < oo,

which can be verified by arguments as in the proof of Lemma 36. O
We are ready to prove Theorem 5.3.

PROOF OF THEOREM 5.3. Suppose on the contrary that infc A » = 0. Up to a subse-
quence, we may assume, without loss of generality, that lim¢_, ¢ A¢ 2 = 0. We derive a contra-
diction within four steps.

Step 1. We show for i = 1,2 the existence of u; € C2((0, 00)) N L1((0, 0)) satisfying
L{u; = 0 such that lime_.o uc,; = u; in C2((0, 00)).

Recall that u. ; = qNSG, ,-uf and qNSE, ; satisfies (5.20). We apply Holder’s inequality to find

oo 0o G
sup/ lueildx <1+ sup/ |e,ilug dx
e JO e J2

o _ 3/ [0 3
(5.29) §1+sup(/ |¢€,i|2u§dx) (/ ufdx)
€ 2 2

00 3
<1 +sup(/ u?dx) < 00,
€ 2

where we used the normalization (5.20) in the first and last inequalities, and Lemma 5.5 to de-
rive the final uniform boundedness. Considering the positive and negative parts of {u¢ ;}e sep-
arately, we apply Helly’s selection principle (see, e.g., [11], Theorem 4.3.3 and 4.4.1) to find
a signed Borel measure p; on (0, oo) such that, up to a subsequence, lim¢_, ¢ fooo Que;dx =
Jo° @ dpi for any ¢ € Cc((0, 00)).

Letting € — 0 in (5.21), we find L{u; = 0 in the weak sense from the first limit in (3.1)
and lim._,gA¢; =0 (by Theorem 4.1 if i =1 and assumption if i = 2). Moreover, we apply
the classical interior De Giorgi—-Nash—Moser estimates (see, e.g., [10, 21]) to find that for
any open intervals Z and Z' with Z cC Z' cC (0, 00), there exists C = C(Z,Z’) > 0 (in-
dependent of €) such that supy |uc ;| < Cllue,illp1(zy- Then, we can follow the arguments
as in the proof of Theorem A(2) to conclude that p; admits a density u; € C2((0, 00))
and lime_ouc; = u; in C2((0, 00)). The estimate (5.29) and Fatou’s lemma guarantee
u; € L'((0, 00)).

Step 2. We show the existence of C; > 0 and C; # 0 such that lim._,¢ ¢3€,i =C; in
C?%((0, 00)) fori =1,2.

By Step I and d)e 1 > 0, we apply Lemma 3.7 to find C; > 0 and Cz € R such that u; =
C; uo fori =1, 2. Recall d)el = "e—’ . Thanks to lim¢_,ouc; = u; in C2((0, 00)) (by Step 1)

and (3.2), the limit lim._, ¢ ¢>€,, = C holds in C2((0, 00)).
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By Lemmas 5.1 and 5.3, the normalization (5.20) ensures the existence of some « >
1 such that 7| ;[ul dx + [{ 1§eiPul dx > L. Letting € — 0 yields |C;| [Tu§ dx +

Cl-2 l’cug dx > % Hence, C; # 0. In particular, C > 0.
Step 3. We show that lime_.o J§° ¢e,10¢,2uC dx = C1C2 [§°u§ dx # 0.
Obviously, for any « > 1, there holds

oo - 00
‘f ¢e,1¢e,2u§; dx — C1C2/ l/tg dx
0 0

1 oo\ L .
+(f0 +f )¢E,1|¢e,z|u§dx
K

+ C1|C2|</O; +f°°)ug dx =: I (k) + I () + 1I(kc).

K o - K
(5.30) < ‘/1 Pe.1¢epus dx — C1C2/l u§ dx

We claim that

(5.31) Elg%lé k)=0 Vk=>1, Kll)ngo SIEJpIL(K) =0 and ,CILI%OHI(K) =0.

Given (5.31), the conclusion follows from taking the limit € — 0 and then ¥ — o0 in (5.30).
We prove (5.31). Clearly, f0°° ug dx < oo (by Lemma 3.6) yields lim,_ oo IlI(k) = 0.
Thanks to Step 2 and (3.2), we see lim¢_, gl (k) =0 for any « > 1.
For Il (x), Holder’s inequality and Lemma 5.1 yield lim,_, «, sup, fKOO (/56, 1 |q§€,2|uf dx =
0. Note that Lemma 5.4 and Step 2 imply

(5.32) sup sup q~5€,1 < sup (f;e,l(x) <00 Vx>0,
€ (O,X) €

1
which together with Lemma 5.3(2) leads to lim,_, o, sup, fO; q}al |q~5€,2|uf dx = 0. It follows
that lim, —, 5o sup, Il¢ (k) = 0. The claim (5.31), and hence, the conclusion is proven.

Step 4. Recall that —L, is self-adjoint in Lz(uf). Since QEI,E and 952,5 are eigenfunc-
tions associated with A 1 and A2, respectively, they are orthogonal in Lz(uec), namely,
15 Ge1de 2u8 dx = 0, which is contradictory to Step 3.

In conclusion, infe A¢ 2 > 0 and the theorem is proven. [

6. Multiscale dynamics. In this section, we study the multiscale dynamics of the distri-
bution of X; and prove Theorem C. Recall from Lemma 3.1 the semigroup (P);>0 and for
each k € N the spectral projection Qf of L corresponding to the eigenvalues {—Ac¢ ;};>.
The following lemma plays a crucial role in the proof of Theorem C.

LEMMA 6.1. Assume (H) and Ao > 0. For each k € N, there is Cy > 0 such that for
D<exl,

1

|PSOLf| < Crale¥ e ™ || fllpe in(0,00)Vt>2and f € Cy((0, 00)).

PROOF. Set f’f = ﬁe UPfU- 1(76_ 1 where U, and 175 are unitary transforms speci-
fied in Section 3.2. Then, (ﬁf),zo is an analytic semigroup of contractions on L?((0, Ye.00))
generated by E;g . The spectrum of Ef , being the same as that of L., consists of simple eigen-
values {—A¢ ;}ien (see Lemma 3.1). We finish the proof within four steps.

Step 1. We show for each p € (2, oo], there is D{(p) > 0 such that sup, |Iﬁ1€||L2_>Lp <
Di(p).
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According to Lemma 3.3(4), there is M > 0 such that W, + M > 1. Since G([,E —M)C

(=00, —M) and [|(h — (L5 — M) Y|,2 .2 = m for all » € p(L3 — M), we
find

1
6.1) | = (L5 = M) oy < G YAECwith i >0,

€
As Ef — M generates the analytic semigroup (e~ Mt ﬁf),zo of contractions on Lz((O, Ve.00))s
and the right-hand side of (6.1) is independent of €, we apply [46], Theorem 2.5.2, to find
C1 > 0 (independent of €) such that
s —Mt pe Ci
(62) ||(£6 —M)e Pt HL2—>L2 < T Yt > 0.

Let D(L?) be the domain of £3. Since

_ s _l Ye, 00 , Ye, 00 2 s
(—(c2 M)u,u)Lg_z A lu'|dy + ; (We + M)|u|“dy Yue D(L2),

we derive from W, + M > 1 and (6.2) that for f e L2((0, Ye.00)) and t > 0,
1 Ye, 00 ~_ ~9 Ye,oo o ~0
— 9, Pf fl°d +/ Pffl°d
>l Py 4 [ e AP ay
1 Ye,00 < =2 Ye,00 ~o =2
55/0 |8yPtf| d)’+/0 (We + M)| Pf f|"dy

:<_(£§ - M)f’ff, ﬁtef)LZ

CreMt . C2e2Mt 1 [Yeoo - .
< I NPTl = =S I+ 5 [T 1A A .

leading to

2 2Mt

Ye,00 -~ Ve, 00 m oo Cse -
[l v+ [T A dy < S 1R

Since Lemma 3.3(2)—(3) ensures W, 4+ M blows up at 0 and y¢ o, We see that 15,E f belongs
to Wol’z((O, Ye,00)) (the closure of C3°((0, ye,00)) under the wL2((0, Ye.c0))-norm). Hence,

the Sobolev embedding theorem ensures that for each p > 2 there is C2(p) > 0 such that

«/ECICZ(P) eM;

125 Fll o < C2) (103 BF Fl o + 125 f12) < 1F 12

Setting ¢ = 1 yields the result with D (p) := v2C1Ca(p)e™.
Step 2. We prove that for each p € (1, 2), there holds sup, || P{l;p_, ;2 < Di(p’), where
p’ is the dual exponent of p, namely, % + % =1.

The result in Step I says || f’f ll;2 » < Di(p’), which together with the symmetry of Isf

yields

—LP

| Pf fll 2 < Di(P) I flle YF € LA((0, ye.00)) N LP((0, ye,00))-

Thus, f’f uniquely extends to be a bounded linear operator from L”((0, ye o)) to L?((0,
Ye,00)), and satisfies || P{ ||, ;2 < D1(p"). ~

Step 3. We show the existence of p, € (1,2) and D, > 0 such that sup, ||UcUc f||1r+ <
Dy fllo for all f € Cp((0, 00)).
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Let f € Cp((0, 00)) and set f. := U U, f. Straightforward calculations yield that for each
pe(l,2),

Ye,00 Zp Ye,00 G _1p
| Tray= ["TIeerog ) ay

[ele} _PVE

dx.

= [T el i1y oe ay <z [

Py
4
6

Note that if there exists p, € (1, 2) such that

0 ¢ — P« Ve
(6.3) sup/ dx < 00,

17_
4

then the result holds with D; = sup, (f;° < ,,i* Vi dx)ps b

We show (6.3) for some p. € (1, 2). le 0 < § <« 1. By (H)(1)-(3), there is x; € (0, 1)
such that
ae(x)

6.4) b(x)>(1—8)b'(0)x and 1—§< ) LI S <148 Vxe(0x).

We split

/OO e PVe x1 p—PVe
dx:/ dx—i—/ dx_I(p)+II ).

Following arguments as in the proof of Lemma 3.6, we find sup, Il (p) < oo for each p €
(1,2).
Now, we treat I (p). We deduce from (6.4) that

< b <1 b
—Ve(x)=/ —ds + —ds

| O 1 e
x (1—8)b(0) b
(6.5) = w +8)(62a/(0)+|0/(0)|25) s+ 1 _ds

(1 —8)b'(0) | €%a'(0) + 07 (0)Px /llbl

< —ds V. 0, .
S0 OF " a0 + 1o P Sy 2% e

As Ag >0, k: — 209000 | Fix some Px € (max{1, (x — %)*1}, 2). It follows from

— (14800
(6.4) and (6.5) that
L (ps) < /OXI[(l —8)(%d’ (0)x + }a/(O)}zxz)]—%*—%
[eZa’«» +107(0)x ] oI A g
2a'(0) + |07(0)2x1
x1 T2,/ 2 R
< ¢ p*Kfl[Ea(o)Ha,f?)' ik " dx
[e2a’(0) + o' (0)|2x1] 72 Jo +3

ofF

C x1
< - <
[(€2a’(0) + |o”(0)|2x1)] 52 /0 RN (3 = Z9)[o(0)21% T2x,
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Bl g

where C=(1—8 e T g7 4 , and we used in the second inequality the fact £~ —
Bt — 5 > 0o that
x1 [€24’ (0 0)|2 -3 psk_px 1 XL ]
/ [€?a'(0) + 1o’ O)Px]F " dx <[2d'(0) + o' (0)xy] T 2/ —dx.
0 '+ 0 xat2
As a result, sup, Jq o0 e,j* dx = sup[Ie (p«) + e (p4)] < 00, that is, (6.3) is true.

6

Step 4. We finish the proof. Note that Q¢ P = U U, o.U- 1U6 is the spectral projection
of [,63 corresponding to {—A¢ j}j>k. As I;f and Q; are commutative, we apply Steps -2 to
deduce for f € LP*((0, ye.00)) (Where p is given in Step 3) and ¢ > 2 that

| 05 Fllo < D1(00)| P, 05 7l 1.2
< Dy(c0)e k72| Isff”Lz < D1(00) Dy (pl)e x| fll Low,

where p/, is the dual exponent of p,. This together with Stzep 3 yields for f € C;,((0, 00)) and
r>2,

|PEQLf| = U O e QfUU f|
= (P Q5 0eUe ) 0 & (48 Vte) 2
< | BSOS T f | i e
< DI D1 (p,)e H DT, flmard e

1
< D1(00) D1 (pl) Dae k0= 2 Ve | £ o0

As sup, A¢ x < oo by Lemma 3.2, the result follows. [
Now, we prove Theorem C.

PROOF OF THEOREM C. Let u € P((0, 00)) be such that supp(n) C K. Recall that ¢ 1
is the positive eigenfunction of —L, associated with A ; and satisfies the normalization
|@e.1 ||L2(u§) = 1. We apply Lemma 3.1(6) to find that for f € Cp((0, 00)) and ¢t > 0,

o o
ES[F(X)Liare] = eV (f.bet) 1200 /0 erdp+ /0 PEQSfdp.

(psle

= Meillige,”

Recall the density of the QSD p. is given by u, = Let ate,1 = ||@e.1 ||L1(u§)¢e,1

be as in the statement. Then,

o0 o0 0
B[S (X)) L<rg] = e Meling) [~ deadin [ fucds+ [~ prOsran

_ et *° o € NE
e (I, de,1) A Sfuedx + A P05 fdu.
Setting f =1 yields P}, [r < T§] = e el (i, ae ) + Jo° PfQO51du. Hence,
ELLA (X)) =ELLf (XD)Licrg] + fO)(1 = P¥[r < T57])

00
—e_)‘e"tw, ae,l>/0 fuedx+(1 _e_AE'lt :u e, 1 )f(O)

+ [ Pros(s - s )
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It follows from Lemma 6.1 that there is C > 0 such that for t > 2,

ELLf (X)) - [E_A“”(M, Qe,1) /OOO fuedx +(1—e 1" (u, ae,l))f(o)”

0 1 -
< C| flloce <" / ade du < Ce || |l o,
0

U o b
where C = C(K) := 1 + supy |cr|ef1 2% Asa result, we find
[P, [XF € o] = [e™ ! (. et + (1 — e 1 (pu, e, ))B0] [y

= s [ES[f(x0)] - [e‘kfvl’w,ae,n [ pucax+ (-, ae,1>)f<0>ﬂ
feCp([0,00)) 0

I fllo=1

= sup
f€C([0,00))170
I flleo=<1
< Ce ™2l Vi =2,

Note that if we establish the limit

< 05(f - f(O))du‘

(6.6) lin}) ae =1 locally uniformly in (0, 00),
€e—
then the conclusion of the theorem follows for ¢ > 2. Making C larger if necessary, the
conclusion holds for all # > 0. Thus, it remains to show (6.6).
To do so, we let qbE | be the positive eigenfunction of — L, associated with A 1 and satisfy
the normalization (5.20), namely, [[@e,1ll11((0,2): u8) + ||¢>€ 122((1,00): ug) = 1. Since ¢ is

lIfe 1l
proportional to ¢ 1, there holds o¢ 1 = ”qblniu(”c)@ 1. As Step 2 in the proof of Theorem 5.3
€1 2,6
says e
6.7) lil% d;e,l = C1 locally uniformly in (0, co)
€—>

for some constant C; > 0, (6.6) follows if we can show
00 » 00
(6.8) hm || e sy = le ug dx and Elgr(l) ||¢€,1||i2(u§) = Clz./o ug dx.

For any k > 1, we split

oo o0
/ ¢6,1ugdx—C1f ugdx
0 0
K _ G K G % oo\ G
(6.9) :/1 e 1, dx—Cl/1 uy dx—i—(/o +/ >¢€,1u6 dx
1 0
+C1</ +f >u(();dx
0 K
o0 00
/ ¢§1u§dx—c%/ uf dx
0 ' 0
K- G 2 (G : N2 G
(6.10) :/;qﬁéylue dx—CI/l ug dx—i—(/o —i—/l; >¢E’1u€ dx
1 00
+C12</ +/ )ugdx
0 K

and
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By (3.2) and (6.7), we see that

K K
eli%vl qse,lufdx—(:l/l u§ dx| =0,
K _ K
lim'/ ¢31u§dx—C12/ u(();dx =0 Vk>1.
€—0 % ’ %
Lemmas 5.1 and 5.3 yield
1 00
. K~ G _ . 72 G _
(6.11) Kll)ngosgp/o e 11 dx =0, Kll)ngosgpv[c ¢cug dx =0.

This together with Lemma 5.5 and Holder’s inequality yields lim,_, oo sup, [;° qge,luf dx =

T
0. Furthermore, we see from (5.32) and (6.11) that lim,_, ¢ sup, fOK ¢€2,1u§ dx =0.
Given these limits, (6.8) follows immediately from taking the limit € — 0 and then ¥k — oo
in (6.9) and (6.10). This completes the proof. [

7. Asymptotic bounds of the mean extinction time. In this section, we adopt proba-
bilistic methods to study the asymptotic of the mean extinction time Ef[7(y]. In particular,
we prove Theorem D.

We begin with the introduction of some notation that are used frequently in the rest of this
section. For 0 < § <« 1, (H)(1)—(3) ensures the existence of 8 = () € (0, 1) such that

b(x) e (x)

71)  1-68< : <1468 Yre(0,8)and0 1.
(7.1) = O x[Ea O + 1o Opx] = TP Vre@pandd<e<

Set

2(1 = 8)b'(0) 2(1 +8)b'(0)

7.2) K =k (8) = and ky =k, (8):= aA=8) 0/ (OF

EEEIELO
Note that k— < k4 < 1 when Ag <0, and k4 > k— > 1 when Ag > 0.

Fix x, = x4(8) € (0, B). Denote by ¢ = 7¢(8) the first time X; exits from (0, 8), namely,
t€:=inf{t > 0: X7 =0or B}, and by 75, = 75 (9) the first time X7 hits x,, namely, 7; (§) :=
inf{t > 0: X7 = x,}.

Foreach 0 <€ « 1 and x € (0, o0), we define

* b
SE(X)ZSG(X,(S)::/ 6_2 xy*adsdy,

Xx

re(x)=re(x,8) : = /X e 2% zc ds /y Le2 by e ds dzdy.
X X (023 (Z)
In literature (see, e.g., [33]), s¢ is referred to as the scale function. The function r¢ arises
naturally in the study of the mean exit time E{[7¢] (see [30, 33] or the proof of Lemma 7.2).
It is easy to check that s (0+) € (—00, 0) and r(0+) € (0, 00).

Replacing o, by o2 in the definition of s and r¢, we define so and ro. It is straightforward
to check that s¢(0+) € (—o0, 0) when Ag < 0, and s9(0+) = —o0 when Ag > 0. Moreover,
ro(0+) = oo.

We establish three lemmas before proving Theorem D. The first one concerns the asymp-
totic of s¢(0+) and P{[X¢. = B] for x € (0, B).

LEMMA 7.1. Assume (H). Then, lim¢_, o s¢ = sg. Moreover:
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(1) if Ag <0, then lim¢_, o 5¢ (04) = 50(0+) > —o0 and
. s0(x) — s0(0+)
limP[XEé =B8]l=————"€(0,1) Vxe(0,8);
lim P [Xee = B1= 5 "0 €OV 0. 8)
2) if Ag > 0, then there are C1, Cy > 0 (depending on §) such that
Cre 267D <o —5c(04) Se Coe 20471,
and for each x € (0, B), there are C3, C4 > 0 such that

1 — G320 < PE[XE = B] Se 1 — Cyer™D,

PROOF. Since o, | 0% on (0, ) as € — 0, we apply the monotone convergence theorem
to find lim¢_, ¢ ¢ = 50 and lim¢_, ¢ 5¢ (0+) = 59(0+).

It is well known (see, e.g., [30], Theorem 6.3.1) that
_ Se(x) —5¢(0+4)

se¢(B) — 5¢(0+)

(1) It is easy to see that —sg(0+) < oco. The limiting equality follows by letting ¢ — 0 in
(7.3).

(2) Using (7.1), we find

o Lk pre 20 « 2 / 2 Py
—5¢(0+) < /x e Zaoe o dy :/x |:€ a’ (0) + o7 (0)] x*:| +
0 o L€' (0)+10'(0)7y

Note that k4 > xk_ > 1 in this case. Calculating the last integral leads to

(7.3) PE [ XS = B] Vx € (0, B).

o / 2 K4 1 2 7 / 2 1—k4++1 T
5¢(0+) = 2[[o”(0)|"x. ] " Dol @ O+ OFy] o
2xito! () P*+ D { _ [e*a’ )]+ }
= (kp — DIE2a’ O [€2d/(0) + 07 (0)Px, !

=25t e P D
(kg — DI’ )]+ B
which together with (7.3) leads to
_ Se(B) —se(x)
se(B) — 5¢(0+)
50(B) — so(x)
50(B) — 5¢(0+)
Se 1= [50(B) — so(0)]Cy 'e2® ™D =i 1 — G2 D,

: Cre 2D,

PLX: =B]=

Similarly, there exist C3, C4 > 0 such that —s¢(0) >, C3¢2-~D and PLIXE = Bl Ze
1 — C4€*%~=D_ This proves (2). O

In the second lemma, we study the asymptotic bounds of the mean exit time Ef [7€].

LEMMA 7.2. Assume (H).
1. If Ag <O, then there are C, C> > 0 (depending on &) such that
Cillne| Se B [t€] Se Ca|Inel.

2. If Ag > 0, then infc B [t€] > 0 and E [1€] S e 20+,
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PROOF. We first show that

_ 2[re(0+)se(B) — re(B)se (0+)]
a se(B) = 5¢(0+) '
It is well known that u. := ES{[7€] solves

(7.4) ES, [7€]

1
50‘6”/6/ +bu.=—-1 1in (0, B),

ue(0) =0=uc(p).
Direct calculations yield

e (x) = —2re(x) + 2(:5((;))__:5(((?3) re(B) + i(s(eﬂ(’f )__s S(O(fr))) re(0+).

Setting x = x,, we derive (7.4) from s (x,) =0 and r¢ (x,) = 0.

5657

(1) Note lime g re (B) = ro(B). Since lime ¢ s¢ (B) = so(B) and lime_, ¢ 5¢ (0+) = 50(0+)

by Lemma 7.1, we find from (7.4) that

250(B)re(0+)  2ro(B)so(0+)
“50(B) —50(0+)  s0(B) —50(0H)
If there are Cy, C> > 0 (depending on &) such that

(7.6) Cillne| Scre(04) Sc Ca|Ine],

(7.5) ES [€]~

X

we deduce from (7.5) that —c10B) |1 ¢| <, ES [7€] Se _2C250B) _|1p ¢, leading to the

50(B)—s0(0+) s0(B)—s0(0+)

conclusion.
It remains to show (7.6). Thanks to (7.1), we compute

e X ] z )
re(0+) = / f AR a® gz dy
0 Jy a(2)

5 [z 2’ (0)

Xy Xy 1 l;f AN E—;
Z/ ] et SO+ O T dz dy
o Jy (14 8)z[€2a(0) + [07(0)[?2]

—1 ol K——= / / —K_
= 1+5fo / 2[6261/(0)4% 67 (0)[z] " [€2d"(0) + |6 (0)|y] ™ dzdy
y

e2d'(0) + Ia’(O)IZ}"_ld iy,

1 XT* 2y 2 / —11
=5 ) fy [€5a'0) +]o"O)]3] z[eza’(0)+|0’(0)|y

Noting that
€2d'(0) + o' (0)Iz - 2€2a’(0) + |0/ (0) |2y _5
€2a'(0)+ 10’ (0)ly ~ €%a'(0) +[o’(0)]y
we deduce from the fact k_ < 1 that

1
0 >—/
reO) = 175 )

2-~1In2 €2’ (0) + o’ (0)*%
= n
(1+8)|07(0)]2 €2a’(0)

Vy e (o, %) and 7 € (v,2y),

7 2 ’ -1 2y1 K_—1
[€7d’(0) + |o"(0)]y] / 22 dzdy

Y

2==11n2 ( |o/(O)|2x*> Cilinel
=————1In — | ® nel,
(1+8)|o’(0)[? 2¢2a'(0) ) ¢
where Cj := —2-102_ "and the equality follows from direct calculations of the double

) RCIEAOE
integral.
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To derive an upper bound, we change the order of integration to rewrite r(0+) as

(7.7) re(04) = / " / Fl V@ gy g,
0 Jo ac(z)

which is just I in (5.17). By (5.19), r¢(04) <¢ C>|In¢€| for some C> > 0. Hence, (7.6) fol-
lows.

(2) Let & € (0, x4). Obviously, Ef [t€] > E§ [7€], where 7€ :=inf{t > 0: X{ = X or B}.
Note that ES[7€] solves

2
u@@) =0=u(p).

As lim,_, g @c = o2 uniformly in [£, ], the classical PDE theory ensures that lime_, oE{[7€]=
uo uniformly in [x, B8], where ug is the unique solution of

1 1" ’_ PPN
—Qcl +bu __1 ln(xvﬂ)’

2
up(¥) =0=uo(B).
Since ug(x4) > 0 by the maximum principle, we conclude inf, Ei* [z€] > 0.
It remains to derive the upper bound for E§ [t€]. Note that x4 > k— > 1. Using (7.7),

we apply (5.14) to find r.(0+) < €20 =14+9)  Since —s(0+) Ze Cie2-=D due to
Lemma 7.1, we deduce from (7.4) that

0% [‘L’E]% 2s50(B)re(0+)
e  50(B) — 5¢(0+)

This completes the proof. [J

1
’—a2ug +buy=—1 in (%, B),

250(B)e 2+ =11 244(B) —20cs—k_+0)

< =
+2r0(6) ~€ ClE_z(K__l) Cl

The third lemma addresses the uniform-in-¢ finiteness of the mean hitting time Eﬁ[t;*].
LEMMA 7.3.  Assume (H). Then, sup, E;[rﬁ*] < 00 for each x > x.

PROOF. Fix x > x,. As in the proof of Proposition 4.1, we can find a function V €
C2%(0, 00) and a number Ny € (x, 00) such that V(Ng) > 0 and L.V < —%22 in (Np, 00).
Since limy_ oo Irl;_l = —oo by (H4), we may assume L.V < —1 in (Ny, 00). Set rﬁ,o = inf{r >
0: X7 = No}. An application of Ito—Dynkin’s formula yields 0 < ER,O 41 [V(‘ri,o)] <V(Ny+
1 — E§V0+l[r§,()], leading to

(7.8) supEfy, 4 4 [T;/o] <V(Ng+1).
€
Set r&*’NO_H) :={t >0:X; =x4 or No+ 1}. Then, ]Eﬁ[r(éx*,No_H)] on [xx, Nog + 1] solves

Lcu=—1 in (x4, No+ 1),
uxy) =0=u(No+1).
Arguing as in the proof of Lemma 7.2(2), we find

(79 sup By, [7(,.no+1)] < 00

Let X§ = No, 7; = 0 and define recursively the following sequences of stopping times:
before the first time X; reaches x, (i.e., t§*), for n € N, we let t; be the first time after
7., at which X reaches No + 1, and 7; be the first time after 7; at which X reaches No;
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since Pi\,o[tj* <oo]l =1, tf and 7 are defined up to some random index no € N U {0}; let
T, =15 = T« for all n > ng + 1. To be more specific, we recursively define for each n € N,

Ty =inf{r > 27 | X =No+ 1} ATy, Ty :=inf{r > 77 : X; = No} A 75 .

n

Clearly, 7, =inf{r > 7; | : X{ =x, 0r No + 1} and 7; 1 7; as n — oo for Py -a.e
Hence,

(7.10) folre]= lim Ef [ ZE +ZENO [t — =

Thanks to [30], Theorem 6.3.1, and Lemma 7.1, pe := Py, [X¢ e = = Ny + 1] satisfies

A1) lim pe= tim M) 00 _0(0) ) 4
‘ 0P T s No+ 1) —ser)  soNo+ D) —so(rs)

For n > 1, we show

P;\’o[ ‘L'E_'B]:pz’
(7.12) Soltr — B 1] = pi "B, [7f],

%o[ff — 1, ] = pE} No+1 [TNO]-

The first two equalities for n = 1 are obvious. Thanks to the strong Markov property and
time-homogeneity of X7, we find

NolTT = TH 1 =By [F1 — 771X Te = ] X Py [XTe = x4]
+E§V0[T1 T1|X65—N()+1] XP [Xee—N()‘i‘l]
= EfV()[AE 3 |X§f = No + 1] X Pi\/o[xif = No + 1] = Ef\’o—i—l[tf\’o]pé’

Hence, (7.12) holds for n = 1. Suppose it is true for n = k — 1 with £ > 2. By the strong
Markov property and time-homogeneity of X;,

Ph (XS = No+ 1] = P, [X& = No + 11XE = No]
x P [X5e = NolX5e = No+1] x Py, [X5 =No+1]=pr,
By [T — Tea] =By [m6 — G11X5 = No]
X Py [XE = NolXS | = No-+ 1] x Py [Xe = No-+1]
=Efy [76 — %11X5 | = No] x Py [X5e = No+ 1] =E§ [rf]pe™",
Ef, [T — 1] =By, [ — t61X5e = No+ 1] x P [X5e = No + 1] =Efy, 4 [75, ]t

Consequently, (7.12) holds for n = k and thus, holds for all » € N by induction.
Given (7.12), we see from (7.10) that

5\70[ N ] = Z( e lEl\’o[":l ] + p? 5\70+1 [T]EV()]) = 1— De 7\/() [TIE] + 1 _epe §V0+1[IN0]
n=1

which together with (7.8), (7.9) and (7.11) yields sup, E{ [z ] < sup, Efvo[r)f*] <o0. O

We are ready to prove Theorem D.
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PROOF OF THEOREM D. Clearly, it suffices to prove the result for IE;[TOE] for each x €
(0, 00).

Fix x € (0, 00). Let 0 < § <« 1 (depending on x) and then take 8 = $(5) and x, = x4(5) €
(0, B) so that x, € (0, x). They are introduced at the beginning of this section. The strong
Markov property and time-homogeneity of X§ then imply that

(7.13) EL[T6] = EL[EL (TG — =, + v )1Xee =B [T ] + B[z, ]

Since sup, ES[zy ] < 0o by Lemma 7.3, it suffices to study the asymptotic bounds of E{ [7(}].

We follow the same idea as in the proof of Lemma 7.3. Let X{ = x,, 7; = 0 and define
recursively the following sequences of stopping times: before the first time X; reaches O (i.e.,
Tys), for n € N, we let 7} be the first time after 7;_, at which X7 reaches g, and 7; be the first
time after 77 at which X; reaches x,; since P, [T < oo] =1, 7; and 7, are defined up to
some random index ng € NU {0}; let 7 = f,f = Txi for all n > ng + 1. To be more specific,
we recursively define for each n € N,

T =inf{r > 7, | : X; =B} A T}, To:=inf{r > 75 : X; = x,} AT}

Clearly, 75 =inf{r > 7:_, : X; =0 or B} and 7} 1 T as n — oo for Pi*—a.e. Hence,
[e.e] o0
(7.14)  E{[T5]= lim E [77] = ZIEL[rS — ]+ ZIE [ — )
n—= n=

Set pe =Py [X % = f]. Following arguments as in the proof of Lemma 7.3, we have for
eachn > 1,

P [Xee=pl=pl.  EL[n — i ]=pe B [rf] and
EL G —wl=peEple ]
This together with (7.14) yields

o0

n— n 1 p
@.15) B [T5] = D0 (ne B o] + el ]) = B[]+ Bl ]
€ €

n=1
Case: Ao < 0. Thanks to Lemmas 7.1, 7.2 and 7.3, there are Cy,Cy > 0 such that

Cillne| < IEfc* [75]1 Se Ca|Inel. From which and (7.13), the desired result follows.
Case: Ay > 0. We rewrite (7.15) as

1
(7.16) EL[T5] = _—pe(Ei*[ff 1+ B[z ]) — Ej[xs,]-
By Lemmas 7.1, 7.2 and 7.3, there are positive constants C3, C4, C5 and Cg such that
1
Cre 2D G i S Cae T, s B[Rl ] S Coe 20,

which together with (7.16) yield C3Cse 2=~ < ¢ [T] S C4Cpe 20+~ —r-40),
We see from the definition of x4 and «_ in (7.2) that for any 0 < y < 1, there exists § > 0
(and corresponding x, = x,(8)) so that

25/ (0) 2b'(0)
—k——D<1—-(01A-=7y) and 1—-(14+y) <—(ky — 14k —Kk_+9),
o (0)] 67(0)] - -
—(1-9) & 2-(149) S

leading to C3Cseé” 1”01, This together with (7.13)
yields the result.

The proof is complete. [J

'Ol <S¢ Ei* [Toe] Se C4Coe
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