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The present paper is devoted to the study of the long term dynamics of
diffusion processes modelling a single species that experiences both demo-
graphic and environmental stochasticity. In our setting, the long term dynam-
ics of the diffusion process in the absence of demographic stochasticity is
determined by the sign of �0, the external Lyapunov exponent, as follows:
�0 < 0 implies (asymptotic) extinction and �0 > 0 implies convergence to a
unique positive stationary distribution μ0. If the system is of size 1

ε2 for small
ε > 0 (the intensity of demographic stochasticity), demographic effects will
make the extinction time finite almost surely. This suggests that to understand
the dynamics one should analyze the quasi-stationary distribution (QSD) με

of the system. The existence and uniqueness of the QSD is well known under
mild assumptions.

We look at what happens when the population size is sent to infinity, that
is, when ε → 0. We show that the external Lyapunov exponent still plays a
key role: (1) If �0 < 0, then με → δ0, the mean extinction time is of order
| ln ε| and the extinction rate associated with the QSD με has a lower bound
of order 1

| ln ε| ; (2) If �0 > 0, then με → μ0, the mean extinction time is poly-

nomial in 1
ε2 and the extinction rate is polynomial in ε2. Furthermore, when

�0 > 0 we are able to show that the system exhibits multiscale dynamics: at
first the process quickly approaches the QSD με and then, after spending a
polynomially long time there, it relaxes to the extinction state. We give sharp
asymptotics in ε for the time spent close to με .

In contrast to models that only take into account demographic stochastic-
ity, our results demonstrate the significant effect of environmental stochas-
ticity—it turns an exponentially long mean extinction time to a sub-
exponential one.

1. Introduction. One of the most important questions from population dynamics is fig-
uring out when a species persists or goes extinct. For deterministic models, persistence is
usually quantified via the existence of an attractor that is bounded away from zero (the extinc-
tion state). In this setting extinction can only happen asymptotically as time goes to infinity.
However, any realistic ecological model has to take into account various intrinsic and extrin-
sic random environmental fluctuations. Usually there are either ecological models that take
into account environmental stochasticity that arises due to fluctuations of the environment,
or models from population genetics that focus on demographic stochasticity, which arises
because of the randomness due to reproduction in a finite population. There are few analytic
models which account for the effects of both types of stochasticity.

If the system is of size 1
ε2 for some small ε > 0 (intensity of the demographic noise), the

presence of demographic effects will make the extinction time finite almost surely. As a result,
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in order to gain some information about the behavior of the process before extinction, it is
natural and useful to look at quasi-stationary distributions (QSDs) [12, 43], that is, stationary
distributions of the process conditioned on not going extinct. A key problem is to study
scaling limits of systems that have QSDs and see what happens with the family of QSDs as
the intensity of the demographic noise is sent to zero.

The main goal of this paper is to analyze the dynamics of systems that have both types of
stochasticity and can be modelled by stochastic differential equations (SDEs). We focus on
the QSD and the extinction time as well as related quantities such as the extinction rate and the
exponential convergence rate to the QSD, and investigate their asymptotic properties as the
intensity of the demographic noise vanishes—a particular emphasis is put on the connections
to properties of the limit system. Models with both types of stochasticity are more realistic
as natural systems usually experience both types of randomness. The sharp criteria we find
for the persistence and extinction of species are therefore more relevant to the modelling of
natural ecosystems—see [16, 22].

Systems perturbed by either the environmental or demographic stochasticity have been
attracting a lot of attention. If one looks at models that only have environmental stochasticity,
there already exist many sharp results in the literature. In the one-dimensional setting, a full
classification is possible by the well-known scale function and speed measure description of
diffusions [3]. In the multi-dimensional setting things are more complicated. Some general
theory for the existence and uniqueness of stationary distributions can be found in [34], while
the most up to date results for Kolmogorov systems are in [1, 24, 25].

For models with only demographic stochasticity, asymptotic properties of QSDs and re-
lated quantities as the intensity of the stochasticity vanishes are often the focus of studies.
They have been investigated for randomly perturbed dynamical systems and rescaled Markov
jump processes. The first work seemingly dates back to [27], where the author studied the
stochastic Ricker model. This work was generalized in [38, 49] to randomly perturbed inter-
val maps that apply to density-dependent branching processes. Further generalizations were
considered in [18, 31], where general randomly perturbed maps are studied and applied to
many population models. These works illuminate two fundamental properties when the un-
perturbed deterministic system has a global attractor which is bounded away from extinction:
(1) QSDs tend to concentrate on the deterministic attractor as the noise intensity vanishes.
(2) The extinction rate associated with a QSD is exponentially small with respect to the sys-
tem size (i.e., the reciprocal of the noise intensity squared), and therefore, the extinction time
grows exponentially with the system size if the initial distribution is given by the QSD. Con-
centration properties of QSDs as in (1) are in line with that of stationary distributions for
randomly perturbed dynamical systems (see, e.g., [19, 28, 29, 35–37]). For the latter in the
case that the unperturbed system has simple dynamics, significantly more refined results are
available in the literature (see, e.g., [2, 13, 44, 51]).

Rescaled absorbed birth-and-death processes whose mean-field ODEs have a global
asymptotically stable equilibrium have been investigated in [7–9]. In one dimension, the ex-
ponential asymptotic of QSDs and associated extinction rates are established in [7]. When
the equilibrium is nondegenerate, these results are improved in [8] by determining the sub-
exponential terms, implying in particular that QSDs converge to the Dirac measure at the
equilibrium in a Gaussian manner. In higher dimensions, the aforementioned two fundamen-
tal properties are obtained in [9]. It is worthwhile to point out that the problem in higher
dimensions is much more challenging due to the irreversibility and the lack of simple recur-
sive formulas for QSDs. In [8, 9], the authors also characterize the two-scale dynamics of the
solution processes by deriving sophisticated estimates quantifying the distance between the
distribution of the solution and the convex combination of the extinction state (more precisely,
the Dirac measure at the extinction state) and the QSD.
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In [32, 48, 50] the authors consider one-dimensional absorbed singular diffusion pro-
cesses of generalized logistic type with small demographic noises—these models can be
derived as diffusion approximations of one-dimensional rescaled absorbed Markov jump pro-
cesses arising from population dynamics and chemical reactions. When the unperturbed or
mean-field ODE has a unique positive equilibrium (which must be globally asymptotically
stable), results comparable to those contained in [8] are established. In particular, the noise-
vanishing asymptotic of QSDs and associated extinction rates are determined up to the sub-
exponential terms, and the two-scale dynamics of the solution process is characterized. The
noise-vanishing asymptotic of QSDs and associated extinction rates extends to the case where
the unperturbed ODE has multiple positive stable equilibria. We point out that while QSDs
for many types of processes have been extensively studied (see [5, 12, 47, 54] and reference
therein), the fundamental theory of QSDs (i.e., the existence, uniqueness and convergence)
for absorbed singular diffusion processes was unavailable until the work [5]. Since then, there
have been significant new developments (see, e.g., [6, 12, 23, 26, 41, 43, 45]).

There exist relevant works on overdamped Langevin equations restricted in a bounded
domain and killed on its boundary [4, 14, 15, 40, 42]. In [42], the author derived the ex-
ponential asymptotic of the extinction rate (more appropriately, the exit rate for a diffusion
process exiting from a bounded domain) and the asymptotic of the principal eigenfunction of
the generator in the deepest well of the potential, leading to the sub-exponential asymptotic of
the QSD in that well. These results are greatly improved in [4] under generic assumptions on
the potential function. In a series of works [14, 15, 40] examining exit events and the Eyring–
Kramers formula, the sub-exponential asymptotic of the exit rate plays a significant role in
computing the asymptotic of transition rates and determining the asymptotic exit distribution.

This paper is a first step towards generalizing the theory of randomly perturbed dynamical
systems without absorbing states and randomly perturbed dynamical systems with absorbing
states and only demographic noises to a theory of randomly perturbed dynamical systems
with absorbing states and multiple types of noise. Inspired by the aforementioned theories
of noise-vanishing asymptotics of stationary distributions, QSDs, and related quantities, and
motivated by the fact that real systems are subject to both intrinsic and extrinsic stochastic
perturbations, we intend to establish an analogous theory for dynamical systems under both
environmental and demographic noise perturbations, and study the effects of both types of
noises.

In the present paper, we consider one-dimensional SDEs with both environmental and
demographic stochasticity:

dXε
t = b

(
Xε

t

)
dt + σ

(
Xε

t

)
dBt + ε

√
a
(
Xε

t

)
dWt in [0,∞),

where the coefficients b, σ and a satisfy natural assumptions. Let T ε
0 = inf{t ≥ 0 : Xε

t = 0} be
the extinction time of Xε

t . It is finite almost surely. Denote by Lε the self-adjoint extension in
L2(uG

ε ) := L2((0,∞), uG
ε dx) of the generator of Xε

t , where uG
ε is the nonintegrable Gibbs

density of Xε
t as it grows like 1

x
as x → 0+. The spectrum of Lε is purely discrete. Depending

on the dynamics of the limiting SDE, which only has an environmental stochasticity term:

dX0
t = b

(
X0

t

)
dt + σ

(
X0

t

)
dBt in [0,∞),

we are able to prove the following results (with rigorous statements given in Section 2):

(I) Suppose �0 := b′(0) − |σ ′(0)|2
2 > 0 so that X0

t has a unique stationary distribution μ0
that does not put mass on the extinction state 0.

• The unique QSD με of Xε
t converges to μ0 as the intensity of the demographic noise

goes to zero, that is, ε → 0. The associated extinction rate λε,1 is given by the principal

eigenvalue of −Lε , and is polynomially small in ε with leading order λε,1 ∼ ε
4b′(0)

|σ ′(0)|2 −2
.
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• The normalized extinction time
T ε

0
Eε•[T ε

0 ] converges weakly to an exponential random variable

of mean 1 as ε → 0. Moreover, the mean extinction time Eε•[T ε
0 ] depends polynomially on

the system size 1
ε2 with leading order

E
ε•
[
T ε

0
] ∼ 1

λε,1
∼ ε

2− 4b′(0)

|σ ′(0)|2 =
(

1

ε2

) 2b′(0)

|σ ′(0)|2 −1
.

The polynomial asymptotics of the extinction rate λε,1 and the mean extinction time
E

ε•[T ε
0 ] are significant changes from that of models having only demographic noise, see

[18, 32, 48], where the dependence on the noise intensity is exponential. This shows that
environmental stochasticity has a significant impact on the time-scales of the dynamics.
The fact that the dependence changes from exponential to polynomial in the presence of
environmental stochasticity has been recently showcased empirically and numerically in
simple ecological models [16, 22].

• The eigenfunction φε,1 of −Lε associated with λε,1 converges, after appropriate normal-
ization, to 1 as ε → 0. The second eigenvalue λε,2 of −Lε satisfies

0 < lim inf
ε→0

λε,2 ≤ lim sup
ε→0

λε,2 < ∞,

yielding in particular the uniform spectral gap infε(λε,2 − λε,1) > 0.
• The distribution of Xε

t satisfies the multiscale estimate:

(1.1)
∥∥Pε•

[
Xε

t ∈ •]− [
αεe

−λε,1tμε + (
1 − αεe

−λε,1t
)
δ0
]∥∥

TV ≤ Ce−λε,2t ,

where αε is the integral of the appropriately normalized φε,1 with respect to the initial
distribution, and the constant C depends on the initial distribution but is independent of ε.
This estimate together with information about λε,1, λε,2 and φε,1 allows us to quantify the
multiscale dynamics of Xε

t as follows. If t is such that 1
λε,2

	 t 	 1
λε,1

, then ‖Pε•[Xε
t ∈

•] − με]‖TV 	 1, that is, the distribution of Xε
t is close to the QSD με . If t is such that

t � 1
λε,1

, then ‖Pε•[Xε
t ∈ •] − δ0]‖TV 	 1, that is, the distribution of Xε

t gets close to δ0,
the Dirac mass at the extinction state.

The estimate (1.1) is powerful—it has the convergence result of the normalized extinc-

tion time
T ε

0
Eε•[T ε

0 ] and the asymptotic reciprocal relationship E
ε•[T ε

0 ] ∼ 1
λε,1

as immediate
consequences.

(II) Suppose �0 < 0 so that X0
t goes extinct as t → ∞.

• As ε → 0, we have με → δ0. The extinction rate λε,1 vanishes as ε → 0 and has a lower
bound of order 1

| ln ε| .
• The mean extinction time is of order | ln ε|, that is, Eε•[T ε

0 ] ∼ | ln ε|.
The quantity �0 is often referred to as the stochastic growth rate (it is also called the

invasion rate or the external Lyapunov exponent)—it determines the stability of the extinction
state 0 for X0

t . As �0 increases and crosses 0, the stable extinction state loses its stability and
bifurcates into an unstable extinction state and the globally asymptotically stable persistent
state μ0. As it is seen from (I) and (II) such a bifurcation has a strong effect on the asymptotics
of the extinction rate λε,1 and the mean extinction time E

ε•[T ε
0 ].

To this end, we briefly comment on the ideas, methods and techniques used to establish the
above results, as well as the difficulties overcome in the course of the proof. We pay particular
attention to the comparison with the model that only has demographic stochasticity, that is,

dX̃ε
t = b

(
X̃ε

t

)
dt + ε

√
a
(
X̃ε

t

)
dWt in [0,∞).
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For clarity, we assume b is just the standard logistic growth rate function with x∗ being the
only positive zero. Denote by L̃ε the self-adjoint extension of the generator of X̃ε

t . Under
natural assumptions on a, the spectrum of L̃ε is purely discrete. Denote by λ̃ε,1 and λ̃ε,2 the
first two eigenvalues of −L̃ε .

• It is known (see, e.g., [4, 32, 42]) that the asymptotic of λ̃ε,1 and λ̃ε,2 are respectively
determined by the potential function Ṽ := − ∫ •

0
b
a
ds and the vector field b at x∗. More

precisely, limε→0
ε2

2 ln λ̃ε,1 = Ṽ (x∗), and limε→0 λ̃ε,2 = −b′(x∗). The behavior of λε,1 and
λε,2 is completely different: we can show in the case �0 > 0 that the leading asymptotic
of λε,1 is determined by b′ and σ ′ at the extinction state 0. This shows that environmental
stochasticity significantly alters the “hidden mechanisms” which affect the mean extinction
time.

• Denote by L0 the self-adjoint extension of the generator of X0
t . One expects that the asymp-

totics of λε,1 and λε,2 are governed by the spectral properties of −L0. However, this is not
clear at all because of the singular limit “limε→0 Lε = L0”. The coefficient of the second-
order term of Lε has a first-order degeneracy at 0, while that of L0 has a second-order
degeneracy at 0. One of the unpleasant consequences of this singularity is that the struc-
ture of the spectrum of L0 differs significantly from that of Lε . The reader is referred to
Remark 3.1 for details.

• Proving that infε λε,2 > 0 is hard in part due to the singularity of the limit “limε→0 Lε =
L0”. The way we prove this builds on the simple fact that the eigenfunctions associated
with λε,1 and λε,2 are orthogonal. Assuming the failure of infε λε,2 > 0, we manage to
show the loss of the orthogonality of eigenfunctions. A crucial ingredient leading to this
contradiction is to acquire certain compactness of appropriately normalized eigenfunctions
associated with λε,1 and λε,2.

• Given the fact that eigenfunctions of −Lε span L2(uG
ε ), the multiscale estimate (1.1) fol-

lows essentially from the eigenfunction expansion of the Markov semigroup P ε
t associated

with Xε
t before hitting 0, saying particularly that all the terms in the estimate arise natu-

rally except the property that the constant C on the right hand side is independent of ε. The
key to obtaining this is to derive good pointwise estimates of P ε

t Qε
2f for f ∈ Cb((0,∞))

by lifting the integrability, as we know ‖P ε
t Qε

2‖L2(uG
ε )→L2(uG

ε ) ≤ e−λε,2t from P ε
t being

generated by Lε , where Qε
2 is the spectral projection of Lε corresponding to eigenvalues

σ(Lε) \ {−λε,1}. This, however, is not an easy job due to the degeneracy of Lε at 0 and the
singularity of uG

ε at 0. We overcome the difficulties by examining the Schrödinger opera-
tor and the associated semigroup that are respectively unitarily equivalent to Lε and P ε

t .
It is the blowup feature of the potential of the Schrödinger operator that helps to lift the
integrability and reach the goal.

• The asymptotic of the extinction rate λε,1 in the case �0 > 0 is tackled from two perspec-
tives. The first approach uses only the classical variational formula. A careful analysis of
the eigen-equation (written in the quadratic form) near the extinction state 0 allows us to
derive the sharp lower bound. The analysis extends to the case �0 < 0. A nonsharp up-
per bound is obtained by constructing test functions. The other approach, which leads to
the sharp asymptotic, builds on two independently established results: the asymptotic re-
ciprocal relationship E

ε•[T ε
0 ] ∼ 1

λε,1
and the sharp asymptotic of Eε•[T ε

0 ]. The former is an
immediate consequence of the multiscale estimate (1.1) as mentioned in (I). The latter is
achieved by a probabilistic approach that extends to the case �0 < 0.

The preprint [53] has recently come to our attention. The authors have been able to prove
results analogous to ours for a specific stochastic SIS epidemic model in randomly switched
environments. The SIS model is described by a multitype birth-and-death process XK in a
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randomly switched environment—the infection and recovery rates depend on the state of a
finite Markov process, which model the environment, whose transition rates in turn depend
on the number of infected individuals. The total population size K is fixed and the authors
show that as K → ∞ the process converges to a piecewise deterministic Markov process
that lives on a compact state space. The behavior of the limiting process is determined by
the top Lyapunov exponent, �, of the linearized system. The authors are able to show that as
K → ∞ the time to extinction is, when � < 0, at the most of order lnK and, when � > 0,
at least of polynomial order in K . We note that our results are for SDEs and are significantly
sharper.

The paper is organized as follows. In Section 2 we offer the rigorous mathematical setup
of the problem and exhibit our main results. Section 3 offers some preliminary results that are
needed for the main results. The analysis of the tightness and concentration of the measures
με as well as the proof of Theorem A are provided in Section 4. Section 5 deals with the
proof of Theorem B which is about the asymptotic bounds on the first two eigenvalues λε,1
and λε,2 of the generator. The multiscale dynamics of Xε

t and proof of Theorem C appear
in Section 6. Section 7 is about the asymptotic of the mean extinction time E

ε•[T ε
0 ] and the

proof of Theorem D.

2. Mathematical setup and main results. We consider the following family of SDEs:

(2.1) dXε
t = b

(
Xε

t

)
dt + σ

(
Xε

t

)
dBt + ε

√
a
(
Xε

t

)
dWt in [0,∞),

where 0 < ε 	 1 is a small parameter, b,σ : [0,∞) → R, a : [0,∞) → [0,∞) and Bt ,
Wt are two independent standard one-dimensional Brownian motions on some probability
space. Here, σ dBt models environmental stochasticity and ε

√
a dWt represents demographic

stochasticity. Hence, ε stands for the intensity of the demographic stochasticity. We point out
that ε2 is inversely proportional to the population size, and hence, tends to 0 as the population
size goes to infinity.

Throughout this paper, we make the following assumptions on the coefficients b, σ and a.

(H) The functions b : [0,∞) → R, σ : [0,∞) →R and a : [0,∞) → [0,∞) are assumed to
satisfy the following conditions:

(1) b ∈ C1([0,∞)), b(0) = 0, b′(0) > 0, and lim supx→∞ b(x) < 0;
(2) σ ∈ C2([0,∞)), σ(0) = 0 and σ ′(0) �= 0;
(3) a ∈ C2([0,∞)), a(0) = 0, a′(0) > 0, and a > 0 on (0,∞);
(4) there holds

lim sup
x→∞

a(x)

σ 2(x)
< ∞, lim

x→∞
b(x)

|σ(x)| = lim
x→∞

xb(x)

σ 2(x)
= −∞,

lim sup
x→∞

σ 2(x)

|b(x)| max
{
a′(x)

a(x)
,
|σ ′(x)|
|σ(x)|

}
= 0 and

lim sup
x→∞

σ 2(x)

b2(x)
max

{
a′′(x),

(
σ 2(x)

)′′
,
∣∣b′(x)

∣∣} = 0.

(H)(1) says that b is a logistic-type growth rate function—these types of growth rates play
an important role in many biological and ecological applications. In particular, b(x) looks like
b′(0)x around 0 and the per-capita growth rate at zero is positive, b′(0) > 0, something which
ensures persistence if there is no demographic or environmental stochasticity. (H)(2) is satis-
fied if σ(x) = xf (x) for some f ∈ C2([0,∞)) and often appears in modeling environmental
stochasticity. We note that in most applications one has σ(x) = σx for some σ > 0. (H)(3)
assumes that a is degenerate at 0 and behaves like a′(0)x near 0. It is worthwhile to point out
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that the singularity of a at 0 causes the nonintegrability of the Gibbs density near 0, and thus,
leads to substantial difficulties in the analysis of (2.1). The condition lim supx→∞ b(x) < 0 in
(H)(1) and the growth conditions on a, b and σ in (H)(4) guarantee (2.1) forms a dissipative
system. Other conditions in (H)(4) restricting the derivatives of a, b and σ 2 near ∞ are mild
technical assumptions. The assumption (H) applies in particular to the logistic diffusion:

dXt = Xt(μ − κXt) dt + σXt dBt + ε
√

γXt dWt in [0,∞)

and the stochastic theta logistic model (with θ > 0):

dXt = Xt

(
μ − κXθ

t

)
dt + σXt dBt + ε

√
γXt dWt in [0,∞).

Denote by Xε
t the diffusion process on [0,∞) generated by solutions of (2.1). For singular

diffusion processes like (2.1), the strong uniqueness is ensured by the well-known Yamada–
Watanabe theory [55, 56]. Moreover, Xε

t gets absorbed by the absorbing state 0 in finite time
almost surely (see, e.g., [5, 30]), leading eventually to extinction dynamics. However, Xε

t can
display long interesting dynamics before hitting 0. To capture such dynamics, we use quasi-
stationary distributions of Xε

t —these are initial distributions of Xε
t on (0,∞) such that the

distribution of Xε
t conditioned on not reaching 0 up to time t is independent of t ≥ 0.

Let T ε
0 be the first time that Xε

t hits 0 (often called the extinction time), that is,

T ε
0 = inf

{
t ≥ 0 : Xε

t = 0
}
.

Then, Pε
μ[T ε

0 < ∞] = 1 as mentioned above (see also [30], Chapter VI, Section 3), where
P

ε
μ the law of Xε

t with initial distribution μ. The associated expectation is denoted by E
ε
μ. If

μ = δx , we simply write P
ε
x = P

ε
δx

and E
ε
x = E

ε
δx

.

DEFINITION 2.1 (Quasi-stationary distribution). A Borel probability measure με on
(0,∞) is called a quasi-stationary distribution (QSD) of Xε

t if

P
ε
με

[
Xε

t ∈ B|T ε
0 > t

] = με(B) ∀t ≥ 0,B ∈ B
(
(0,∞)

)
,

where B((0,∞)) is the Borel σ -algebra of (0,∞).

The general theory of QSDs (see, e.g., [12, 43]) says that if με is a QSD of Xε
t , then there

is a unique number λε,1 > 0 such that T ε
0 is exponentially distributed with rate λε,1 provided

Xε
0 ∼ με , that is,

(2.2) P
ε
με

[
T ε

0 > t
] = e−λε,1t ∀t ≥ 0.

For this reason, λε,1 is often referred to as the extinction rate.
Following [5], we check that under (H), Xε

t admits a unique QSD με with a positive C2

density uε (see Lemma 3.4 for details). Moreover, the associated extinction rate λε,1 is given
by the principal (or the first) eigenvalue of −Lε , where Lε is an appropriate extension of the
generator of Xε

t and acts on functions in C2((0,∞)) as:

(2.3) Lεφ = 1

2

(
ε2a + σ 2)φ′′ + bφ′ ∀φ ∈ C2((0,∞)

)
.

The rigorous definition of Lε is given in Section 3.1. In addition, the spectral gap between
the first and second eigenvalues, λε,1 and λε,2, of the operator −Lε characterizes the expo-
nential convergence rate of Pε

μ[Xε
t ∈ •|t < T ε

0 ] to the QSD με as t → ∞ whenever the initial
distribution μ is compactly supported in (0,∞).

The main goal of this paper is to analyze the combined effects of environmental and de-
mographic noises on population persistence and extinction. In order to achieve this, it is of
paramount importance to investigate the asymptotic properties of με , λε,1 and λε,2 as ε → 0.
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We are able to provide detailed information about the diffusion process Xε
t governed by the

QSD με , and to characterize the extinction time T ε
0 (especially, the mean extinction time

E•[T ε
0 ]) as well as the global multiscale dynamics of Xε

t .
Investigating the asymptotic properties of Xε

t and related quantities (i.e., με , λε,1, λε,2 and
T ε

0 ) as ε → 0 leads naturally to the limiting equation of (2.1), namely,

(2.4) dX0
t = b

(
X0

t

)
dt + σ

(
X0

t

)
dBt in [0,∞).

Intuitively, the first step towards a good understanding of these asymptotic properties is to
acquire relevant information about the diffusion process X0

t on [0,∞) generated by solutions
of (2.4). It is worthwhile to point out that X0

t behaves fundamentally different from Xε
t over

large time scales. For instance, if X0
0 = x ∈ (0,∞), then X0

t does not reach the absorbing
state 0 in finite time almost surely, that is, X0

t > 0 Px -a.e. for all t > 0 (see Proposition 3.1).
Moreover, the spectral structure of the generator of (2.4) differs very much from that of the
generator of (2.1), that is, Lε . More precisely, the latter is purely discrete (see Lemma 3.1),
while the former is not (see Remark 3.1).

The dynamics of X0
t is very well understood. Following, for example, [17, 24, 33], we

define the stochastic growth rate (also called invasion rate or external Lyapunov exponent)

(2.5) �0 := b′(0) − |σ ′(0)|2
2

.

In population dynamics, the condition �0 > 0 implies that a species tends to increase when
it is at a low density, and therefore, persists in the long run (see [17, 24, 33]). The following
sharp threshold result is part of Proposition 3.1:

• if �0 < 0, then δ0 is the only stationary distribution of X0
t ;

• if �0 > 0, then X0
t admits a unique positive stationary distribution μ0 with a positive den-

sity u0 ∈ C2((0,∞)) given by the normalized Gibbs density, namely, u0 = uG
0

‖uG
0 ‖

L1((0,∞))

,

where

(2.6) uG
0 := 1

σ 2 e
2
∫ •

1
b

σ2 ds in (0,∞).

More detailed information is given in Section 3.4. Our main focus is on the case �0 > 0—in
this setting the persistence of a species whose dynamics is modelled by (2.4) becomes a
transient property when the model (2.1) is used. This is how things usually behave in nature
where a population persists for a long time after which it eventually goes extinct. Our purpose
is to give quantitative and qualitative characterizations of this phenomenon. We are also able
to establish interesting results in the case �0 < 0, demonstrating significant changes as �0
crosses 0, where a bifurcation occurs.

Our first result addresses the limiting behaviors of με as ε → 0. The space C2((0,∞)) is
equipped with the topology of locally uniform convergence up to the second derivative.

THEOREM A. Assume (H).

(1) If �0 < 0, then limε→0
∫∞

0 φ dμε = 0 for any φ ∈ Cb([0,∞)) with φ(0) = 0.
(2) If �0 > 0, then limε→0 με = μ0 weakly, and limε→0 uε = u0 in C2((0,∞)).

Given the aforementioned sharp threshold result of X0
t and the fact that Xε

t is a small ran-
dom perturbation of X0

t (or, (2.1) is a small random perturbation of (2.4)), the conclusions
from Theorem A are expected and look pretty straightforward. This, however, is completely
deceptive from a technical perspective, especially in the case �0 > 0. Indeed, when �0 > 0,
it is not hard to show that any limiting measure of {με}ε must be μ0 (up to multiplication
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by a constant), and hence, the weak convergence limε→0 με = μ0 follows if {με}ε is tight.
The tightness of {με}ε comes from studying their concentration near 0 and ∞. The con-
centration near ∞ follows mainly from the dissipativity and is obtained by means of the
usual technique on the basis of Lyapunov-type functions (see Proposition 4.1). Establishing
the concentration near 0 is however troublesome due to the following technical problems:
(i) both the vector field b and the noise terms σ and ε

√
a vanish at 0; such degeneracies are

known to cause difficulties in the analysis and are often avoided in the literature when treating
noise-vanishing problems; (ii) techniques based on Lyapunov-type functions do not apply be-
cause of the demographic noise term which causes the finite time extinction of Xε

t ; otherwise,
a unique nontrivial stationary distribution would exist, instead of the QSD. These issues are
circumvented by a two-step approach: an ε-dependent upper bound of uε is first established
(see Lemma 3.5); it is followed by an argument of maximum principle type (see the proof
of Proposition 4.2). As a result, we establish in Proposition 4.2 the following concentration
estimate of the densities {uε}ε :

sup
ε

uε(x) ≤ C

xk
∀x ∈ (0, x∗)

for some k ∈ (0,1), x∗ > 0 and C > 0. Such an upper bound is more or less inspired by the

expectation limε→0 uε = u0 and the behavior of u0 near 0, that is, u0(x) ∼ C0x
2b′(0)

|σ ′(0)|2 −2
as

x → 0 for some C0 > 0. Note that under the assumption �0 > 0 one has 2 − 2b′(0)

|σ ′(0)|2 < 1.
Our second result establishes asymptotic bounds for λε,1 and λε,2, the first two eigenvalues

of −Lε . Throughout this paper, for positive numbers Aε and Bε indexed by ε, we write

Aε ≈ε Bε, Aε �ε Bε and Aε �ε Bε

if limε→0
Aε

Bε
= 1, lim supε→0

Aε

Bε
≤ 1 and lim infε→0

Aε

Bε
≥ 1, respectively.

THEOREM B. Assume (H). Then, limε→0 λε,1 = 0. Moreover, the following hold.

(1) If �0 < 0, then there is C > 0 such that λε,1 �ε
C

| ln ε| .
(2) If �0 > 0, then:

• for each 0 < γ 	 1, there holds

ε
(1+γ )

4b′(0)

|σ ′(0)|2 −2 �ε λε,1 �ε ε
(1−γ )

2b′(0)

|σ ′(0)|2 −1;
• 0 < lim infε→0 λε,2 ≤ lim supε→0 λε,2 < ∞.

REMARK 2.1. We offer some comments regarding Theorem B.

(1) We first exhibit the significant effects the environmental noise σ(Xε
t )dBt has by com-

paring (2.1) with

(2.7) dX̃ε
t = b

(
X̃ε

t

)
dt + ε

√
a
(
X̃ε

t

)
dWt in [0,∞).

Just like Xε
t , the diffusion process X̃ε

t reaches the extinction state 0 in finite time almost
surely and admits a unique QSD with extinction rate λ̃ε,1 with −λ̃ε,1 being the first eigen-
value of the (appropriately extended) generator of (2.7). It is shown in [32], Theorem A, that
limε→0

ε2

2 ln λ̃ε,1 = −d for some d > 0 that can be computed in terms of a and b. In particu-
lar, λ̃ε,1 is exponentially small in ε. Hence, the asymptotic of λε,1 is fundamentally different
from that of λ̃ε,1, manifesting the significance of the environmental noise. More importantly,
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turning an exponentially small extinction rate into a sub-exponentially small one, greatly im-
proves the observability of the extinction of a species, making (2.1) a much better model than
(2.7).

The effects of the environmental noise extend to the extinction time, especially, the mean
extinction time, thanks to the relationship between the extinction time Eε•[T ε

0 ] and the extinc-
tion rate λε,1. See (2.2) and Corollary A.

(2) When �0 < 0, we believe that the lower bound of order 1
| ln ε| for λε,1 is sharp in

the sense that there is C̃ > 0 such that λε,1 �ε
C̃

| ln ε| . We offer some further explanation in
Remark 2.2 after Corollary B.

(3) When �0 > 0, the upper bound of λε,1 is improved to λε,1 �ε ε
(1−γ )

4b′(0)

|σ ′(0)|2 −2
for each

0 < γ 	 1 in Corollary B. This says that the leading order of λε,1 is ε
4b′(0)

|σ ′(0)|2 −2
. The reason

why we still include this as a main result is that its proof, relying only on the classical vari-
ational formula, is elementary, while the proof of Corollary B uses heavy machinery (see
comments after Corollary B for details).

(4) When �0 > 0, the asymptotic bounds of λε,1 and λε,2 imply that infε(λε,2 −λε,1) > 0.
As mentioned earlier (or see Lemma 3.4), λε,2 − λε,1 is the exponential convergence rate of
P

ε
μ[Xε

t ∈ •|t < T ε
0 ] to με as t → ∞ whenever the initial distribution μ is compactly sup-

ported in (0,∞). These facts tell us that the distribution of Xε
t quickly approaches με , then

stays close to με until the time scale 1
λε,1

, after which it finally relaxes to the extinction state.
The multiscale dynamics is precisely characterized in Theorem C.

In our third result, we characterize the multiscale dynamics of the distribution of Xε
t in

the case �0 > 0 as described in Remark 2.1(4). Denote by φε,1 the positive eigenfunction
of −Lε associated with λε,1 subject to the normalization ‖φε,1‖L2(uG

ε ) = 1 (see Lemma 3.1).
Let P((0,∞)) be the set of Borel probability measures on (0,∞). For μ ∈ P((0,∞)) and
for any measurable function f : (0,∞) →R we write 〈μ,f 〉 := ∫∞

0 f dμ.

THEOREM C. Assume (H) and �0 > 0. For any K ⊂⊂ (0,∞), there is C = C(K) > 0
such that

sup
μ∈P((0,∞))
supp(μ)⊂K

∥∥Pε
μ

[
Xε

t ∈ •]− [
e−λε,1t 〈μ,αε,1〉με + (

1 − e−λε,1t 〈μ,αε,1〉)δ0
]∥∥

TV ≤ Ce−λε,2t

holds for all t ≥ 0 and 0 < ε 	 1, where αε,1 := ‖φε,1‖L1(uG
ε )φε,1 satisfies

lim
ε→0

αε,1 = 1 locally uniformly in (0,∞).

Built on the eigenfunction expansion of the Markov semigroup associated with Xε
t before

hitting 0, Theorem C establishes a sharp estimate quantifying the total variation distance be-
tween the distribution of Xε

t and the convex combination of the QSD με and the extinction
state δ0. The locally uniform limit limε→0 αε,1 = 1 and the fact that the constant C is indepen-
dent of ε are what make this estimate powerful. Together with the asymptotic bounds of λε,1

and λε,2 in Theorem B(2), Theorem C has the following important dynamical implications:

• if t
(1)
ε < t

(2)
ε are such that limε→0 t

(1)
ε = ∞ and limε→0 λε,1t

(2)
ε = 0, then

lim
ε→0

sup
t∈[t (1)

ε ,t
(2)
ε ]

sup
μ∈P((0,∞))
supp(μ)⊂K

∥∥Pε
μ

[
Xε

t ∈ •]− με

∥∥
TV = 0;
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• if t
(3)
ε is such that limε→0 λε,1t

(3)
ε = ∞, then

lim
ε→0

sup
t∈[t (3)

ε ,∞)

sup
μ∈P((0,∞))
supp(μ)⊂K

∥∥Pε
μ

[
Xε

t ∈ •]− δ0
∥∥

TV = 0.

Theorems B(2) and C have as immediate consequences the expected but far-reaching
asymptotic reciprocal relationship between the extinction time T ε

0 and the extinction rate

λε,1, and the asymptotic distribution of the normalized extinction time
T ε

0
Eε•[T ε

0 ] .

COROLLARY A. Assume (H) and �0 > 0. For each μ ∈ P((0,∞)) having compact sup-
port in (0,∞), there exists C = C(μ) > 0 such that∣∣Pε

μ

[
T ε

0 > t
]− e−λε,1t 〈μ,αε,1〉

∣∣ ≤ Ce−λε,2t ∀t > 0 and 0 < ε 	 1,

or equivalently,

∣∣Pε
μ

[
λε,1T

ε
0 > t

]− e−t 〈μ,αε,1〉
∣∣ ≤ Ce

− λε,2
λε,1

t ∀t > 0 and 0 < ε 	 1.

In particular:

• limε→0 P
ε
μ[λε,1T

ε
0 > t] = e−t locally uniformly in t ∈ (0,∞);

• E
ε
μ[T ε

0 ] ≈ε
1

λε,1
;

• limε→0 P
ε
μ[ T ε

0
Eε

μ[T ε
0 ] > t] = e−t locally uniformly in t ∈ (0,∞).

PROOF. Let μ be as in the statement. Since P
ε
μ[Xε

t ∈ (0,∞)] = P
ε
μ[T ε

0 > t],
με((0,∞)) = 1 and δ0((0,∞)) = 0, we apply Theorem C and the definition of the total varia-
tion distance to find some C = C(μ) > 0 such that |Pε

μ[T ε
0 > t]−e−λε,1t 〈μ,αε,1〉| ≤ Ce−λε,2t

for all t > 0. Replacing t by t
λε,1

leads to

∣∣Pε
μ

[
λε,1T

ε
0 > t

]− e−t 〈μ,αε,1〉
∣∣ ≤ Ce

− λε,2
λε,1

t ∀t > 0.

In particular, limε→0 P
ε
μ[λε,1T

ε
0 > t] = e−t locally uniformly in t ∈ (0,∞).

Integrating the above inequality with respect to t over (0,∞) yields

∣∣λε,1E
ε
μ

[
T ε

0
]− 〈μ,αε,1〉

∣∣ ≤ C
λε,1

λε,2
.

This together with Theorem B(2) and limε→0〈μ,αε,1〉 = 1 (by Theorem C) implies that
limε→0 λε,1E

ε
μ[T ε

0 ] = 1. The remaining result follows immediately. �

Corollary A says in particular that the normalized extinction time
T ε

0
Eε

μ[T ε
0 ] weakly converges

to an exponential random variable of mean 1 as ε → 0. The asymptotic reciprocal relation-
ship E

ε
μ[T ε

0 ] ≈ε
1

λε,1
is a fundamental principle connecting the asymptotics of Eε

μ[T ε
0 ] and

λε,1—this allows using information about one of these quantities to analyze the other one.
In particular, (nonsharp) asymptotic bounds of the mean extinction time E

ε•[T ε
0 ] in the case

�0 > 0 can be obtained from the asymptotic bounds of λε,1 in Theorem B(2). However, we
wanted to improve this and get sharp bounds.

Our last result is devoted to the investigation of the sharp asymptotic bounds of the mean
extinction time E

ε•[T ε
0 ].

THEOREM D. Assume (H). The following hold for each μ ∈ P((0,∞)) having compact
support in (0,∞).
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1. If �0 < 0, then there exist C1,C2 > 0 such that

C1| ln ε|�ε E
ε
μ

[
T ε

0
]
�ε C2| ln ε|.

2. If �0 > 0, then for each 0 < γ 	 1,

ε
2−(1−γ )

4b′(0)

|σ ′(0)|2 �ε E
ε
μ

[
T ε

0
]
�ε ε

2−(1+γ )
4b′(0)

|σ ′(0)|2 .

Theorem D is established by adopting a probabilistic approach focusing on analyzing the
behaviours of Xε

t near 0. It is independent of Theorems A–C.
As an immediate consequence of Corollary A and Theorem D(2), we get the following

sharp asymptotic of λε,1 when �0 > 0, improving the one given in Theorem B(2).

COROLLARY B. Assume (H) and �0 > 0. Then, for each 0 < γ 	 1,

ε
(1+γ )

4b′(0)

|σ ′(0)|2 −2 �ε λε,1 �ε ε
(1−γ )

4b′(0)

|σ ′(0)|2 −2
.

REMARK 2.2. When �0 < 0, we are unable to establish the relationship E
ε
μ[T ε

0 ] ≈ε
1

λε,1

for μ ∈ P((0,∞)) having compact support in (0,∞), and hence, can not apply Theorem D(1)
to conclude C1| ln ε| �ε λε,1 �ε

C2| ln ε| . Nonetheless, we believe that the lower bound for λε,1
obtained in Theorem B(1) is sharp.

3. Preliminary. This is a service section. We collect basic materials for later purposes.

3.1. Generator, spectral theory and dynamics. In this subsection, we present some gen-
eral results about the spectral theory of the generator of Xε

t and the dynamics of the corre-
sponding semigroup.

We start with the rigorous formalism of the generator of Xε
t . Set

αε := ε2a + σ 2 on [0,∞), Vε := −
∫ •

1

b

αε

ds on (0,∞).

Thanks to (H), we have

(3.1) lim
ε→0

αε = σ 2 in C2([0,∞)
), lim

ε→0
Vε = −

∫ •
1

b

σ 2 ds in C2((0,∞)
)
.

Consider the symmetric quadratic form Eε : C∞
0 ((0,∞)) × C∞

0 ((0,∞)) →R defined by

Eε(φ,ψ) = 1

2

∫ ∞
0

αεφ
′ψ ′uG

ε dx ∀φ,ψ ∈ C∞
0
(
(0,∞)

)
,

where

uG
ε := 1

αε

e−2Vε = 1

αε

e
2
∫ •

1
b
αε

ds in (0,∞)

is the nonintegrable Gibbs density. The nonintegrability of uG
ε comes from the singularity of

order 1
x

near 0. Recall uG
0 from (2.6) and note that clearly one has

(3.2) lim
ε→0

uG
ε = uG

0 in C2((0,∞)
)
.

This fact is frequently used in the sequel. Under (H), it is not hard to check that the form
Eε is Markovian and closable (see, e.g., [20]). Its smallest closed extension, still denoted
by Eε , is a Dirichlet form with domain D(Eε) being the closure of C∞

0 ((0,∞)) under the
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norm ‖φ‖2
D(Eε)

:= ‖φ‖2
L2(uG

ε )
+ Eε(φ,φ), where L2(uG

ε ) := L2((0,∞), uG
ε dx). Denote by

(Lε,D(Lε)) the nonpositive self-adjoint operator associated with (Eε,D(Eε)), that is,

Eε(φ,ψ) = 〈−Lεφ,ψ〉L2(uG
ε ) ∀φ ∈ D(Lε),ψ ∈ D(Eε),

where

D(Lε) := {
u ∈ D(Eε) : ∃f ∈ L2(uG

ε

)
s.t. Eε(u,φ) = 〈f,φ〉L2(uG

ε ),∀φ ∈ D(Eε)
}
.

It is informative to mention that

Lεφ = 1

2

(
ε2a + σ 2)φ′′ + bφ′ ∀φ ∈ C∞

0
(
(0,∞)

)
.

The operator Lε is a self-adjoint extension in L2(uG
ε ) of the generator of (2.1).

In the next result, we collect basic properties about the spectrum of −Lε and the semigroup
generated by Lε .

LEMMA 3.1 ([5, 32]). Assume (H). For each 0 < ε 	 1, the following hold.

(1) −Lε has purely discrete spectrum contained in (0,∞) and listed as follows: λε,1 <

λε,2 < λε,3 < · · · → ∞.
(2) Each λε,i is associated with a unique eigenfunction φε,i ∈ D(Lε) ∩ L1(uG

ε ) ∩
C2((0,∞)) subject to the normalization ‖φε,i‖L2(uG

ε ) = 1. Moreover, φε,1 > 0.

(3) The set {φε,i, i ∈ N} forms an orthonormal basis of L2(uG
ε ).

(4) Lε generates a positive analytic semigroup (P ε
t )t≥0 of contractions on L2(uG

ε ) having
the stochastic representation (or Feynman–Kac formula):

P ε
t f = E

ε•
[
f
(
Xε

t

)
1t<T ε

0

] ∀f ∈ L2(uG
ε

)∩ Cb

(
(0,∞)

)
and t ≥ 0.

(5) For each k ∈ N, f ∈ L2(uG
ε ) and t > 0,

(3.3) P ε
t f =

k−1∑
i=1

e−λε,i t 〈f,φε,i〉L2(uG
ε )φε,i + P ε

t Qε
kf,

where Qε
k is the spectral projection of Lε corresponding to {−λε,j }j≥k . Moreover,∥∥P ε

t Qε
k

∥∥
L2(uG

ε )→L2(uG
ε ) ≤ e−λε,kt , t ≥ 0.

(6) For each f ∈ Cb((0,∞)), the stochastic representation in (4) and (3.3) hold point-
wisely.

The following result addressing the uniform-in-ε boundedness of the ith eigenvalue of
−Lε is useful.

LEMMA 3.2. Assume (H). For each i ∈N, there holds lim supε→0 λε,i < ∞.

PROOF. Let {φℓ}ℓ∈N ⊂ C∞((0,∞)) satisfy supp(φℓ) ⊂ (ℓ, ℓ + 1) and ‖φℓ‖L2(uG
ε ) = 1.

We find from (3.1) that the limit γℓ := limε→0 Eε(φℓ,φℓ) > 0 exists for each ℓ ∈N.
Fix i ∈ N and set Si := span{φ1, . . . , φi}. Since −Lε is self-adjoint in L2(uG

ε ), the Min-
Max principle says in particular

λε,i ≤ max
φ∈Si

〈−Lεφ,φ〉L2(uG
ε )

‖φ‖2
L2(uG

ε )

= max
φ∈Si

Eε(φ,φ)

‖φ‖2
L2(uG

ε )

.



5628 HENING, QI, SHEN AND YI

Note that each element φ ∈ Si can be written as φ := ∑i
ℓ=1 cℓφℓ for some cℓ ∈ R, ℓ =

1, . . . , i. As the supports of {φℓ}ℓ are disjoint, we calculate ‖φ‖2
L2(uG

ε )
= ∑i

ℓ=1 c2
ℓ and

Eε(φ,φ) = ∑i
ℓ=1 c2

ℓEε(φℓ,φℓ). It follows that

λε,i ≤ max
cℓ∈R,ℓ=1,...,i

∑i
ℓ=1 c2

ℓEε(φℓ,φℓ)∑n
ℓ=1 c2

ℓ

≤ max
ℓ=1,...,i

Eε(φℓ,φℓ),

leading to lim supε→0 λε,i ≤ maxℓ=1,...,i γℓ. �

3.2. Schrödinger operators. In this subsection, we follow the canonical procedure (see,
e.g., [5]) to derive the Schrödinger operator that is unitarily equivalent to Lε and establish
some properties of its potential. These results will play a significant technical role in the
sequel.

Note that Xε
t has the same distribution as the solution process of

(3.4) dX̃ε
t = b

(
X̃ε

t

)
dt +

√
αε

(
X̃ε

t

)
dW̃t in [0,∞),

where W̃t is a standard one-dimensional Brownian motion. Consider the change of variable

y = ξε(x) :=
∫ x

0

1√
αε

ds =
∫ x

0

1√
ε2a + σ 2

ds, x ∈ (0,∞).

Clearly, ξε is increasing and satisfies ξε(0+) = 0. Set yε,∞ := ξε(∞). Then, ξε : (0,∞) →
(0, yε,∞) is invertible. Its inverse is denoted by ξ−1

ε : (0, yε,∞) → (0,∞). This is the canoni-
cal transform converting the SDE (3.4) into the one with the simplest noise coefficient. More
precisely, applying Itô’s formula, we find that Y ε

t := ξε(X̃
ε
t ) solves

(3.5) dY ε
t = qε

(
Y ε

t

)
dt + dW̃t ,

where qε := ( b√
αε

− α′
ε

4
√

αε
) ◦ ξ−1

ε .

Set vG
ε := (uG

ε

√
αε) ◦ ξ−1

ε and L2(vG
ε ) := L2((0, yε,∞), vG

ε dy). The generator of (3.5) is
given by

LY
ε := 1

2

d2

dy2 + qε(y)
d

dy
in L2(vG

ε

)
.

It is straightforward to check that LY
ε is unitarily equivalent to Lε . More precisely, there holds

UεLε = LY
ε Uε , where Uε : L2(uG

ε ) → L2(vG
ε ), f �→ f ◦ ξ−1

ε is unitary.
Now, consider the Schrödinger operator

(3.6) LS
ε := 1

2

d2

dy2 − 1

2

(
q2
ε (y) + q ′

ε(y)
)

in L2((0, yε,∞)
)
.

It is not hard to check that ŨεLY
ε = LS

ε Ũε , where Ũε : L2(vG
ε ) → L2((0, yε,∞)), f �→ f

√
vG
ε

is unitary.
We include the following commutative diagram for readers’ convenience:

L2(uG
ε ) L2(vG

ε ) L2((0, yε,∞))

L2(uG
ε ) L2(vG

ε ) L2((0, yε,∞)).

Lε

Uε

LY
ε

Ũε

LS
ε

Uε Ũε
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We point out that rigorous definitions of LY
ε and LS

ε can be done using quadratic forms as
done in Section 3.1 for Lε . By the unitary transforms, the domains of LY

ε and LS
ε are respec-

tively given by UεD(Lε) and ŨεUεD(Lε), and the domains of quadratic forms associated
with LY

ε and LS
ε are respectively given by UεD(Eε) and ŨεUεD(Eε).

The potential of the Schrödinger operator LS
ε is denoted by

Wε := 1

2

(
q2
ε + q ′

ε

)
on (0, yε,∞).

Some elementary properties of Wε are collected in the following result.

LEMMA 3.3. Assume (H). The following hold.

(1) 2Wε ◦ ξε = 3|α′
ε |2

16αε
− α′′

ε

4 + b′ − bα′
ε

αε
+ b2

αε
.

(2) There exist y1 ∈ (0,∞) and C > 0 such that infε Wε(y) ≥ C
y2 for all y ∈ (0, y1].

(3) There exists x∗ ∈ (0,∞) such that

Wε(y) ≥ b2(ξ−1
ε (y))

4σ 2(ξ−1
ε (y))

∀y ∈ [
ξε(x∗), yε,∞

)
and 0 < ε 	 1.

(4) The family {Wε}ε is uniformly lower bounded, that is, infε minWε > −∞.

PROOF. (1) Straightforward calculations yield

q2
ε ◦ ξε = b2

αε

− bα′
ε

2αε

+ |α′
ε |2

16αε

, q ′
ε ◦ ξε = b′ − bα′

ε

2αε

− α′′
ε

4
+ |α′

ε |2
8αε

.

The expression for Wε follows immediately.
(2) Thanks to (H)(1)–(3) and Taylor’s expansion at x = 0,

αε(x) = ε2a(x) + σ 2(x) = ε2a′(0)x +
(

ε2

2
a′′(0) + ∣∣σ ′(0)

∣∣2)x2 + o
(
x2),

α′
ε(x) = ε2a′(x) + 2σ(x)σ ′(x) = ε2a′(0) + (

ε2a′′(0) + 2
∣∣σ ′(0)

∣∣2)x + o(x),

α′′
ε (x) = ε2a′′(x) + 2

(∣∣σ ′(x)
∣∣2 + σ(x)σ ′′(x)

) = ε2a′′(0) + 2
∣∣σ ′(0)

∣∣2 + o(1) and

b(x) = b′(0)x + o(1).

For fixed δ ∈ (0, 1
2) (to be specified), we find 0 < κ 	 1 such that

1 − δ ≤ αε(x)

ε2a′(0)x
≤ 1 + δ, 1 − δ ≤ α′

ε(x)

ε2a′(0)
≤ 1 + δ,

∣∣α′′
ε (x)

∣∣ ≤ 3
∣∣σ ′(0)

∣∣2, b′(x) > 0 and 0 < b(x) < 2b′(0)x ∀x ∈ (
0, κε2).

Hence, with y = ξε(x),

2Wε(y) ≥ 3|α′
ε(x)|2

16αε(x)
− α′′

ε (x)

4
− b(x)α′

ε(x)

αε(x)

≥ 3(1 − δ)2

16(1 + δ)

ε2a′(0)

x
− 3

4

∣∣σ ′(0)
∣∣2 − 2b′(0)(1 + δ)

(1 − δ)
∀x ∈ (

0, κε2).
Since

3

4

∣∣σ ′(0)
∣∣2 + 2b′(0)(1 + δ)

(1 − δ)
<

a′(0)

18κ
<

1

18

ε2a′(0)

x
∀x ∈ (

0, κε2),
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where the first inequality is due to the smallness of κ , we arrive at

2Wε(y) ≥ 3(1 − δ)2

16(1 + δ)

ε2a′(0)

x
− 1

18

ε2a′(0)

x
= 1

9

ε2a′(0)

x
∀x ∈ (

0, κε2),
where we fixed δ so that (1−δ)2

(1+δ)
= 8

9 in the equality.
Note that

y = ξε(x) ≥
∫ x

0

ds√
(1 + δ)ε2a′(0)s

= 2
√

x√
(1 + δ)ε2a′(0)

∀x ∈ (
0, κε2),

leading to

2Wε(y) ≥ 1

9

4ε2a′(0)

(1 + δ)ε2a′(0)y2 = 4

9(1 + δ)

1

y2 ∀y ∈ (0, y1),

where y1 := 2
√

κ√
(1+δ)a′(0)

≤ ξε(κε2). This proves (2).

(3) Obviously, 2Wε ◦ ξε ≥ b2

αε
− bα′

ε

αε
− α′′

ε

4 + b′. By (H)(4), there is x∗ > 0 such that

b2

αε

≥ 3b2

4σ 2 ,
α′

ε

αε

≤ |b|
8σ 2 and

α′′
ε

4
− b′ ≤ b2

8σ 2 in (x∗,∞).

Then, 2Wε ≥ b2◦ξ−1
ε

2σ 2◦ξ−1
ε

in (ξ−1
ε (x∗),∞), verifying (3).

(4) Let x∗ be as in (3). The assumption (H) implies sup[0,x∗] max{|α′′
ε |, |b′|, |bα′

ε |
αε

} < ∞.
The conclusion then follows from (1) and (3). �

Lemma 3.3 says that the potential Wε is lower bounded and satisfies Wε(y) → ∞ as
y → 0+ and y−

ε,∞. Classical spectral theory of Schrödinger operators then ensures that the
spectrum of −LS

ε is purely discrete, and so is that of −Lε by the unitary equivalence. This is
the idea in [5] of obtaining the spectral structure of −Lε .

3.3. Quasi-stationary distributions. The existence and uniqueness of QSDs of Xε
t and

their properties are investigated in [5] (see also [6, 12, 23, 26, 39, 41, 43, 45, 52]). We sum-
marize relevant results in the following lemma. Denote by L∗

ε the Fokker–Planck operator
associated with Xε

t , namely,

L∗
εφ = 1

2
(αεφ)′′ − (bφ)′ ∀φ ∈ C2((0,∞)

)
,

where we recall αε := ε2a + σ 2. Recall from Lemma 3.1 that λε,1 and λε,2 are the first two
eigenvalues of −Lε . The associated normalized eigenfunctions are denoted by φε,1 and φε,2
with φε,1 > 0.

LEMMA 3.4 ([5]). Assume (H). For each 0 < ε 	 1, Xε
t admits a unique QSD με with

the extinction rate λε,1. Moreover, με admits a positive density uε ∈ C2((0,∞)) satisfying

L∗
εuε = −λε,1uε and given by uε = φε,1u

G
ε‖φε,1‖L1(uG

ε )

. In addition, if μ ∈ P((0,∞)) has compact

support in (0,∞), then for any B ∈ B((0,∞)),

lim
t→∞ e(λε,2−λε,1)t

(
P

ε
μ

[
Xε

t ∈ B|t < T ε
0
]− με(B)

)

=
∫ ∞

0 φε,2 dμ∫ ∞
0 φε,1 dμ

(〈1B,φε,2〉L2(uG
ε )

‖φε,1‖L1(uG
ε )

− 〈1B,φε,1〉L2(uG
ε )〈1, φε,2〉L2(uG

ε )

‖φε,1‖2
L1(uG

ε )

)
.
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We point out that dμε = uε dx being a QSD of Xε
t is a direct consequence of Lemma 3.1.

Verifying the uniqueness is however much more challenging. In [5], the authors achieve this
by exploring the so-called “coming down from infinity” saying that ∞ is an entrance bound-
ary for Xε

t , and obtain a necessary and sufficient condition. As a result, they show for any
initial distribution μ ∈ P((0,∞)) the conditioned dynamics P

ε
μ[Xε

t ∈ •|t < T ε
0 ] converges

to με under the topology of weak convergence as t → ∞. This can be improved to expo-
nential convergence with rate λε,2 − λε,1 if μ is compactly supported in (0,∞) as stated in
Lemma 3.4.

The next result is a stepping stone to obtaining finer results of the QSD με or its density
uε near 0.

LEMMA 3.5. Assume (H). For each 0 < ε 	 1, there holds lim supx→0 uε(x) < ∞.

PROOF. It is actually a special case of [50], Corollary 3.1. Indeed, the authors consider
in [50] the following SDE:

(3.7) dX̃t = b̃(X̃t ) dt + ε

√
ã(X̃t ) dWt ,

where b̃ : [0,∞) → R satisfies b̃ ∈ C([0,∞)) ∩ C1((0,∞)), b̃(0) = 0, b̃(x) > 0 for all 0 <

x 	 1, and b̃(x) < 0 for all x � 1, and ã : [0,∞) → [0,∞) satisfies ã ∈ C2([0,∞)), ã(0) =
0, ã > 0 on (0,∞) and

∫ 1
0

1√
ã
ds < ∞. See [50], (A1) and (A3); these are assumptions on

ã and b̃ needed to prove [50], Corollary 3.1. Assuming the existence of a QSD μ̃ε with
density ũε (whose regularity is guaranteed by the elliptic regularity) and extinction rate λ̃ε ,
the authors show that lim supx→0 ũε(x) < ∞. The proof given in [50] is analytic and utilizes

the eigen-equation satisfied by ũε , namely, ε2

2 (ãũε)
′′ − (b̃ũε)

′ = −λ̃εũε . In particular, the
proof is insensitive to the form of the noise term in the SDE (3.7). It is crucial to mention that
the above result is pointwise in ε.

In our case, Lemma 3.4 says that uε obeys L∗
εuε = −λε,1uε , that is, 1

2(αεuε)
′′ − (buε)

′ =
−λε,1uε . It is easy to see from (H)(1)–(3) that b and αε

2 (= 1
2(ε2a +σ)) satisfy conditions for

b̃ and ε2

2 ã. As a result, we conclude lim supx→0 uε(x) < ∞. �

3.4. SDE with only environmental noise. In this subsection, we consider the SDE (2.4),

whose solutions generate the diffusion process X0
t . Recall from (2.6) that uG

0 = 1
σ 2 e

2
∫ •

1
b

σ2 ds

in (0,∞), which is a nonnormalized and not necessarily integrable Gibbs density associated
with (2.4) or X0

t .
The following lemma addresses the integrability/nonintegrability of uG

0 . Recall that the
external Lyapunov exponent �0 is defined in (2.5).

LEMMA 3.6. Assume (H). Then, uG
0 ∈ L1((1,∞)), and uG

0 ∈ L1((0,1)) if �0 > 0 and
uG

0 /∈ L1((0,1)) if �0 < 0.

PROOF. We first prove uG
0 ∈ L1((1,∞)). Note that uG

0 = ef , where f = 2
∫ •

1
b
σ 2 ds −

lnσ 2. Clearly, f ′ = 2b
σ 2 − (σ 2)′

σ 2 . Since lim supx→∞ σ 2

|b|
|(σ 2)′|

σ 2 = 0 (by (H)(4)) and b(x) < 0 for

x � 1, there is x1 � 1 such that f ′ ≤ b
σ 2 in [x1,∞). Thus, uG

0 (x) ≤ exp{f (x1) + ∫ x
x1

b
σ 2 ds}

for all x ≥ x1. Thanks to limx→∞ xb(x)

σ 2(x)
= −∞ (by (H)(4)), we find M � 1 and x2 > x1 such
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that xb(x)

σ 2(x)
≤ −M for x ≥ x2. It follows that

uG
0 (x) ≤ exp

{
f (x1) +

∫ x2

x1

b

σ 2 ds − M

∫ x

x2

1

s
ds

}

= exp
{
f (x1) +

∫ x2

x1

b

σ 2 ds

}(
x

x2

)−M

∀x ≥ x2.

The integrability of uG
0 in (1,∞) follows.

Thanks to (H)(1)–(2), the Taylor expansions of b and σ near 0 give uG
0 (x) ≈ xγ in the

vicinity of 0, where γ = 2b′(0)

|σ ′(0)|2 − 2. It follows the integrability (resp. nonintegrability) of uG
0

in (0,1) when �0 > 0 (resp. �0 < 0). �

The next result concerning the global dynamics of X0
t is classical (see, e.g., [17, 24, 33]).

PROPOSITION 3.1. Assume (H). Then, for any μ ∈ P((0,∞)) and t ≥ 0, there holds
X0

t > 0 Pμ-a.e. Furthermore, the following hold.

(1) If �0 < 0, then δ0 is the unique stationary distribution of X0
t . Moreover, for any μ ∈

P((0,∞)), limt→∞ X0
t = 0 Pμ-a.e.

(2) If �0 > 0, then X0
t admits a unique stationary distribution μ0 with a positive density

u0 ∈ C2((0,∞)) given by the normalized Gibbs density, that is, u0 = uG
0

‖uG
0 ‖

L1((0,∞))

. Moreover,

there is some γ > 0 such that for any μ ∈ P((0,∞)), there exists C = C(μ) > 0 such that∥∥P0
μ

[
X0

t ∈ •]− μ0
∥∥

TV ≤ Ce−γ t ∀t ≥ 0.

Denote by L∗
0 the Fokker–Planck operator associated with X0

t , that is,

L∗
0φ := 1

2

(
σ 2φ

)′′ − (bφ)′ ∀φ ∈ C2((0,∞)
)
.

We need the following uniqueness result about solutions of the stationary Fokker–Planck
equation L∗

0u = 0.

LEMMA 3.7. Assume (H)(1)–(2) and �0 > 0. If u ∈ C2((0,∞)) ∩ L1((0,1)) solves
L∗

0u = 0, then u = CuG
0 for some C ∈ R.

PROOF. Since L∗
0u = 1

2(σ 2u)′′ − (bu)′ = 0, we integrate to find C1 ∈ R such that
1
2(σ 2u)′ − bu = 1

2C1, which is rewritten as (σ 2u)′ − 2b
σ 2 (σ 2u) = C1. Applying the variation

of constants formula yields the existence of C2 ∈R such that

u(x) = C1

σ 2

∫ x

1
e

2
∫ x
y

b

σ2 ds
dy + C2

σ 2 e
2
∫ x

1
b

σ2 ds =: C1I(x) + C2u
G
0 (x) ∀x ∈ (0,∞).

By Lemma 3.6, uG
0 ∈ L1((0,1)). We show that I is not integrable near 0. Then, the as-

sumption u ∈ L1((0,1)) implies that C1 = 0, leading to the conclusion.
Let 0 < δ 	 1 and set κ := 2(1+δ)b′(0)

(1−δ)|σ ′(0)|2 . Note that κ > 1 due to �0 > 0. By (H)(1)–(2),

there exists x∗ ∈ (0,1) such that b(x) ≤ (1 + δ)b′(0)x and 1 − δ ≤ σ 2(x)

|σ ′(0)|2x2 ≤ 1 + δ for all
x ∈ (0, x∗). Then, we derive from∫ x

y

b

σ 2 ds ≥
∫ x

y

(1 + δ)b′(0)

(1 − δ)|σ ′(0)|2s ds = κ

2
ln
(

x

y

)
∀0 < x < y < x∗
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that ∫ x∗

x
e

2
∫ x
y

b

σ2 ds
dy ≥

∫ x∗

x

(
x

y

)κ

dy = xκ

κ − 1

(
1

xκ−1 − 1

xκ−1∗

)
∀x ∈ (0, x∗).

From which, it follows that

−I(x) ≥ 1

σ 2(x)

∫ x∗

x
e

2
∫ x
y

b

σ2 ds
dy ≥ 1

(1 + δ)|σ ′(0)|2x2

xκ

κ − 1

(
1

xκ−1 − 1

xκ−1∗

)

= 1

(1 + δ)(κ − 1)|σ ′(0)|2
(

1

x
− xκ−2

xκ−1∗

)
∀x ∈ (0, x∗).

Since I < 0 in (0, x∗), the nonintegrability of I near 0 follows. This completes the proof. �

Denote by L0 the generator associated with X0
t , that is,

L0φ := σ 2

2
φ′′ + bφ′ ∀φ ∈ C2((0,∞)

)
.

The generator L0 extends to a self-adjoint operator in L2(uG
0 ) := L2((0,∞);uG

0 dx). The
rigorous formalism can be done using quadratic forms as it is done for Lε in Section 3.1. We
end up this subsection with some discussion regarding the spectral properties of L0. While
not needed in the sequel, this will provide evidence that the spectrum of Lε (in particular,
λε,1 and λε,2) behaves in a nontrivial way as ε → 0.

REMARK 3.1. Note that the coefficient of the second order term of Lε vanishes like
ε2a′(0)

2 x as x → 0, while that of L0 vanishes like (σ ′(0))2

2 x2 as x → 0. This singular limit of
Lε as ε → 0 accounts for the nontrivial behaviour of the spectrum of Lε as ε → 0. Below are
some consequences.

(1) Unlike Lε , σ(L0)—the spectrum of L0—is not purely discrete. To see this, we modify
calculations in Section 3.2 to convert L0 to an unitarily equivalent Schrödinger operator.
Since 1

σ
is nonintegrable near 0, we consider the change of variable

y = ξ0(x) :=
∫ x

1

1

σ
ds, x ∈ (0,∞).

Clearly, ξ0 is increasing and satisfies ξ0(0+) = −∞. Set y0,∞ := ξ0(∞). Then, ξ0 : (0,∞) →
(−∞, y0,∞) is invertible. Its inverse is denoted by ξ−1

0 . Then, Y 0
t := ξ0(X

0
t ) solves

(3.8) dY 0
t = q0

(
Y 0

t

)
dt + dWt,

where q0 := ( b
σ

− σ ′
2 ) ◦ ξ−1

0 . Set vG
0 := (uG

0 σ) ◦ ξ−1
0 and L2(vG

0 ) := L2((−∞, y0,∞), vG
0 dy).

Note that U0 : L2(uG
0 ) → L2(vG

0 ), f �→ f ◦ ξ−1
0 and Ũ0 : L2(vG

0 ) → L2((−∞, y0,∞)),

f �→ f
√

vG
0 are unitary transforms. The operator LS

0 := Ũ0U0L0U
−1
0 Ũ−1

0 turns out to be
a Schrödinger operator on (−∞, y0,∞) and is given by

LS
0 := 1

2

d2

dy2 − 1

2

(
q2

0 (y) + q ′
0(y)

)
in L2((−∞, y0,∞)

)
.

It is easy to check that the potential W0 := 1
2(q2

0 + q ′
0) of −LS

0 satisfies W0(−∞) ∈ R and
W0(y0,∞−) = ∞. Hence, the spectrum of LS

0 is not purely discrete; neither is the spectrum
of L0.
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(2) When �0 < 0, the bottom of the spectrum of L0 is positive, namely, infσ(L0) > 0.
Clearly, infσ(L0) ≥ 0 as L0 is self-adjoint and nonnegative. To see 0 /∈ σ(L0), we note that

two linearly independent solutions of L0u = 0 are given by u1 ≡ 1 and u2 = ∫ •
1 e

− ∫ y
1

2b

σ2 ds
dy.

It is elementary to verify that limx→0+ u2(x) exists and is negative. Since uG
0 /∈ L1((0,1)) in

this case by Lemma 3.6, we conclude u1, u2 /∈ L2((0,1), uG
0 dx). Moreover, it is not hard to

see that u1 ∈ L2((1,∞), uG
0 dx) and u2 /∈ L2((1,∞), uG

0 dx). Hence, C1u1 +C2u2 /∈ L2(uG
0 )

for any (C1,C2) �= (0,0), implying 0 /∈ σ(L0).
Theorem B gives limε→0 λε,1 = 0, saying that the limit of the principal eigenvalue λε,1 of

Lε is not an eigenvalue, but a generalized eigenvalue of L0.
(3) When �0 > 0, 0 = infσ(L0) is a simple eigenvalue with constant eigenfunctions.

However, obtaining information about the bottom of the rest of the spectrum, namely,
infσ(L0) \ {0}, is difficult. Given the complicated structure of σ(L0), it is even hard to de-
termine whether infσ(L0) \ {0} is an eigenvalue. This is what prevents us from establishing
a more precise asymptotic of λε,2 beyond what we were able to show in Theorem B(2).

4. Tightness and concentration of QSDs. In this section, we study the tightness and
concentration of με as ε → 0, and prove Theorem A in particular. We study concentration
properties of με near ∞ and 0 in Sections 4.1 and 4.2, respectively, leading to the tightness
of {με}ε . Theorem A is proven in Section 4.3.

4.1. Concentration near infinity. We prove the following result addressing the concen-
tration of με near ∞. The proof mainly uses techniques on the basis of Lyapunov-type func-
tions.

PROPOSITION 4.1. Assume (H). Then, limx→∞ supε με((x,∞)) = 0.

PROOF. Set V := − ∫ •
1

b
σ 2 ds in (0,∞). Then,

LεV = ε2

2

(
ab(σ 2)′

σ 4 − ab′

σ 2

)
+ 1

2

(
b(σ 2)′

σ 2 − b′
)

− b2

σ 2 .

Thanks to (H)(4), we find some N0 ∈ N such that LεV ≤ − b2

2σ 2 in (N0,∞). As V (∞) = ∞
by (H), there is n0 � 1 such that {n0 ≤ V } ⊂ (N0,∞), and hence,

(4.1) LεV ≤ − b2

2σ 2 in {n0 ≤ V }.

Let {ζn}n>n0 be a sequence of smooth and nondecreasing functions on (0,∞) satisfying

ζn(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ∈ (0, n0),

x, x ∈ (n0 + 1, n),

n + 1, x ∈ (n + 2,∞),

and ζ ′′
n ≤ 0 on [n,n + 2].

In addition, we let {ζn}n coincide on [0, n0 + 1].
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Due to V (∞) = ∞ and (H)(1)–(2), the function ζn(V ) − (n + 1) is twice continuously
differentiable and compactly supported. As L∗

εuε = −λε,1uε (in the weak sense), we derive

0 =
∫ ∞

0
Lε

[
ζn(V ) − (n + 1)

]
uε dx + λε,1

∫ ∞
0

[
ζn(V ) − (n + 1)

]
uε dx

=
∫ ∞

0

[
ζ ′
n(V )LεV + 1

2
αεζ

′′
n (V )

∣∣V ′∣∣2]uε dx + λε,1

∫ ∞
0

[
ζn(V ) − (n + 1)

]
uε dx

≤
∫ ∞

0

[
ζ ′
n(V )LεV + 1

2
αεζ

′′
n (V )

∣∣V ′∣∣2]uε dx

=
∫
{n0≤V ≤n+2}

[
ζ ′
n(V )LεV + 1

2
αεζ

′′
n (V )

∣∣V ′∣∣2]uε dx,

where we used λε,1 > 0 and ζn − (n + 1) ≤ 0 in the inequality, and ζn = 0 on (0, n0) and
ζ ′
n = ζ ′′

n = 0 on (n + 2,∞) in the last equality.
We deduce from ζ ′

n = 1 on [n0 + 1, n], ζ ′
n ≥ 0 and (4.1) that∫

{n0≤V ≤n+2}
ζ ′
n(V )LεV uε dx

=
∫
{n0≤V ≤n0+1}∪{n≤V ≤n+2}

ζ ′
n(V )LεV uε dx +

∫
{n0+1≤V ≤n}

LεV uε dx

≤
∫
{n0+1≤V ≤n}

LεV uε dx

≤ −1

2

(
inf

(n0+1,∞)

b2

σ 2

)
με

({n0 + 1 ≤ V ≤ n}).
As ζ ′′

n = 0 on [n0 + 1, n] and ζ ′′
n ≤ 0 on [n,n + 2], we find∫

{n0≤V ≤n+2}
1

2
αεζ

′′
n (V )

∣∣V ′∣∣2uε dx ≤ Cε,n

2

∫
{n0≤V ≤n0+1}

uε dx ≤ Cε,n

2
,

where Cε,n = max{n0≤V ≤n0+1} αε |ζ ′′
n (V )||V ′|2. Hence, we find

με

({n0 + 1 ≤ V }) = lim
n→∞με

({n0 + 1 ≤ V ≤ n}) ≤ Cε,n

(
inf

(n0+1,∞)

b2

σ 2

)−1
.

Recalling that ζ ′′
n is independent of n on [n0, n0 + 1] and supε αε is locally bounded on

(0,∞), we find supε,n Cε,n < ∞. Since (H) ensures limx→∞ b2(x)

σ 2(x)
= ∞, there must hold

limn0→∞ supε με({n0 + 1 ≤ V }) = 0. The conclusion follows. �

4.2. Concentration near the extinction state. We prove the following result quantifying
με or uε near 0 in the case �0 > 0.

PROPOSITION 4.2. Assume (H) and �0 > 0. Then, there are k ∈ (0,1), x∗ > 0 and C > 0
such that

sup
ε

uε(x) ≤ C

xk
∀x ∈ (0, x∗).

In particular, limx→0 supε με((0, x)) = 0.

We establish some results before proving Proposition 4.2. The following result addressing
the limit of λε,1 as ε → 0 is the general part of Theorem B.
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THEOREM 4.1. Assume (H). Then, limε→0 λε,1 = 0.

PROOF. We extend με to be a Borel probability measure on [0,∞) by setting με({0}) =
0. Proposition 4.1 ensures that {με}ε is tight as Borel probability measures on [0,∞). We
assume, up to a sequence, that με weakly converges to some Borel probability measure μ∗
on [0,∞) as ε → 0. Since lim supε→0 λε,1 < ∞ by Lemma 3.2, we assume without loss of
generality that limε→0 λε,1 = λ∗ ≥ 0.

Let f : [0,∞) →R be bounded and uniformly continuous. We claim that

(4.2) Eμ∗
[
f
(
X0

t

)] = e−λ∗t
∫ ∞

0
f dμ∗ ∀t ≥ 0.

Setting f ≡ 1 yields 1 = e−λ∗t for all t ≥ 0, resulting λ∗ = 0. The theorem then follows.
It remains to prove (4.2). Fix any t > 0. Note that for any δ > 0,∣∣Ex

[
f
(
Xε

t

)]−Ex

[
f
(
X0

t

)]∣∣
≤

∫
|Xε

t −X0
t |>δ

∣∣f (
Xε

t

)− f
(
X0

t

)∣∣dPx +
∫
|Xε

t −X0
t |≤δ

∣∣f (
Xε

t

)− f
(
X0

t

)∣∣dPx

≤ 2‖f ‖∞Px

{
max

0≤s≤t

∣∣Xε
s − X0

s

∣∣ > δ
}

+
∫
|Xε

t −X0
t |≤δ

∣∣f (
Xε

t

) − f
(
X0

t

)∣∣dPx.

As (2.1) is a small random perturbation of (2.4), we apply [19], Theorem 2.1.2, with standard
modifications to find

lim
ε→0

Px

{
max

0≤s≤t

∣∣Xε
s − X0

s

∣∣ > δ
}

= 0 locally uniformly in x ∈ [0,∞).

The uniform continuity of f implies

lim
δ→0

lim sup
ε→0

∫
|Xε

t −X0
t |≤δ

∣∣f (
Xε

t

)− f
(
X0

t

)∣∣dPx = 0 locally uniformly in x ∈ [0,∞).

Hence, we arrive at limε→0 E
ε
x[f (Xε

t )] = Ex[f (X0
t )] locally uniformly in x ∈ [0,∞). It fol-

lows that

lim sup
ε→0

∫ ∞
0

∣∣Eε•
[
f
(
Xε

t

)]−E•
[
f
(
X0

t

)]∣∣dμε

≤ lim sup
ε→0

∫ A

0

∣∣Eε•
[
f
(
Xε

t

)]−E•
[
f
(
X0

t

)]∣∣dμε + 2‖f ‖∞ × lim sup
ε→0

με

(
(A,∞)

)
≤ 2‖f ‖∞ sup

ε
με

(
(A,∞)

) ∀A > 0.

Thanks to Proposition 4.1, we pass to the limit A → ∞ to find

lim sup
ε→0

∫ ∞
0

∣∣Eε•
[
f
(
Xε

t

)]−E•
[
f
(
X0

t

)]∣∣dμε = 0.

The regularity of b and σ ensures that E•[f (X0
t )] ∈ Cb([0,∞)). Hence, the weak limit

limε→0 με = μ∗ implies that limε→0
∫∞

0 E•[f (X0
t )]dμε = ∫∞

0 E•[f (X0
t )]dμ∗. As a result,∣∣Eε

με

[
f
(
Xε

t

)]−Eμ∗
[
f
(
X0

t

)]∣∣
≤

∫ ∞
0

∣∣Eε•
[
f
(
Xε

t

)]−E•
[
f
(
X0

t

)]∣∣dμε

+
∣∣∣∣
∫ ∞

0
E•

[
f
(
X0

t

)]
dμε −

∫ ∞
0

E•
[
f
(
X0

t

)]
dμ∗

∣∣∣∣ → 0 as ε → 0.
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Considering the facts E
ε
με

[f (Xε
t )] = e−λε,1t

∫∞
0 f dμε , limε→0

∫∞
0 f dμε = ∫∞

0 f dμ∗ and
limj→∞ λεj

= λ∗, we deduce

Eμ∗
[
f
(
X0

t

)] = lim
ε→0

E
ε
με

[
f
(
Xε

t

)] = lim
ε→0

e−λε,1t
∫ ∞

0
f dμε = e−λ∗t

∫ ∞
0

f dμ∗,

leading to (4.2). This completes the proof. �

The next technical lemma is needed.

LEMMA 4.1. Assume (H) and �0 > 0. Then, there is k∗ ∈ (0,1) such that for any k ∈
(k∗,1), there exist x∗ > 0, ε∗ = ε∗(k) > 0 and C = C(k) > 0 such that

L∗
εx

−k ≤ −Cx−k in (0, x∗),∀ε ∈ (0, ε∗).

PROOF. Let k ∈ (0,1). Straightforward calculations yield

(4.3)

L∗
εx

−k =
[
ε2

2
a′′ + (σ 2)′′

2
− k

(σ 2)′

x
+ k(k + 1)σ 2

2x2 − b′ + k
b

x

]
x−k

+
[
k(k + 1)ε2a

2x
− kε2a′

]
x−k−1.

We see from (H)(1)–(3) that for 0 < x 	 1

(σ 2)′′

2
− k

(σ 2)′

x
+ k(k + 1)σ 2

2x2 = k2 − 3k + 2

2

∣∣σ ′(0)
∣∣2 + o(1),

−b′ + k
b

x
= −(1 − k)b′(0) + o(1),

k(k + 1)a

2x
− ka′ = k(k − 1)

2

(
a′(0) + o(1)

)
< 0.

It follows from (4.3) that

L∗
εx

−k ≤
[
ε2

2
a′′ + k2 − 3k + 2

2

∣∣σ ′(0)
∣∣2 − (1 − k)b′(0) + o(1)

]
x−k ∀0 < x 	 1.

Since limε→0
ε2

2 sup(0,1) a = 0, the conclusion of the lemma follows if we show the existence
of some k∗ ∈ (0,1) such that

(4.4)
k2 − 3k + 2

2

∣∣σ ′(0)
∣∣2 − (1 − k)b′(0) < 0 ∀k ∈ (k∗,1).

Since �0 > 0, there exists δ∗ > 0 such that b′(0) > (1
2 + δ∗)|σ ′(0)|, and thus,

k2 − 3k + 2

2

∣∣σ ′(0)
∣∣2 − (1 − k)b′(0) ≤ 1

2
(k − 1)(k − 1 + 2δ∗)

∣∣σ ′(0)
∣∣2.

Setting k∗ := 1 − 2δ∗ leads to (4.4). �

Now, we prove Proposition 4.2.

PROOF OF PROPOSITION 4.2. By Theorem 4.1 and Lemma 4.1, there are k ∈ (0,1) and
x∗ > 0 such that

(4.5)
(
L∗

ε + λε,1
)
x−k < 0 in (0, x∗).

Set vε := xkuε . The fact uε > 0 and Lemma 3.5 imply that

0 ≤ lim inf
x→0

vε(x) ≤ lim sup
x→0

vε(x) ≤ lim
x→0

xk × lim sup
x→0

uε(x) = 0.
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That is,

(4.6) lim
x→0

vε(x) = 0.

Noting that (L∗
ε + λε,1)uε = 0 (by Lemma 3.4), uε = x−kvε and

(
L∗

ε + λε,1
)
uε = 1

2
αεu

′′
ε + (

α′
ε − b

)
uε +

(
1

2
α′′

ε − b′ + λε,1

)
uε,

we calculate

0 = (
L∗

ε + λε,1
)
uε = x−k

(
1

2
αεv

′′
ε + (

α′
ε − b

)
v′
ε

)
+ vε

(
L∗

ε + λε,1
)
x−k + αε

(−kx−k−1)v′
ε.

Multiplying the above equation by xk and rearranging the terms, we arrive at

(4.7)
1

2
αεv

′′
ε +

(
α′

ε − b − k

x
αε

)
v′
ε + (L∗

ε + λε,1)x
−k

x−k
vε = 0.

Note that (L∗
ε +λε,1)uε = 0 is the same as 1

2(αεu
′
ε)

′ + [(α′
ε

2 −b)uε]′ +λε,1uε = 0. Consid-
ering the first limit in (3.1) and Theorem 4.1, we apply Harnack’s inequality to find C1 > 0
(independent of ε) such that

sup
( x∗

4 , x∗
2 )

uε ≤ C1 inf
( x∗

4 , x∗
2 )

uε ≤ 4C1

x∗

∫ x∗
2

x∗
4

uε dx ≤ 4C1

x∗
.

Hence, sup( x∗
4 , x∗

2 ) vε = sup( x∗
4 , x∗

2 ) x
kuε ≤ 4C1

x∗ (x∗
2 )k .

Due to (4.5), the coefficient of vε in (4.7) is negative on (0, x∗). Given (4.6), we apply the
maximum principle to vε on (0, x∗

2 ) to conclude that max(0, x∗
2 ) vε = vε(

x∗
2 ) ≤ 4C1

x∗ (x∗
2 )k . The

conclusion follows from the relation uε = vε

xk . �

4.3. Proof of Theorem A. (1) If �0 < 0, we extend με to be a Borel probability measure
on [0,∞) by setting με({0}) = 0. Arguments as in the proof of Theorem 4.1 show that up to
a sequence με weakly converges to some Borel probability measure μ∗ on [0,∞) as ε → 0.
Moreover, Eμ∗[φ(X0

t )] = ∫∞
0 φ dμ∗ for all t ≥ 0 and φ ∈ Cb([0,∞)).

Since Proposition 3.1 says limt→∞ X0
t = 0 Px-a.e. for any x > 0, we deduce from

the dominated convergence theorem that
∫∞

0 φ dμ∗ = limt→∞Eμ∗[φ(X0
t )] = φ(0) for all

φ ∈ Cb([0,∞)), leading to μ∗ = δ0. As a result, limε→0 με = δ0 weakly, and in particular,
limε→0

∫∞
0 φ dμε = 0 for all φ ∈ Cb([0,∞)) with φ(0) = 0.

(2) If �0 > 0, Propositions 4.1 and 4.2 ensure the tightness of {με}ε . We assume up to
a sequence that με weakly converges to some Borel probability measure μ∗ on (0,∞) as
ε → 0. By Lemma 3.4, the density uε of με satisfies 1

2(αεuε)
′′ − (buε)

′ + λε,1uε = 0. This
together with the first limit in (3.1) and Theorem 4.1 implies that μ∗ must satisfy L∗

0u = 0 in
the weak sense, that is,

∫∞
0 L0φ dμ∗ = 0 for all φ ∈ C2

0((0,∞)).
We claim μ∗ admits a nonnegative density u∗ ∈ C2((0,∞)) and limj→∞ uεj

= u∗ in
C2((0,∞)). Then, L∗

0u∗ = 0, and hence, u∗ = u0 and μ∗ = μ0 by Lemma 3.7. That is,
μ0 is the unique limiting measure of {με} and limε→0 uε = u0 locally in C2((0,∞)), giving
the desired result.

It remains to prove the claim. Let I1 and I2 be open intervals in (0,∞) and satisfy I1 ⊂⊂
I2 ⊂⊂ (0,∞). Given (3.1) and Theorem 4.1, we apply Harnack’s inequality to uε on I2 to
find C1 = C1(I1,I2) > 0 (independent of ε) such that

sup
I1

uε ≤ C1 inf
I1

uε ≤ C1

|I1|
∫
I1

uε dx ≤ C1

|I1| .
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Setting φε := uε

uG
ε

, we find from (3.2) that supI1
φε ≤ 2 supI1

uε

infI1
uG

0
≤ 2C1

|I1| infI1
uG

0
. That is, {φε}ε is

locally uniformly bounded. In comparison with the expression for uε given in Lemma 3.4, we
readily see that φε is a positive eigenfunction of −Lε associated with λε,1, and hence, satisfies
1
2αεφ

′′
ε +bφ′

ε = −λε,1φε . Given the first limit in (3.1) and Theorem 4.1, we apply the classical
interior Schauder estimates to {φε}ε to arrive at supε supI(|φ′

ε | + |φ′′
ε | + |φ′′′

ε |) < ∞ for any
I ⊂⊂ (0,∞). An application of the Arzelà–Ascoli theorem then yields the precompactness
of {φ′

ε}ε and {φ′′
ε }ε in C(I). Since I ⊂⊂ (0,∞) is arbitrary, we may assume without loss of

generality according to the diagonal argument that φεj
locally converges to some nonnegative

φ∗ in C2((0,∞)) as j → ∞. Thanks to (3.2) and the weak limit limj→∞ μεj
= μ∗, we find

dμ∗ = u∗ dx with u∗ := φ∗uG
0 and uε converges to u∗ in C2((0,∞)) as ε → 0. This proves

the claim, and thus, completes the proof.

5. Asymptotic bounds of the first two eigenvalues. This section is devoted to the proof
of Theorem B. The asymptotic bounds of the first and second eigenvalues are respectively
treated in Sections 5.1 and 5.2.

We start with a technical result that is frequently used in the sequel. It says that appropri-
ately normalized eigenfunctions of −Lε have uniform-in-ε small tails (against a weight) near
∞, and is only used for eigenfunctions associated with the first two eigenvalues.

LEMMA 5.1. Assume (H) and fix i ∈ N. For each 0 < ε 	 1, let φ̃ε,i be an eigenfunction
of −Lε associated with the eigenvalue λε,i . If supε

∫ ∞
x0

|φ̃ε,i |2uG
ε dx ≤ 1 for some x0 > 0, then

lim
z→∞ sup

ε

∫ ∞
z

|φ̃ε,i |2uG
ε dx = 0.

PROOF. Set ψε,i := ŨεUεφ̃ε,i , where Ũε and Uε are unitary transforms defined in Sec-
tion 3.2. Then,

(5.1)
∫ ξε(x2)

ξε(x1)
|ψε,i |2 dy =

∫ x2

x1

|φ̃ε,i |2uG
ε dx ≤ 1 ∀x0 ≤ x1 < x2 ≤ ∞,

where the inequality is a result of the assumption. Moreover, −LS
ε ψε,i = λε,iψε,i , that is,

(5.2) −1

2
ψ ′′

ε,i + Wεψε,i = λε,iψε,i in (0, yε,∞).

Fix some integer n0 > x0 + 1. Let {ηn}n>n0 be a sequence of functions in C∞
0 ((0,∞)),

take values in [0,1] and satisfy

ηn(x) =
{

0, x ∈ (0, n0 − 1) ∪ (2n,∞),

1, x ∈ (n0, n),
and

∣∣η′
n(x)

∣∣ ≤
⎧⎨
⎩

2, x ∈ [n0 − 1, n0],
2

n
, x ∈ [n,2n].

In addition, we require {ηn}n>n0 to coincide on (0, n0]. Clearly, as n → ∞, ηn converges
(uniformly in (0,M) for any M > 0) to some function η ∈ C∞((0,∞)) taking values in
[0,1] and satisfying η = ηn0+1 on (0, n0] and η = 1 on (n0,∞).

Set η̃n,ε := ηn ◦ ξ−1
ε . Obviously, η̃n,ε ∈ C2

0((0, yε,∞)) with supp(η̃n,ε) ⊂ (ξε(n0 −
1), yε,∞). Multiplying (5.2) by η̃2

n,εψε,i and integrating over (0, yε,∞), we find from inte-
gration by parts and (5.1) that

1

2

∫ yε,∞

0
η̃2

n,ε

∣∣ψ ′
ε,i

∣∣2 dy +
∫ yε,∞

0
η̃n,ε η̃

′
n,εψε,iψ

′
ε,i dy +

∫ yε,∞

0
η̃2

n,εWε |ψε,i |2 dy

= λε,i

∫ yε,∞

0
η̃2

n,ε |ψε,i |2 dy ≤ λε,i

∫ yε,∞

ξε(n0−1)
|ψε,i |2 dy ≤ λε,i .
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An application of Hölder’s inequality yields
∣∣∣∣
∫ yε,∞

0
η̃n,ε η̃

′
n,εψ

′
ε,iψε,i dy

∣∣∣∣ ≤
(

1

2

∫ yε,∞

0

∣∣η̃n,εψ
′
ε,i

∣∣2 dy

) 1
2
(

2
∫ yε,∞

0

∣∣η̃′
n,εψε,i

∣∣2 dy

) 1
2

≤ 1

4

∫ yε,∞

0
η̃2

n,ε

∣∣ψ ′
ε,i

∣∣2 dy +
∫ yε,∞

0

∣∣η̃′
n,ε

∣∣2|ψε,i |2 dy.

Absorbing 1
4

∫ yε,∞
0 η̃2

n,ε |ψ ′
ε,i |2 dy and dropping the remaining 1

4

∫ yε,∞
0 η̃2

n,ε |ψ ′
ε,i |2 dy yield

(5.3)
∫ yε,∞

0
η̃2

n,εWε |ψε,i |2 dy ≤ λε,i +
∫ yε,∞

0

∣∣η̃′
n,ε

∣∣2|ψε,i |2 dy.

Since η̃′
n,ε = (η′

n

√
αε) ◦ ξ−1

ε and {ηn}n>n0 coincide on [n0 − 1, n0], we see from the first
limit in (3.1) that there is M1 > 0 such that

sup
[ξε(n0−1),ξε(n0)]

∣∣η̃′
n,ε

∣∣ = sup
[n0−1,n0]

∣∣η′
n

∣∣√αε <
√

M1 ∀n > n0.

Thanks to (H)(4), we can make n0 larger if necessary to ensure the existence of some M2 > 0
such that αε ≤ M2σ

2 and |σ |
x

≤ |b|
8
√

2M2|σ | in (n0,∞). As |η′
n| ≤ 2

n
on [n,2n], we derive that

for n > n0 and y = ξε(x) ∈ [ξε(n), ξε(2n)],
∣∣η̃′

n,ε(y)
∣∣ = ∣∣η′

n(x)
∣∣√αε(x) ≤ 2

n

√
αε(x) ≤ 4

√
αε(x)

x
≤ 4

√
M2

|σ(x)|
x

≤ |b(x)|
2
√

2|σ(x)| .

Therefore,∫ yε,∞

0

∣∣η̃′
n,ε

∣∣2|ψε,i |2 dy =
∫ ξε(n0)

ξε(n0−1)

∣∣η̃′
n,ε

∣∣2|ψε,i |2 dy +
∫ ξε(2n)

ξε(n)

∣∣η̃′
n,ε

∣∣2|ψε,i |2 dy

≤ M1

∫ ξε(n0)

ξε(n0−1)
|ψε,i |2 dy + 1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy

≤ M1 + 1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy,

where we used (5.1) in the last inequality. It follows from (5.3) that∫ yε,∞

0
η̃2

n,εWε |ψε,i |2 dy ≤ λε,i + M1 + 1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy

≤ 2M1 + 1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy,

where we assumed without loss of generality that lim supε→0 λε,i < M1 in the last inequality
(ensured by Lemma 3.2). Since ηn ↑ η as n → ∞, letting n → ∞ in the above inequality
leads to ∫ yε,∞

0
η̃2

εWε |ψε,i |2 dy ≤ 2M1 + 1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy,

where η̃ε := η ◦ ξ−1
ε satisfies η̃ε = 1 on [ξε(n0), yε,∞). By Lemma 3.3(3), we can make n0

larger if necessary so that Wε ≥ b2◦ξ−1
ε

4σ 2◦ξ−1
ε

in (ξε(n0), yε,∞). As a result,

1

4

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy ≤ 2M1 + 1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy.
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Hence, we see from (5.1) that

1

8

∫ ∞
n0

b2

σ 2 |φ̃ε,i |2uG
ε dx = 1

8

∫ yε,∞

ξε(n0)

b2 ◦ ξ−1
ε

σ 2 ◦ ξ−1
ε

|ψε,i |2 dy ≤ 2M1,

giving
∫∞
z |φ̃ε,i |2uG

ε dx ≤ 16M1

inf(z,∞)
b2

σ2

for any z > n0. The conclusion follows immediately

from the fact limz→∞ b2(z)

σ 2(z)
= ∞ ensured by (H)(4). This completes the proof. �

5.1. Asymptotic bounds of the first eigenvalue. Note that the limit limε→0 λε,1 = 0 has
been established in Theorem 4.1. In the rest of this subsection, we prove finer asymptotic
bounds of the first eigenvalue λε,1 of −Lε stated in Theorem B.

The asymptotic bounds of λε,1 under the condition �0 > 0 stated in Theorem B(2) is
restated in the following result.

THEOREM 5.1. Assume (H) and �0 > 0. For each 0 < γ 	 1, there holds

ε
(1+γ )

4b′(0)

|σ ′(0)|2 −2 �ε λε,1 �ε ε
(1−γ )

2b′(0)

|σ ′(0)|2 −1
.

PROOF. The upper bound and lower bound are treated separately.
Upper bound. As the first eigenvalue of the self-adjoint operator −Lε , λε,1 admits the

variational formula

(5.4) λε,1 = inf
φ∈D(Eε)

∫∞
0 αε |φ′|2uG

ε dx∫ ∞
0 |φ|2uG

ε dx
≤

∫∞
0 |φ′

ε |2e−2Vε dx∫∞
0 |φε |2 1

αε
e−2Vε dx

,

where φε ∈ C∞
0 ((0,∞)) is nondecreasing and satisfies

φε(x) =
{

0, 0 < x < ε,

1, x > 2ε,
and 0 < φ′

ε ≤ 2

ε
on (ε,2ε).

By (H)(1), b > 0 in (0, x∗) for some x∗ > 0. Split −Vε = ∫ x∗
1

b
αε

ds + ∫ •
x∗

b
αε

ds =: Aε +Bε .
Clearly, Bε is increasing in (0, x∗). Hence,

(5.5)
∫ ∞

0

∣∣φ′
ε

∣∣2e−2Vε dx =
∫ 2ε

ε

∣∣φ′
ε

∣∣2e−2Vε dx ≤ 4

ε2 e2Aε

∫ 2ε

ε
e2Bε(x) dx ≤ 4

ε
e2Aε+2Bε(2ε),

and

(5.6)

∫ ∞
0

|φε |2 1

αε

e−2Vε dx ≥ e2Aε

∫ ∞
2ε

1

αε

e2Bε dx

= e2Aε+2Bε(2ε)
∫ ∞

2ε

1

αε(x)
e2Bε(x)−2Bε(2ε) dx.

As �0 > 0, there is γ0 > 0 such that κ = κ(γ ) := 2b′(0)(1−γ )

|σ ′(0)|2 > 1 for all γ ∈ (0, γ0). By
(H)(1)–(3), we can make x∗ = x∗(γ ) smaller if necessary so that

b(x)

αε(x)
≥ (1 − γ )b′(0)

ε2a′(0) + |σ ′(0)|2x and αε(x) ≤ (1+γ )
(
ε2a′(0)x+∣∣σ ′(0)

∣∣2x2) ∀x ∈ (0, x∗).

As a consequence, we find

2Bε(x) − 2Bε(2ε) ≥ 2
∫ x

2ε

(1 − γ )b′(0)

ε2a′(0) + |σ ′(0)|2s ds

= κ ln
ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + 2ε|σ ′(0)|2 ∀x ∈ (2ε, x∗),
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leading to∫ ∞
2ε

1

αε(x)
e2Bε(x)−2Bε(2ε) dx

≥ 1

1 + γ

∫ x∗
x∗
2

(ε2a′(0) + |σ ′(0)|2x)κ−1

(ε2a′(0) + 2ε|σ ′(0)|2)κ
1

x
dx

≥ 1

1 + γ

[
1

ε2a′(0) + 2ε|σ ′(0)|2
]κ

min
[ x∗

2 ,x∗]
(
ε2a′(0) + ∣∣σ ′(0)

∣∣2x)κ−1
∫ x∗

x∗
2

1

x
dx

≥ 1

1 + γ

[
1

ε2a′(0) + 2ε|σ ′(0)|2
]κ[x∗|σ ′(0)|2

2

]κ−1
ln 2

≥ ln 2

1 + γ

[
x∗|σ ′(0)|2

2

]κ−1[
3ε

∣∣σ ′(0)
∣∣2]−κ =: C′

γ

εκ
.

Hence, we see from (5.4), (5.5) and (5.6) that λε,1 �ε Cγ εκ−1 for some Cγ > 0. Since this is
true for all γ ∈ (0, γ0), the constant Cγ can be replaced by 1, establishing the upper bound.

Lower bound. Recall from Lemma 3.1 that φε,1 is the positive eigenfunction of −Lε asso-
ciated with λε,1 and satisfies ‖φε,1‖L2(uG

ε ) = 1. In particular,

(5.7) λε,1 = Eε(φε,1, φε,1) =
∫ ∞

0

∣∣φ′
ε,1

∣∣2e−2Vε dx.

Let 0 < δ 	 1. By Lemma 5.1, there is x∗ = x∗(δ) � 1 such that
∫ ∞
x∗ |φε,1|2uG

ε dx ≤ δ. Then,

(5.8) 1 = ‖φε,1‖2
L2(uG

ε )
≤ δ +

∫ x∗

0
|φε,1|2 1

αε

e−2Vε dx.

By Lemma 3.5, there are Cε > 0 and xε > 0 such that uε ≤ Cε in (0, xε). This together
with uε = φε,1

‖φε,1‖L1(uG
ε )

1
αε

e−2Vε (by Lemma 3.4) yields φε,1 ≤ Cε‖φε,1‖L1(uG
ε )αεe

2Vε in (0, xε).

Since αε = ε2a + σ 2 and Vε(0+) = ∫ 1
0

b
αε

ds < ∞, (H)(2)–(3) ensures the existence of C′
ε >

0 such that φε,1(x) ≤ CεC
′
ε‖φε,1‖L1(uG

ε )x for x ∈ (0, xε). In particular, φε,1(0+) = 0, and
hence, φε,1 = ∫ •

0 φ′
ε,1 dx. This together with (5.8) and Hölder’s inequality yields

1 − δ ≤
∫ x∗

0

∣∣∣∣
∫ x

0
φ′

ε,1(y)e−Vε(y)eVε(y) dy

∣∣∣∣2 1

αε(x)
e−2Vε(x) dx

≤
∫ x∗

0

(∫ x

0

∣∣φ′
ε,1(y)

∣∣2e−2Vε(y) dy

)(∫ x

0
e2Vε(y) dy

)
1

αε(x)
e−2Vε(x) dx

≤
(∫ ∞

0

∣∣φ′
ε,1(y)

∣∣2e−2Vε(y) dy

)
Iε,

where Iε = ∫ x∗
0

∫ x
0

1
αε(x)

e2[Vε(y)−Vε(x)] dy dx. It then follows from (5.7) that

(5.9) λε,1 ≥ 1 − δ

Iε

.

To finish the proof, it suffices to derive an appropriate upper bound for Iε . From (H)(1)–(3)
we find x∗ = x∗(δ) > 0 such that

b(x) ≤ (1+δ)b′(0)x and ε2a(x)+σ 2(x) ≥ (1−δ)x
[
ε2a′(0)+ ∣∣σ ′(0)

∣∣2x] ∀x ∈ (0, x∗).
Clearly, x∗ 	 x∗. We write

(5.10) Iε =
(∫ x∗

0
+

∫ x∗

x∗

)∫ x

0

1

αε(x)
e2[Vε(y)−Vε(x)] dy dx =: Iε + IIε.
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We first treat Iε . Note that for 0 < y < x ≤ x∗,

(5.11)

Vε(y) − Vε(x) ≤ b′(0)(1 + δ)

(1 − δ)

∫ x

y

1

ε2a′(0) + |σ ′(0)|2s ds

= κ

2
ln

ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + |σ ′(0)|2y ,

where κ := 2(1+δ)b′(0)

(1−δ)|σ ′(0)|2 > 1 due to the assumption �0 > 0. It follows that

(5.12)

Iε ≤
∫ x∗

0

∫ x

0

1

(1 − δ)x[ε2a′(0) + |σ ′(0)|2x]
[
ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + |σ ′(0)|2y

]κ

dy dx

= 1

1 − δ

∫ x∗

0

[ε2a′(0) + |σ ′(0)|2x]κ−1

x

∫ x

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy dx.

Clearly,
∫ x

0 [ε2a′(0) + |σ ′(0)|2y]−κ dy ≤ [ε2a′(0)]−κx. Calculating the integral and drop-
ping the negative term (due to κ > 1), we find

(5.13)
∫ x

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy ≤ |σ ′(0)|−2

κ − 1

[
ε2a′(0)

]1−κ
.

Thus, for any γ ∈ (0,1),

∫ x

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy ≤ ([

ε2a′(0)
]−κ

x
)γ( |σ ′(0)|−2

κ − 1

[
ε2a′(0)

]1−κ
)1−γ

= C1ε
2−2κ−2γ xγ ,

where C1 := [a′(0)]1−κ−γ |σ ′(0)|2(γ−1)(κ − 1)γ−1. It then follows from (5.12) that

(5.14)

Iε ≤ C1

1 − δ
ε2−2κ−2γ

∫ x∗

0
xγ−1[ε2a′(0) + ∣∣σ ′(0)

∣∣2x]κ−1
dx

≤ C1

1 − δ
ε2−2κ−2γ [ε2a′(0) + ∣∣σ ′(0)

∣∣2x∗
]κ−1 x

γ∗
γ

≤ C2ε
2−2κ−2γ ,

where C2 := 2C1
(1−δ)γ

|σ ′(0)|2(κ−1)x
κ−1+γ∗ .

Now, we treat IIε . By (5.11), for x ∈ [x∗, x∗),

Vε(y) − Vε(x) =
∫ x∗

y

b

ε2a + σ 2 ds +
∫ x

x∗

b

ε2a + σ 2 ds

≤ κ

2
ln

ε2a′(0) + |σ ′(0)|2x∗
ε2a′(0) + |σ ′(0)|2y +

∫ x∗

x∗

|b|
σ 2 ds ∀y ∈ (0, x∗),
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and Vε(y) − Vε(x) ≤ ∫ x∗
x∗

|b|
σ 2 ds for y ∈ [x∗, x). Hence, there are C3,C4 > 0 such that

(5.15)

IIε =
∫ x∗

x∗

(∫ x∗

0
+

∫ x

x∗

)
1

αε(x)
e2[Vε(y)−Vε(x)] dy dx

≤
∫ x∗

x∗

∫ x∗

0

1

αε(x)

[
ε2a′(0) + |σ ′(0)|2x∗
ε2a′(0) + |σ ′(0)|2y

]κ

e
2
∫ x∗
x∗

|b|
σ2 ds

dy dx

+
∫ x∗

x∗

∫ x

x∗

1

αε(x)
e

2
∫ x∗
x∗

|b|
σ2 ds

dy dx

= [
ε2a′(0) + ∣∣σ ′(0)

∣∣2x∗
]κ

e
2
∫ x∗
x∗

|b|
σ2 ds

∫ x∗

x∗

1

αε(x)

∫ x∗

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy dx

+ e
2
∫ x∗
x∗

|b|
σ2 ds

∫ x∗

x∗

x − x∗
αε(x)

dx

≤ 2
[∣∣σ ′(0)

∣∣2x∗
]κ

e
2
∫ x∗
x∗

|b|
σ2 ds

∫ x∗

x∗

1

σ 2(x)

∫ x∗

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy dx

+ x∗e2
∫ x∗
x∗

|b|
σ2 ds

∫ x∗

x∗

1

σ 2(x)
dx

≤ C3

∫ x∗

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy + C4.

Applying (5.13) to the integral
∫ x∗

0 [ε2a′(0) + |σ ′(0)|2y]−κ dy, we find for some C5 > 0,

IIε ≤ C3
|σ ′(0)|−2

κ − 1

[
ε2a′(0)

]1−κ + C4 ≤ C5ε
2−2κ

This together with (5.10) and (5.14) leads to Iε ≤ (C2 + C5)ε
2−2κ−2γ . Thanks to (5.9), the

conclusion follows readily from κ = 2b′(0)(1+δ)

|σ ′(0)|2(1−δ)
and the arbitrariness of 0 < δ 	 1 and γ ∈

(0,1). �

Theorem B(1) regarding the asymptotic lower bound of λε,1 under the condition �0 < 0
is restated as the next result.

THEOREM 5.2. Assume (H) and �0 < 0. There exists C > 0 such that λε,1 �ε
C

| ln ε| .

PROOF. We proceed as in the proof of the lower bound in Theorem 5.1. As �0 < 0, we
let 0 < δ 	 1 be such that κ := 2(1+δ)b′(0)

(1−δ)|σ ′(0)|2 < 1. Following arguments leading to (5.9), we
find

(5.16) λε,1 ≥ 1 − δ

Iε

for some x∗ = x∗(δ) � 1, where Iε = ∫ x∗
0

∫ x
0

1
αε(x)

e2[Vε(y)−Vε(x)] dy dx. Due to (H)(1)–(3),
there exists x∗ = x∗(δ) > 0 such that

b(x) ≤ (1+δ)b′(0)x and ε2a(x)+σ 2(x) ≥ (1−δ)x
[
ε2a′(0)+ ∣∣σ ′(0)

∣∣2x] ∀x ∈ (0, x∗).

We split

(5.17) Iε =
(∫ x∗

0
+

∫ x∗

x∗

)∫ x

0

1

αε(x)
e2[Vε(y)−Vε(x)] dy dx =: Iε + IIε.
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We first treat Iε . Since for any 0 < y < x ≤ x∗

Vε(y) − Vε(x) ≤ b′(0)(1 + δ)

(1 − δ)

∫ x

y

1

ε2a′(0) + |σ ′(0)|2s ds = κ

2
ln

ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + |σ ′(0)|2y ,

we deduce

(5.18)

Iε ≤
∫ x∗

0

∫ x

0

1

(1 − δ)x[ε2a′(0) + |σ ′(0)|2x]
[
ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + |σ ′(0)|2y

]κ

dy dx

= 1

1 − δ

∫ x∗

0

[ε2a′(0) + |σ ′(0)|2x]κ−1

x

∫ x

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy dx

= 1

1 − δ

∫ x∗

0

[ε2a′(0) + |σ ′(0)|2x]κ−1

x

([ε2a′(0) + |σ ′(0)|2x]1−κ − [ε2a′(0)]1−κ)

(1 − κ)|σ ′(0)|2 dx

= 1

(1 − δ)(1 − κ)|σ ′(0)|2
∫ x∗

0

1

x

[
1 −

(
ε2a′(0)

ε2a′(0) + |σ ′(0)|2x
)1−κ]

dx

= 1

(1 − δ)(1 − κ)|σ ′(0)|2
∫ |σ ′(0)|2x∗

ε2a′(0)

0

1

x

(
1 − 1

(1 + x)1−κ

)
dx

= 1

(1 − δ)(1 − κ)|σ ′(0)|2
∫ 1

1

1+ |σ ′(0)|2x∗
ε2a′(0)

1 − t1−κ

t (1 − t)
dt,

where the first equality follows from straightforward calculation, the second one is a result
of an obvious change of variable, and the third one is due to the change of variable t = 1

1+x
.

Since 1−t1−κ

1−t
< 1 for t ∈ (0,1), we deduce

∫ 1

1

1+ |σ ′(0)|2x∗
ε2a′(0)

1 − t1−κ

t (1 − t)
dt ≤

∫ 1

1

1+ |σ ′(0)|2x∗
ε2a′(0)

1

t
dt = ln

(
1 + |σ ′(0)|2x∗

ε2a′(0)

)
≤ 3| ln ε|,

which together with (5.18) leads to

(5.19) Iε ≤ 3

(1 − δ)(1 − κ)|σ ′(0)|2 | ln ε| =: C1| ln ε|.
Now, we treat IIε . Direct computation yields∫ x∗

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ
dy ≤ 1

(1 − κ)|σ ′(0)|2
[
ε2a′(0) + ∣∣σ ′(0)

∣∣2x∗
]1−κ

≤ 2

(1 − κ)|σ ′(0)|2
[∣∣σ ′(0)

∣∣2x∗
]1−κ

.

This together with similar arguments leading to (5.15) yields IIε ≤ C2 for some C2 > 0. As
a result of (5.17) and (5.19), Iε ≤ C1| ln ε| + C2 ≤ 2C1| ln ε|. From which and (5.16), the
conclusion follows. �

5.2. Asymptotic bounds of the second eigenvalue. The purpose of this subsection is
to prove the asymptotic bounds of λε,2 stated in Theorem B(2). Clearly, it follows from
Lemma 3.2 and the following result.

THEOREM 5.3. Assume (H) and �0 > 0. Then, infε λε,2 > 0.
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We establish some lemmas before proving Theorem 5.3. Recall from Lemma 3.1 that
λε,2 > λε,1 > 0 are simple eigenvalues of −Lε and have eigenfunctions in D(Lε)∩L1(uG

ε )∩
C2((0,∞)). For i = 1,2, let φ̃ε,i be an eigenfunction of −Lε associated with λε,i and satisfy
the normalization

(5.20) ‖φ̃ε,i‖L1((0,2);uG
ε ) + ‖φ̃ε,i‖2

L2((1,∞);uG
ε )

= 1.

Such a normalization is chosen to acquire certain compactness of {φ̃ε,i}ε that plays a key
role in the proof of Theorem 5.3. Moreover, we let φ̃ε,1 > 0. Direct calculations show that
uε,i := φ̃ε,iu

G
ε satisfies

(5.21) L∗
εuε,i = −λε,iuε,i .

The first lemma establishes an upper bound for |uε,2| near 0.

LEMMA 5.2. Assume (H). For each γ > 0 and 0 < ε 	 1, there exist C = C(ε, γ ) > 0
and x∗ = x∗(ε) > 0 such that |uε,2(x)| ≤ Cx− 1

2 −γ for x ∈ (0, x∗).

PROOF. Set ψε,2 := ŨεUεφ̃ε,2, where Ũε and Uε are unitary transforms defined in Sec-
tion 3.2. Then, ψε,2 satisfies −LS

ε ψε,2 = λε,2ψε,2 in (0, yε,∞), that is,

(5.22) −1

2
ψ ′′

ε,2 + Wεψε,2 = λε,2ψε,2 in (0, yε,∞),

where we recall that yε,∞ = ∫ ∞
0

1√
ε2a+|σ |2

ds. By (H)(2)–(3), yε,∞ increases to ∞ as ε → 0.

Fix η∗ ∈ (0,1) (whose exactly value is to be determined) and 0 < δ∗ 	 1. Let {ηδ}0<δ<δ∗
be a family of functions in C∞

0 ((0,1)), take values in [0, η∗] and satisfy

(5.23)

ηδ(x) =
⎧⎪⎨
⎪⎩

0, y ∈ (0, δ),

η∗, y ∈
(

2δ,
1

2

)
,

0 ≤ η′
δ ≤ 2η∗

δ
on [δ,2δ] and

∣∣η′
δ

∣∣ ≤ 4η∗ on
[

1

2
,1

)
.

Multiplying (5.22) by η2
δψε,2 and integrating by parts yield

(5.24)

1

2

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy +
∫ 1

0
ηδψε,2η

′
δψ

′
ε,2 dy +

∫ 1

0
Wεη

2
δ |ψε,2|2 dy

= λε,2

∫ 1

0
η2

δ |ψε,2|2 dy.

An application of Hölder’s inequality and (5.23) yields∣∣∣∣
∫ 1

0
ηδψε,2η

′
δψ

′
ε,2 dy

∣∣∣∣ ≤ 1

4

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy +
∫ 1

0

∣∣η′
δ

∣∣2|ψε,2|2 dy

≤ 1

4

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy + 4η2∗
δ2

∫ 2δ

δ
|ψε,2|2 dy + 16η2∗

∫ 1

1
2

|ψε,2|2 dy.

Thanks to Lemma 3.3(2) and (4), we can find C > 0 and M > 1, and make δ∗ smaller if
necessary (all independent of ε) such that Wε(y) ≥ C

y2 ≥ C
4δ2 for y ∈ (δ,2δ) and δ ∈ (0, δ∗)
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and Wε + M ≥ 1. Setting η∗ := min{
√

C

4
√

2
, 1

4
√

2
}, we derive

∣∣∣∣
∫ 1

0
ηδψε,2η

′
δψ

′
ε,2 dy

∣∣∣∣ ≤ 1

4

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy + C

8δ2

∫ 2δ

δ
|ψε,2|2 dy + 1

2

∫ 1

1
2

|ψε,2|2 dy

≤ 1

4

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy + 1

2

∫ 1

0
(Wε + M)η2

δ |ψε,2|2 dy.

It then follows from (5.24) that

1

4

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy + 1

2

∫ 1

0
(Wε + M)η2

δ |ψε,2|2 dy ≤
(
λε,2 + M

2

)∫ 1

0
η2

δ |ψε,2|2 dy,

and thus,

1

4

∫ 1

0
η2

δ

∣∣ψ ′
ε,2

∣∣2 dy + 1

2

∫ 1

0
η2

δ |ψε,2|2 dy ≤
(
λε,2 + M

2

)
η2∗

∫ 1

0
|ψε,2|2 dy.

Note that it suffices to prove the result for each 0 < γ 	 1. Let γ be such a num-
ber. As lim supε→0 λε,2 < ∞ (by Lemma 3.2) and ‖ψε,2‖L2((0,yε,∞)) = ‖φ̃ε,2‖L2(uG

ε ) < ∞,

the Sobolev embedding theorem gives ‖ηδψε,2‖
C

1
2 −γ

([0,1]) ≤ C1‖φ̃ε,2‖L2(uG
ε ) for some C1 =

C1(γ ) > 0 (independent of δ). In particular,

∣∣ηδ(y)ψε,2(y)
∣∣ ≤ C1‖φ̃ε,2‖L2(uG

ε )y
1
2 −γ ∀y ∈

(
0,

1

2

)
.

As ηδ converges to η∗ on (0, 1
2), we let δ → 0+ in the above inequality to find

∣∣ψε,2(y)
∣∣ ≤ C1

η∗
‖φ̃ε,2‖L2(uG

ε )y
1
2 −γ =: C2y

1
2 −γ ∀y ∈

(
0,

1

2

)
,

where C2 = C2(ε, γ ) := C1
η∗ ‖φ̃ε,2‖L2(uG

ε ). Setting xε∗ := ξ−1
ε (1

2), we see from uε,2 = φ̃ε,2u
G
ε

and φ̃ε,2 = U−1
ε Ũ−1

ε ψε,2 that

(5.25) |uε,2| = |ψε,2 ◦ ξε |α− 3
4

ε e−Vε ≤ C2ξ
1
2 −γ
ε

(
ε2a

)− 3
4 e−Vε in

(
0, xε∗

)
.

Since limε→0 ξε(x) = ∞ for any x > 0, there must hold limε→0 xε∗ = 0. Hence, a(x) ≥
1
2a′(0)x for x ∈ (0, xε∗). Then,

ξε(x) ≤
√

2

ε
√

a′(0)

∫ x

0

1√
s

ds = 2
√

2

ε

√
x

a′(0)
∀x ∈ (

0, xε∗
)
.

As V ′
ε = − b

αε
≤ 0 near 0, Vε is nonincreasing in (0, xε∗). It follows from (5.25) that

∣∣uε,2(x)
∣∣ ≤ C2

(
2
√

2

ε

√
x

a′(0)

) 1
2 −γ [1

2
ε2a′(0)x

]− 3
4
e−Vε(x

ε∗) =: C

x
1
2 + γ

2

∀x ∈ (
0, xε∗

)
.

This completes the proof. �

The following result is in preparation for the contradiction arguments for φ̃ε,i to be used
in the proof of Theorem 5.3.

LEMMA 5.3. Assume (H) and �0 > 0.

(1) limz→0 supε

∫ z
0 φ̃ε,1u

G
ε dx = 0.

(2) If limε→0 λε,2 = 0, then limz→0 supε

∫ z
0 |φ̃ε,2|uG

ε dx = 0.
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PROOF. As limε→0 λε,1 = 0 by Theorem 4.1, the proof is done if we show that for i =
1,2, the condition limε→0 λε,i = 0 implies limz→0 supε

∫ z
0 |φ̃ε,i |uG

ε dx = 0. As uε,i = φ̃ε,iu
G
ε ,

it is the same as showing

(5.26) lim
z→0

sup
ε

∫ z

0
|uε,i |dx = 0.

We proceed as in the proof of Proposition 4.2. Given limε→0 λε,i = 0, we apply Lemma 4.1
to find for fixed k ∈ (1

2 ,1) the existence of x1 ∈ (0,1) such that (L∗
ε +λε,i)x

−k < 0 in (0, x1).
Setting vε,i := uε,i

x−k , we compute using (5.21)

(5.27)
1

2
αεv

′′
ε,i +

(
α′

ε − b − k

x
αε

)
v′
ε,i + (L∗

ε + λε,i)x
−k

x−k
vε,i = 0 in (0,∞).

Note that limx→0 |vε,i(x)| = 0. Indeed, Lemma 5.2 implies that there are Cε > 0

and xε > 0 such that |uε,i(x)| ≤ Cεx
− 1

2 (k+ 1
2 ) for x ∈ (0, xε). Hence, limx→0 |vε,i(x)| ≤

Cε limx→0 xk− 1
2 (k+ 1

2 ) = 0.
Let x2 ∈ (0, x1). Note that the equation (5.21) can be written as

(5.28)
1

2

(
αεu

′
ε,i

)′ + [(
1

2
α′

ε − b

)
uε,i

]′
+ λε,iuε,i = 0.

Due to the first limit in (3.1) and limε→0 λε,i = 0 (by assumption), we apply the classical
interior De Giorgi–Nash–Moser estimates (see, e.g., [10, 21]) in (x2

2 , 3x2
2 ) to find C > 0 (in-

dependent of ε) such that

sup
(

3x2
4 ,

5x2
4 )

|uε,i | ≤ C

x2

∫ 3x2
2

x2
2

|uε,i |dx = C

x2

∫ 3x2
2

x2
2

|φ̃ε,i |uG
ε dx ≤ C

x2
,

where we used the normalization (5.20) in the last inequality. Hence, |vε,i(x2)| ≤ Cxk−1
2 .

Since vε,i satisfies (5.27), limx→0 vε,i(x) = 0 and (L∗
ε + λε,i)x

−k < 0, we apply the max-
imum principle to vε,i in (0, x2) and conclude that supx∈(0,x2)

|vε,i(x)| = |vε,i(x2)| ≤ Cxk−1
2 ,

leading to |uε,i(x)| ≤ Cxk−1
2 x−k for x ∈ (0, x2). Thus,∫ x2

2

0
|φ̃ε,i |uG

ε dx =
∫ x2

2

0
|uε,i |dx ≤ Cxk−1

2

∫ x2
2

0
x−k dx = C

1 − k
x1−k

2 .

Since the above estimate holds for any x2 ∈ (0, x1) and is uniform in 0 < ε 	 1, we arrive at
(5.26), and hence, proves the lemma. �

The monotonicity of φ̃ε,1 is addressed in the next result.

LEMMA 5.4. Assume (H). There holds φ̃′
ε,1 > 0.

PROOF. Note that φ̃ε,1 satisfies Lεφ̃ε,1 = −λε,1φ̃ε,1, or (e−2Vε φ̃′
ε,1)

′=− 2
αε

λε,1e
−2Vε φ̃ε,1.

Since φ̃ε,1 > 0, e−2Vε φ̃′
ε,1 is strictly decreasing.

Suppose on the contrary that φ̃′
ε,1(x0) ≤ 0 for some x0 ∈ (0,∞). Then, there is x1 > x0

such that

e−2Vε(x)φ̃′
ε,1(x) < e−2Vε(x1)φ̃′

ε,1(x1) < 0 ∀x > x1,

yielding φ̃′
ε,1(x) < e2(Vε(x)−Vε(x1))φ̃′

ε,1(x1) for x > x1. As Vε(x) − Vε(x1) = − ∫ x
x1

b
αε

ds →
∞ as x → ∞, we find φ̃′

ε,1(x) → −∞ as x → ∞, and hence, lim supx→∞ φ̃ε,1(x) = −∞,

contradicting φ̃ε,1 > 0. Hence, φ̃′
ε,1 > 0. �
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The last lemma is elementary.

LEMMA 5.5. Assume (H). Then, supε

∫ ∞
1 uG

ε dx < ∞.

PROOF. By (H)(1)(4), there exist x1 > 0 and ε∗ > 0 such that b < 0 and ε2a + σ 2 ≤ 2σ 2

in (x1,∞) for all 0 < ε < ε∗. Therefore,

uG
ε (x) = exp

{
2
∫ x

1

b

ε2a + σ 2 ds − ln
(
ε2a(x) + σ 2(x)

)}

≤ exp
{

2
∫ x1

1

b

ε2a + σ 2 ds

}
× exp

{∫ x

x1

b

2σ 2 ds − lnσ 2(x)

}
∀x > x1.

Obviously, the conclusion follows if we show
∫∞
x1

exp{∫ x
x1

b
2σ 2 ds − lnσ 2(x)}dx < ∞,

which can be verified by arguments as in the proof of Lemma 3.6. �

We are ready to prove Theorem 5.3.

PROOF OF THEOREM 5.3. Suppose on the contrary that infε λε,2 = 0. Up to a subse-
quence, we may assume, without loss of generality, that limε→0 λε,2 = 0. We derive a contra-
diction within four steps.

Step 1. We show for i = 1,2 the existence of ui ∈ C2((0,∞)) ∩ L1((0,∞)) satisfying
L∗

0ui = 0 such that limε→0 uε,i = ui in C2((0,∞)).
Recall that uε,i = φ̃ε,iu

G
ε and φ̃ε,i satisfies (5.20). We apply Hölder’s inequality to find

(5.29)

sup
ε

∫ ∞
0

|uε,i |dx ≤ 1 + sup
ε

∫ ∞
2

|φ̃ε,i |uG
ε dx

≤ 1 + sup
ε

(∫ ∞
2

|φ̃ε,i |2uG
ε dx

) 1
2
(∫ ∞

2
uG

ε dx

) 1
2

≤ 1 + sup
ε

(∫ ∞
2

uG
ε dx

) 1
2
< ∞,

where we used the normalization (5.20) in the first and last inequalities, and Lemma 5.5 to de-
rive the final uniform boundedness. Considering the positive and negative parts of {uε,i}ε sep-
arately, we apply Helly’s selection principle (see, e.g., [11], Theorem 4.3.3 and 4.4.1) to find
a signed Borel measure μi on (0,∞) such that, up to a subsequence, limε→0

∫∞
0 φuε,i dx =∫∞

0 φ dμi for any φ ∈ Cc((0,∞)).
Letting ε → 0 in (5.21), we find L∗

0μi = 0 in the weak sense from the first limit in (3.1)
and limε→0 λε,i = 0 (by Theorem 4.1 if i = 1 and assumption if i = 2). Moreover, we apply
the classical interior De Giorgi–Nash–Moser estimates (see, e.g., [10, 21]) to find that for
any open intervals I and I ′ with I ⊂⊂ I ′ ⊂⊂ (0,∞), there exists C = C(I,I ′) > 0 (in-
dependent of ε) such that supI |uε,i | ≤ C‖uε,i‖L1(I ′). Then, we can follow the arguments
as in the proof of Theorem A(2) to conclude that μi admits a density ui ∈ C2((0,∞))

and limε→0 uε,i = ui in C2((0,∞)). The estimate (5.29) and Fatou’s lemma guarantee
ui ∈ L1((0,∞)).

Step 2. We show the existence of C1 > 0 and C2 �= 0 such that limε→0 φ̃ε,i = Ci in
C2((0,∞)) for i = 1,2.

By Step 1 and φ̃ε,1 > 0, we apply Lemma 3.7 to find C1 ≥ 0 and C2 ∈ R such that ui =
Ciu

G
0 for i = 1,2. Recall φ̃ε,i = uε,i

uG
ε

. Thanks to limε→0 uε,i = ui in C2((0,∞)) (by Step 1)

and (3.2), the limit limε→0 φ̃ε,i = Ci holds in C2((0,∞)).
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By Lemmas 5.1 and 5.3, the normalization (5.20) ensures the existence of some κ �
1 such that

∫ 2
1
κ

|φ̃ε,i |uG
ε dx + ∫ κ

1 |φ̃ε,i |2uG
ε dx ≥ 1

2 . Letting ε → 0 yields |Ci | ∫ 2
1
κ

uG
0 dx +

C2
i

∫ κ
1 uG

0 dx ≥ 1
2 . Hence, Ci �= 0. In particular, C1 > 0.

Step 3. We show that limε→0
∫ ∞

0 φ̃ε,1φ̃ε,2u
G
ε dx = C1C2

∫∞
0 uG

0 dx �= 0.
Obviously, for any κ > 1, there holds

(5.30)

∣∣∣∣
∫ ∞

0
φ̃ε,1φ̃ε,2u

G
ε dx − C1C2

∫ ∞
0

uG
0 dx

∣∣∣∣
≤

∣∣∣∣
∫ κ

1
κ

φ̃ε,1φ̃ε,2u
G
ε dx − C1C2

∫ κ

1
κ

uG
0 dx

∣∣∣∣+
(∫ 1

κ

0
+

∫ ∞
κ

)
φ̃ε,1|φ̃ε,2|uG

ε dx

+ C1|C2|
(∫ 1

κ

0
+

∫ ∞
κ

)
uG

0 dx =: Iε(κ) + IIε(κ) + III(κ).

We claim that

(5.31) lim
ε→0

Iε(κ) = 0 ∀κ > 1, lim
κ→∞ sup

ε
IIε(κ) = 0 and lim

κ→∞ III(κ) = 0.

Given (5.31), the conclusion follows from taking the limit ε → 0 and then κ → ∞ in (5.30).
We prove (5.31). Clearly,

∫ ∞
0 uG

0 dx < ∞ (by Lemma 3.6) yields limκ→∞ III(κ) = 0.
Thanks to Step 2 and (3.2), we see limε→0 Iε(κ) = 0 for any κ > 1.

For IIε(κ), Hölder’s inequality and Lemma 5.1 yield limκ→∞ supε

∫∞
κ φ̃ε,1|φ̃ε,2|uG

ε dx =
0. Note that Lemma 5.4 and Step 2 imply

(5.32) sup
ε

sup
(0,x)

φ̃ε,1 ≤ sup
ε

φ̃ε,1(x) < ∞ ∀x > 0,

which together with Lemma 5.3(2) leads to limκ→∞ supε

∫ 1
κ

0 φ̃ε,1|φ̃ε,2|uG
ε dx = 0. It follows

that limκ→∞ supε IIε(κ) = 0. The claim (5.31), and hence, the conclusion is proven.
Step 4. Recall that −Lε is self-adjoint in L2(uG

ε ). Since φ̃1,ε and φ̃2,ε are eigenfunc-
tions associated with λε,1 and λε,2, respectively, they are orthogonal in L2(uG

ε ), namely,∫∞
0 φ̃ε,1φ̃ε,2u

G
ε dx = 0, which is contradictory to Step 3.

In conclusion, infε λε,2 > 0 and the theorem is proven. �

6. Multiscale dynamics. In this section, we study the multiscale dynamics of the distri-
bution of Xε

t and prove Theorem C. Recall from Lemma 3.1 the semigroup (P ε
t )t≥0 and for

each k ∈ N the spectral projection Qε
k of Lε corresponding to the eigenvalues {−λε,j }j≥k .

The following lemma plays a crucial role in the proof of Theorem C.

LEMMA 6.1. Assume (H) and �0 > 0. For each k ∈ N, there is Ck > 0 such that for
0 < ε 	 1,

∣∣P ε
t Qε

kf
∣∣ ≤ Ckα

1
4
ε eVε e−λε,kt‖f ‖L∞ in (0,∞) ∀t > 2 and f ∈ Cb

(
(0,∞)

)
.

PROOF. Set P̃ ε
t := ŨεUεP

ε
t U−1

ε Ũ−1
ε , where Uε and Ũε are unitary transforms speci-

fied in Section 3.2. Then, (P̃ ε
t )t≥0 is an analytic semigroup of contractions on L2((0, yε,∞))

generated by LS
ε . The spectrum of LS

ε , being the same as that of Lε , consists of simple eigen-
values {−λε,i}i∈N (see Lemma 3.1). We finish the proof within four steps.

Step 1. We show for each p ∈ (2,∞], there is D1(p) > 0 such that supε ‖P̃ ε
1 ‖L2→Lp ≤

D1(p).
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According to Lemma 3.3(4), there is M > 0 such that Wε + M ≥ 1. Since σ(LS
ε − M) ⊂

(−∞,−M) and ‖(λ − (LS
ε − M))−1‖L2→L2 = 1

dist(λ,σ (LS
ε −M))

for all λ ∈ ρ(LS
ε − M), we

find

(6.1)
∥∥(λ − (

LS
ε − M

))−1∥∥
L2→L2 ≤ 1

|λ| ∀λ ∈ C with �λ > 0.

As LS
ε −M generates the analytic semigroup (e−MtP̃ ε

t )t≥0 of contractions on L2((0, yε,∞)),
and the right-hand side of (6.1) is independent of ε, we apply [46], Theorem 2.5.2, to find
C1 > 0 (independent of ε) such that

(6.2)
∥∥(LS

ε − M
)
e−MtP̃ ε

t

∥∥
L2→L2 ≤ C1

t
∀t > 0.

Let D(LS
ε ) be the domain of LS

ε . Since

〈−(
LS

ε − M
)
u,u

〉
L2 = 1

2

∫ yε,∞

0

∣∣u′∣∣dy +
∫ yε,∞

0
(Wε + M)|u|2 dy ∀u ∈ D

(
LS

ε

)
,

we derive from Wε + M ≥ 1 and (6.2) that for f̃ ∈ L2((0, yε,∞)) and t > 0,

1

2

∫ yε,∞

0

∣∣∂yP̃
ε
t f̃

∣∣2 dy +
∫ yε,∞

0

∣∣P̃ ε
t f̃

∣∣2 dy

≤ 1

2

∫ yε,∞

0

∣∣∂yP̃
ε
t f̃

∣∣2 dy +
∫ yε,∞

0
(Wε + M)

∣∣P̃ ε
t f̃

∣∣2 dy

= 〈−(
LS

ε − M
)
P̃ ε

t f̃ , P̃ ε
t f̃

〉
L2

≤ C1e
Mt

t
‖f̃ ‖L2

∥∥P̃ ε
t f̃

∥∥
L2 ≤ C2

1e2Mt

2t2 ‖f̃ ‖2
L2 + 1

2

∫ yε,∞

0

∣∣P̃ ε
t f̃

∣∣2 dy,

leading to
∫ yε,∞

0

∣∣∂yP̃
ε
t f̃

∣∣2 dy +
∫ yε,∞

0

∣∣P̃ ε
t f̃

∣∣2 dy ≤ C2
1e2Mt

t2 ‖f̃ ‖2
L2 .

Since Lemma 3.3(2)–(3) ensures Wε + M blows up at 0 and yε,∞, we see that P̃ ε
t f̃ belongs

to W
1,2
0 ((0, yε,∞)) (the closure of C∞

0 ((0, yε,∞)) under the W 1,2((0, yε,∞))-norm). Hence,
the Sobolev embedding theorem ensures that for each p > 2 there is C2(p) > 0 such that

∥∥P̃ ε
t f̃

∥∥
Lp ≤ C2(p)

(∥∥∂yP̃
ε
t f̃

∥∥
L2 + ∥∥P̃ ε

t f̃
∥∥
L2

) ≤
√

2C1C2(p)

t
eMt‖f̃ ‖L2 .

Setting t = 1 yields the result with D1(p) := √
2C1C2(p)eM .

Step 2. We prove that for each p ∈ (1,2), there holds supε ‖P̃ ε
1 ‖Lp→L2 ≤ D1(p

′), where
p′ is the dual exponent of p, namely, 1

p
+ 1

p′ = 1.

The result in Step 1 says ‖P̃ ε
1 ‖

L2→Lp′ ≤ D1(p
′), which together with the symmetry of P̃ ε

1
yields ∥∥P̃ ε

1 f̃
∥∥
L2 ≤ D1

(
p′)‖f̃ ‖Lp ∀f̃ ∈ L2((0, yε,∞)

) ∩ Lp((0, yε,∞)
)
.

Thus, P̃ ε
1 uniquely extends to be a bounded linear operator from Lp((0, yε,∞)) to L2((0,

yε,∞)), and satisfies ‖P̃ ε
1 ‖Lp→L2 ≤ D1(p

′).
Step 3. We show the existence of p∗ ∈ (1,2) and D2 > 0 such that supε ‖ŨεUεf ‖Lp∗ ≤

D2‖f ‖∞ for all f ∈ Cb((0,∞)).



5652 HENING, QI, SHEN AND YI

Let f ∈ Cb((0,∞)) and set f̃ε := ŨεUεf . Straightforward calculations yield that for each
p ∈ (1,2),∫ yε,∞

0
|f̃ε |p dy =

∫ yε,∞

0

∣∣√vG
ε f ◦ ξ−1

ε

∣∣p dy

=
∫ yε,∞

0

((
uG

ε

)p
2 α

p
4
ε |f |p) ◦ ξ−1

ε dy ≤ ‖f ‖p∞
∫ ∞

0

e−pVε

α
p
4 + 1

2
ε

dx.

Note that if there exists p∗ ∈ (1,2) such that

(6.3) sup
ε

∫ ∞
0

e−p∗Vε

α
p∗
4 + 1

2
ε

dx < ∞,

then the result holds with D2 = supε(
∫ ∞

0
e−p∗Vε

α

p∗
4 + 1

2
ε

dx)
1

p∗ .

We show (6.3) for some p∗ ∈ (1,2). Fix 0 < δ 	 1. By (H)(1)–(3), there is x1 ∈ (0,1)

such that

b(x) ≥ (1 − δ)b′(0)x and 1 − δ ≤ αε(x)

x(ε2a′(0) + |σ ′(0)|2x)
≤ 1 + δ ∀x ∈ (0, x1).(6.4)

We split

∫ ∞
0

e−pVε

α
p
4 + 1

2
ε

dx =
∫ x1

0

e−pVε

α
p
4 + 1

2
ε

dx +
∫ ∞
x1

e−pVε

α
p
4 + 1

2
ε

dx =: Iε(p) + IIε(p).

Following arguments as in the proof of Lemma 3.6, we find supε IIε(p) < ∞ for each p ∈
(1,2).

Now, we treat Iε(p). We deduce from (6.4) that

(6.5)

−Vε(x) =
∫ x

x1

b

αε

ds +
∫ x1

1

b

αε

ds

≤
∫ x

x1

(1 − δ)b′(0)

(1 + δ)(ε2a′(0) + |σ ′(0)|2s) ds +
∫ x1

1

b

αε

ds

≤ (1 − δ)b′(0)

(1 + δ)|σ ′(0)|2 ln
ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + |σ ′(0)|2x1

+
∫ 1

x1

|b|
σ 2 ds ∀x ∈ (0, x1).

As �0 > 0, κ := 2(1−δ)b′(0)

(1+δ)|σ ′(0)|2 > 1. Fix some p∗ ∈ (max{1, (κ − 1
2)−1},2). It follows from

(6.4) and (6.5) that

Iε(p∗) ≤
∫ x1

0

[
(1 − δ)

(
ε2a′(0)x + ∣∣σ ′(0)

∣∣2x2)]−p∗
4 − 1

2

×
[

ε2a′(0) + |σ ′(0)|2x
ε2a′(0) + |σ ′(0)|2x1

]p∗κ
2

e
p∗

∫ 1
x1

|b|
σ2 ds

dx

≤ C

[ε2a′(0) + |σ ′(0)|2x1]p∗κ
2

∫ x1

0

[ε2a′(0) + |σ ′(0)|2x]p∗κ
2 −p∗

4 − 1
2

x
p∗
4 + 1

2

dx

≤ C

[(ε2a′(0) + |σ ′(0)|2x1)]p∗
4 + 1

2

∫ x1

0

1

x
p∗
4 + 1

2

dx ≤ C

(1
2 − p∗

4 )[|σ ′(0)|2]p∗
4 + 1

2 x
p∗
2

1

,
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where C = (1 − δ)−
p∗
4 − 1

2 e
p∗

∫ 1
x1

|b|
σ2 ds , and we used in the second inequality the fact p∗κ

2 −
p∗
4 − 1

2 > 0 so that

∫ x1

0

[ε2a′(0) + |σ ′(0)|2x]p∗κ
2 −p∗

4 − 1
2

x
p∗
4 + 1

2

dx ≤ [
ε2a′(0) + ∣∣σ ′(0)

∣∣2x1
]p∗κ

2 −p∗
4 − 1

2

∫ x1

0

1

x
p∗
4 + 1

2

dx.

As a result, supε

∫∞
0

e−p∗Vε

α

p∗
4 + 1

2
ε

dx = supε[Iε(p∗) + IIε(p∗)] < ∞, that is, (6.3) is true.

Step 4. We finish the proof. Note that Q̃ε
k := ŨεUεQ

ε
kU

−1
ε Ũ−1

ε is the spectral projection
of LS

ε corresponding to {−λε,j }j≥k . As P̃ ε
t and Q̃ε

k are commutative, we apply Steps 1–2 to
deduce for f̃ ∈ Lp∗((0, yε,∞)) (where p∗ is given in Step 3) and t > 2 that∥∥P̃ ε

t Q̃ε
kf̃

∥∥∞ ≤ D1(∞)
∥∥P̃ ε

t−1Q̃
ε
kf̃

∥∥
L2

≤ D1(∞)e−λε,k(t−2)
∥∥P̃ ε

1 f̃
∥∥
L2 ≤ D1(∞)D1

(
p′∗

)
e−λε,k(t−2)‖f̃ ‖Lp∗ ,

where p′∗ is the dual exponent of p∗. This together with Step 3 yields for f ∈ Cb((0,∞)) and
t > 2, ∣∣P ε

t Qε
kf

∣∣ = ∣∣U−1
ε Ũ−1

ε P̃ ε
t Q̃ε

kŨεUεf
∣∣

= ∣∣(P̃ ε
t Q̃ε

kŨεUεf
) ◦ ξε

∣∣(uG
ε

√
αε

)− 1
2

≤ ∥∥P̃ ε
t Q̃ε

kŨεUεf
∥∥
L∞α

1
4
ε eVε

≤ D1(∞)D1
(
p′∗

)
e−λε,k(t−2)‖ŨεUεf ‖Lp∗ α

1
4
ε eVε

≤ D1(∞)D1
(
p′∗

)
D2e

−λε,k(t−2)α
1
4
ε eVε‖f ‖∞.

As supε λε,k < ∞ by Lemma 3.2, the result follows. �

Now, we prove Theorem C.

PROOF OF THEOREM C. Let μ ∈ P((0,∞)) be such that supp(μ) ⊂ K. Recall that φε,1
is the positive eigenfunction of −Lε associated with λε,1 and satisfies the normalization
‖φε,1‖L2(uG

ε ) = 1. We apply Lemma 3.1(6) to find that for f ∈ Cb((0,∞)) and t > 0,

E
ε
μ

[
f
(
Xε

t

)
1t<T ε

0

] = e−λε,1t 〈f,φε,1〉L2(uG
ε )

∫ ∞
0

φε,1 dμ +
∫ ∞

0
P ε

t Qε
2f dμ.

Recall the density of the QSD με is given by uε = φε,1u
G
ε‖φε,1‖L1(uG

ε )

. Let αε,1 = ‖φε,1‖L1(uG
ε )φε,1

be as in the statement. Then,

E
ε
μ

[
f
(
Xε

t

)
1t<T ε

0

] = e−λε,1t‖φε,1‖L1(uG
ε )

∫ ∞
0

φε,1 dμ

∫ ∞
0

f uε dx +
∫ ∞

0
P ε

t Qε
2f dμ

= e−λε,1t 〈μ,αε,1〉
∫ ∞

0
f uε dx +

∫ ∞
0

P ε
t Qε

2f dμ.

Setting f ≡ 1 yields Pε
μ[t < T ε

0 ] = e−λε,1t 〈μ,αε,1〉 + ∫∞
0 P ε

t Qε
21dμ. Hence,

E
ε
μ

[
f
(
Xε

t

)] = E
ε
μ

[
f
(
Xε

t

)
1t<T ε

0

]+ f (0)
(
1 − P

ε[t < T ε
0
])

= e−λε,1t 〈μ,αε,1〉
∫ ∞

0
f uε dx + (

1 − e−λε,1t 〈μ,αε,1〉)f (0)

+
∫ ∞

0
P ε

t Qε
2
(
f − f (0)

)
dμ.
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It follows from Lemma 6.1 that there is C > 0 such that for t > 2,∣∣∣∣Eε
μ

[
f
(
Xε

t

)]−
[
e−λε,1t 〈μ,αε,1〉

∫ ∞
0

f uε dx + (
1 − e−λε,1t 〈μ,αε,1〉)f (0)

]∣∣∣∣
≤ C‖f ‖∞e−λε,2t

∫ ∞
0

α
1
4
ε eVε dμ ≤ C̃e−λε,2t‖f ‖L∞,

where C̃ = C̃(K) := 1 + supK
√|σ |e

∫ •
1

b

σ2 ds . As a result, we find∥∥Pε
μ

[
Xε

t ∈ •]− [
e−λε,1t 〈μ,αε,1〉με + (

1 − e−λε,1t 〈μ,αε,1〉)δ0
]∥∥

TV

= sup
f ∈Cb([0,∞))

‖f ‖∞≤1

∣∣∣∣Eε
μ

[
f
(
Xε

t

)]−
[
e−λε,1t 〈μ,αε,1〉

∫ ∞
0

f uε dx + (
1 − e−λε,1t 〈μ,αε,1〉)f (0)

]∣∣∣∣

= sup
f ∈Cb([0,∞))

‖f ‖∞≤1

∣∣∣∣
∫ ∞

0
P ε

t Qε
2
(
f − f (0)

)
dμ

∣∣∣∣
≤ C̃e−λε,2t ∀t > 2.

Note that if we establish the limit

(6.6) lim
ε→0

αε = 1 locally uniformly in (0,∞),

then the conclusion of the theorem follows for t > 2. Making C̃ larger if necessary, the
conclusion holds for all t ≥ 0. Thus, it remains to show (6.6).

To do so, we let φ̃ε,1 be the positive eigenfunction of −Lε associated with λε,1 and satisfy
the normalization (5.20), namely, ‖φ̃ε,1‖L1((0,2);uG

ε ) + ‖φ̃ε,1‖L2((1,∞);uG
ε ) = 1. Since φ̃ε,1 is

proportional to φε,1, there holds αε,1 = ‖φ̃ε,1‖L1(uG
ε )

‖φ̃ε,1‖2
L2(uG

ε )

φ̃ε,1. As Step 2 in the proof of Theorem 5.3

says

(6.7) lim
ε→0

φ̃ε,1 = C1 locally uniformly in (0,∞)

for some constant C1 > 0, (6.6) follows if we can show

(6.8) lim
ε→0

‖φ̃ε,1‖L1(uG
ε ) = C1

∫ ∞
0

uG
0 dx and lim

ε→0
‖φ̃ε,1‖2

L2(uG
ε )

= C2
1

∫ ∞
0

uG
0 dx.

For any κ > 1, we split

(6.9)

∫ ∞
0

φ̃ε,1u
G
ε dx − C1

∫ ∞
0

uG
0 dx

=
∫ κ

1
κ

φ̃ε,1u
G
ε dx − C1

∫ κ

1
κ

uG
0 dx +

(∫ 1
κ

0
+

∫ ∞
κ

)
φ̃ε,1u

G
ε dx

+ C1

(∫ 1
κ

0
+

∫ ∞
κ

)
uG

0 dx

and

(6.10)

∫ ∞
0

φ̃2
ε,1u

G
ε dx − C2

1

∫ ∞
0

uG
0 dx

=
∫ κ

1
κ

φ̃2
ε,1u

G
ε dx − C2

1

∫ κ

1
κ

uG
0 dx +

(∫ 1
κ

0
+

∫ ∞
κ

)
φ̃2

ε,1u
G
ε dx

+ C2
1

(∫ 1
κ

0
+

∫ ∞
κ

)
uG

0 dx.
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By (3.2) and (6.7), we see that

lim
ε→0

∣∣∣∣
∫ κ

1
κ

φ̃ε,1u
G
ε dx − C1

∫ κ

1
κ

uG
0 dx

∣∣∣∣ = 0,

lim
ε→0

∣∣∣∣
∫ κ

1
κ

φ̃2
ε,1u

G
ε dx − C2

1

∫ κ

1
κ

uG
0 dx

∣∣∣∣ = 0 ∀κ > 1.

Lemmas 5.1 and 5.3 yield

(6.11) lim
κ→∞ sup

ε

∫ 1
κ

0
φ̃ε,1u

G
ε dx = 0, lim

κ→∞ sup
ε

∫ ∞
κ

φ̃2
ε,1u

G
ε dx = 0.

This together with Lemma 5.5 and Hölder’s inequality yields limκ→∞ supε

∫∞
κ φ̃ε,1u

G
ε dx =

0. Furthermore, we see from (5.32) and (6.11) that limκ→0 supε

∫ 1
κ

0 φ̃2
ε,1u

G
ε dx = 0.

Given these limits, (6.8) follows immediately from taking the limit ε → 0 and then κ → ∞
in (6.9) and (6.10). This completes the proof. �

7. Asymptotic bounds of the mean extinction time. In this section, we adopt proba-
bilistic methods to study the asymptotic of the mean extinction time E

ε
x[T ε

0 ]. In particular,
we prove Theorem D.

We begin with the introduction of some notation that are used frequently in the rest of this
section. For 0 < δ 	 1, (H)(1)–(3) ensures the existence of β = β(δ) ∈ (0,1) such that

(7.1) 1 − δ ≤ b(x)

b′(0)x
,

αε(x)

x[ε2a′(0) + |σ ′(0)|2x] ≤ 1 + δ ∀x ∈ (0, β) and 0 < ε 	 1.

Set

(7.2) κ− = κ−(δ) := 2(1 − δ)b′(0)

(1 + δ)|σ ′(0)|2 and κ+ = κ+(δ) := 2(1 + δ)b′(0)

(1 − δ)|σ ′(0)|2 .

Note that κ− < κ+ < 1 when �0 < 0, and κ+ > κ− > 1 when �0 > 0.
Fix x∗ = x∗(δ) ∈ (0, β). Denote by τ ε = τ ε(δ) the first time Xε

t exits from (0, β), namely,
τ ε := inf{t ≥ 0 : Xε

t = 0 or β}, and by τ ε
x∗ = τ ε

x∗(δ) the first time Xε
t hits x∗, namely, τ ε

x∗(δ) :=
inf{t ≥ 0 : Xε

t = x∗}.
For each 0 < ε 	 1 and x ∈ (0,∞), we define

sε(x) = sε(x, δ) : =
∫ x

x∗
e
−2

∫ y
x∗

b
αε

ds
dy,

rε(x) = rε(x, δ) : =
∫ x

x∗
e
−2

∫ y
x∗

b
αε

ds
∫ y

x∗

1

αε(z)
e

2
∫ z
x∗

b
αε

ds
dz dy.

In literature (see, e.g., [33]), sε is referred to as the scale function. The function rε arises
naturally in the study of the mean exit time E

ε•[τ ε] (see [30, 33] or the proof of Lemma 7.2).
It is easy to check that sε(0+) ∈ (−∞,0) and rε(0+) ∈ (0,∞).

Replacing αε by σ 2 in the definition of sε and rε , we define s0 and r0. It is straightforward
to check that s0(0+) ∈ (−∞,0) when �0 < 0, and s0(0+) = −∞ when �0 > 0. Moreover,
r0(0+) = ∞.

We establish three lemmas before proving Theorem D. The first one concerns the asymp-
totic of sε(0+) and P

ε
x[Xε

τε = β] for x ∈ (0, β).

LEMMA 7.1. Assume (H). Then, limε→0 sε = s0. Moreover:
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(1) if �0 < 0, then limε→0 sε(0+) = s0(0+) > −∞ and

lim
ε→0

P
ε
x

[
Xε

τε = β
] = s0(x) − s0(0+)

s0(β) − s0(0+)
∈ (0,1) ∀x ∈ (0, β);

(2) if �0 > 0, then there are C1,C2 > 0 (depending on δ) such that

C1ε
−2(κ−−1) �ε −sε(0+) �ε C2ε

−2(κ+−1),

and for each x ∈ (0, β), there are C3,C4 > 0 such that

1 − C3ε
2(κ−−1) �ε P

ε
x

[
Xε

τε = β
]
�ε 1 − C4ε

2(κ+−1).

PROOF. Since αε ↓ σ 2 on (0, β) as ε → 0, we apply the monotone convergence theorem
to find limε→0 sε = s0 and limε→0 sε(0+) = s0(0+).

It is well known (see, e.g., [30], Theorem 6.3.1) that

(7.3) P
ε
x

[
Xε

τε = β
] = sε(x) − sε(0+)

sε(β) − sε(0+)
∀x ∈ (0, β).

(1) It is easy to see that −s0(0+) < ∞. The limiting equality follows by letting ε → 0 in
(7.3).

(2) Using (7.1), we find

−sε(0+) ≤
∫ x∗

0
e

1+δ
1−δ

∫ x∗
y

2b′(0)

ε2a′(0)+|σ ′(0)|2s
ds

dy =
∫ x∗

0

[
ε2a′(0) + |σ ′(0)|2x∗
ε2a′(0) + |σ ′(0)|2y

]κ+
dy.

Note that κ+ > κ− > 1 in this case. Calculating the last integral leads to

−sε(0+) ≤ 2
[∣∣σ ′(0)

∣∣2x∗
]κ+ 1

(−κ+ + 1)|σ ′(0)|2
[
ε2a′(0) + ∣∣σ ′(0)

∣∣2y]−κ++1
∣∣∣∣x∗

y=0

≤ 2x
κ+∗ |σ ′(0)|2(κ+−1)

(κ+ − 1)[ε2a′(0)]κ+−1

{
1 − [ε2a′(0)]κ+−1

[ε2a′(0) + |σ ′(0)|2x∗]κ+−1

}

≈ε

2x
κ+∗ |σ ′(0)|2(κ+−1)

(κ+ − 1)[a′(0)]κ+−1 ε−2(κ+−1) =: C1ε
−2(κ+−1),

which together with (7.3) leads to

P
ε
x

[
Xε

τ = β
] = 1 − sε(β) − sε(x)

sε(β) − sε(0+)

≈ε 1 − s0(β) − s0(x)

s0(β) − sε(0+)

�ε 1 − [
s0(β) − s0(x)

]
C−1

1 ε2(κ+−1) =: 1 − C2ε
2(κ+−1).

Similarly, there exist C3,C4 > 0 such that −sε(0) �ε C3ε
−2(κ−−1) and P

ε
x[Xε

τ = β] �ε

1 − C4ε
2(κ−−1). This proves (2). �

In the second lemma, we study the asymptotic bounds of the mean exit time E
ε
x∗[τ ε].

LEMMA 7.2. Assume (H).

1. If �0 < 0, then there are C1,C2 > 0 (depending on δ) such that

C1| ln ε|�ε E
ε
x∗
[
τ ε]�ε C2| ln ε|.

2. If �0 > 0, then infε Eε
x∗[τ ε] > 0 and E

ε
x∗[τ ε]�ε ε−2(κ+−κ−+δ).
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PROOF. We first show that

(7.4) E
ε
x∗
[
τ ε] = 2[rε(0+)sε(β) − rε(β)sε(0+)]

sε(β) − sε(0+)
.

It is well known that uε := E
ε•[τ ε] solves⎧⎨

⎩
1

2
αεu

′′
ε + bu′

ε = −1 in (0, β),

uε(0) = 0 = uε(β).

Direct calculations yield

uε(x) = −2rε(x) + 2(sε(x) − sε(0+))

sε(β) − sε(0+)
rε(β) + 2(sε(β) − sε(x))

sε(β) − sε(0+)
rε(0+).

Setting x = x∗, we derive (7.4) from sε(x∗) = 0 and rε(x∗) = 0.
(1) Note limε→0 rε(β) = r0(β). Since limε→0 sε(β) = s0(β) and limε→0 sε(0+) = s0(0+)

by Lemma 7.1, we find from (7.4) that

(7.5) E
ε
x∗
[
τ ε] ≈ε

2s0(β)rε(0+)

s0(β) − s0(0+)
− 2r0(β)s0(0+)

s0(β) − s0(0+)
.

If there are C1,C2 > 0 (depending on δ) such that

(7.6) C1| ln ε| �ε rε(0+) �ε C2| ln ε|,
we deduce from (7.5) that 2C1s0(β)

s0(β)−s0(0+)
| ln ε| �ε E

ε
x∗[τ ε] �ε

2C2s0(β)
s0(β)−s0(0+)

| ln ε|, leading to the
conclusion.

It remains to show (7.6). Thanks to (7.1), we compute

rε(0+) =
∫ x∗

0

∫ x∗

y

1

αε(z)
e

2
∫ z
y

b
αε

ds
dz dy

≥
∫ x∗

0

∫ x∗

y

1

(1 + δ)z[ε2a′(0) + |σ ′(0)|2z]e
1−δ
1+δ

∫ z
y

2b′(0)

ε2a′(0)+|σ ′(0)|2s
ds

dz dy

= 1

1 + δ

∫ x∗

0

∫ x∗

y

1

z

[
ε2a′(0) + ∣∣σ ′(0)

∣∣z]κ−−1[
ε2a′(0) + ∣∣σ ′(0)

∣∣y]−κ− dzdy

≥ 1

1 + δ

∫ x∗
2

0

∫ 2y

y

[
ε2a′(0) + ∣∣σ ′(0)

∣∣y]−1 1

z

[
ε2a′(0) + |σ ′(0)|z
ε2a′(0) + |σ ′(0)|y

]κ−−1
dzdy.

Noting that

ε2a′(0) + |σ ′(0)|z
ε2a′(0) + |σ ′(0)|y ≤ 2ε2a′(0) + |σ ′(0)|2y

ε2a′(0) + |σ ′(0)|y = 2 ∀y ∈
(

0,
x∗
2

)
and z ∈ (y,2y),

we deduce from the fact κ− < 1 that

rε(0+) ≥ 1

1 + δ

∫ x∗
2

0

[
ε2a′(0) + ∣∣σ ′(0)

∣∣y]−1
∫ 2y

y

1

z
2κ−−1 dzdy

= 2κ−−1 ln 2

(1 + δ)|σ ′(0)|2 ln
ε2a′(0) + |σ ′(0)|2 x∗

2

ε2a′(0)

= 2κ−−1 ln 2

(1 + δ)|σ ′(0)|2 ln
(

1 + |σ ′(0)|2x∗
2ε2a′(0)

)
≈ε C1| ln ε|,

where C1 := 2κ− ln 2
(1+δ)|σ ′(0)|2 , and the equality follows from direct calculations of the double

integral.
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To derive an upper bound, we change the order of integration to rewrite rε(0+) as

(7.7) rε(0+) =
∫ x∗

0

∫ z

0

1

αε(z)
e2(Vε(y)−Vε(z)) dy dz,

which is just Iε in (5.17). By (5.19), rε(0+) �ε C2| ln ε| for some C2 > 0. Hence, (7.6) fol-
lows.

(2) Let x̂ ∈ (0, x∗). Obviously, Eε
x∗[τ ε] ≥ E

ε
x∗[τ̂ ε], where τ̂ ε := inf{t ≥ 0 : Xε

t = x̂ or β}.
Note that Eε•[τ̂ ε] solves ⎧⎨

⎩
1

2
αεu

′′ + bu′ = −1 in (x̂, β),

u(x̂) = 0 = u(β).

As limε→0 αε = σ 2 uniformly in [x̂, β], the classical PDE theory ensures that limε→0E
ε•[τ̂ ε]=

u0 uniformly in [x̂, β], where u0 is the unique solution of⎧⎨
⎩

1

2
σ 2u′′

0 + bu′
0 = −1 in (x̂, β),

u0(x̂) = 0 = u0(β).

Since u0(x∗) > 0 by the maximum principle, we conclude infε Eε
x∗[τ ε] > 0.

It remains to derive the upper bound for E
ε
x∗[τ ε]. Note that κ+ > κ− > 1. Using (7.7),

we apply (5.14) to find rε(0+) �ε ε−2(κ+−1+δ). Since −sε(0+) �ε C1ε
−2(κ−−1) due to

Lemma 7.1, we deduce from (7.4) that

E
ε
x∗
[
τ ε] ≈ε

2s0(β)rε(0+)

s0(β) − sε(0+)
+ 2r0(β)�ε

2s0(β)ε−2(κ+−1+δ)

C1ε−2(κ−−1)
= 2s0(β)

C1
ε−2(κ+−κ−+δ).

This completes the proof. �

The third lemma addresses the uniform-in-ε finiteness of the mean hitting time E
ε•[τ ε

x∗].

LEMMA 7.3. Assume (H). Then, supε E
ε
x[τ ε

x∗] < ∞ for each x > x∗.

PROOF. Fix x > x∗. As in the proof of Proposition 4.1, we can find a function V ∈
C2(0,∞) and a number N0 ∈ (x,∞) such that V (N0) > 0 and LεV ≤ − b2

2σ 2 in (N0,∞).

Since limx→∞ b
|σ | = −∞ by (H4), we may assume LεV ≤ −1 in (N0,∞). Set τ ε

N0
:= inf{t ≥

0 : Xε
t = N0}. An application of Itô–Dynkin’s formula yields 0 ≤ E

ε
N0+1[V (τ ε

N0
)] ≤ V (N0 +

1) −E
ε
N0+1[τ ε

N0
], leading to

(7.8) sup
ε

E
ε
N0+1

[
τ ε
N0

] ≤ V (N0 + 1).

Set τ ε
(x∗,N0+1) := {t ≥ 0 : Xε

t = x∗ or N0 + 1}. Then, Eε•[τ ε
(x∗,N0+1)] on [x∗,N0 + 1] solves{

Lεu = −1 in (x∗,N0 + 1),

u(x∗) = 0 = u(N0 + 1).

Arguing as in the proof of Lemma 7.2(2), we find

(7.9) sup
ε

E
ε
N0

[
τ ε
(x∗,N0+1)

]
< ∞.

Let Xε
0 = N0, τ̂ ε

0 = 0 and define recursively the following sequences of stopping times:
before the first time Xε

t reaches x∗ (i.e., τ ε
x∗), for n ∈ N, we let τ ε

n be the first time after
τ̂ ε
n−1 at which Xε

t reaches N0 + 1, and τ̂ ε
n be the first time after τ ε

n at which Xε
t reaches N0;
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since P
ε
N0

[τ ε
x∗ < ∞] = 1, τ ε

n and τ̂ ε
n are defined up to some random index n0 ∈ N ∪ {0}; let

τ ε
n = τ̂ ε

n = τ ε
x∗ for all n ≥ n0 + 1. To be more specific, we recursively define for each n ∈ N,

τ ε
n := inf

{
t ≥ τ̂ ε

n−1 : Xε
t = N0 + 1

}∧ τ ε
x∗, τ̂ ε

n := inf
{
t ≥ τ ε

n : Xε
t = N0

}∧ τ ε
x∗ .

Clearly, τ ε
n = inf{t ≥ τ̂ ε

n−1 : Xε
t = x∗ or N0 + 1} and τ ε

n ↑ τ ε
x∗ as n → ∞ for P

ε
N0

-a.e.
Hence,

(7.10) E
ε
N0

[
τ ε
x∗
] = lim

n→∞E
ε
N0

[
τ ε
n

] =
∞∑

n=1

E
ε
N0

[
τ ε
n − τ̂ ε

n−1
]+

∞∑
n=1

E
ε
N0

[
τ̂ ε
n − τ ε

n

]
.

Thanks to [30], Theorem 6.3.1, and Lemma 7.1, pε := PN0[Xε
τε

1
= N0 + 1] satisfies

(7.11) lim
ε→0

pε = lim
ε→0

sε(N0) − sε(x∗)
sε(N0 + 1) − sε(x∗)

= s0(N0) − s0(x∗)
s0(N0 + 1) − s0(x∗)

∈ (0,1).

For n ≥ 1, we show

(7.12)

P
ε
N0

[
Xε

τε
n

= β
] = pn

ε ,

E
ε
N0

[
τ ε
n − τ̂ ε

n−1
] = pn−1

ε E
ε
N0

[
τ ε

1
]
,

E
ε
N0

[
τ̂ ε
n − τ ε

n

] = pn
εE

ε
N0+1

[
τ ε
N0

]
.

The first two equalities for n = 1 are obvious. Thanks to the strong Markov property and
time-homogeneity of Xε

t , we find

E
ε
N0

[
τ̂ ε

1 − τ ε
1
] = E

ε
N0

[
τ̂ ε

1 − τ ε
1 |Xε

τε
1

= x∗
]× P

ε
N0

[
Xε

τε
1

= x∗
]

+E
ε
N0

[
τ̂ ε

1 − τ ε
1 |Xε

τε
1

= N0 + 1
]× P

ε
N0

[
Xε

τε
1

= N0 + 1
]

= E
ε
N0

[
τ̂ ε

1 − τ ε
1 |Xε

τε
1

= N0 + 1
]× P

ε
N0

[
Xε

τε
1

= N0 + 1
] = E

ε
N0+1

[
τ ε
N0

]
pε.

Hence, (7.12) holds for n = 1. Suppose it is true for n = k − 1 with k ≥ 2. By the strong
Markov property and time-homogeneity of Xε

t ,

P
ε
N0

[
Xε

τε
k

= N0 + 1
] = P

ε
N0

[
Xε

τε
k

= N0 + 1|Xε
τ̂ε
k−1

= N0
]

× P
ε
N0

[
Xε

τ̂ε
k−1

= N0|Xε
τε
k−1

= N0 + 1
]× P

ε
N0

[
Xε

τε
k−1

= N0 + 1
] = pk

ε ,

E
ε
N0

[
τ ε
k − τ̂ ε

k−1
] = E

ε
N0

[
τ ε
k − τ̂ ε

k−1|Xε
τ̂ε
k−1

= N0
]

× P
ε
N0

[
Xε

τ̂ε
k−1

= N0|Xε
τε
k−1

= N0 + 1
]× P

ε
N0

[
Xε

τε
k−1

= N0 + 1
]

= E
ε
N0

[
τ ε
k − τ̂ ε

k−1|Xε
τ̂ε
k−1

= N0
]× P

ε
N0

[
Xε

τε
k−1

= N0 + 1
] = E

ε
N0

[
τ ε

1
]
pk−1

ε ,

E
ε
N0

[
τ̂ ε
k − τ ε

k

] = E
ε
N0

[
τ̂ ε
k − τ ε

k |Xε
τε
k

= N0 + 1
]× P

ε
N0

[
Xε

τε
k

= N0 + 1
] = E

ε
N0+1

[
τ ε
N0

]
pk

ε .

Consequently, (7.12) holds for n = k and thus, holds for all n ∈ N by induction.
Given (7.12), we see from (7.10) that

E
ε
N0

[
τ ε
x∗
] =

∞∑
n=1

(
pn−1

ε E
ε
N0

[
τ ε

1
]+ pn

εE
ε
N0+1

[
τ ε
N0

]) = 1

1 − pε

E
ε
N0

[
τ ε

1
]+ pε

1 − pε

E
ε
N0+1

[
τ ε
N0

]
,

which together with (7.8), (7.9) and (7.11) yields supε E
ε
x[τ ε

x∗] ≤ supε E
ε
N0

[τ ε
x∗] < ∞. �

We are ready to prove Theorem D.
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PROOF OF THEOREM D. Clearly, it suffices to prove the result for Eε
x[T ε

0 ] for each x ∈
(0,∞).

Fix x ∈ (0,∞). Let 0 < δ 	 1 (depending on x) and then take β = β(δ) and x∗ = x∗(δ) ∈
(0, β) so that x∗ ∈ (0, x). They are introduced at the beginning of this section. The strong
Markov property and time-homogeneity of Xε

t then imply that

(7.13) E
ε
x

[
T ε

0
] = E

ε
x

[
E

ε
x

[(
T ε

0 − τ ε
x∗ + τ ε

x∗
)|Xε

τε
x∗
]] = E

ε
x∗
[
T ε

0
]+E

ε
x

[
τ ε
x∗
]
.

Since supε E
ε
x[τ ε

x∗] < ∞ by Lemma 7.3, it suffices to study the asymptotic bounds of Eε
x∗[T ε

0 ].
We follow the same idea as in the proof of Lemma 7.3. Let Xε

0 = x∗, τ̂ ε
0 = 0 and define

recursively the following sequences of stopping times: before the first time Xε
t reaches 0 (i.e.,

T ε
0 ), for n ∈N, we let τ ε

n be the first time after τ̂ ε
n−1 at which Xε

t reaches β , and τ̂ ε
n be the first

time after τ ε
n at which Xε

t reaches x∗; since Px∗[T ε
0 < ∞] = 1, τ ε

n and τ̂ ε
n are defined up to

some random index n0 ∈ N ∪ {0}; let τ ε
n = τ̂ ε

n = T ε
x∗ for all n ≥ n0 + 1. To be more specific,

we recursively define for each n ∈ N,

τ ε
n := inf

{
t ≥ τ̂ ε

n−1 : Xε
t = β

}∧ T ε
0 , τ̂ ε

n := inf
{
t ≥ τ ε

n : Xε
t = x∗

} ∧ T ε
0 .

Clearly, τ ε
n = inf{t ≥ τ̂ ε

n−1 : Xε
t = 0 or β} and τ ε

n ↑ T ε
0 as n → ∞ for Pε

x∗ -a.e. Hence,

(7.14) E
ε
x∗
[
T ε

0
] = lim

n→∞E
ε
x∗
[
τ ε
n

] =
∞∑

n=1

E
ε
x∗
[
τ ε
n − τ̂ ε

n−1
]+

∞∑
n=1

E
ε
x∗
[
τ̂ ε
n − τ ε

n

]
.

Set pε := Px∗[Xε
τε

1
= β]. Following arguments as in the proof of Lemma 7.3, we have for

each n ≥ 1,

P
ε
x∗
[
Xε

τε
n

= β
] = pn

ε , E
ε
x∗
[
τ ε
n − τ̂ ε

n−1
] = pn−1

ε E
ε
x∗
[
τ ε

1
]

and

E
ε
x∗
[
τ̂ ε
n − τ ε

n

] = pn
εE

ε
β

[
τ ε
x∗
]
.

This together with (7.14) yields

(7.15) E
ε
x∗
[
T ε

0
] =

∞∑
n=1

(
pn−1

ε E
ε
x∗
[
τ ε

1
]+ pn

εE
ε
β

[
τ ε
x∗
]) = 1

1 − pε

E
ε
x∗
[
τ ε

1
]+ pε

1 − pε

E
ε
β

[
τ ε
x∗
]
.

Case: �0 < 0. Thanks to Lemmas 7.1, 7.2 and 7.3, there are C1,C2 > 0 such that
C1| ln ε| �ε E

ε
x∗[T ε

0 ]�ε C2| ln ε|. From which and (7.13), the desired result follows.
Case: �0 > 0. We rewrite (7.15) as

(7.16) E
ε
x∗
[
T ε

0
] = 1

1 − pε

(
E

ε
x∗
[
τ ε

1
]+E

ε
β

[
τ ε
x∗
])−E

ε
β

[
τ ε
x∗
]
.

By Lemmas 7.1, 7.2 and 7.3, there are positive constants C3, C4, C5 and C6 such that

C3ε
−2(κ−−1) �ε

1

1 − pε

�ε C4ε
−2(κ+−1), C5 �ε E

ε
x∗
[
τ ε

1
]+E

ε
β

[
τ ε
x∗
]
�ε C6ε

−2(κ+−κ−+δ),

which together with (7.16) yield C3C5ε
−2(κ−−1) �ε E

ε
x∗[T ε

0 ] �ε C4C6ε
−2(κ+−1+κ+−κ−+δ).

We see from the definition of κ+ and κ− in (7.2) that for any 0 < γ 	 1, there exists δ > 0
(and corresponding x∗ = x∗(δ)) so that

−(κ− − 1) ≤ 1 − (1 − γ )
2b′(0)

|σ ′(0)| and 1 − (1 + γ )
2b′(0)

|σ ′(0)| ≤ −(κ+ − 1 + κ+ − κ− + δ),

leading to C3C5ε
2−(1−γ )

4b′(0)

|σ ′(0)| �ε E
ε
x∗[T ε

0 ] �ε C4C6ε
2−(1+γ )

4b′(0)

|σ ′(0)| . This together with (7.13)
yields the result.

The proof is complete. �
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