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Search for decays of the Higgs boson into a pair of pseudoscalar particles
decaying into bbz* 7~ using pp collisions at \/s=13 TeV
with the ATLAS detector
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This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar

particles, H — aa, where one pseudoscalar decays into a b-quark pair and the other decays into a
z-lepton pair, in the mass range 12 < m, < 60 GeV. The analysis uses pp collision data at /s =
13 TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of
140 fb~!. No significant excess above the Standard Model (SM) prediction is observed. Assuming the
SM Higgs boson production cross section, the search sets upper limits at 95% confidence level on the

branching ratio of Higgs bosons decaying into bbt* 7=, B(H — aa — bbtr*7~), between 2.2% and 3.9%

depending on the pseudoscalar mass.
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I. INTRODUCTION

Following the observation of the Higgs boson H
with mass mpy near 125 GeV by the ATLAS and CMS
collaborations [1,2], studies of its properties have been
important programs of research. Global analyses of mea-
surements of Higgs boson properties constrain the branch-
ing ratio of the Higgs boson into undetected beyond the
Standard Model (BSM) particles to approximately B, <
12% [3,4]. Higgs boson decays are particularly sensitive to
new physics due to the small total width (I'y &~ 4 MeV).
Even very small couplings to new particles can give sizable
branching ratios and can be compatible with available
measurements [5].

Extensions of the Standard Model (SM) that include new
light pseudoscalars, called a-bosons, can give rise to exotic
Higgs boson decays H — aa. Such new light particles
appear in theories with an extended Higgs sector [6—10],
dark matter models [11-15], models with a first-order elec-
troweak phase transition [16,17], and theories of neutral
naturalness [18,19]. Signatures of H — aa can also arise in
models with hidden-sector particles that are singlets under
the SM gauge transformations [5,20-23]. In scenarios
where the a-boson mixes with the SM Higgs boson and
inherits its Yukawa couplings to fermions, decays of the
a-boson into heavy fermions such as b-quarks and z-leptons
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are favored, and the process H — aa — bbttr~, shown
in Fig. 1, is expected to have a sizeable branching ratio in the
mass range 2m;, < m, < my/2 [5,24].

This paper presents a search for the exotic Higgs boson
decay H — aa — bbrtr~ and uses the full Run-2
dataset of pp collisions at /s = 13 TeV recorded with
the ATLAS detector corresponding to an integrated lumi-
nosity 140 fb~!. The analysis is performed over the mass
range 12 < m, < 60 GeV and targets the following pro-
duction modes of the Higgs boson: gluon-gluon fusion
(ggF), vector boson fusion (VBF), and associated produc-
tion with a vector boson (VH). The associated production
of a top-antitop-quark pair (¢7) with a Higgs boson provides
a negligible signal contribution due to (i) the low cross
section and (ii) the additional b-quarks from the top-quark
decays resulting in a reduced signal acceptance. Therefore,
this production mode is not considered. Different analysis
categories are defined depending on the z-lepton decay
modes, which can be into electrons (e), muons (u), or
hadrons (7,4, also “hadronic taus”). Due to the relatively
low mass of the Higgs boson and the four-body final state,
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FIG. 1. Feynman diagram for the leading contribution to the
pp = H — aa — bbrtt™ process.
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FIG. 2. The analysis categories used in the search correspond-
ing to different decay modes of the z-leptons and strategies for
identifying heavy-flavor jets, including merged b-jet pairs (B)
and single b-jets (b). Note that the categories are exclusive.

the z-leptons and b-quarks tend to have low transverse
momentum (pr), typically below pr < 50 GeV. Therefore,
the analysis relies on electron or muon triggers, which have
lower pr thresholds compared to triggers using hadronic
activity, to select the events of interest and requires an
electron or muon in the final state. The analysis defines
different event categories depending on z-lepton decay
modes: ey, ety,q, and pzy,q. The major backgrounds to the
signal process are Drell-Yan production of z-leptons
produced in association with heavy-flavor jets, ¢7, and
nonprompt leptons plus 7y,q4.

For low m,, the a-boson has a large Lorentz boost and its
decay products can be collimated. Consequently, the a —
bb final state is reconstructed as a single jet that contains
the hadronization products of the two b-quarks. While
several techniques exist to resolve merged jets [25], most of
them are only efficient in the case of high-mass and high-
pr jets. Due to the relatively low mass of the Higgs boson,
the merged a — bb jet will have low pr. This analysis uses
a novel, dedicated algorithm to identify low-mass, merged,
“double b-quark” jets (B-jets) [26]. For high m,, the
b-quarks decays tend to be well separated and the recon-
structed jets capture the hadronization of a single b-quark
(b-jet). The analysis considers events with one B-jet, or one
or two b-jets, resulting in nine analysis categories, as shown
in Fig. 2.

Similar searches in the bbr™z~ decay channel were
performed by the CMS Collaboration [27,28]. The latest
search has placed 95% CL upper limits on B(H — aa —
bbrtz™) in the range 1.7-7.7% for 12 < m, < 60 GeV
using 138 fb~! of Run 2 data at /s = 13 TeV. This
analysis improves the sensitivity of previous results [28]
in the low mass regime (m, < 20 GeV) by targeting more
final states and using a neural network discriminant to
increase the separation of signal from background. This
search is also complementary to other searches for H — aa
decays performed by the ATLAS and CMS collaborations

using both /s = 8 TeV and /s = 13 TeV data in several
final states including ptp~ptp~ [29-311, u T~ 7~ [32-35],
ttrorte™ [34,36], bbutu~ [37-401, bbbb [41-43], yyry
[44-46], and yygg [47].

II. ATLAS DETECTOR

The ATLAS detector [48] at the LHC covers nearly the
entire solid angle around the collision point.1 It consists of
an inner tracking detector surrounded by a thin super-
conducting solenoid, electromagnetic and hadronic calo-
rimeters, and a muon spectrometer incorporating three large
superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial
magnetic field and provides charged-particle tracking in
the range || < 2.5. The high-granularity silicon pixel
detector covers the vertex region and typically provides
four measurements per track, the first hit generally being in
the insertable B-layer (IBL) installed before Run 2 [49,50].
It is followed by the SemiConductor Tracker (SCT), which
usually provides eight measurements per track. These
silicon detectors are complemented by the transition
radiation tracker (TRT), which enables radially extended
track reconstruction up to || = 2.0. The TRT also provides
electron identification information based on the fraction of
hits (typically 30 in total) above a higher energy-deposit
threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range
|| < 4.9. Within the region || < 3.2, electromagnetic
calorimetry is provided by barrel and end cap high-
granularity lead/liquid-argon (LAr) calorimeters, with an
additional thin LAr presampler covering |n| < 1.8 to
correct for energy loss in material upstream of the calo-
rimeters. Hadronic calorimetry is provided by the steel/
scintillator-tile calorimeter, segmented into three barrel
structures within || < 1.7, and two copper/LAr hadronic
end cap calorimeters. The solid angle coverage is com-
pleted with forward copper/LAr and tungsten/LAr calo-
rimeter modules optimized for electromagnetic and
hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the
deflection of muons in a magnetic field generated by the
superconducting air-core toroidal magnets. The field inte-
gral of the toroids ranges between 2.0 and 6.0 T m across
most of the detector. Three layers of precision chambers,

'ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP
to the centre of the LHC ring, and the y-axis points upward. Polar
coordinates (r, ¢) are used in the transverse plane, ¢ being the
azimuthal angle around the z-axis. The pseudorapidity is defined
in terms of the polar angle 6 as 7 = —1In tan(6/2) and is equal

to the rapidity y = %ln(gfﬁ <) in the relativistic limit. Angular
Ny

distance is measured in units of AR =
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each consisting of layers of monitored drift tubes, cover the
region |n| < 2.7, complemented by cathode-strip chambers
in the forward region, where the background is highest. The
muon trigger system covers the range |7| < 2.4 with
resistive-plate chambers in the barrel, and thin-gap cham-
bers in the end cap regions.

The luminosity is measured mainly by the LUCID-2
[51] detector that records Cherenkov light produced in the
quartz windows of photomultipliers located close to the
beampipe. Events are selected by the first-level trigger
system implemented in custom hardware, followed by
selections made by algorithms implemented in software
in the high-level trigger [52]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below
100 kHz, which the high-level trigger further reduces in
order to record complete events to disk at about 1 kHz.
A software suite [53] is used in data simulation, in the
reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition
systems of the experiment.

III. DATA AND SIMULATED EVENT SAMPLES

This search uses pp collision data at /s = 13 TeV
recorded by the ATLAS experiment from 2015 to 2018.
Only events that satisfy data quality requirements that ensure
the stable operation of the ATLAS detector [54] are consid-
ered. The resulting dataset corresponds to an integrated
luminosity of 140.1 £ 1.2 fb~! [55]. Data are selected using
a combination of single-electron, and single-muon, and
opposite-flavor dilepton (eu) triggers [56,57].

Several Monte Carlo (MC) event generators are used to
simulate the signal and background processes. The MC
samples are used to optimize the event selection, evaluate
efficiencies and acceptances, and to estimate yields. The
main SM backgrounds are Drell-Yan production with
decays into 7-leptons Z/y* — 7+t~ produced in association
with jets (Z + jets), top-quark production (¢7 or single top
quarks) where at least one of the W bosons decay leptoni-
cally, and backgrounds where jets are misidentified as
leptons. Other backgrounds from Higgs bosons decaying
into z-leptons H — w777, Z/y* - ¢~ (¢ = e, u), dibo-
son production, and vector bosons produced in association
with 7 are also included.

Samples of Z + jets and W + jets events were produced
using the SHERPA2.2.11 [58] generator with next-to-leading-
order (NLO) precision matrix elements for up to two
partons, and leading-order (LO) precision for up to five
partons in the five-flavor scheme calculated with the comix
[59] and oPENLOOPS [60-62] libraries. The events were
matched with the SHERPA parton shower [63] using the
MEPS@NLO prescription [64—67] with a dedicated set
of tuned parameters. The NNPDF3.0NNLO set of parton
distribution functions (PDF) [68] was used in the sample
generation and the samples were normalized to a next-to-
next-to-leading-order (NNLO) prediction [69].

Samples of diboson (VV) events were produced with
the SHERPA2.2.1 generator for semileptonic final states or
SHERPA2.2.2 [58] generator for fully leptonic final states.
Fully leptonic final states and semileptonic final states,
where one boson decays leptonically and the other hadroni-
cally, were generated using matrix elements at NLO
accuracy in QCD for up to one additional parton and at
LO accuracy for up to three additional parton emissions.
Samples for the loop-induced processes gg — VV were
generated using LO-accurate matrix elements for up to one
additional parton emission for both the cases of fully
leptonic and semileptonic final states. The matrix element
calculations were matched and merged with the SHERPA
parton shower based on Catani—-Seymour dipole factori-
zation [59,63] using the MEPS@NLO prescription. The
virtual QCD corrections were provided by the OPENLOOPS
library [60-62]. The NNPD3.ONNLO PDF set was used
[68], along with a dedicated set of tuned parton-shower
parameters.

The production of 77 events was modeled using the
POWHEG BOX v2 [70-73] generator at NLO precision in
QCD with the NNPDF3.0NLO PDF set and the hdamp2
parameter was set to 1.5 m, [74], with the top-quark mass
m; setto 172.5 GeV. The parton shower, hadronization, and
underlying event were modeled using PYTHIAS.230 [75] with
the Al4 set of tuned parameters [76] and using the
NNPDF2.3Lo PDF set [77]. The decays of bottom and
charm hadrons were performed by EVTGEN1.6.0 [78].

Single-top-quark production events were modeled with
dedicated samples covering s-channel, z-channel, or W-
associated (tW) production. All three production modes
were modeled using POWHEG BOX v2 [71-73,79-81] at
NLO in QCD with the NNPDF3.0NLO PDF set. For the
s-channel and W production, the calculation is performed
in the five-flavor scheme, while the 7-channel production
uses the four-flavor scheme. Parton shower and hadroniza-
tion of these events were modeled with PYTHIA8.230 using
the Al4 tune and the NNPDF2.3L0 PDF set.

The signal event samples include Higgs boson production
via ggF, VBEF, and VH. For the SM production of the
H — 7~ background process, only the ggF and VBF
production modes are considered. Top-quark-associated
production modes of the SM H — 7~ background process
are negligible.

The sample of Higgs boson production via ggF is
generated at NLO accuracy in QCD using POWHEG BOX v2
[71,72,79,82,83]. The simulation achieves NNLO accuracy
for gg — h observables by reweighting the Higgs boson
rapidity spectrum in HJ-MINLO [84-86] to that of HNNLO
[87]. The Higgs boson production via VBF and VH were
simulated with NLO precision using POWHEG BOX v2

The hgamp Parameter regulates singularities in the emission of
hard radiation in POWHEG. The value is chosen to provide good
description of the #7 system pr.
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[71,72,79,88]. The PDF4LHCI5NnNLO PDF set [89]
was used for all three production modes, while the
parton shower and hadronization were performed using
PYTHIA 8.244 with the A14 set of tuned parameters.

Each of the simulated Higgs production samples are
normalized using dedicated higher-order cross section
calculations. The ggF samples are normalized to the
next-to-next-to-next-to-leading-order (N*LO) cross section
in QCD plus electroweak corrections at next-to-leading
logarithm (NLL) [90-100]. The VBF samples are normal-
ized to an approximate-NNLO QCD cross section with
NLO electroweak corrections [101-103]. Similarly, the VH
samples are normalized to cross sections calculated at
NNLO in QCD with NLO electroweak corrections. The
cross section estimate includes the gg — ZH contribution,
even though it is not simulated explicitly. For the signal
samples, the decay H — aa — bbt* 7~ is performed using
PYTHIA 8.244 and eight distinct mass points were simulated
for the ggF, VBE, and the VH production modes in the
range m, = 12-60 GeV (12, 16, 20, 25, 30, 40, 50
and 60 GeV).

All simulated event samples were processed through a
detailed simulation of the ATLAS detector based on
GEANT4 [104] or a faster simulation where the full
GEANT4 simulation of the calorimeter response is replaced
by a detailed parametrization of the shower shapes [105].
The effects of multiple pp interactions in the same and
neighboring bunch crossings (pileup) were modeled by
overlaying the simulated hard-scattering event with inelas-
tic pp (minimum-bias) events to reproduce the pileup
distributions seen in the data. These inelastic events were
generated with the soft QCD processes of PYTHIA 8.186
[106] using the NNPDF2.3L0 PDF set and the A3 set of
tuned parameters [107].

IV. OBJECT AND EVENT RECONSTRUCTION

Events are required to contain at least one recon-
structed pp collision vertex candidate with at least
two associated ID tracks with pt > 0.5 GeV [108].
The primary vertex (PV) is selected as the vertex with
the highest sum of the squared transverse momentum
of the associated tracks.

Electrons are reconstructed from a seed cluster in the EM
calorimeter matched to a track in the ID [109] and are
required to have pr > 7 GeV and |n| < 2.47. Electrons in
the calorimeter barrel-end cap transition region (1.37 <
|n| < 1.52) are excluded from the analysis. Electrons from
7-lepton decays can be displaced from the PV due to the
long z-lepton lifetime, so no requirement on the transverse
impact parameter (d,) is applied. A requirement on the
longitudinal impact parameter |zpsind| < 0.5 mm is
applied to match the electron track to the PV of the event.
Electrons must satisfy the Medium working point of the
likelihood identification criteria [109]. Electrons satisfying
these requirements are referred to as baseline electrons.

Signal electrons are defined by additionally applying a tight
isolation requirement using both tracking and calorimetry
information with pr-dependent AR cone radius [109]. This
isolation variable rejects electrons that likely originated
from light- or heavy-flavor hadrons. The isolation criterion
is corrected for the presence of a nearby muon by
subtracting the pr of the muon track within the isolation
cone of the electron from the isolation sum. This is
particularly important for low mass signal samples
(m, <20 GeV), where the electrons and muons from
two t-lepton decays in a — t77~ are often found to be
within the isolation cone of each other.

Several methods are used to reconstruct muons, depend-
ing on the availability of tracks in the ID and the MS [110].
In order to benefit from the extended MS coverage up to
|7l =2.7, an ID track is not required in the region
2.5 < |n| <2.7. Muons are selected with pp > 7 GeV
and || < 2.7. As in the case of electrons, the only impact
parameter requirement applied is |zosinf| < 0.5 mm.
Muons must satisfy the Medium identification criterion
[110], comprising the baseline muon selection. Signal
muons are defined with an additional loose requirement
on the isolation in both the inner tracking detector and
calorimeters also with a pr-dependent cone radius [110].
As above, an electron within the isolation cone of a muon is
excluded from the calculation.

Jets are reconstructed using the anti-k, algorithm [111]
implemented in the FASTIET package [112,113] with a
radius parameter R = 0.4. A particle-flow approach [114]
is used for the jet reconstruction. The jet energy scale is
calibrated to the particle level using simulation and further
corrected with in-situ methods [115]. The jet selection
requires pr > 15 GeV and || < 2.5. A multivariate jet
vertex tagger (JVT) based on tracking information is used
to identify a jet as originating from the PV and suppress jets
from pileup interactions for jets with pp < 60 GeV and
ln| <2.4 [116].

The strategy to identify jets containing b-hadrons
depends on the kinematics of the signal. For low signal
masses (m, < 20 GeV), pairs of b-hadrons from a — bb
decays tend to be merged in the detector and are identified
as a single reconstructed jet. DEXTER [26] is an end-to-end
algorithm that classifies jets into three categories: merged
b-jets, single b-jets, and other jet flavors. Track-jets
associated to jets are reconstructed by reclustering jets
with pp > 20 GeV and |n| < 2.0, together with all ID
tracks using an anti-k, algorithm with radius parameter
R = 0.8. When the track-jet contains a single R = 0.4 jet,
the jet is called isolated. An exclusive-k, clustering of the

track-jet tracks into precisely two sub-jets (ex—kgz)) [117]is
used to reconstruct the flight axes of the two b-jets within a

track-jet. Both ex-kﬁz) track-subjets are required to have
pt > 5 GeV, where the transverse momentum of the subjet
is estimated by summing the four-momentum of the
associated tracks. The DEXTER algorithm uses the tracks

052013-4



SEARCH FOR DECAYS OF THE HIGGS BOSON INTO A PAIR ...

PHYS. REV. D 110, 052013 (2024)

from the R = 0.8 track-jets to reconstruct secondary
vertices, which provide a distinctive signature of merged
b-jets when more than one is reconstructed inside the same
jet or when they merge in a single secondary vertex with
very high mass. Displaced tracks, secondary vertices, and
the properties of the two ex-k£2> jets are used in a deep set
neural network (NN) to classify the flavor of the jet. The
NN exploits the presence of highly displaced tracks along
the two flight axes as well as the reconstruction of multiple
secondary vertices with large mass to resolve the two b-jets.

In the case of jets which are not merged, the jet flavor is
identified with the DLIr algorithm [118] combining track
impact parameter values with information from secondary
vertices reconstructed within the jet. A working point
corresponding to 60% efficiency for identifying B-jets is
used for DEXTER, and a working point corresponding to
85% efficiency for identifying b-jets is used for DLIr.

The b-jet identification efficiency of the DLIr algorithm
is measured in collider data by using t7, Z + jets, W + jets,
and multijet events [119-121]. A dedicated measurement
of the DLIr algorithm identification efficiency for jets with
15 < pt < 20 GeV was performed for this search. The B-
jet identification efficiency of the DEXTER algorithm is also
measured in collider data by using ¢7 and Z + g(— bb)
events [26]. These measurements are used to correct the
identification efficiency of heavy-flavored jets in simula-
tion. The calibration procedure corrects the identification
efficiency in simulation as a function of the jet pr and 5 to
match the one observed in data. Discrepancies between the
identification efficiency in simulation and in data stem from
both mismodeling of the detector response and of the
underlying physics processes.

The reconstruction of 7,4 candidates is seeded using
jets reconstructed using the anti-k, algorithm with distance
parameter R = 0.4 whose inputs are topoclusters, three-
dimensional clusters of calorimeter cells [122]. Recon-
structed 7,4 candidates have pr > 20 GeV and |n| < 2.5,
excluding the region 1.37 < || < 1.52. The identification
of 73,4 uses a recurrent neural network (RNN) algorithm,
which uses as inputs tracks and calorimeter clusters
associated to 7y,,q candidates, as well as high-level dis-
criminating variables [123]. Baseline 7,4 candidates are
required to pass the very loose working point, while signal
Thaa candidates are further required to satisfy the medium
working point [123]. A dedicated multivariate electron veto
is applied to 7},,q candidates to reject electrons misidentified
as Tp,q- The medium working point is used for the boosted-
decision-tree-based electron veto [124].

A dedicated z-jet-vertex algorithm (TJVA) is used to
associate 7y, candidates to a PV [125]. The algorithm does
not apply impact parameter requirements and finds the
vertex with the largest fraction of the pt from the tracks
associated with the 7},,4 within a distance of R = 0.2 around
the candidate. While TIVA does not apply impact param-
eter requirements, tracks must be sufficiently close to the

Thad Vertex, so two selections are applied on the impact
parameters of tracks: |dI'VA| < 1.0 mm and |z}'VA sin 6] <
1.5 mm [126].

An overlap removal procedure is applied to prevent
double counting of objects. This procedure is applied to the
objects described previously that satisfy the baseline
criteria, with the exception of muons where candidates
satisfying the very loose identification criterion are used for
the overlap removal and the medium identification criteria
is used after overlap removal for the baseline selection
criteria. This reduces backgrounds from Z/y* — pu*u~
events where a very loose muon can be misidentified as
a 7,9 candidate.

The overlap removal procedure is executed as follows.
The closest jet within a radius of AR = 0.2 of a selected
electron is removed. If the nearest jet is within AR = 0.4 of
an electron, the electron is excluded from the analysis.
Muons are excluded from the analysis if they are separated
from the nearest jet by AR < 0.4, since this reduces the
background from heavy-flavor decays inside jets. However,
if the jet has fewer than three associated tracks, the muon is
selected and the jet is excluded from the analysis instead.
This avoids an inefficiency for high-energy muons under-
going significant energy loss in the calorimeter. Electrons
are excluded from the analysis if they share their track with
a muon.

From the remaining jets, isolated jets that satisfy the 60%
DEXTER working point are classified as B-jets. Isolated jets
that do not satisfy the 60% DEXTER working point and
satisfy the 85% DLIr working point are classified as
selected b-jets. Isolated jets that do not satisfy the 60%
DEXTER working point and do not satisfy the 85% DLIr
working point are not used in the analysis. Non-isolated jets
that satisfy the 85% DLIr working point are also classified
as b-jets, while those that fail are excluded from the
analysis. Muons in the annular region 0.4 < AR < 0.8
region around a B-jet which have a relative calorimeter-
based isolation larger than 0.1 are excluded. Electrons
satisfying the same criteria are also removed from the
analysis. Finally, any B-jet with either an electron or a
muon in the annular 0.4 < AR < 0.8 region and relative
calorimeter-based isolation less than 0.1 are excluded from
the analysis.

Muons that are excluded in the overlap removal pro-
cedure, but that are within AR < 0.3 of a b-jet or within
AR < 0.3 of either of the ex—kgz) track-subjets of a B-jet are
classified as soft muons. The leading soft muon associated
to a b-jet or to a ex—kgz) track-subjet is added to the jet
four momentum to account for semileptonic decays of
b-hadrons in the jet energy.

The missing transverse momentum P, with magni-
tude EMS, is calculated using the magnitude of the vector
sum of the pr of all reconstructed objects and any addi-
tional tracks not associated to any reconstructed objects in
the event [127]. The missing transverse energy (EWss)
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measures the imbalance of the transverse momentum in the
detector. In this search ET™ is expected to arise from the
neutrinos from z-lepton decays.

V. EVENT SELECTION

Events are placed in exclusive categories defined by the
final state objects from the z+7~ and bb systems, as shown
in Fig. 2. The trigger strategy used to select events depends
on the leptons in the final state. For the eu categories, three
orthogonal trigger regions are defined. If the event has at
least one electron with pt > 27 GeV, the single electron
trigger is used and is required to match the selected
electron. If the event has no such electron, but has a muon
with pr > 27 GeV, the single muon trigger is equivalently
used and is required to match the selected muon. If there are
no electrons nor muons satisfying the previous criteria, then
opposite-flavor ey triggers are used, also requiring trigger
matching for both leptons. For the ety,,q and uzy,,q catego-
ries, the single electron or muon trigger of the correspond-
ing flavor with pt > 27 GeV is used and matched to the
electron or muon respectively.

Events in the eu categories are required to have exactly
one electron and one muon with opposite-sign (OS) charge
that satisfy the signal selection criteria. In addition, events
should have at most one baseline and no signal 7,4
candidate. In the ety and ur,,y categories, events are
required to have exactly one electron and one muon,
respectively, and exactly one signal 7,4 with OS charge.
For the eu categories, the electron and muon are required to
be separated by AR(e, i) > 0.1 and for the ety,q and pzy,g
categories, this requirement is AR(e/u,7y,q) > 0.2, to
reduce backgrounds from low-mass hadronic decays.
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E ATLAS e Data 1t
85000 E Vs=13TeV, 140 ! Z(—tr)+jets [l Non-prompt leptons
30000F- Kt,, Channel Fake 7,,, [l Other
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FIG. 3.

The analysis categories are also defined by requiring one
B-jet, or one or two b-jets.

Two additional criteria are applied in each category to
define regions enhanced in backgrounds. These criteria are
based on the kinematics of the visible z-lepton decay
products, i.e., excluding the neutrinos. The visible mass
of the z-lepton decay products m"(zz) is lower for signal
than for the Z — 777~ background, due to the lower mass
of the a-boson. A requirement is thus applied on the visible
mass for all categories: m‘(z7) = m"(eu) < 45 GeV
for the ey categories and m"(77) = m"(ety,y) or
m"S (utpaq) < 60 GeV for the ety and pry,g categories.
The difference in the requirements is due to the smaller
number of neutrinos in the categories with a hadronic
7-lepton compared to the ey case. A low mass requirement
on the visible mass of m***(zz) > 4 GeV is also applied to
reduce backgrounds from hadronic decays. The sample
obtained by inverting the higher requirement on the visible
mass is used to correct the modeling of the Z + jets
background (see Sec. VI), and is called the “Z region.”
Figure 3(a) demonstrates the ability of the background
prediction to model the data in the most sensitive pty,q
category. The background model performs similarly well in
the et},,q and eu categories.

When compared to the background, leptons from signal
processes also have lower transverse mass calculated
with the z-lepton visible transverse momentum p¥s(z)
and EP. In the case of leptonic decays of the z-lepton,
the visible pr is defined as the transverse momentum of
the electron or muon. The transverse mass is defined as:
mr(7) = \/2p¥S(2) EF(1 — cos (A¢)), where Ag is the
difference in the azimuthal angle between p¥(7) and EsS.
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£ wr,, channel Fake 1, [l Other E
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8 - * signal scaled to o(H— aa bt )=agy(H)<10 7]
o F SR + Z region ; tf region 3
= 30000F ]
§2] F ]
& 20000F w ]
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(a) Visible mass m"* (uty,q) and (b) sum of the transverse mass Zm; distributions for signal and the expected background.

Events with high m"® (uzy,,4) and high Zm are included in the #7 region. In order to compare the shapes, the expected signal distribution
is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to bbz"z~. The yields for the
backgrounds correspond to the values obtained after applying the corrections to the background modeling described in Sec. VI. The cuts
separating the signal region (SR) from the Z and 7 regions are indicated by the vertical dashed line. The hashed area represents the total
uncertainty of the background. Overflow events are included in the last bins.
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TABLE L.

Event selection for the analysis categories and the background regions. The background regions only

list the requirements that are different from the signal region. The definition of signal leptons can be found

in Sec. IV.

Region eu

€Thad OF UThag

Signal region
0 signal 71,4

AR(e.p) > 0.1
4 < m"s(r7) < 45 GeV

Z region m"s(r7) > 45 GeV
tf region
SS region 1 SS signal ey pair

1 OS signal ey pair

1 OS signal ety,q Or ptp,q pair
1 signal 7y,,4
AR(¢,7) > 0.2
4 < m*5(z7) < 60 GeV
Emy < 120 GeV
1 B-jet or 1 or 2 b-jets

m*s(zz) > 60 GeV

Emy > 120 GeV, no m"*(z7) requirement

1 SS signal ety,,q or pty,g pair

A requirement is applied on the sum of the transverse
mass calculated for the two z-leptons Zmy < 120 GeV,
where Zmp = mp(7') + m(z*"*4). Figure 3(b) shows
the distribution of Xm- in the pz;,q categories. The sample
obtained by inverting the requirement on Xmy and is
used to correct the modeling of the 77 background (see
Section VI), and is called the “f7 region.” There is small
signal contamination into the Z and 77 regions, only =1 signal
event is expected assuming B(H — aa — bbt*t™) = 10%.

Finally, a same-sign (SS) region, enhanced in back-
grounds containing jets that are misidentified as electrons,
muons or hadronic taus, is defined by applying the same
selection criteria as the signal region but requiring the e, y.
and 7y,4 to have same-sign charge. This region is used
to estimate backgrounds with nonprompt leptons (see
Sec. VI). Table I summarizes the event selection used in
the analysis.

VI. BACKGROUND ESTIMATION

Several SM processes can produce final states that satisfy
the object and event selections described previously. The
contributions from these processes are estimated with
simulation or data-driven methods. Background processes
with all leptons originating from the decay of vector bosons
are defined as prompt and described by simulation. The
dominant sources of prompt backgrounds are top-quark
production, from #7 and single-top events, and Z + jets
where the Z boson decays into pairs of z-leptons. Other
backgrounds estimated from simulation include 2 — tt7™,
diboson production, f7 in association with a vector boson,
and Z/y* — £T¢~ where one lepton is misidentified as a
Thaa 1D the ety,q and pzy,y categories.

The modeling of two of the main prompt backgrounds,
Z + jets and 7, in simulation is corrected to match the data
in regions enhanced in these backgrounds (see Sec. V). For
the 7f background, the simulation is reweighted to match
the number of b-jets and the number of jets in the #7 region.

The 7 region is devoid of Z + jets events and performing
the 7 correction first minimizes the need for further
iterations. In the ey categories, an additional correction
is applied as a function of the variable Hr, defined as the
scalar sum of the pr of all jets and leptons in the event. The
reweighting procedure improves the description of the pr
of the 7 system and the description of the number of
additional jets produced in association with the 77 system.
The same strategy was applied in other ATLAS searches
with large 77 background [128,129]. After the /7 reweight-
ing, the Z 4 jets background is corrected with two nor-
malization factors. The Z — 7'z~ and Z — ete”
backgrounds are scaled so that the predicted yields from
simulation in two m, bins match the observed number of
events in the Z region.

Background processes with at least one lepton originat-
ing from the nonprompt decay of a hadron, from photon
conversions, or from the misidentification of other particles
are defined as nonprompt backgrounds. A tight-to-loose
data-driven method [130] is used to estimate this back-
ground contribution. As described in Sec. IV, each lepton
has two criteria baseline and signal. Leptons that satisfy the
baseline selection but not the signal one are called loose
(L), while those satisfying the signal selection are called
tight (7). The estimates of the nonprompt backgrounds are
obtained by assigning a weight w; = fe/(e — f) to each
loose lepton and a weight wy = &(1 — f)/(e — f) to each
tight lepton [130]. Here, f and ¢ are, respectively, the rate
with which nonprompt and prompt leptons that satisfy the
baseline selection also satisfy the signal criteria. The sign
of the overall event weight is adjusted depending on the
number of loose leptons to avoid double-counting of
background events.

The nonprompt rates for electrons and muons are
measured with events in the SS region that satisfy
AR(e,u) > 1.4. Events with one baseline muon (electron)
and one signal electron (muon) are used to estimate the
muon (electron) nonprompt rate f, (f,). The electron and
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muon nonprompt rates are parametrized as a function of the
lepton pr, n, whether or not the lepton is matched to a
trigger object, and the number of b-jets in the event.
The prompt rates for electrons (muons) €, (¢,) are estimated
as a function of the same variables from simulations of
Z - 777 events.

The condition AR(e, u) > 1.4 ensures that the leptons do
not interfere in their identification efficiency. When the
weights are applied in the eu signal region, a geometrical
correction is necessary to account for the overlap of
isolation cones with AR(e,u) < 0.6. The correction is
applied to events with two loose leptons and is para-
metrized as

(=wiwp )" = (1= f(AR))(-wiwp) + f(AR)

1
XE(WZ‘V} +wiwp),

f(AR) =c x (%arccos(%) _%W>

where f(AR) is the fraction of the isolation cone that
overlaps, ¢ is an arbitrary constant fit from the data in the
SS region, and r = 0.3 is the radius of the isolation cone.

For hadronic taus, the prompt rate is taken as ¢, = 1 in
the weights w; and wy, and MC simulation is used to
remove the contribution from prompt loose taus. The
nonprompt rate is measured separately with three different
processes: Z(— pp”) + Thag, jet + Thag Where the 7p,4
candidate has high JVT score, and jet + 7,4 with low
JVT score. In each region, the nonprompt rate is para-
meterized as a function of the 7,4 p, #, decay mode, and
the number of b-jets in the event. The 7,4 nonprompt rate
used to estimate the nonprompt background is written as a
linear combination of the three estimates

fe= [fZ—)/ﬁ/f(l - rQCD) +fhithVTrQCD](1 - rLJVT)

+ flowIVTTLIVT>

where the coefficient rocp is the fraction of nonprompt
background events with two nonprompt leptons in each ezy,,q
and pty,q categories and the coefficient ry jyt is determined
by a maximum-likelihood fit to the baseline 7,4 seed jet
width distribution. The coefficients rocp and ryyyr are
determined separately for each category and region of the
analysis, as well as for each z-lepton decay mode.

VII. ANALYSIS STRATEGY

In each analysis category, a NN is trained using the
kinematic variables of the reconstructed heavy-flavor jets
and z-leptons. The NN is parametrized as a function of the
a-boson mass in order to obtain an optimal discriminant for
each different simulated mass [131]. During training, the
background is assigned a random value as the value of m,,

while for signal the simulated mass is used. The signal
events have different correlations between physical observ-
ables and the generated mass than the background, which
the network exploits. Once the network is trained, the NN
output score is calculated with the true mass replaced by the
mass hypothesis under consideration for all events, be they
signal, background, or data.

Due to the neutrinos in the decays of the z-leptons, the
four-momentum of the two z-leptons cannot be directly
reconstructed. An algorithm called missing-mass calculator
(MMC) [132] uses a Markov-chain MC to perform a
maximum likelihood estimate of the neutrinos four-
momenta, which is then used to reconstruct the input
variables of the parameterized NN (pNN).

Beyond the true a-boson mass m"™<¢(zz), the pNNs for all
categories use the visible mass m"**(z7), the MMC-based
mass of the neutrino pair mMM€ () in each 7 — ev,7, or
7 — v, decay, the missing transverse energy E?iss, the
two transverse masses calculated with the visible pp of
the final-state z-leptons my(7), the leading heavy-flavor
jet pr(b*), and the visible transverse momentum
pyS(rrb'*™). The variable D, [133], defined as

Dy = [P — 0.85p(e7)] - £,

where Z is a unit vector in the direction of the bisector
between the two z-leptons, is also used as input to the
network in all categories. D, provides an estimate of the
misalignment between the missing transverse momentum
and the visible 77 subsystem.

In categories with two b-jets or one B-jet, additional
input variables are used: the subleading heavy-flavor jet
pr(b*®ed) " the transverse momentum pp(bb) and mass
m(bb) of the bb subsystem, as well as the visible m*'*(bbrr)
and MMC-based mMM€(bbr7) mass estimates of the Higgs

boson. In categories with a B-jet, the four-momentum of the

two ex-kﬁz) track-subjets are used as proxies for individual

heavy-flavor jets. Table II summarizes the variables used as
input for the NN. Distributions of the pNN input variables for
the (uz,4, 2b) category are shown in Fig. 4. Distributions of
the pNN(m,, ) output variable for a value of m, = 30 GeV in
the (uzy,q, 2b) category and for m, = 12 GeV inthe (ey, 1B)
category are shown in Fig. 5.

Each pNN is a fully connected network with three
hidden layers with 15 neurons each. The activation function
is a leaky ReLU activation function with slope of 0.01
when the input is negative. The Objax [134] framework is
used with the Adam optimization algorithm [135] and a
binary cross entropy loss function. The signal sample used
inthe NN training contains all H — aa — bbt" 7~ simulated
samples, which are normalized so that each of them has the
expected number of observed events. The background
sample used in the NN training is composed of composed
of top-quark, Z(— 77) + jets and nonprompt events.
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TABLE II. Neural-network input variables with a summary of the final-state property it describes.

Feature Description

ml_rue (

77) During training: generated a-boson mass for signal MC. Background events are assigned a random value
of the eight signal masses.
During testing: the mass hypothesis under consideration.

m*(z7) Visible mass of the 77 system.
pr(77) pr of the 7z system.
mMME () MMC-based mass of the two neutrinos in 7 — ev, 7, or 7 — ev,b, decays.
Efss Missing transverse energy.
mr(7) Transverse mass calculated with the visible pt of the final-state z-leptons.
pr(b'd) Transverse momentum of the leading final-state b-jet.
PYS (zebld) Visible pr of the 7zb'* system.
Dy Misalignment between the E7"° vector and the 77 system.
Categories with a B-jet or 2b-jets
pr(bseblead) Transverse momentum of the subleading final-state b-jet.
pr(bb) Transverse momentum of the bb system.
m(bb) Mass of the bb system.
m"S(bbrr isible mass of the Higgs boson system.
vVis(pb Visibl f the H b t
mMMC (bprr) MMC-based mass of the Higgs boson system.
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FIG. 4. The pNN input variables (a) visible mass m""(uzy,q), (b) visible transverse momentum py*(uty,q), () transverse mass
mep(p, EX5), and (d) MMC mass mMMC(bbzz) are shown in the SR with no cut on the pNN discriminant. The signal shape is normalized
to the same integral as the total background prediction. The hashed area represents the total uncertainty of the background. Overflow
events are included in the last bins.
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Distribution of In(pNN) output score in the (a) (uzp,g, 2b) category with m, = 30 GeV and (b) (eu, 1b) category with

m, = 12 GeV. The signal shape is normalized to the integral of the total background model. The hashed area represents the total
uncertainty of the background. Underflow and overflow events are included in the first and last bins, respectively.

For each a-boson hypothesis m,, a statistical analysis is
performed simultaneously in all nine categories of the
analysis. To reduce the correlation among different m,
hypotheses, only events which satisfy 0.95m, — 6 GeV <
mMMC(77) < 1.15m, + 1 GeV in the ety,q and uty,q cat-
egories, or 0.75m, —6 GeV < mMMC(z7) < 1.25m, +
1 GeV in the ey categories are used. The pNN score
calculated with this subset of events and m"™(77) = m,, is
split into three bins with different signal-to-background
ratios (S/B). These bins are called CR, SR1, and SR2, in
order of increasing S/B. Figure 6 shows the ranges for
each mass hypothesis tested in this paper while Fig. 7
shows the three regions used to search for a signal

with m, = 30 GeV.

100
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A test statistic is built from a profile likelihood ratio
calculated using the pyhf software [136]. The likelihood is
given by the product of Poisson probability distributions
for the three bins in each of the nine categories and the
Gaussian distributions, which implement constraint terms
for each source of systematic uncertainty as a function of
nuisance parameters (NP).
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FIG. 6. Mass distribution of the 7z system for each of the generated MC signal mass points for the (a) 7}, and (b) ey categories. The
rectangle above each histogram shows the domain used to test each mass hypothesis. Note that nearby mass hypotheses have
overlapping regions. All distributions are normalized assuming B(H — aa — bbt*7~) = 10%.
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FIG. 7. As an illustration, the binning used in the two-
dimensional plane of pNN score and mass for the uzy,q categories
and the m, = 30 GeV mass hypothesis is shown.

where y is the signal strength, a is the vector of nuisance
parameters, s, ; and b, ; are the expected number of signal
and background events in the jth bin of the category c,
and n; is the observed number of events. Since the
signal templates are normalized to the SM Higgs inclusive
cross section, the signal strength is equal to (¢(H)/
osm(H))B(H — aa — bbr*7™). Note that the values s, ;
and b ; are themselves functions of the set of NPs. Each
systematic uncertainty is fully correlated across all bins and
categories.

Categories with very low signal acceptance are suppressed
from the likelihood product. For the m, = 12 GeV hypoth-
esis, only the ey categories are used. At this mass hypothesis,
the cut AR > 0.2 between the z-leptons and lepton removes
nearly all signal acceptance. For m, > 30 GeV, the catego-
ries with B-jets are similarly not used. Removing these
categories does not impact the observed limit due to the lack
of signal acceptance. The one-sided alternative likelihood
ratio test statistic for upper limits g, [137] was used.

VIII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties include experimental uncertain-
ties in the reconstructed objects, uncertainties in the data-
driven model for the nonprompt-lepton background, and
modeling uncertainties in the simulated background and
signal samples.

Experimental uncertainties include momentum scale
and resolution uncertainties for all reconstructed objects:
muons, electrons, hadronic z-leptons, jets, and missing
transverse energy. These uncertainties are estimated by
using calibrations performed for each individual object and
by comparing them among different simulation models.
These uncertainties are considered in the ETS recon-
struction, and additional uncertainties for soft tracks are
estimated from data [127].

Uncertainties in the reconstruction, identification and
trigger efficiency of electrons [56,109] and muons [57,110]
are determined from tag-and-probe efficiency measure-
ments using Z - ¢~ and J/y — £T¢~ events. Simi-
larly, uncertainties in the reconstruction and identification
efficiency of 7,4 are determined from tag-and-probe
efficiency measurements using Z — 7,7p,q events (where
7, denotes a ¢ — uv,v, decay) and by varying the physical
models used for the simulation of hadronic interactions in
the detector [123,126]. An additional uncertainty is esti-
mated for the electron-veto efficiency based on a tag-and-
probe measurement using Z — ee events [124].

Uncertainties in the jet vertex tagger efficiency are
estimated from efficiency measurements using Z(— p*pu~)
events with a single jet recoiling against the dimuon pair
[116]. A dedicated efficiency measurement for jets with
15 < pr <20 GeV was performed for this search.

Uncertainties in the DLIr identification efficiency are
estimated from a combination of several measurements
sensitive to the true jet flavor. The efficiency is measured in
several bins of jet pr, 1, and separately for true b-, c-, and
light-jets [119-121]. A dedicated efficiency measurement
for jets with 15 < pr <20 GeV was performed for this
search. The measurement uses #f and Z + jets events to
measure the efficiency of the DLIr algorithm in different 7
bins for b- and non-b-jets (i.e., c- and light-jets, which are
considered together in this dedicated measurement). The
uncertainties in the flavor-tagging efficiency of at low
jet pr are considered uncorrelated with the ones for jet
pt > 20 GeV, but the correlations between different jet
n bins and between the different true jet flavors are
accounted for.

Uncertainties in the DEXTER identification efficiency are
estimated from the efficiency measurement using 77 and
Z(— ¢¢) + g(— bb) events [26]. The efficiency and asso-
ciated uncertainties are determined in bins of jet pr, 1, and
separately for b- and B-jets. The number of light-jets
satisfying the DEXTER identification selection is negligible.

Modeling uncertainties for 77 and Z + jets background
processes and for the Higgs boson signal process are
estimated by varying the hard-process renormalization
and factorization scales, and by using the NNPDF replicas
to estimate PDF uncertainties. For the 7 background
process, additional modeling uncertainties are esti-
mated by comparing the prediction from POWHEG and
MADGRAPH5_MC@NLO [138], by varying the renormaliza-
tion scale used to simulate the initial- and final-state
radiation, and by comparing the prediction using PYTHIA
and HERWIG [139] as parton showers. For the Z + jets
background process, additional modeling uncertainties in
the fraction of heavy-flavored associated jets are estimated
by varying the resummation (QSF) and merging (CKKM)
scales in SHERPA [58,63]. For simplicity, the variations are
estimated without detector simulation, but in a fiducial
region identical to the one used in the search. In addition to
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generator-based estimates, uncertainties associated with the
reweighting procedure in the 7 and Z regions are propa-
gated to the final result.

Several uncorrelated sources of systematic uncertainties
are considered for background events with nonprompt
leptons. Statistical uncertainties coming from the limited
number of events in the regions used to measure the prompt
and nonprompt lepton efficiencies are generally negligible.
Statistical uncertainties coming from the limited number of

data events with at least one loose lepton are propagated to
the final result. In addition to uncertainties of a statistical
source, the following uncertainties are considered for back-
ground events with nonprompt leptons. Each uncertainty is
estimated separately for electrons, muons, and hadronic taus.
(i) Prompt-lepton efficiency: the uncertainty is esti-
mated by comparing the efficiency determined from
simulated Z + jets events with the one estimated

from simulated 77 events.
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FIG. 8. The pNN spectrum in the three bins are shown separately for each mass hypothesis in the (a) (ey, 10) and (b) (uzhaq, 2D)
category. The signal shape (normalized to B(H — aa — bbt"7~) = 1) for each corresponding mass hypothesis is overlaid on top of the
SM prediction. The bins divided by vertical dashed lines are used for testing different m, hypotheses indicated as a text in the figure.
Bins used for different m, hypotheses are not statistically independent. Note that the 12 GeV mass point is not shown for the (7,4, 20)
category because the signal acceptance is very low. The hashed area represents the total uncertainty of the background.
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(i) Nonprompt-lepton composition: for electrons and (iii) Prompt-lepton subtraction: the uncertainty is esti-
muons, this uncertainty is estimated by comparing mated by varying the cross section of processes with
the nonprompt-lepton efficiency measured in the prompt leptons by 30% in the regions used to
different analysis categories with the efficiency estimate nonprompt efficiencies.
measured in a region with zero b- and B-jets. For The uncertainty in the combined 2015-2018 integrated

hadronic taus, this uncertainty is obtained by using  luminosity is 0.83% [55], obtained using the LUCID-2
the same region without heavy-flavored jets to  detector for the main luminosity measurement, and com-

estimate variations on rocp and rpyyr. plemented by measurements using the ID and the
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FIG. 9. The pNN spectrum in the three bins are shown separately for each mass hypothesis in the (a) (eu, 1B) and (b) (e7yaq, 2D)
categories. The signal shape (normalized to B(H — aa — bbzt) = 1) for each corresponding mass hypothesis is overlaid on top of the
SM prediction. The bins divided by vertical dashed lines are used for testing different m, hypotheses indicated as a text in the figure.
Bins used for different m, hypotheses are not statistically independent. The hashed area represents the total uncertainty of the
background.
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calorimeters. The uncertainty in the pileup model is
determined by varying the estimate of the inelastic pp
cross section between the value estimated by using only the
LUCID-2 detector and the value estimated using only
the ID.

IX. RESULTS

Different a-boson mass hypotheses are tested
m, = (12,16, 20,25, 30,40, 50, 60) GeV. Figures 8 and 9
show the pNN distribution for each hypothesis in the three
pNN bins used this search for the (e, 1b) and (e7y,q)
categories, respectively. While the mMMC(zz) window
reduces the correlation between different hypotheses,
the events in the histogram for different masses are not
completely independent. No significant excess over the
background expectation is observed for any m, hypothesis.
The largest deviation is a local p-value of 0.055 at
m, =20 GeV.

Upper limits on (¢(H)/os(H))B(H — aa — bbt77)
are determined at 95% confidence level (CL) using the CL;
technique [137] and the g, test statistic described in
Sec. VII. The SM Higgs boson production cross section
used is ogy(H) = 55.7 pb [140]. Table III shows the

TABLE III.

impact of dominant sources of systematic uncertainties
in the expected upper limit for different m, hypotheses. The
impact is estimated by the difference between the expected
upper limit when only a group of uncertainties are
considered and the case where no systematic uncertainty
is considered. B-jet identification efficiency uncertainty is
an important source of systematic uncertainty at low value
of m, due to the difficulty in measuring the identification
efficiency of merged B-jets with low mass and low pr.
Figure 10(a) compares the observed upper limits with the
expected limits assuming the median value of g, under
the background-only hypothesis. Figure 10(b) compares
the expected limits for categories with heavy-flavor objects
(B- or b-jets). The category using a B-jet is especially
sensitive in the low-mass regime, where the bb system is
collimated into a single object. Regarding the z-lepton-
decay mode, the prp,y channel dominates the sensitivity,
except for the low-mass regime where ey dominates due to
the isolation criterion, which is corrected for the presence
of nearby leptons.

This is the first search in ATLAS for exotic decays of the
Higgs boson in the final state H — aa — bbr*7~. The
observed limit is up to a factor of two better at low masses
when compared to previous results [28] due to the use of a

Impact of different group of systematic uncertainties on the upper limit on (¢(H)/osy(H))X

B(H — aa — bbt*7™). The different systematic uncertainties group are considered individually in each line of the
table. The larger the difference relative to the expected limit without systematic uncertainties (stat-only), the more

important the uncertainty group is for the final result. The entries wit

only limit.

IT3E2)

change by less than 1% relative to the stat-

Expected limit on (6(H)/osy(H))B(H — aa — bbr*17)

Uncertainty source m, = 12 GeV m, = 25 GeV m, = 60 GeV
Stat-only limit 1.34 1.79 3.00
Observed limit 2.89 2.02 3.37
MC statistics 1.42 1.81 3.04
Experimental 2.72 1.94 3.21
Detector response 243 1.84 3.03
Luminosity and pileup 1.37 e e
b-tagging e 1.81
B-tagging 2.35 e
Jet and Efiss e 1.83
Electrons 1.36 e
Muons 1.35
Taus e
Data-driven normalization 1.58 1.94 3.19
Non-prompt leptons 1.58 1.85 3.16
Non-prompt taus I 1.86 3.10
MC reweighting .. e
Theoretical modeling 1.38 1.89 3.04
Background 1.37 1.87 3.03
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FIG. 10. The observed (solid) 95% C.L. upper limits on (6(H)/osy(H))B(H — aa — bbr*77) as a function of m, and the expected
(dashed) limits under the background-only hypothesis when (a) combining all categories and (b) considering different categories based
on the heavy-flavor objects separately. In the combined plot (a) the inner green and outer yellow shaded bands show the +16 and +20
uncertainties of the expected limits. The mass hypothesis m, is probed between 12 and 60 GeV for the values shown with markers.
A linear interpolation validated with MC simulation between adjacent mass points is used.

novel identification algorithm for low-mass merged B-jets.
In several BSM models, final state with h-quarks have large
branching ratio and the result provided here can place strict
limits on the existence of exotic decays of the Higgs boson.

X. CONCLUSION

This paper presents the first search by the ATLAS
experiment for exotic decays of the Higgs boson into a
pair of pseudoscalar particles, H — aa, where the a-boson
decays into two b-quarks and two z-leptons. The analysis is
performed using the 140 fb~! of proton—proton collision
data at a center-of-mass energy of 13 TeV recorded by the
ATLAS detector at the LHC between 2015 and 2018. The
search makes use of heavy-flavor-tagging techniques to
target collimated a — bb decays and a mass-parameterized
neural network to enhance the sensitivity. The analysis
categorizes events depending on the z-lepton decay modes:
ey, etp,g, and pty,y, as well as the strategy for identifying
heavy-flavor jets: a merged b-jet pair, B-jet, and one or two
single b-jets. No significant excess above the SM back-
ground expectation is observed, and upper limits at
95% confidence level are set on B(H — aa — bbr'17)
of 2.2%-3.9% for pseudoscalar mass values in the range
12 GeV < m, < 60 GeV, assuming the SM Higgs boson
production cross section. These results contribute to the
broad program of searches for H — aa decays in ATLAS
and can be used to set constraints on a variety of BSM
scenarios featuring such exotic Higgs decays.
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