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This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar
particles, H → aa, where one pseudoscalar decays into a b-quark pair and the other decays into a
τ-lepton pair, in the mass range 12 ≤ ma ≤ 60 GeV. The analysis uses pp collision data at

ffiffiffi

s
p ¼

13 TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of
140 fb−1. No significant excess above the Standard Model (SM) prediction is observed. Assuming the
SM Higgs boson production cross section, the search sets upper limits at 95% confidence level on the
branching ratio of Higgs bosons decaying into bb̄τþτ−, BðH → aa → bb̄τþτ−), between 2.2% and 3.9%
depending on the pseudoscalar mass.
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I. INTRODUCTION

Following the observation of the Higgs boson H
with mass mH near 125 GeV by the ATLAS and CMS
collaborations [1,2], studies of its properties have been
important programs of research. Global analyses of mea-
surements of Higgs boson properties constrain the branch-
ing ratio of the Higgs boson into undetected beyond the
Standard Model (BSM) particles to approximately Bu ≲

12% [3,4]. Higgs boson decays are particularly sensitive to
new physics due to the small total width (ΓH ≈ 4 MeV).
Even very small couplings to new particles can give sizable
branching ratios and can be compatible with available
measurements [5].
Extensions of the Standard Model (SM) that include new

light pseudoscalars, called a-bosons, can give rise to exotic
Higgs boson decays H → aa. Such new light particles
appear in theories with an extended Higgs sector [6–10],
dark matter models [11–15], models with a first-order elec-
troweak phase transition [16,17], and theories of neutral
naturalness [18,19]. Signatures ofH → aa can also arise in
models with hidden-sector particles that are singlets under
the SM gauge transformations [5,20–23]. In scenarios
where the a-boson mixes with the SM Higgs boson and
inherits its Yukawa couplings to fermions, decays of the
a-boson into heavy fermions such as b-quarks and τ-leptons

are favored, and the process H → aa → bb̄τþτ−, shown
in Fig. 1, is expected to have a sizeable branching ratio in the
mass range 2mb < ma < mH=2 [5,24].
This paper presents a search for the exotic Higgs boson

decay H → aa → bb̄τþτ− and uses the full Run-2
dataset of pp collisions at

ffiffiffi

s
p ¼ 13 TeV recorded with

the ATLAS detector corresponding to an integrated lumi-
nosity 140 fb−1. The analysis is performed over the mass
range 12 < ma < 60 GeV and targets the following pro-
duction modes of the Higgs boson: gluon-gluon fusion
(ggF), vector boson fusion (VBF), and associated produc-
tion with a vector boson (VH). The associated production
of a top-antitop-quark pair (tt̄) with a Higgs boson provides
a negligible signal contribution due to (i) the low cross
section and (ii) the additional b-quarks from the top-quark
decays resulting in a reduced signal acceptance. Therefore,
this production mode is not considered. Different analysis
categories are defined depending on the τ-lepton decay
modes, which can be into electrons (e), muons (μ), or
hadrons (τhad, also “hadronic taus”). Due to the relatively
low mass of the Higgs boson and the four-body final state,

FIG. 1. Feynman diagram for the leading contribution to the
pp → H → aa → bb̄τþτ− process.
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the τ-leptons and b-quarks tend to have low transverse
momentum (pT), typically below pT ≲ 50 GeV. Therefore,
the analysis relies on electron or muon triggers, which have
lower pT thresholds compared to triggers using hadronic
activity, to select the events of interest and requires an
electron or muon in the final state. The analysis defines
different event categories depending on τ-lepton decay
modes: eμ, eτhad, and μτhad. The major backgrounds to the
signal process are Drell–Yan production of τ-leptons
produced in association with heavy-flavor jets, tt̄, and
nonprompt leptons plus τhad.
For lowma, the a-boson has a large Lorentz boost and its

decay products can be collimated. Consequently, the a →

bb̄ final state is reconstructed as a single jet that contains
the hadronization products of the two b-quarks. While
several techniques exist to resolve merged jets [25], most of
them are only efficient in the case of high-mass and high-
pT jets. Due to the relatively low mass of the Higgs boson,
the merged a→ bb̄ jet will have low pT. This analysis uses
a novel, dedicated algorithm to identify low-mass, merged,
“double b-quark” jets (B-jets) [26]. For high ma, the
b-quarks decays tend to be well separated and the recon-
structed jets capture the hadronization of a single b-quark
(b-jet). The analysis considers events with one B-jet, or one
or two b-jets, resulting in nine analysis categories, as shown
in Fig. 2.
Similar searches in the bb̄τþτ− decay channel were

performed by the CMS Collaboration [27,28]. The latest
search has placed 95% CL upper limits on BðH → aa →

bb̄τþτ−Þ in the range 1.7–7.7% for 12 ≤ ma ≤ 60 GeV
using 138 fb−1 of Run 2 data at

ffiffiffi

s
p ¼ 13 TeV. This

analysis improves the sensitivity of previous results [28]
in the low mass regime (ma < 20 GeV) by targeting more
final states and using a neural network discriminant to
increase the separation of signal from background. This
search is also complementary to other searches forH → aa
decays performed by the ATLAS and CMS collaborations

using both
ffiffiffi

s
p ¼ 8 TeV and

ffiffiffi

s
p ¼ 13 TeV data in several

final states includingμþμ−μþμ− [29–31],μþμ−τþτ− [32–35],
τþτ−τþτ− [34,36], bb̄μþμ− [37–40], bb̄bb̄ [41–43], γγγγ
[44–46], and γγgg [47].

II. ATLAS DETECTOR

The ATLAS detector [48] at the LHC covers nearly the
entire solid angle around the collision point.1 It consists of
an inner tracking detector surrounded by a thin super-
conducting solenoid, electromagnetic and hadronic calo-
rimeters, and a muon spectrometer incorporating three large
superconducting air-core toroidal magnets.
The inner-detector system (ID) is immersed in a 2 Taxial

magnetic field and provides charged-particle tracking in
the range jηj < 2.5. The high-granularity silicon pixel
detector covers the vertex region and typically provides
four measurements per track, the first hit generally being in
the insertable B-layer (IBL) installed before Run 2 [49,50].
It is followed by the SemiConductor Tracker (SCT), which
usually provides eight measurements per track. These
silicon detectors are complemented by the transition
radiation tracker (TRT), which enables radially extended
track reconstruction up to jηj ¼ 2.0. The TRT also provides
electron identification information based on the fraction of
hits (typically 30 in total) above a higher energy-deposit
threshold corresponding to transition radiation.
The calorimeter system covers the pseudorapidity range

jηj < 4.9. Within the region jηj < 3.2, electromagnetic
calorimetry is provided by barrel and end cap high-
granularity lead/liquid-argon (LAr) calorimeters, with an
additional thin LAr presampler covering jηj < 1.8 to
correct for energy loss in material upstream of the calo-
rimeters. Hadronic calorimetry is provided by the steel/
scintillator-tile calorimeter, segmented into three barrel
structures within jηj < 1.7, and two copper/LAr hadronic
end cap calorimeters. The solid angle coverage is com-
pleted with forward copper/LAr and tungsten/LAr calo-
rimeter modules optimized for electromagnetic and
hadronic energy measurements respectively.
The muon spectrometer (MS) comprises separate trigger

and high-precision tracking chambers measuring the
deflection of muons in a magnetic field generated by the
superconducting air-core toroidal magnets. The field inte-
gral of the toroids ranges between 2.0 and 6.0 Tm across
most of the detector. Three layers of precision chambers,

FIG. 2. The analysis categories used in the search correspond-
ing to different decay modes of the τ-leptons and strategies for
identifying heavy-flavor jets, including merged b-jet pairs (B)
and single b-jets (b). Note that the categories are exclusive.

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP
to the centre of the LHC ring, and the y-axis points upward. Polar
coordinates ðr;ϕÞ are used in the transverse plane, ϕ being the
azimuthal angle around the z-axis. The pseudorapidity is defined
in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ and is equal
to the rapidity y ¼ 1

2
lnðEþpzc

E−pzc
Þ in the relativistic limit. Angular

distance is measured in units of ΔR≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔyÞ2 þ ðΔϕÞ2
p

.

G. AAD et al. PHYS. REV. D 110, 052013 (2024)

052013-2



each consisting of layers of monitored drift tubes, cover the
region jηj < 2.7, complemented by cathode-strip chambers
in the forward region, where the background is highest. The
muon trigger system covers the range jηj < 2.4 with
resistive-plate chambers in the barrel, and thin-gap cham-
bers in the end cap regions.
The luminosity is measured mainly by the LUCID–2

[51] detector that records Cherenkov light produced in the
quartz windows of photomultipliers located close to the
beampipe. Events are selected by the first-level trigger
system implemented in custom hardware, followed by
selections made by algorithms implemented in software
in the high-level trigger [52]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below
100 kHz, which the high-level trigger further reduces in
order to record complete events to disk at about 1 kHz.
A software suite [53] is used in data simulation, in the
reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition
systems of the experiment.

III. DATA AND SIMULATED EVENT SAMPLES

This search uses pp collision data at
ffiffiffi

s
p ¼ 13 TeV

recorded by the ATLAS experiment from 2015 to 2018.
Only events that satisfy data quality requirements that ensure
the stable operation of the ATLAS detector [54] are consid-
ered. The resulting dataset corresponds to an integrated
luminosity of 140.1� 1.2 fb−1 [55]. Data are selected using
a combination of single-electron, and single-muon, and
opposite-flavor dilepton (eμ) triggers [56,57].
Several Monte Carlo (MC) event generators are used to

simulate the signal and background processes. The MC
samples are used to optimize the event selection, evaluate
efficiencies and acceptances, and to estimate yields. The
main SM backgrounds are Drell–Yan production with
decays into τ-leptons Z=γ� → τþτ− produced in association
with jets (Z þ jets), top-quark production (tt̄ or single top
quarks) where at least one of the W bosons decay leptoni-
cally, and backgrounds where jets are misidentified as
leptons. Other backgrounds from Higgs bosons decaying
into τ-leptons H → τþτ−, Z=γ� → l

þ
l
−ðl ¼ e; μÞ, dibo-

son production, and vector bosons produced in association
with tt̄ are also included.
Samples of Z þ jets and W þ jets events were produced

using the SHERPA2.2.11 [58] generator with next-to-leading-
order (NLO) precision matrix elements for up to two
partons, and leading-order (LO) precision for up to five
partons in the five-flavor scheme calculated with the COMIX

[59] and OPENLOOPS [60–62] libraries. The events were
matched with the SHERPA parton shower [63] using the
MEPS@NLO prescription [64–67] with a dedicated set
of tuned parameters. The NNPDF3.0NNLO set of parton
distribution functions (PDF) [68] was used in the sample
generation and the samples were normalized to a next-to-
next-to-leading-order (NNLO) prediction [69].

Samples of diboson (VV) events were produced with
the SHERPA2.2.1 generator for semileptonic final states or
SHERPA2.2.2 [58] generator for fully leptonic final states.
Fully leptonic final states and semileptonic final states,
where one boson decays leptonically and the other hadroni-
cally, were generated using matrix elements at NLO
accuracy in QCD for up to one additional parton and at
LO accuracy for up to three additional parton emissions.
Samples for the loop-induced processes gg→ VV were
generated using LO-accurate matrix elements for up to one
additional parton emission for both the cases of fully
leptonic and semileptonic final states. The matrix element
calculations were matched and merged with the SHERPA

parton shower based on Catani–Seymour dipole factori-
zation [59,63] using the MEPS@NLO prescription. The
virtual QCD corrections were provided by the OPENLOOPS

library [60–62]. The NNPD3.0NNLO PDF set was used
[68], along with a dedicated set of tuned parton-shower
parameters.
The production of tt̄ events was modeled using the

POWHEG BOX v2 [70–73] generator at NLO precision in
QCD with the NNPDF3.0NLO PDF set and the hdamp

2

parameter was set to 1.5 mt [74], with the top-quark mass
mt set to 172.5 GeV. The parton shower, hadronization, and
underlying event were modeled using PYTHIA8.230 [75] with
the A14 set of tuned parameters [76] and using the
NNPDF2.3LO PDF set [77]. The decays of bottom and
charm hadrons were performed by EVTGEN1.6.0 [78].
Single-top-quark production events were modeled with

dedicated samples covering s-channel, t-channel, or W-
associated (tW) production. All three production modes
were modeled using POWHEG BOX v2 [71–73,79–81] at
NLO in QCD with the NNPDF3.0NLO PDF set. For the
s-channel and tW production, the calculation is performed
in the five-flavor scheme, while the t-channel production
uses the four-flavor scheme. Parton shower and hadroniza-
tion of these events were modeled with PYTHIA8.230 using
the A14 tune and the NNPDF2.3LO PDF set.
The signal event samples include Higgs boson production

via ggF, VBF, and VH. For the SM production of the
H → τþτ− background process, only the ggF and VBF
production modes are considered. Top-quark-associated
productionmodes of the SMH → τþτ− background process
are negligible.
The sample of Higgs boson production via ggF is

generated at NLO accuracy in QCD using POWHEG BOX v2

[71,72,79,82,83]. The simulation achieves NNLO accuracy
for gg → h observables by reweighting the Higgs boson
rapidity spectrum in HJ-MINLO [84–86] to that of HNNLO
[87]. The Higgs boson production via VBF and VH were
simulated with NLO precision using POWHEG BOX v2

2The hdamp parameter regulates singularities in the emission of
hard radiation in POWHEG. The value is chosen to provide good
description of the tt̄ system pT.
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[71,72,79,88]. The PDF4LHC15NNLO PDF set [89]
was used for all three production modes, while the
parton shower and hadronization were performed using
PYTHIA 8.244 with the A14 set of tuned parameters.
Each of the simulated Higgs production samples are

normalized using dedicated higher-order cross section
calculations. The ggF samples are normalized to the
next-to-next-to-next-to-leading-order (N3LO) cross section
in QCD plus electroweak corrections at next-to-leading
logarithm (NLL) [90–100]. The VBF samples are normal-
ized to an approximate-NNLO QCD cross section with
NLO electroweak corrections [101–103]. Similarly, the VH
samples are normalized to cross sections calculated at
NNLO in QCD with NLO electroweak corrections. The
cross section estimate includes the gg → ZH contribution,
even though it is not simulated explicitly. For the signal
samples, the decay H → aa → bb̄τþτ− is performed using
PYTHIA 8.244 and eight distinct mass points were simulated
for the ggF, VBF, and the VH production modes in the
range ma ¼ 12–60 GeV (12, 16, 20, 25, 30, 40, 50
and 60 GeV).
All simulated event samples were processed through a

detailed simulation of the ATLAS detector based on
GEANT4 [104] or a faster simulation where the full
GEANT4 simulation of the calorimeter response is replaced
by a detailed parametrization of the shower shapes [105].
The effects of multiple pp interactions in the same and
neighboring bunch crossings (pileup) were modeled by
overlaying the simulated hard-scattering event with inelas-
tic pp (minimum-bias) events to reproduce the pileup
distributions seen in the data. These inelastic events were
generated with the soft QCD processes of PYTHIA 8.186

[106] using the NNPDF2.3LO PDF set and the A3 set of
tuned parameters [107].

IV. OBJECT AND EVENT RECONSTRUCTION

Events are required to contain at least one recon-
structed pp collision vertex candidate with at least
two associated ID tracks with pT > 0.5 GeV [108].
The primary vertex (PV) is selected as the vertex with
the highest sum of the squared transverse momentum
of the associated tracks.
Electrons are reconstructed from a seed cluster in the EM

calorimeter matched to a track in the ID [109] and are
required to have pT > 7 GeV and jηj < 2.47. Electrons in
the calorimeter barrel–end cap transition region (1.37 <
jηj < 1.52) are excluded from the analysis. Electrons from
τ-lepton decays can be displaced from the PV due to the
long τ-lepton lifetime, so no requirement on the transverse
impact parameter (d0) is applied. A requirement on the
longitudinal impact parameter jz0 sin θj < 0.5 mm is
applied to match the electron track to the PV of the event.
Electrons must satisfy the Medium working point of the
likelihood identification criteria [109]. Electrons satisfying
these requirements are referred to as baseline electrons.

Signal electrons are defined by additionally applying a tight
isolation requirement using both tracking and calorimetry
information with pT-dependent ΔR cone radius [109]. This
isolation variable rejects electrons that likely originated
from light- or heavy-flavor hadrons. The isolation criterion
is corrected for the presence of a nearby muon by
subtracting the pT of the muon track within the isolation
cone of the electron from the isolation sum. This is
particularly important for low mass signal samples
(ma ≲ 20 GeV), where the electrons and muons from
two τ-lepton decays in a → τþτ− are often found to be
within the isolation cone of each other.
Several methods are used to reconstruct muons, depend-

ing on the availability of tracks in the ID and the MS [110].
In order to benefit from the extended MS coverage up to
jηj ¼ 2.7, an ID track is not required in the region
2.5 < jηj < 2.7. Muons are selected with pT > 7 GeV
and jηj < 2.7. As in the case of electrons, the only impact
parameter requirement applied is jz0 sin θj < 0.5 mm.
Muons must satisfy the Medium identification criterion
[110], comprising the baseline muon selection. Signal
muons are defined with an additional loose requirement
on the isolation in both the inner tracking detector and
calorimeters also with a pT-dependent cone radius [110].
As above, an electron within the isolation cone of a muon is
excluded from the calculation.
Jets are reconstructed using the anti-kt algorithm [111]

implemented in the FASTJET package [112,113] with a
radius parameter R ¼ 0.4. A particle-flow approach [114]
is used for the jet reconstruction. The jet energy scale is
calibrated to the particle level using simulation and further
corrected with in-situ methods [115]. The jet selection
requires pT > 15 GeV and jηj < 2.5. A multivariate jet
vertex tagger (JVT) based on tracking information is used
to identify a jet as originating from the PVand suppress jets
from pileup interactions for jets with pT < 60 GeV and
jηj < 2.4 [116].
The strategy to identify jets containing b-hadrons

depends on the kinematics of the signal. For low signal
masses (ma ≲ 20 GeV), pairs of b-hadrons from a→ bb̄
decays tend to be merged in the detector and are identified
as a single reconstructed jet. DEXTER [26] is an end-to-end
algorithm that classifies jets into three categories: merged
b-jets, single b-jets, and other jet flavors. Track-jets
associated to jets are reconstructed by reclustering jets
with pT > 20 GeV and jηj < 2.0, together with all ID
tracks using an anti-kt algorithm with radius parameter
R ¼ 0.8. When the track-jet contains a single R ¼ 0.4 jet,
the jet is called isolated. An exclusive-kt clustering of the

track-jet tracks into precisely two sub-jets (ex-kð2Þt ) [117] is
used to reconstruct the flight axes of the two b-jets within a

track-jet. Both ex-kð2Þt track-subjets are required to have
pT > 5 GeV, where the transverse momentum of the subjet
is estimated by summing the four-momentum of the
associated tracks. The DEXTER algorithm uses the tracks
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from the R ¼ 0.8 track-jets to reconstruct secondary
vertices, which provide a distinctive signature of merged
b-jets when more than one is reconstructed inside the same
jet or when they merge in a single secondary vertex with
very high mass. Displaced tracks, secondary vertices, and

the properties of the two ex-kð2Þt jets are used in a deep set
neural network (NN) to classify the flavor of the jet. The
NN exploits the presence of highly displaced tracks along
the two flight axes as well as the reconstruction of multiple
secondary vertices with large mass to resolve the two b-jets.
In the case of jets which are not merged, the jet flavor is

identified with the DLlr algorithm [118] combining track
impact parameter values with information from secondary
vertices reconstructed within the jet. A working point
corresponding to 60% efficiency for identifying B-jets is
used for DEXTER, and a working point corresponding to
85% efficiency for identifying b-jets is used for DLlr.
The b-jet identification efficiency of the DLlr algorithm

is measured in collider data by using tt̄, Z þ jets, W þ jets,
and multijet events [119–121]. A dedicated measurement
of the DLlr algorithm identification efficiency for jets with
15 < pT < 20 GeV was performed for this search. The B-
jet identification efficiency of the DEXTER algorithm is also
measured in collider data by using tt̄ and Z þ gð→ bb̄Þ
events [26]. These measurements are used to correct the
identification efficiency of heavy-flavored jets in simula-
tion. The calibration procedure corrects the identification
efficiency in simulation as a function of the jet pT and η to
match the one observed in data. Discrepancies between the
identification efficiency in simulation and in data stem from
both mismodeling of the detector response and of the
underlying physics processes.
The reconstruction of τhad candidates is seeded using

jets reconstructed using the anti-kt algorithm with distance
parameter R ¼ 0.4 whose inputs are topoclusters, three-
dimensional clusters of calorimeter cells [122]. Recon-
structed τhad candidates have pT > 20 GeV and jηj < 2.5,
excluding the region 1.37 < jηj < 1.52. The identification
of τhad uses a recurrent neural network (RNN) algorithm,
which uses as inputs tracks and calorimeter clusters
associated to τhad candidates, as well as high-level dis-
criminating variables [123]. Baseline τhad candidates are
required to pass the very loose working point, while signal
τhad candidates are further required to satisfy the medium

working point [123]. A dedicated multivariate electron veto
is applied to τhad candidates to reject electrons misidentified
as τhad. The medium working point is used for the boosted-
decision-tree-based electron veto [124].
A dedicated τ-jet-vertex algorithm (TJVA) is used to

associate τhad candidates to a PV [125]. The algorithm does
not apply impact parameter requirements and finds the
vertex with the largest fraction of the pT from the tracks
associated with the τhad within a distance of R ¼ 0.2 around
the candidate. While TJVA does not apply impact param-
eter requirements, tracks must be sufficiently close to the

τhad vertex, so two selections are applied on the impact
parameters of tracks: jdTJVA

0
j < 1.0 mm and jzTJVA

0
sin θj <

1.5 mm [126].
An overlap removal procedure is applied to prevent

double counting of objects. This procedure is applied to the
objects described previously that satisfy the baseline
criteria, with the exception of muons where candidates
satisfying the very loose identification criterion are used for
the overlap removal and the medium identification criteria
is used after overlap removal for the baseline selection
criteria. This reduces backgrounds from Z=γ� → μþμ−

events where a very loose muon can be misidentified as
a τhad candidate.
The overlap removal procedure is executed as follows.

The closest jet within a radius of ΔR ¼ 0.2 of a selected
electron is removed. If the nearest jet is within ΔR ¼ 0.4 of
an electron, the electron is excluded from the analysis.
Muons are excluded from the analysis if they are separated
from the nearest jet by ΔR < 0.4, since this reduces the
background from heavy-flavor decays inside jets. However,
if the jet has fewer than three associated tracks, the muon is
selected and the jet is excluded from the analysis instead.
This avoids an inefficiency for high-energy muons under-
going significant energy loss in the calorimeter. Electrons
are excluded from the analysis if they share their track with
a muon.
From the remaining jets, isolated jets that satisfy the 60%

DEXTER working point are classified as B-jets. Isolated jets
that do not satisfy the 60% DEXTER working point and
satisfy the 85% DLlr working point are classified as
selected b-jets. Isolated jets that do not satisfy the 60%
DEXTER working point and do not satisfy the 85% DLlr
working point are not used in the analysis. Non-isolated jets
that satisfy the 85% DLlr working point are also classified
as b-jets, while those that fail are excluded from the
analysis. Muons in the annular region 0.4 < ΔR < 0.8
region around a B-jet which have a relative calorimeter-
based isolation larger than 0.1 are excluded. Electrons
satisfying the same criteria are also removed from the
analysis. Finally, any B-jet with either an electron or a
muon in the annular 0.4 < ΔR < 0.8 region and relative
calorimeter-based isolation less than 0.1 are excluded from
the analysis.
Muons that are excluded in the overlap removal pro-

cedure, but that are within ΔR < 0.3 of a b-jet or within

ΔR < 0.3 of either of the ex-kð2Þt track-subjets of a B-jet are
classified as soft muons. The leading soft muon associated

to a b-jet or to a ex-kð2Þt track-subjet is added to the jet
four momentum to account for semileptonic decays of
b-hadrons in the jet energy.
The missing transverse momentum p⃗miss

T , with magni-
tude Emiss

T , is calculated using the magnitude of the vector
sum of the pT of all reconstructed objects and any addi-
tional tracks not associated to any reconstructed objects in
the event [127]. The missing transverse energy (Emiss

T )
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measures the imbalance of the transverse momentum in the
detector. In this search Emiss

T is expected to arise from the
neutrinos from τ-lepton decays.

V. EVENT SELECTION

Events are placed in exclusive categories defined by the
final state objects from the τþτ− and bb̄ systems, as shown
in Fig. 2. The trigger strategy used to select events depends
on the leptons in the final state. For the eμ categories, three
orthogonal trigger regions are defined. If the event has at
least one electron with pT > 27 GeV, the single electron
trigger is used and is required to match the selected
electron. If the event has no such electron, but has a muon
with pT > 27 GeV, the single muon trigger is equivalently
used and is required to match the selected muon. If there are
no electrons nor muons satisfying the previous criteria, then
opposite-flavor eμ triggers are used, also requiring trigger
matching for both leptons. For the eτhad and μτhad catego-
ries, the single electron or muon trigger of the correspond-
ing flavor with pT > 27 GeV is used and matched to the
electron or muon respectively.
Events in the eμ categories are required to have exactly

one electron and one muon with opposite-sign (OS) charge
that satisfy the signal selection criteria. In addition, events
should have at most one baseline and no signal τhad
candidate. In the eτhad and μτhad categories, events are
required to have exactly one electron and one muon,
respectively, and exactly one signal τhad with OS charge.
For the eμ categories, the electron and muon are required to
be separated by ΔRðe; μÞ > 0.1 and for the eτhad and μτhad
categories, this requirement is ΔRðe=μ; τhadÞ > 0.2, to
reduce backgrounds from low-mass hadronic decays.

The analysis categories are also defined by requiring one
B-jet, or one or two b-jets.
Two additional criteria are applied in each category to

define regions enhanced in backgrounds. These criteria are
based on the kinematics of the visible τ-lepton decay
products, i.e., excluding the neutrinos. The visible mass
of the τ-lepton decay products mvisðττÞ is lower for signal
than for the Z → τþτ− background, due to the lower mass
of the a-boson. A requirement is thus applied on the visible
mass for all categories: mvisðττÞ ¼ mvisðeμÞ < 45 GeV
for the eμ categories and mvisðττÞ ¼ mvisðeτhadÞ or
mvisðμτhadÞ < 60 GeV for the eτhad and μτhad categories.
The difference in the requirements is due to the smaller
number of neutrinos in the categories with a hadronic
τ-lepton compared to the eμ case. A low mass requirement
on the visible mass of mvisðττÞ > 4 GeV is also applied to
reduce backgrounds from hadronic decays. The sample
obtained by inverting the higher requirement on the visible
mass is used to correct the modeling of the Z þ jets
background (see Sec. VI), and is called the “Z region.”
Figure 3(a) demonstrates the ability of the background
prediction to model the data in the most sensitive μτhad
category. The background model performs similarly well in
the eτhad and eμ categories.
When compared to the background, leptons from signal

processes also have lower transverse mass calculated
with the τ-lepton visible transverse momentum pvis

T ðτÞ
and Emiss

T . In the case of leptonic decays of the τ-lepton,
the visible pT is defined as the transverse momentum of
the electron or muon. The transverse mass is defined as:
mTðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pvis
T ðτÞEmiss

T ð1 − cos ðΔϕÞÞ
p

, where Δϕ is the
difference in the azimuthal angle between pvis

T ðτÞ and Emiss
T .
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FIG. 3. (a) Visible mass mvisðμτhadÞ and (b) sum of the transverse mass ΣmT distributions for signal and the expected background.
Events with highmvisðμτhadÞ and high ΣmT are included in the tt̄ region. In order to compare the shapes, the expected signal distribution
is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to bb̄τþτ−. The yields for the
backgrounds correspond to the values obtained after applying the corrections to the background modeling described in Sec. VI. The cuts
separating the signal region (SR) from the Z and tt̄ regions are indicated by the vertical dashed line. The hashed area represents the total
uncertainty of the background. Overflow events are included in the last bins.
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A requirement is applied on the sum of the transverse
mass calculated for the two τ-leptons ΣmT < 120 GeV,
where ΣmT ¼ mTðτleadÞ þmTðτsubleadÞ. Figure 3(b) shows
the distribution of ΣmT in the μτhad categories. The sample
obtained by inverting the requirement on ΣmT and is
used to correct the modeling of the tt̄ background (see
Section VI), and is called the “tt̄ region.” There is small
signal contamination into theZ and tt̄ regions, only≈1 signal
event is expected assumingBðH → aa → bb̄τþτ−Þ ¼ 10%.
Finally, a same-sign (SS) region, enhanced in back-

grounds containing jets that are misidentified as electrons,
muons or hadronic taus, is defined by applying the same
selection criteria as the signal region but requiring the e, μ.
and τhad to have same-sign charge. This region is used
to estimate backgrounds with nonprompt leptons (see
Sec. VI). Table I summarizes the event selection used in
the analysis.

VI. BACKGROUND ESTIMATION

Several SM processes can produce final states that satisfy
the object and event selections described previously. The
contributions from these processes are estimated with
simulation or data-driven methods. Background processes
with all leptons originating from the decay of vector bosons
are defined as prompt and described by simulation. The
dominant sources of prompt backgrounds are top-quark
production, from tt̄ and single-top events, and Z þ jets
where the Z boson decays into pairs of τ-leptons. Other
backgrounds estimated from simulation include h → τþτ−,
diboson production, tt̄ in association with a vector boson,
and Z=γ� → l

þ
l
− where one lepton is misidentified as a

τhad in the eτhad and μτhad categories.
The modeling of two of the main prompt backgrounds,

Z þ jets and tt̄, in simulation is corrected to match the data
in regions enhanced in these backgrounds (see Sec. V). For
the tt̄ background, the simulation is reweighted to match
the number of b-jets and the number of jets in the tt̄ region.

The tt̄ region is devoid of Z þ jets events and performing
the tt̄ correction first minimizes the need for further
iterations. In the eμ categories, an additional correction
is applied as a function of the variable HT , defined as the
scalar sum of the pT of all jets and leptons in the event. The
reweighting procedure improves the description of the pT
of the tt̄ system and the description of the number of
additional jets produced in association with the tt̄ system.
The same strategy was applied in other ATLAS searches
with large tt̄ background [128,129]. After the tt̄ reweight-
ing, the Z þ jets background is corrected with two nor-
malization factors. The Z → τþτ− and Z → eþe−

backgrounds are scaled so that the predicted yields from
simulation in two mll bins match the observed number of
events in the Z region.
Background processes with at least one lepton originat-

ing from the nonprompt decay of a hadron, from photon
conversions, or from the misidentification of other particles
are defined as nonprompt backgrounds. A tight-to-loose
data-driven method [130] is used to estimate this back-
ground contribution. As described in Sec. IV, each lepton
has two criteria baseline and signal. Leptons that satisfy the
baseline selection but not the signal one are called loose
(L), while those satisfying the signal selection are called
tight (T). The estimates of the nonprompt backgrounds are
obtained by assigning a weight wL ¼ fε=ðε − fÞ to each
loose lepton and a weight wT ¼ εð1 − fÞ=ðε − fÞ to each
tight lepton [130]. Here, f and ε are, respectively, the rate
with which nonprompt and prompt leptons that satisfy the
baseline selection also satisfy the signal criteria. The sign
of the overall event weight is adjusted depending on the
number of loose leptons to avoid double-counting of
background events.
The nonprompt rates for electrons and muons are

measured with events in the SS region that satisfy
ΔRðe; μÞ > 1.4. Events with one baseline muon (electron)
and one signal electron (muon) are used to estimate the
muon (electron) nonprompt rate fμ (fe). The electron and

TABLE I. Event selection for the analysis categories and the background regions. The background regions only
list the requirements that are different from the signal region. The definition of signal leptons can be found
in Sec. IV.

Region eμ eτhad or μτhad

Signal region 1 OS signal eμ pair 1 OS signal eτhad or μτhad pair
0 signal τhad 1 signal τhad

ΔRðe; μÞ > 0.1 ΔRðl; τÞ > 0.2
4 < mvisðττÞ < 45 GeV 4 < mvisðττÞ < 60 GeV

ΣmT < 120 GeV
1 B-jet or 1 or 2 b-jets

Z region mvisðττÞ > 45 GeV mvisðττÞ > 60 GeV

tt̄ region ΣmT > 120 GeV, no mvisðττÞ requirement

SS region 1 SS signal eμ pair 1 SS signal eτhad or μτhad pair
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muon nonprompt rates are parametrized as a function of the
lepton pT, η, whether or not the lepton is matched to a
trigger object, and the number of b-jets in the event.
The prompt rates for electrons (muons) ϵe (ϵμ) are estimated
as a function of the same variables from simulations of
Z → τþτ− events.
The conditionΔRðe; μÞ > 1.4 ensures that the leptons do

not interfere in their identification efficiency. When the
weights are applied in the eμ signal region, a geometrical
correction is necessary to account for the overlap of
isolation cones with ΔRðe; μÞ < 0.6. The correction is
applied to events with two loose leptons and is para-
metrized as

ð−we
Lw

μ
LÞcorr ¼ ð1−fðΔRÞÞð−we

Lw
μ
LÞþfðΔRÞ

×
1

2
ðwe

Lw
μ
T þwe

Tw
μ
LÞ;

fðΔRÞ ¼ c×

 

2

π
arccos

�

ΔR

2r

�

−
ΔR

πr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 −
ðΔRÞ2

4

r
!

;

where fðΔRÞ is the fraction of the isolation cone that
overlaps, c is an arbitrary constant fit from the data in the
SS region, and r ¼ 0.3 is the radius of the isolation cone.
For hadronic taus, the prompt rate is taken as ετ ¼ 1 in

the weights wL and wT , and MC simulation is used to
remove the contribution from prompt loose taus. The
nonprompt rate is measured separately with three different
processes: Zð→ μþμ−Þ þ τhad, jetþ τhad where the τhad
candidate has high JVT score, and jetþ τhad with low
JVT score. In each region, the nonprompt rate is para-
meterized as a function of the τhad pT, η, decay mode, and
the number of b-jets in the event. The τhad nonprompt rate
used to estimate the nonprompt background is written as a
linear combination of the three estimates

fτ ¼ ½fZ→μþμ−ð1 − rQCDÞ þ fhigh JVTrQCD�ð1 − rLJVTÞ
þ flow JVTrLJVT;

where the coefficient rQCD is the fraction of nonprompt
background events with two nonprompt leptons in each eτhad
and μτhad categories and the coefficient rLJVT is determined
by a maximum-likelihood fit to the baseline τhad seed jet
width distribution. The coefficients rQCD and rLJVT are
determined separately for each category and region of the
analysis, as well as for each τ-lepton decay mode.

VII. ANALYSIS STRATEGY

In each analysis category, a NN is trained using the
kinematic variables of the reconstructed heavy-flavor jets
and τ-leptons. The NN is parametrized as a function of the
a-boson mass in order to obtain an optimal discriminant for
each different simulated mass [131]. During training, the
background is assigned a random value as the value of ma,

while for signal the simulated mass is used. The signal
events have different correlations between physical observ-
ables and the generated mass than the background, which
the network exploits. Once the network is trained, the NN
output score is calculated with the true mass replaced by the
mass hypothesis under consideration for all events, be they
signal, background, or data.
Due to the neutrinos in the decays of the τ-leptons, the

four-momentum of the two τ-leptons cannot be directly
reconstructed. An algorithm called missing-mass calculator
(MMC) [132] uses a Markov-chain MC to perform a
maximum likelihood estimate of the neutrinos four-
momenta, which is then used to reconstruct the input
variables of the parameterized NN (pNN).
Beyond the true a-boson massmtrueðττÞ, the pNNs for all

categories use the visible mass mvisðττÞ, the MMC-based
mass of the neutrino pair mMMCðννÞ in each τ → eντν̄e or
τ → μντν̄μ decay, the missing transverse energy Emiss

T , the
two transverse masses calculated with the visible pT of
the final-state τ-leptons mTðτÞ, the leading heavy-flavor
jet pTðbleadÞ, and the visible transverse momentum
pvis
T ðττbleadÞ. The variable Dζ [133], defined as

Dζ ¼ ½p⃗miss
T − 0.85p⃗vis

T ðττÞ� · ζ⃗;

where ζ⃗ is a unit vector in the direction of the bisector
between the two τ-leptons, is also used as input to the
network in all categories. Dζ provides an estimate of the
misalignment between the missing transverse momentum
and the visible ττ subsystem.
In categories with two b-jets or one B-jet, additional

input variables are used: the subleading heavy-flavor jet
pTðbsubleadÞ, the transverse momentum pTðbbÞ and mass
mðbbÞ of the bb subsystem, as well as the visiblemvisðbbττÞ
and MMC-based mMMCðbbττÞ mass estimates of the Higgs
boson. In categories with a B-jet, the four-momentum of the

two ex-kð2Þt track-subjets are used as proxies for individual
heavy-flavor jets. Table II summarizes the variables used as
input for theNN.Distributions of the pNN input variables for
the (μτhad, 2b) category are shown in Fig. 4. Distributions of
the pNNðmaÞ output variable for a value ofma ¼ 30 GeV in
the (μτhad, 2b) category and forma ¼ 12 GeV in the (eμ, 1B)
category are shown in Fig. 5.
Each pNN is a fully connected network with three

hidden layers with 15 neurons each. The activation function
is a leaky ReLU activation function with slope of 0.01
when the input is negative. The Objax [134] framework is
used with the Adam optimization algorithm [135] and a
binary cross entropy loss function. The signal sample used
in theNN trainingcontains allH → aa→ bb̄τþτ− simulated
samples, which are normalized so that each of them has the
expected number of observed events. The background
sample used in the NN training is composed of composed
of top-quark, Zð→ ττÞ þ jets and nonprompt events.
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TABLE II. Neural-network input variables with a summary of the final-state property it describes.

Feature Description

mtrueðττÞ During training: generated a-boson mass for signal MC. Background events are assigned a random value
of the eight signal masses.

During testing: the mass hypothesis under consideration.
mvisðττÞ Visible mass of the ττ system.
pTðττÞ pT of the ττ system.
mMMCðννÞ MMC-based mass of the two neutrinos in τ → eντν̄e or τ → eντν̄μ decays.
Emiss
T Missing transverse energy.

mTðτÞ Transverse mass calculated with the visible pT of the final-state τ-leptons.
pTðbleadÞ Transverse momentum of the leading final-state b-jet.
pvis
T ðττbleadÞ Visible pT of the ττblead system.

Dζ Misalignment between the E⃗
miss
T vector and the ττ system.

Categories with a B-jet or 2b-jets
pTðbsubleadÞ Transverse momentum of the subleading final-state b-jet.
pTðbbÞ Transverse momentum of the bb system.
mðbbÞ Mass of the bb system.
mvisðbbττÞ Visible mass of the Higgs boson system.
mMMCðbbττÞ MMC-based mass of the Higgs boson system.
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FIG. 4. The pNN input variables (a) visible mass mvisðμτhadÞ, (b) visible transverse momentum pvis
T ðμτhadÞ, (c) transverse mass

mTðμ; Emiss
T Þ, and (d) MMCmassmMMCðbbττÞ are shown in the SR with no cut on the pNN discriminant. The signal shape is normalized

to the same integral as the total background prediction. The hashed area represents the total uncertainty of the background. Overflow
events are included in the last bins.
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For each a-boson hypothesis ma, a statistical analysis is
performed simultaneously in all nine categories of the
analysis. To reduce the correlation among different ma

hypotheses, only events which satisfy 0.95ma − 6 GeV ≤

mMMCðττÞ ≤ 1.15ma þ 1 GeV in the eτhad and μτhad cat-
egories, or 0.75ma − 6 GeV ≤ mMMCðττÞ ≤ 1.25ma þ
1 GeV in the eμ categories are used. The pNN score
calculated with this subset of events and mtrueðττÞ ¼ ma is
split into three bins with different signal-to-background
ratios (S/B). These bins are called CR, SR1, and SR2, in
order of increasing S/B. Figure 6 shows the ranges for
each mass hypothesis tested in this paper while Fig. 7
shows the three regions used to search for a signal
with ma ¼ 30 GeV.

A test statistic is built from a profile likelihood ratio
calculated using the pyhf software [136]. The likelihood is
given by the product of Poisson probability distributions
for the three bins in each of the nine categories and the
Gaussian distributions, which implement constraint terms
for each source of systematic uncertainty as a function of
nuisance parameters (NP).

Lðμ; α⃗Þ ¼
Y

Ncat

c

Y

3

j¼1

ðμsc;jðα⃗Þ þ bc;jðα⃗ÞÞnc;j
nc;j!

e−ðμsc;jðα⃗Þþbc;jðα⃗ÞÞ

×
Y

Nsyst

k¼1

1
ffiffiffiffiffiffi

2π
p e−

α2
k
2 ;
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where μ is the signal strength, α⃗ is the vector of nuisance
parameters, sc;j and bc;j are the expected number of signal
and background events in the jth bin of the category c,
and nc;j is the observed number of events. Since the
signal templates are normalized to the SM Higgs inclusive
cross section, the signal strength is equal to ðσðHÞ=
σSMðHÞÞBðH → aa→ bb̄τþτ−Þ. Note that the values sc;j
and bc;j are themselves functions of the set of NPs. Each
systematic uncertainty is fully correlated across all bins and
categories.
Categories with very low signal acceptance are suppressed

from the likelihood product. For the ma ¼ 12 GeV hypoth-
esis, only the eμ categories are used. At thismass hypothesis,
the cut ΔR > 0.2 between the τ-leptons and lepton removes
nearly all signal acceptance. For ma > 30 GeV, the catego-
ries with B-jets are similarly not used. Removing these
categories does not impact the observed limit due to the lack
of signal acceptance. The one-sided alternative likelihood
ratio test statistic for upper limits q̃μ [137] was used.

VIII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties include experimental uncertain-
ties in the reconstructed objects, uncertainties in the data-
driven model for the nonprompt-lepton background, and
modeling uncertainties in the simulated background and
signal samples.
Experimental uncertainties include momentum scale

and resolution uncertainties for all reconstructed objects:
muons, electrons, hadronic τ-leptons, jets, and missing
transverse energy. These uncertainties are estimated by
using calibrations performed for each individual object and
by comparing them among different simulation models.
These uncertainties are considered in the Emiss

T recon-
struction, and additional uncertainties for soft tracks are
estimated from data [127].

Uncertainties in the reconstruction, identification and
trigger efficiency of electrons [56,109] and muons [57,110]
are determined from tag-and-probe efficiency measure-
ments using Z → l

þ
l
− and J=ψ → l

þ
l
− events. Simi-

larly, uncertainties in the reconstruction and identification
efficiency of τhad are determined from tag-and-probe
efficiency measurements using Z → τμτhad events (where
τμ denotes a τ → μνμντ decay) and by varying the physical
models used for the simulation of hadronic interactions in
the detector [123,126]. An additional uncertainty is esti-
mated for the electron-veto efficiency based on a tag-and-
probe measurement using Z → ee events [124].
Uncertainties in the jet vertex tagger efficiency are

estimated from efficiency measurements using Zð→ μþμ−Þ
events with a single jet recoiling against the dimuon pair
[116]. A dedicated efficiency measurement for jets with
15 ≤ pT ≤ 20 GeV was performed for this search.
Uncertainties in the DLlr identification efficiency are

estimated from a combination of several measurements
sensitive to the true jet flavor. The efficiency is measured in
several bins of jet pT, η, and separately for true b-, c-, and
light-jets [119–121]. A dedicated efficiency measurement
for jets with 15 ≤ pT ≤ 20 GeV was performed for this
search. The measurement uses tt̄ and Z þ jets events to
measure the efficiency of the DLlr algorithm in different η
bins for b- and non-b-jets (i.e., c- and light-jets, which are
considered together in this dedicated measurement). The
uncertainties in the flavor-tagging efficiency of at low
jet pT are considered uncorrelated with the ones for jet
pT > 20 GeV, but the correlations between different jet
η bins and between the different true jet flavors are
accounted for.
Uncertainties in the DEXTER identification efficiency are

estimated from the efficiency measurement using tt̄ and
Zð→ llÞ þ gð→ bbÞ events [26]. The efficiency and asso-
ciated uncertainties are determined in bins of jet pT, η, and
separately for b- and B-jets. The number of light-jets
satisfying the DEXTER identification selection is negligible.
Modeling uncertainties for tt̄ and Z þ jets background

processes and for the Higgs boson signal process are
estimated by varying the hard-process renormalization
and factorization scales, and by using the NNPDF replicas
to estimate PDF uncertainties. For the tt̄ background
process, additional modeling uncertainties are esti-
mated by comparing the prediction from POWHEG and
MADGRAPH5_MC@NLO [138], by varying the renormaliza-
tion scale used to simulate the initial- and final-state
radiation, and by comparing the prediction using PYTHIA

and HERWIG [139] as parton showers. For the Z þ jets
background process, additional modeling uncertainties in
the fraction of heavy-flavored associated jets are estimated
by varying the resummation (QSF) and merging (CKKM)
scales in SHERPA [58,63]. For simplicity, the variations are
estimated without detector simulation, but in a fiducial
region identical to the one used in the search. In addition to

FIG. 7. As an illustration, the binning used in the two-
dimensional plane of pNN score and mass for the μτhad categories
and the ma ¼ 30 GeV mass hypothesis is shown.
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generator-based estimates, uncertainties associated with the
reweighting procedure in the tt̄ and Z regions are propa-
gated to the final result.
Several uncorrelated sources of systematic uncertainties

are considered for background events with nonprompt
leptons. Statistical uncertainties coming from the limited
number of events in the regions used to measure the prompt
and nonprompt lepton efficiencies are generally negligible.
Statistical uncertainties coming from the limited number of

data events with at least one loose lepton are propagated to
the final result. In addition to uncertainties of a statistical
source, the following uncertainties are considered for back-
ground events with nonprompt leptons. Each uncertainty is
estimated separately for electrons, muons, and hadronic taus.

(i) Prompt-lepton efficiency: the uncertainty is esti-
mated by comparing the efficiency determined from
simulated Z þ jets events with the one estimated
from simulated tt̄ events.
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FIG. 8. The pNN spectrum in the three bins are shown separately for each mass hypothesis in the (a) (eμ, 1b) and (b) (μτhad, 2b)
category. The signal shape (normalized to BðH → aa → bb̄τþτ−Þ ¼ 1) for each corresponding mass hypothesis is overlaid on top of the
SM prediction. The bins divided by vertical dashed lines are used for testing different ma hypotheses indicated as a text in the figure.
Bins used for different ma hypotheses are not statistically independent. Note that the 12 GeV mass point is not shown for the (μτhad, 2b)
category because the signal acceptance is very low. The hashed area represents the total uncertainty of the background.
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(ii) Nonprompt-lepton composition: for electrons and
muons, this uncertainty is estimated by comparing
the nonprompt-lepton efficiency measured in the
different analysis categories with the efficiency
measured in a region with zero b- and B-jets. For
hadronic taus, this uncertainty is obtained by using
the same region without heavy-flavored jets to
estimate variations on rQCD and rLJVT.

(iii) Prompt-lepton subtraction: the uncertainty is esti-
mated by varying the cross section of processes with
prompt leptons by 30% in the regions used to
estimate nonprompt efficiencies.

The uncertainty in the combined 2015-2018 integrated
luminosity is 0.83% [55], obtained using the LUCID-2
detector for the main luminosity measurement, and com-
plemented by measurements using the ID and the
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FIG. 9. The pNN spectrum in the three bins are shown separately for each mass hypothesis in the (a) (eμ, 1B) and (b) (eτhad, 2b)
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calorimeters. The uncertainty in the pileup model is
determined by varying the estimate of the inelastic pp
cross section between the value estimated by using only the
LUCID-2 detector and the value estimated using only
the ID.

IX. RESULTS

Different a-boson mass hypotheses are tested
ma ¼ ð12; 16; 20; 25; 30; 40; 50; 60Þ GeV. Figures 8 and 9
show the pNN distribution for each hypothesis in the three
pNN bins used this search for the (eμ, 1b) and (eτhad)
categories, respectively. While the mMMCðττÞ window
reduces the correlation between different hypotheses,
the events in the histogram for different masses are not
completely independent. No significant excess over the
background expectation is observed for anyma hypothesis.
The largest deviation is a local p-value of 0.055 at
ma ¼ 20 GeV.
Upper limits on ðσðHÞ=σSMðHÞÞBðH → aa→ bb̄τþτ−Þ

are determined at 95% confidence level (CL) using the CLs

technique [137] and the q̃μ test statistic described in
Sec. VII. The SM Higgs boson production cross section
used is σSMðHÞ ¼ 55.7 pb [140]. Table III shows the

impact of dominant sources of systematic uncertainties
in the expected upper limit for differentma hypotheses. The
impact is estimated by the difference between the expected
upper limit when only a group of uncertainties are
considered and the case where no systematic uncertainty
is considered. B-jet identification efficiency uncertainty is
an important source of systematic uncertainty at low value
of ma due to the difficulty in measuring the identification
efficiency of merged B-jets with low mass and low pT.
Figure 10(a) compares the observed upper limits with the
expected limits assuming the median value of q̃μ under
the background-only hypothesis. Figure 10(b) compares
the expected limits for categories with heavy-flavor objects
(B- or b-jets). The category using a B-jet is especially
sensitive in the low-mass regime, where the bb̄ system is
collimated into a single object. Regarding the τ-lepton-
decay mode, the μτhad channel dominates the sensitivity,
except for the low-mass regime where eμ dominates due to
the isolation criterion, which is corrected for the presence
of nearby leptons.
This is the first search in ATLAS for exotic decays of the

Higgs boson in the final state H → aa → bb̄τþτ−. The
observed limit is up to a factor of two better at low masses
when compared to previous results [28] due to the use of a

TABLE III. Impact of different group of systematic uncertainties on the upper limit on ðσðHÞ=σSMðHÞÞ×
BðH → aa → bb̄τþτ−Þ. The different systematic uncertainties group are considered individually in each line of the
table. The larger the difference relative to the expected limit without systematic uncertainties (stat-only), the more
important the uncertainty group is for the final result. The entries with “–” change by less than 1% relative to the stat-
only limit.

Expected limit on ðσðHÞ=σSMðHÞÞBðH → aa → bb̄τþτ−Þ
Uncertainty source ma ¼ 12 GeV ma ¼ 25 GeV ma ¼ 60 GeV

Stat-only limit 1.34 1.79 3.00

Observed limit 2.89 2.02 3.37

MC statistics 1.42 1.81 3.04

Experimental 2.72 1.94 3.21

Detector response 2.43 1.84 3.03
Luminosity and pileup 1.37 � � � � � �
b-tagging � � � 1.81 � � �
B-tagging 2.35 � � � � � �
Jet and Emiss

T � � � 1.83 � � �
Electrons 1.36 � � � � � �
Muons 1.35 � � � � � �
Taus � � � � � � � � �

Data-driven normalization 1.58 1.94 3.19
Non-prompt leptons 1.58 1.85 3.16
Non-prompt taus � � � 1.86 3.10
MC reweighting � � � � � � � � �

Theoretical modeling 1.38 1.89 3.04
Signal � � � � � � � � �
Background 1.37 1.87 3.03
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novel identification algorithm for low-mass merged B-jets.
In several BSMmodels, final state with b-quarks have large
branching ratio and the result provided here can place strict
limits on the existence of exotic decays of the Higgs boson.

X. CONCLUSION

This paper presents the first search by the ATLAS
experiment for exotic decays of the Higgs boson into a
pair of pseudoscalar particles, H → aa, where the a-boson
decays into two b-quarks and two τ-leptons. The analysis is
performed using the 140 fb−1 of proton–proton collision
data at a center-of-mass energy of 13 TeV recorded by the
ATLAS detector at the LHC between 2015 and 2018. The
search makes use of heavy-flavor-tagging techniques to
target collimated a → bb̄ decays and a mass-parameterized
neural network to enhance the sensitivity. The analysis
categorizes events depending on the τ-lepton decay modes:
eμ, eτhad, and μτhad, as well as the strategy for identifying
heavy-flavor jets: a merged b-jet pair, B-jet, and one or two
single b-jets. No significant excess above the SM back-
ground expectation is observed, and upper limits at
95% confidence level are set on BðH → aa→ bb̄τþτ−Þ
of 2.2%–3.9% for pseudoscalar mass values in the range
12 GeV ≤ ma ≤ 60 GeV, assuming the SM Higgs boson
production cross section. These results contribute to the
broad program of searches for H → aa decays in ATLAS
and can be used to set constraints on a variety of BSM
scenarios featuring such exotic Higgs decays.
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44b
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
45
Physics Department, Southern Methodist University, Dallas, Texas, USA

46
Physics Department, University of Texas at Dallas, Richardson, Texas, USA

47
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece

48a
Department of Physics, Stockholm University, Sweden

48b
Oskar Klein Centre, Stockholm, Sweden

49
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
50
Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

51
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

52
Department of Physics, Duke University, Durham, North Carolina, USA

53
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

54
INFN e Laboratori Nazionali di Frascati, Frascati, Italy

55
Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

56
II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

57
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77a
INFN Sezione di Roma Tor Vergata, Italy

SEARCH FOR DECAYS OF THE HIGGS BOSON INTO A PAIR … PHYS. REV. D 110, 052013 (2024)

052013-31



77b
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
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