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ABSTRACT 46 

The discovery and characterization of bacterial carbohydrate active enzymes is a 47 

fundamental component of biotechnology innovation, particularly for renewable fuels 48 

and chemicals, however these studies have increasingly transitioned to exploring the 49 

complex regulation required for recalcitrant polysaccharide utilization. This pivot is 50 

largely due to the current need to engineer and optimize enzymes for maximal 51 

degradation in industrial or biomedical applications. Given the structural simplicity of a 52 

single cellulose polymer, and the relatively few enzyme classes required for complete 53 

bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in 54 

the literature. However, the diversity of hemicelluloses found in plant biomass and the 55 

multitude of carbohydrate active enzymes required for their deconstruction has resulted 56 

in a less comprehensive understanding of bacterial hemicellulase-encoding gene 57 

regulation. Here we review the mechanisms of this process and common themes found 58 

in the transcriptomic response during plant biomass utilization. By comparing regulatory 59 

systems from both Gram-negative and Gram-positive bacteria, as well as drawing 60 

parallels to cellulase regulation, our goals are to highlight the shared and distinct 61 

features of bacterial hemicellulase-encoding gene regulation and provide a set of 62 

guiding questions to improve our understanding of bacterial lignocellulose utilization. 63 

  64 
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INTRODUCTION 65 

The decomposition of plant biomass plays a significant role in environmental and 66 

biotechnological settings (Zhang et al. 2020). As the largest source of renewable carbon 67 

on the planet, the deconstruction of its polysaccharide components are heavily studied 68 

(Von Freiesleben et al. 2018; Michalak et al. 2020; Mhatre et al. 2022). Plant cell wall 69 

polysaccharides are broadly classified as either cellulose or hemicellulose. Cellulose 70 

polymers are exclusively comprised of glucose with a single linkage type (Gardner and 71 

Blackwell 1974). Alternatively, hemicelluloses possess greater linkage and sugar 72 

varieties which can include xyloglucans, xylans, mannans, arabinans, and pectins 73 

(Hoch 2007). This diversity in linkage and sugar type contributes to the insolubility and 74 

recalcitrance of plant cell walls, making them difficult to degrade (Holland et al. 2020).  75 

Environmental bacteria and fungi are the central decomposers of this material 76 

(Pascoal et al. 2021), and produce Carbohydrate-Active Enzymes (CAZymes) for its 77 

deconstruction (Henrissat et al. 2022). Considerable biochemical and bioinformatic 78 

research has organized CAZymes into classes and families based on amino acid 79 

sequence and are documented in the CAZy database (Drula et al. 2022). This resource 80 

has facilitated efforts to predict and sort novel CAZymes for evolutionary phylogeny 81 

studies of lignocellulose degradation (Aspeborg et al. 2012; Wu et al. 2023), as well as 82 

enzyme engineering for industrial applications (Chettri and Verma 2023; Jayachandran 83 

et al. 2023).  84 

 As bacterial lignocellulose degradation systems become more fully described, 85 

work has branched out to several new areas to include the regulation of CAZyme-86 

encoding genes. While cellulase systems in both Gram-negative and Gram-positive 87 
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bacteria have been reviewed (Liu et al. 2021; Ziles Domingues et al. 2022), there have 88 

been much fewer for hemicellulase systems because of the large number of substrates 89 

and enzymes required, as well as the assertion that Carbon Catabolite Repression 90 

(CCR) is the dominant modulator of gene expression (Stülke and Hillen 1999). Despite 91 

these challenges, recent hemicellulase-encoding gene regulation studies have 92 

characterized novel systems that were leveraged to engineer a single bacterium 93 

capable of fully degrading and fermenting lignocellulose (Mhatre et al. 2022; Singhania 94 

et al. 2022).  95 

The goal of this review is to consolidate previously summarized work for a single 96 

phyla (Grondin et al. 2017; Lee et al. 2020) and provide commentary on the current 97 

direction of regulation-based studies for genes encoding hemicellulases like: 98 

xyloglucanases, xylanases, mannanases, arabinanases, and pectinases in both Gram-99 

negative and Gram-positive bacteria. Furthermore, this review discusses the breadth of 100 

knowledge regarding CAZyme-encoding gene regulatory systems to include the recent 101 

influx of transcriptomic and computational studies that predict regulons specific to 102 

hemicellulase-encoding genes. We conclude with a few open questions and offer 103 

suggestions on promising future directions for studying the regulation of hemicellulase-104 

encoding genes that may be of environmental or industrial interest. 105 

  106 
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CANONICAL REGULATORY MECHANISMS FOR BACTERIAL HEMICELLULASE-107 

ENCODING GENE EXPRESSION 108 

Expression of CAZyme-encoding genes requires precise regulation to ensure efficient 109 

energy expenditure under specific nutrient conditions. Despite the multitude of 110 

mechanisms that bacteria employ to regulate gene expression, there are only three 111 

systems commonly used for CAZyme-encoding genes, specifically hybrid two-112 

component systems, extra cytoplasmic function-σ/anti-σ systems, and carbon catabolite 113 

repression (Fig. 1). Given that these regulatory systems have been comprehensively 114 

reviewed previously (Liu et al. 2019; Pinto et al. 2019; Franzino et al. 2022), we will only 115 

briefly summarize each of their general functions and the current knowledge on these 116 

systems that is relevant for the expression of hemicellulase-encoding genes. 117 

 118 

Hybrid two-component systems. Hybrid two-component systems (HTCS) in bacteria 119 

use a sensing/phosphorylation relay mechanism to up-regulate genes involved in 120 

antibiotic resistance, virulence, biofilm formation, quorum sensing, and carbohydrate 121 

metabolism (Gutu et al. 2013; Cui et al. 2018; Gellatly et al. 2018; Kampik et al. 2020). 122 

This system, which is found in both Gram-negative and Gram-positive bacteria, 123 

recognizes an external stimulus with a cytoplasmic membrane protein that initiates a 124 

phosphorylation cascade to modulate gene expression (Howell et al. 2003). As shown 125 

in Fig. 1A, a substrate binds the sensor domain of a transmembrane histidine kinase. 126 

Substrate binding initiates a phosphate transfer from ATP to a histidine residue on the 127 

cytoplasmic domain. The phosphorylated histidine kinase then transfers the phosphate 128 

to a response regulator which binds the transcriptional start site of interest to modulate 129 
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transcription (Buschiazzo and Trajtenberg 2019; Francis and Porter 2019). It should be 130 

noted that there are examples of much lengthier phospho-relays with additional histidine 131 

kinases and response regulators before RNA polymerase recruitment. Two specific 132 

examples can be found in Bacteroides thetaiotaomicron and Bacillus cereus for glycan 133 

utilization and stress response, respectively (Been et al. 2006; Sonnenburg et al. 2006).  134 

 Previous research on hybrid two-component systems characterized the 135 

regulation of genes encoding xylanases, glucanases, arabinanases, and esterases from 136 

a diverse set of Gram-negative and Gram-positive bacteria (Emami et al. 2009; Martens 137 

et al. 2011; Shulami et al. 2014; Kampik et al. 2020). For example, in Gram-negative 138 

Cellvibrio japonicus, Bacteroides thetaiotaomicron, and Gram-positive 139 

Ruminiclostridium cellulolyticum, it was noted that HTCS regulators induced expression 140 

for biochemically or physiologically important xylanase-, arabinosidase-, and esterase-141 

encoding genes (Emami et al. 2009; Martens et al. 2011; Kampik et al. 2020). The 142 

characterized HTCSs associated with xylanase and arabinanase-encoding gene 143 

expression are now cataloged as response regulators belonging to the AraC/XylS family 144 

of transcriptional activators (Emami et al. 2009; Celik et al. 2013). This family has 145 

recently been reviewed and is categorized based on two characteristic helix-turn-helix 146 

DNA-binding motifs (Cortes-Avalos et al. 2021). Regulation predominantly occurs via 147 

activation when the phosphorylated regulator binds to a recognized -10 and -35 148 

consensus sequence up-stream of the promoter for RNA polymerase recruitment (Celik 149 

et al. 2013). The sensing domains of these HTCS bind branched xylo-oligosaccharides 150 

or arabino-oligosaccharides in the periplasmic space for Gram-negative bacteria 151 

(Emami et al. 2009; Schwalm III et al. 2017) and extracellularly for Gram-positive 152 



Novak and Gardner (2023)   7 
 

bacteria (Lansky et al. 2020). For the former, species like C. japonicus and B. 153 

thetaiotaomicron require an efficient mechanism to degrade extracellular hemicellulose 154 

into oligosaccharides and transport them to the periplasm where they can be sensed by 155 

the corresponding HTCS. It is therefore unsurprising that these two species possess a 156 

disproportionally high number of outer membrane transporters that can bring large 157 

complex oligosaccharides into the periplasm (Emami et al. 2009; Larsbrink et al. 2014; 158 

Blake et al. 2018; Pollet et al. 2021). 159 

 160 

Extra Cytoplasmic Function (ECF)-σ/anti-σ systems. Similar to HTCS, Extra 161 

Cytoplasmic Function (ECF)-σ/anti-σ systems are also comprised of a membrane-162 

spanning sensory protein with a cytoplasmic regulatory protein partner that controls 163 

gene expression, with specific roles in bacterial virulence, stress response, and 164 

carbohydrate catabolism (Sun et al. 2004; Alvarez-Martinez et al. 2007; Wang et al. 165 

2019a). ECF-σ/anti-σ systems are found in both Gram-negative and Gram-positive 166 

bacteria, but have been most well-characterized in Actinobacteria and human gut 167 

symbionts belonging to the Bacteroides phylum (Martens et al. 2009; Bahari et al. 2011; 168 

Huang et al. 2015; Despres et al. 2016a; Wang et al. 2019a). The anti-σ element of the 169 

system is a protein in the cytoplasmic membrane that binds a cytoplasmic ECF-σ 170 

protein (Helmann 2002) (Fig. 1B). Release of the ECF-σ protein occurs upon substrate 171 

binding, which can be a glycan, metal, or chemical stressor like limonene (Pudio et al. 172 

2015; Marcos-torres et al. 2016; Goutam et al. 2017). The freed σ-factor then binds to 173 

RNA polymerase, forming a holoenzyme, and initiates transcription after binding a 174 

recognized consensus mRNA sequence (Bae et al. 2015).  175 
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In the context of carbohydrate catabolism, ECF-σ/anti-σ systems are prominent 176 

regulators in human gut symbionts, especially for the expression of genes encoding O-177 

glycan-degrading enzymes (Martens et al. 2008). ECF-σ/anti-σ systems in Bacteroides 178 

species also frequently regulate genes encoding TonB-dependent transporters (e.g. 179 

SusC/D) (Martens et al. 2009). Furthermore, Gram-negative Cytophaga hutchinsonii 180 

and Gram-positive Clostridium thermocellum also have well-characterized ECF-σ/anti-σ 181 

systems that regulate cellulase-encoding gene expression (Nataf et al. 2010; Sand et al. 182 

2015; Wang et al. 2019a). In C. thermocellum, cellulosomes are assembled using at 183 

least six ECF-σ/anti-σ systems that are specific for distinct cellulolytic regulons (Ortiz de 184 

Ora et al. 2018; Ichikawa et al. 2022). 185 

In contrast to what is known about ECF-σ/anti-σ system to control cellulase-186 

encoding genes, the regulatory involvement of ECF-σ/anti-σ systems for hemicellulase-187 

encoding genes is less understood. Using the best described examples from 188 

Actinobacteria, ECF-σ/anti-σ systems have been placed into families based on the 189 

regulons they control (Huang et al. 2015). For example, ECF families 52 and 53 have 190 

been computationally predicted to possess a C-terminal fusion domain comprised of the 191 

anti-sigma factor sequence coupled with a transmembrane portion of the protein 192 

(Marcos-Torres et al. 2022). More interestingly, some ECF52 and ECF53 proteins also 193 

have computationally predicted glycosyl hydrolase catalytic domains and carbohydrate-194 

binding domains (Huang et al. 2015; Pinto et al. 2019), however experimental validation 195 

has yet to be performed. In C. thermocellum xylanase-encoding genes are regulated by 196 

alternative sigma factors σI6 and σI7 and the vegetative promoter σA (Sand et al. 2015; 197 

Ichikawa et al. 2022). It was demonstrated that the vegetative σA provided basal 198 
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expression of xylanase-encoding genes, while σI6 and σI7 were employed for stronger 199 

expression in the presence of xylans (Bahari et al. 2011; Sand et al. 2015). 200 

Furthermore, the characterization of C. thermocellum ECF-σ/anti-σ systems aided in the 201 

prediction of homologous regulators in related species like Psuedobacteroides 202 

cellulosolvens, specifically for a pectin-degrading regulon (Ortiz de Ora et al. 2018).  203 

 204 

Carbon Catabolite Repression. The final canonical system, carbon catabolite 205 

repression (CCR), is widely known for controlling the preferential utilization of specific 206 

carbon sources (typically glucose) over others (Ammar et al. 2018). In contrast to HTCS 207 

and ECF systems, which work similarly in Gram-negative and Gram-positive bacteria, 208 

the CCR mechanism in Gram-negative is markedly different compared to Gram-positive 209 

bacteria (Kundig et al. 1964; Deutscher and Saier Jr 1983). In Gram-negative bacteria, 210 

a phosphotransferase system is utilized wherein glucose is imported intracellularly and 211 

simultaneously phosphorylated by a component of the transport protein (EIIA). 212 

Expression of non-glucose metabolizing genes have very low basal expression and 213 

require activation (Fig. 1C). A phosphorylated EI protein transfers a phosphate group to 214 

the HPr protein, which in turn phosphorylates EIIA. In the absence of glucose, there is 215 

an abundance of phosphorylated EIIA (EIIA~P), which activates adenylate cyclase (AC) 216 

via phosphorylation (Magasanik 1961; Feucht and Saier 1980). The resulting 217 

accumulation of cAMP activates the cAMP Receptor Protein (CRP) and increases the 218 

transcription of genes that encode the proteins responsible for the metabolism of non-219 

preferred carbon sources.  220 
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In Gram-positive bacteria, expression of genes important to the metabolism of 221 

non-glucose sugars requires inactivation of the repressor catabolite control protein 222 

(CcpA) (Fig. 1D). This occurs in the absence of glucose wherein fructose 1,6-223 

bisphosphate (FBP) is not generated because glycolysis is not occurring. Without FBP, 224 

histidine protein (HPr) cannot be phosphorylated and dimerize with CcpA to repress 225 

transcription of genes involved in metabolizing non-preferred carbon sources 226 

(Deutscher and Saier Jr 1983). It should be noted that CcpA can also act as a 227 

transcriptional activator for quorum sensing (trpA), stress response (cidAB), and export 228 

of excess carbon (ackA) in Streptococcus pneumoniae, Streptococcus mutans, and 229 

Bacillus subtilis respectively (Henkin 1996; Kim et al. 2019a). Additionally, other 230 

counter-examples of CCR in Pseudomonas sp. found preferential utilization of 231 

succinate, citrate, or aromatic compounds over glucose (Liu 1952; Basu et al. 2006).  232 

One example of CCR-based regulation for hemicellulase-encoding genes is 233 

found in Bacillus subtilis and uses both CcpA and the repressor GmuR (Sadaie et al. 234 

2008). Mannanase-encoding genes in B. subtilis are in an operon that also contains 235 

genes encoding substrate-specific transporters and metabolic enzymes. In the presence 236 

of cellobiose or mannobiose (and in the absence of glucose), expression of the mannan 237 

utilization operon occurs due to a lack of fructose 1,6-bisphosphate. This results in 238 

limited amounts of phosphorylated HPr, which is necessary for CcpA binding to the 239 

promoter region. Consequently, the mannanase-encoding genes are de-repressed. 240 

Mannanase-encoding genes are further regulated by the repressor GmuR, which 241 

requires phosphorylation via GmuA, a component protein of the phosphotransferase 242 

system (PTS) and a structural homolog to EIIA (Sadaie et al. 2008). Briefly, 243 
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glucomannan disaccharides are imported and phosphorylated via the PTS (comprised 244 

of transport proteins GmuABC). Inverse to the processes described for carbon 245 

catabolite repression, the presence of glucomannan oligosaccharides results in an 246 

abundance of unphosphorylated GmuA. Consequently, GmuR cannot be 247 

phosphorylated, which results in the transcription of mannanase-encoding genes. 248 

Co-regulation of arabinanase and xylanase-encoding genes are found in Gram-249 

negative and Gram-positive bacteria, with two characterized repressors being AraR and 250 

XylR (Laikova et al. 2001; Rodionov et al. 2001). Both belong to the LacI family of 251 

transcriptional regulators and work in conjunction with CCR (Book et al. 2016; Ohashi et 252 

al. 2021; Rodionov et al. 2021). Co-regulation of xylanase and arabinanase genes 253 

provides an efficient means of streamlining gene expression given the monosaccharide 254 

composition of lignocellulose, namely hexoses coming from cellulose and pentoses 255 

coming from hemicellulose (Jamander et al. 2014; Kim et al. 2015). Not surprisingly, 256 

CCR has been widely studied to characterize the regulation of lignocellulose-derived 257 

sugar metabolism in Clostridium, Caldicellulosiruptor, Pseudomonas, and Escherichia 258 

species (Gosset 2005; Vanfossen et al. 2009; Bruder et al. 2015; Liu et al. 2015).  259 

 260 

Current Applications of Canonical Systems. The use of bacteria as lignocellulose 261 

bioprocessors has renewed interest in the three canonical regulatory mechanisms for 262 

biotechnologically relevant bacteria (Mearls et al. 2015; Taylor II et al. 2018; Elmore et 263 

al. 2020; Ling et al. 2022). Using HTCS and ECF-σ/anti-σ systems, recent studies have 264 

focused on regulation of polysaccharide utilization loci (PULs) containing hemicellulase-265 

encoding genes, especially in Bacteroides sp. (Luis et al. 2018; Mackie and Cann 2018; 266 
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Pereira et al. 2021; Beidler et al. 2023). Similarly, C. thermocellum is commonly used to 267 

study ECF-σ/anti-σ systems due to it possessing unique σI factors that can be studied 268 

heterologously in  B. subtilis (Munoz-Gutierrez et al. 2016). Comparative studies of C. 269 

thermocellum σI factors were also important to the discovery that transcriptional 270 

initiation of cellulosomal genes relied on an auto-proteolysis system for ECF upon 271 

binding to the glycan of interest (Chen et al. 2023a). Likewise, dismantling CCR-related 272 

mechanisms in biotechnologically relevant bacteria (e.g. E. coli, C. thermocellum, and 273 

P. putida) found that co-utilization of xylose and glucose is more easily achieved with 274 

intracellular cellobiose hydrolysis (Xiong et al. 2018; Wang et al. 2019b; Cabulong et al. 275 

2021). Intracellular cellobiose hydrolysis and phosphorylation bypassed some of the 276 

inhibitory effects caused by bacterial sensing/detection of extracellular glucose. 277 

Moreover, Pseudomonas putida KT2440 has undergone extensive engineering to co-278 

metabolize glucose with cellobiose, galactose, xylose, and arabinose (Dvorak and de 279 

Lorenzo 2018; Peabody V et al. 2019; Elmore et al. 2020).  280 

 281 

TRANSCRIPTOMIC APPROACHES TO IDENTIFY HEMICELLULASE-ENCODING 282 

GENE REGULATORY PATTERNS  283 

The use of transcriptomic data to assess global changes in CAZyme-encoding gene 284 

regulation has rapidly become a standard approach to identify critical components of 285 

polysaccharide degradation (Gruninger et al. 2018; Lillington et al. 2020; Chen et al. 286 

2023b). This method is particularly useful for non-model bacterial systems whose 287 

regulatory mechanisms are less characterized compared to E. coli or B. subtilis. While it 288 

should be noted that CAZyme-encoding gene expression was previously known to be 289 
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regulated by growth rate and bacterial life cycle for Bacteroides succinogenes and 290 

Clostridium thermocellum (Russell 1987; Rydzak et al. 2012), more recent reports have 291 

uncovered unique differences in hemicellulase-encoding gene regulation for both Gram-292 

positive and Gram-negative bacteria. Below is a summarization of the recent 293 

developments using transcriptomics to elucidate regulatory features in lignocellulose-294 

degrading bacteria. 295 

 296 

Hemicellulase gene expression in Gram-positive species. Current RNAseq 297 

analyses using Gram-positive bacteria grown on hemicelluloses have often revealed 298 

highly specific gene expression responses (Blumer-schuette et al. 2017; La Rosa et al. 299 

2019; Rodionov et al. 2021). For example, the human gut symbiont Roseburia 300 

intestinalis has a substrate-specific response during growth on glucomannan and 301 

galactomannan (Fig. 2A) (La Rosa et al. 2019). Notably, 16 up-regulated genes were 302 

from two distinct mannan utilization loci that differ from PULs described in Bacteroides 303 

by the absence of genes that encode TonB-dependent transporters. Additionally, R. 304 

intestinalis growth on galactose (a component of galactomannan) did not result in up-305 

regulation of any of these genes, suggesting that mannose or manno-oligosaccharides 306 

were the sole nutritional signal for mannan deconstruction (La Rosa et al. 2019).  307 

Highly specific CAZyme-encoding gene regulation has been observed in Bacillus 308 

sp. N16-5, where up-regulation of β-mannanase and α-galactosidase-encoding genes 309 

was only observed when the bacterium was grown using galactomannan, but not on 310 

xylan, pectin, CMC, or any tested monosaccharide (glucose, fructose, mannose, 311 

galactose, arabinose, or xylose) (Song et al. 2013). Furthermore, Bacillus sp. N16-5 312 
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grown using xylan only up-regulated β-xylanase-encoding genes, but growth on xylan or 313 

xylose up-regulated xylulokinase and xylose-related transporter-encoding genes.  314 

As a third example, in Caldicellulosirupter species like C. bescii and C. 315 

saccharolyticus, xylanase-encoding genes were strongly up-regulated during growth on 316 

xylan (Fig. 2B) but repressed on either xylose or cellulose (Blumer-schuette et al. 2017; 317 

Rodionov et al. 2021). Expression data of C. bescii when grown using xylan also 318 

identified a putative key xylanase for extracellular xylan degradation (Xyn11A-2) 319 

(Crosby et al. 2022); however, a comparison of enzymatic activity between the C. bescii 320 

xylanases showed relatively mediocre activity for Xyn11A-2. The authors suspect this 321 

observed difference in gene expression could be a compensatory mechanism to 322 

overcome modest activity of Xyn11A-2. The use of transcriptomic data from C. bescii 323 

when grown on xylan has also proven useful for pairing the important degradative loci to 324 

their likely regulators, which included XynR, XylR, AraR, BxgRS, and AxuRS (Rodionov 325 

et al. 2021). Interestingly, transcriptomic analysis of C. saccharolyticus grown using 326 

pectin found a much broader gene expression response than that observed on other 327 

hemicelluloses (Blumer-schuette et al. 2017). Growth of C. saccharolyticus using pectin 328 

elicited up-regulation of various CAZyme-encoding genes, including cellulases, 329 

mannanases, xylanases, arabinanases, pectinases, and chitinases (Fig. 2C). 330 

As a final example, Clostridium sp. exhibited some divergence in their regulatory 331 

circuits for xylanase-encoding genes (Petit et al. 2015; Munir et al. 2016). The 332 

expression of xylanase-encoding genes possessed by C. termitidis were dependent on 333 

xylan, but not xylose, cellobiose, or cellulose, while those belonging to C. 334 

phytofermentans were up-regulated when grown on both xylan and cellulose. Alongside 335 
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the differences in hemicellulase gene expression observed between growth media, 336 

growth-rate is also a critical mediator of CAZyme gene expression in Clostridium sp., 337 

with several studies reporting C. thermocellum transcription of cellulase-encoding genes 338 

dependent upon growth phase (Dror et al. 2003; Riederer et al. 2011). One interesting 339 

exception was for a xylanase-encoding gene (xynC), which exhibited high expression 340 

irrespective of growth rate (Dror et al. 2005).  341 

 342 

Hemicellulase gene expression in Gram-negative species. For Gram-negative 343 

bacterial species, transcriptomic studies have revealed much broader gene expression 344 

responses than those observed in Gram-positive bacteria (Blake et al. 2018; Chen et al. 345 

2018; Novak and Gardner 2023). For example, in Leeuwenhoekiella sp. 346 

MAR_2009_132, and Salegentibacter sp. Hel_I_6, up-regulated α- and β-mannanase-347 

encoding genes were identified when these bacteria were grown on both α- or β-348 

mannan despite the selective activity of these CAZymes for each substrate (Chen et al. 349 

2018). This suggested that these species regulate mannanase gene expression with 350 

less specificity, possibly at the level of the mannose monosaccharide given that these 351 

bacteria cannot differentiate between α- versus β-mannan.  352 

A broad gene expression response was revealed in the saprophyte Cellvibrio 353 

japonicus when grown on glucomannan (Fig. 2A) (Novak and Gardner 2023). Eight of 354 

the ten predicted mannanase-encoding genes were up-regulated, as well as an 355 

additional 46 CAZyme-encoding genes. Strong up-regulation of non-substrate specific 356 

CAZyme-encoding genes in C. japonicus suggests that it is likely the presence of 357 

complex polysaccharides that induce gene expression. Additionally, a previous study of 358 
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the C. japonicus transcriptomic response on cellobiose also resulted in broader up-359 

regulation of  cellulases and hemicellulases (Nelson et al. 2017). Interestingly, a much 360 

more specific response was elicited when C. japonicus was grown on oat-spelt xylan 361 

(Blake et al. 2018). This report concluded that C. japonicus only up-regulated xylanase 362 

genes during mid-exponential growth, though a comparison of the RNAseq from 363 

stationary phase showed up-regulation of genes encoding xylanases, arabinanases, 364 

mannanases, and cellulases. In terms of growth rate affecting CAZyme-encoding gene 365 

expression in C. japonicus, it was observed that expression was more prominent during 366 

active growth compared to stationary phase (Blake et al. 2018; Novak and Gardner 367 

2023).  368 

Roseithermus sacchariphilus exhibited a transcriptomic response quite dissimilar 369 

to C. japonicus when it was grown on beechwood xylan (Liew et al. 2020). This 370 

bacterium had up-regulation of genes encoding cellulases, mannanases, xylanases, 371 

arabinanases, pectinases, and other glycosidases (Fig. 2B). Surprisingly, pectinase-372 

encoding genes were the most prominently up-regulated CAZyme-encoding genes 373 

when R. sacchariphilus was grown on xylan. The authors hypothesize that the broad 374 

response was due to co-expression of genes encoding various glycosidic activities by 375 

the same promoter. However, they also suggested that a multi-timepoint transcriptomic 376 

analysis could reveal more about the patterns of hemicellulase gene expression. 377 

Finally, expression of CAZyme-encoding genes in Bacteroides xylanisolvens also 378 

elicited a broad gene expression response on oat-spelt xylan, with up-regulation of 150 379 

carbohydrate utilization-encoding genes that included all identified PULs for xylan 380 

utilization and 15 PULs for starch and pectic metabolism (Despres et al. 2016a). The 381 
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authors hypothesized that the broad response was from detection of shared 382 

oligosaccharides present in both oat-spelt xylan and pectins (i.e. arabinoside side-383 

chains). However, this response was very different when B. xylanisolvens was grown on 384 

citrus pectin and resulted in a much more specific result (Fig. 2C) (Despres et al. 385 

2016b). Here, researchers were able to compare the gene expression response on two 386 

different types of pectins and discern the PULs that were most likely to be involved in 387 

the degradation of different pectic-linkages. Specifically, PUL 2 was suspected to be 388 

important to degrading type II rhamnogalacturonan, PUL 13 was likely involved in de-389 

branching arabinose sidechains, and PULs 49 and 50 were the most up regulated on 390 

both pectins and were suspected to be involved in degrading homogalacturonan and 391 

type I rhamnogalacturonan, respectively. Additionally, B. xylanisolvens shared the traits 392 

observed in other bacterial species with high expression of CAZyme-encoding genes 393 

during active growth compared to stationary phase (Despres et al. 2016b). 394 

 395 

Hemicellulase gene expression in bacterial co-culture. There has been increasing 396 

interest in the metatranscriptomic of co-cultured bacteria using complex polysaccharide-397 

rich substrates given that environmental lignocellulose degradation is performed by a 398 

microbial community. For example, a study of the Gram-positive Butyrivibrio hungatei 399 

MB2003 transcriptome during mono- and co-culture with rumen gut symbiont 400 

Butyrivibrio proteoclasticus B316 found that in monoculture, B. hungatei was unable to 401 

grow on xylan or pectin despite the presence and expression of several hemicellulase-402 

encoding genes (Palevich et al. 2019). Strikingly, when in co-culture with B. 403 

proteoclasticus, B. hungatei had a substantial increase in its growth capabilities at the 404 
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expense of B. proteoclasticus final cell density. Since B. hungatei acts more as a sugar 405 

scavenger than a hemicellulose-degrader, its RNAseq results in monoculture 406 

unsurprisingly showed marked increases in the expression of many genes important to 407 

translation, signal transduction, defensive mechanisms, lipid/amino acid metabolism, 408 

and cell wall biogenesis compared to its co-cultured counterpart. During co-culture with 409 

B. proteoclasticus, B. hungatei expressed fewer genes overall but exhibited more 410 

specificity in the expression of genes encoding for carbohydrate metabolism (e.g. ABC 411 

sugar transporters). Interestingly, B. proteoclasticus gene expression was relatively 412 

unchanged between mono- and co-culture (excluding a few CAZyme-encoding genes 413 

which were up-regulated during co-culture) despite the increase in competition provided 414 

by culturing with B. hungatei.  415 

As another example, the Gram-negative gut symbionts P. intestinalis, P. muris, 416 

and P. rodentium underwent comparative metatranscriptomic analysis, and the study 417 

concluded that P. intestinalis was the most competitive strain due to its distinct up-418 

regulation of PULs encoding xylanase and pectinase-encoding genes when the rat host 419 

was given a diet heavy in arabinoxylans (Galvez et al. 2020). The three most up-420 

regulated glycoside hydrolase families in all three species were from GH43, GH2, and 421 

GH28. These families contain members able to hydrolyze β-glucan, β-xylan, α-arabinan, 422 

and pectic linkages (Lombard et al. 2014).  423 

Co-cultures containing both Gram-positive and Gram-negative species have 424 

been used to investigate the bottlenecks of complete lignocellulose bioconversion in the 425 

guts of rumen or humans (Leth et al. 2018; Badhan et al. 2022). A recent 426 

metatranscriptomic study examined a complex consortium of Gram-positive and Gram-427 
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negative gut symbionts in ruminant animals grown in ex vivo batch culture on Total 428 

Tract Indigestible Residue (TTIR). The primary goal of the study was to assess the 429 

bottlenecks in ruminant digestion to uncover mechanisms to enhance the system. 430 

Transcripts encoding xylanases were abundant when the micro-community was grown 431 

on TTIR, which indicated that heteroxylans and xyloglucans were the primary remaining 432 

polysaccharide in the TTIR. It was hypothesized that the sheer quantity of inter- and 433 

intramolecular bonds act as a hindrance to enzyme accessibility to the substrate. 434 

Overall, there appears to be a distinguishing difference between the 435 

hemicellulose-encoding gene expression patterns in Gram-positive versus Gram-436 

negative bacteria. Specifically, the narrowed specificity of gene expression observed in 437 

Gram-positive compared to Gram-negative species. Additionally, investigations of co-438 

culture transcriptomics containing Gram-positive and/or Gram-negative communities on 439 

lignocellulose have focused on the interspecies relationships and competition for carbon 440 

acquisition (Palevich et al. 2019; Galvez et al. 2020; Badhan et al. 2022). The 441 

knowledge obtained from these analyses has subsequently been applied in studies on 442 

gut microbiomes and biotechnology applications, specifically for studies that 443 

successfully predicted the impact of synthetic gut microbiota on host immune response 444 

(Afrizal et al. 2022) and identified patterns in microbe abundance based on diet (Corbin 445 

et al. 2023). 446 

 447 

Computational prediction of transcriptional regulators using compilations of 448 

transcriptomic data. In addition to the plethora of information provided by RNAseq 449 

data from a singular dataset, compilations of such data can extrapolate more 450 
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information on transcriptional regulatory systems using computational methods. For 451 

example, transcriptomic compilations with DNA-binding motif studies have predicted 452 

extensive transcriptional regulatory networks of several different bacteria (Poudel et al. 453 

2020; Rychel et al. 2020). The known computationally predicted regulons of Gram-454 

negative plant bioprocessors is relatively exclusive to the fermentative bioprocessing 455 

bacteria that possess few hemicellulases (Sastry et al. 2019; Lim et al. 2022). However, 456 

this approach has yielded interesting results for Gram-positive species. For example in 457 

C. thermocellum, a LacI transcriptional regulator (GlyR2) was computationally predicted 458 

as important for genes encoding two mannanases (man5A and man26A), a xylanase 459 

(clo1313_2530), and two cellulases (clo1313_0413 and clo1313_1425) (Wilson et al. 460 

2017; Hebdon et al. 2021). Previous experimental research on GlyR2 had identified it as 461 

a mannobiose-responsive transcriptional repressor with only confirmed regulatory 462 

activity on a mannanase-encoding gene (man5A) (Wilson et al. 2017). GlyR2 was 463 

hypothesized to have indirect effects on transcriptional regulation of certain 464 

hemicellulose-encoding genes that may require different conditions to de-repress other 465 

genes with the recognized binding motif (Hebdon et al. 2021). Additionally, a C. bescii 466 

genome analysis and comparison to other Caldicellulosiruptor species improved the 467 

organism-specific bioprocessing model through the discovery of 16 key regulators 468 

important to the degradation and metabolism of hemicellulose and pectin (Rodionov et 469 

al. 2021). It was noted that most of these regulators were involved in the expression of 470 

xylanase or pectinase-encoding genes, while genes that encoded cellulases, 471 

mannanases, and amylases generally only had one regulator for each CAZyme type. 472 

Additionally, the mechanistic regulatory actions of the predicted regulators were 473 
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overwhelmingly repressive in function with the few activators belonging to the AraC-474 

family. Interestingly, the study found that most of these activators were involved in the 475 

regulation of pectinase-encoding genes.  476 

 477 

FUTURE DIRECTIONS 478 

A thorough understanding of how hemicellulase-encoding genes are regulated is 479 

essential to optimize lignocellulose bioprocessing (Chettri et al. 2020). Consequently, 480 

detailed studies that include hemicellulase-encoding gene regulation are generally 481 

conducted exclusively on well-characterized model bacteria and those already being 482 

used as chassis in biotechnology applications (Xiong et al. 2018; Rodionov et al. 2021).  483 

Given that metagenomic and metatranscriptomic data for less characterized 484 

lignocellulolytic bacteria with unoptimized systems are available (Dai et al. 2015; 485 

Kougias et al. 2018; Lopez-Mondejar et al. 2020) but beyond the scope of this review, 486 

we have endeavored to summarize and highlight the current state of hemicellulose-487 

encoding gene regulation patterns between Gram-positive and Gram-negative bacteria. 488 

Overall, we argue there are two critical features of hemicellulase-encoding gene 489 

regulation that must be considered for optimization, which are (1) identifying the specific 490 

metabolic inducer (often an oligosaccharide), and (2) mitigating the impacts of carbon 491 

catabolite repression. Current lignocellulose bioconversion systems typically use Gram-492 

positive species for saccharification and Gram-negative species for fermentation (Dai et 493 

al. 2015; Thapa et al. 2019). While it has been previously argued that co-culture or 494 

consortia-based bioconversion processes will improve efficiency and completeness of 495 

lignocellulose degradation (Chin et al. 2020; Kumar et al. 2023), the amount of strain 496 
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engineering and optimization significantly increases for each strain added to the 497 

process, especially given the current trend of focusing only on improving either 498 

degradative or metabolic/fermentative capabilities. Therefore, the following commentary 499 

will focus exclusively on the optimization of single bacterium bioprocessing systems for 500 

the complete deconstruction and utilization of lignocellulose (Table 1). 501 

 502 

Optimizing Gram-positive systems will require integration of degradative and 503 

fermentative capabilities. Clostridia and Caldicellulosiruptor species are highly studied 504 

genera for their prolific degradation of plant polymers (Artzi et al. 2018; Brunecky et al. 505 

2018; Williams-Rhaesa et al. 2018). However, neither system has been successfully 506 

engineered to fully metabolize and ferment all components of lignocellulose. In the case 507 

of Clostridia systems, this is due to an inherent inability to ferment pentoses. A previous 508 

attempt to engineer a pathway for xylose fermentation in C. thermocellum found that 509 

while xylose and Avicel could be co-utilized, xylan and Avicel could not (Xiong et al. 510 

2018). It was argued that this is likely due an inhibitory effect posed by cello-511 

oligosaccharides on xylanases or unknown regulators that repress xylanase gene 512 

expression in the presence of cello-oligosaccharides. More recently, efforts have 513 

transitioned to develop CRISPR/Cas systems or riboswitches (Marcano-Velazquez et 514 

al. 2019; Walker et al. 2020) to mediate the observed repression of xylanase gene 515 

transcription in the presence of cellodextrins or cellobiose.   516 

In Caldicellulosiruptor systems the limiting factor is that the expression and 517 

degradative efficiency of heterologously expressed CAZymes is low. C. bescii has been 518 

extensively manipulated to improve its saccharifying proficiency via heterologous 519 
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expression of xylanases (Kim et al. 2018; Crosby et al. 2022), however it has been 520 

observed that degraded oligosaccharides repress expression of secreted enzymes. 521 

Additionally, many heterologously expressed genes in C. bescii employ a highly active 522 

constitutive promoter, which is unoptimized for lignocellulose bioprocessing due to the 523 

energetic output required to constitutively and highly express heterologous CAZyme-524 

encoding genes (Conway et al. 2017; Kim et al. 2017; Lee et al. 2020). Therefore, 525 

control over the expression of the heterologously expressed genes could spare the 526 

metabolic burden of their high expression levels and improve this limitation. 527 

 528 

Optimizing Gram-negative systems will require bolstering the potency of 529 

lignocellulolytic capabilities. Gram-negative species elicit a much broader 530 

hemicellulase-encoding gene regulatory response than Gram-positive bacteria. We 531 

argue that this diversification of CAZyme gene expression is an underutilized resource 532 

to optimize lignocellulose bioconversion in single bacterium systems. Biotechnology-533 

relevant model systems like E. coli and P. putida have been largely focused on 534 

improving co-utilization of hexoses and pentoses by overcoming the effects of CCR 535 

(Kim et al. 2019b; Peabody V et al. 2019; Elmore et al. 2020; Cabulong et al. 2021). 536 

However, these systems are limited as they are unable to innately degrade 537 

lignocellulose. The necessary step needed to drive either model into a fully self-538 

sufficient system is the inclusion of lignocellulolytic machinery. This approach has 539 

several obstacles, most pressingly, identifying the minimally sufficient set of CAZymes 540 

that can completely depolymerize plant biomass and engineering an efficient export 541 

system for these CAZymes from the heterologous host.  542 
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 In contrast, the genes/proteins needed to ferment plant sugars or produce other 543 

bioproducts are known and could be integrated into lignocellulolytic Gram-negative 544 

species. One example of a system not yet tapped for industrial use but has to potential 545 

to do so is Cellvibrio japonicus, a Gram-negative saprophyte that can fully degrade 546 

lignocellulose (Deboy et al. 2008; Gardner et al. 2014; Larsbrink et al. 2014; Blake et al. 547 

2018). C. japonicus has also been shown to make ethanol and rhamnolipids as targeted 548 

products from lignocellulose bioconversion on a proof-of-concept scale (Gardner and 549 

Keating 2010; Horlamus et al. 2018). Another Gram-negative model is Saccharophagus 550 

degradans which also possesses a large number of CAZymes capable of degrading 551 

polysaccharides including cellulose, xylan, and pectin (Ensor et al. 1999). Engineering 552 

efforts using S. degradans have successfully generated strains capable of producing 553 

polyhydroxyalkanoate (PHAs) from cellulose, xylan, and agarose (Esteban Alva Munoz 554 

and Riley 2008; Sawant et al. 2017). However, S. degradans cannot generate ethanol 555 

and still relies on co-culture with other microbes for its production (Takagi et al. 2016). 556 

While both C. japonicus and S. degradans show promise with their degradative ability, 557 

improvements to their genetic systems are still needed to heterologously express the 558 

necessary metabolic pathways to produce high-value products. 559 

 560 

Concluding statement. This review discussed mechanisms that regulate 561 

hemicellulase-encoding gene expression in Gram-positive versus Gram-negative 562 

bacteria. Experimental studies that characterize the molecular mechanisms of 563 

hemicellulase gene expression are useful to identify relevant activators or repressors for 564 

each regulon, and we argue that such research is essential for the field to significantly 565 
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advance. Given the discussed limitations of the reviewed models, the field should 566 

prioritize efforts that predict transcriptional regulatory networks and engineer the 567 

requisite enzymes for plant sugar bioconversion in species innately capable of prolific 568 

lignocellulose degradation.  569 

  570 
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Figure 1. Common regulatory systems for Carbohydrate-Active Enzyme 1173 

(CAZyme) encoding genes in Gram-positive and Gram-negative bacteria. (A) 1174 

Hybrid two component system in Bacteroides thetaiotaomicron. Upon sensing of 1175 

arabinoxylan from the transmembrane domain, the intracellular histidine kinase (HK) 1176 

phosphorylates the associated response regulator (RR) which recruits RNA polymerase 1177 

for gene transcription. (B) ECF-σ/anti-σ factor system in Bacteroides xylanisolvens. 1178 

Binding of arabinoxylan to the carbohydrate domain of the transmembrane ECF protein 1179 

releases the intracellular σ factor from the membrane-attached anti-σ factor which aids 1180 

RNA polymerase in gene transcription. (C) Carbon catabolite repression in Gram-1181 

negative Escherichia coli. In the absence of glucose, phosphorylated EIIA accumulates 1182 

and activates adenylate cyclase (AC) via phosphorylation, which generates high cAMP 1183 

levels. The cAMP subsequently binds to the cAMP receptor protein (CRP) and initiates 1184 

transcription of hemicellulase-encoding genes. (D) Carbon catabolite repression in 1185 

Gram-positive Bacillus subtilis. In the absence of glucose, fructose 1,6-biphosphate is 1186 

not generated because glycolysis does not occur. Without fructose 1,6-biphosphate, 1187 

histidine protein (HPr) does not get phosphorylated and therefore cannot dimerize with 1188 

the carbon catabolite control protein (CcpA). Without this dimerization, the coupled 1189 

protein cannot inhibit transcription. For all panels, phosphate is shown as a gold circle 1190 

with a ‘P’, arabinoxylan is shown with orange stars for xylose and the green stars for 1191 

arabinose, fructose is shown as a green pentagon. Model generated with 1192 

BioRender.com. 1193 
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Figure 2. Differences in up-regulation of CAZyme-encoding genes from selected 1195 

Gram-positive and Gram-negative bacteria when grown using hemicelluloses. (A) 1196 

CAZyme-encoding gene expression of Gram-positive Roseburia intestinalis and Gram-1197 

negative Cellvibrio japonicus on glucomannan. (B) CAZyme-encoding gene expression 1198 

response of Gram-positive Caldicellulosiruptor bescii and Gram-negative Roseithermus 1199 

sacchariphilus on xylan. (C) CAZyme-encoding gene expression response of Gram-1200 

positive Caldicellulosiruptor saccharolyticus and Gram-negative Bacteroides 1201 

xylanisolvens on pectin. 1202 
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Table 1. Current limitations of select bacterial bioprocessors and suggested 1204 

research approaches. 1205 

 Bacterium Current limitations Suggested approach 

 
Gram-positive 

 
Clostridium 
thermocellum 
 
 
 

 
• Requires synthetic 
biology to utilize non-
cellulose derived sugars 

• Engineered fermentation 
pathways for plant 
sugars repressed by 
plant oligosaccharides 

 

 
Improve genetic 
tools to control 
regulation of 
heterologously 
expressed genes 

  
Caldicellulosiruptor 
bescii 
 
 
 

 
• Low expression and 
degradative efficiency of 
heterologously 
expressed CAZyme-
encoding genes 

 

 
Improve 
transcriptional 
control over 
heterologously 
expressed genes 

 
Gram-negative 

 
Cellvibrio 
japonicus 

 
• No high-yielding, stable 
plasmid system for gene 
expression  

• Does not produce any 
current high-value 
metabolite in abundance 

 

 
Develop a stably 
replicating plasmid 
for gene expression  

  
Saccharophagus 
degradans 

 
• Poor genetic system 
• Cannot natively ferment 
sugars to fuels and/or 
renewable chemicals  

 
Develop genetic 
tools to engineer a 
commodity product-
producing strain 

 1206 
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