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ABSTRACT

The discovery and characterization of bacterial carbohydrate active enzymes is a
fundamental component of biotechnology innovation, particularly for renewable fuels
and chemicals, however these studies have increasingly transitioned to exploring the
complex regulation required for recalcitrant polysaccharide utilization. This pivot is
largely due to the current need to engineer and optimize enzymes for maximal
degradation in industrial or biomedical applications. Given the structural simplicity of a
single cellulose polymer, and the relatively few enzyme classes required for complete
bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in
the literature. However, the diversity of hemicelluloses found in plant biomass and the
multitude of carbohydrate active enzymes required for their deconstruction has resulted
in a less comprehensive understanding of bacterial hemicellulase-encoding gene
regulation. Here we review the mechanisms of this process and common themes found
in the transcriptomic response during plant biomass utilization. By comparing regulatory
systems from both Gram-negative and Gram-positive bacteria, as well as drawing
parallels to cellulase regulation, our goals are to highlight the shared and distinct
features of bacterial hemicellulase-encoding gene regulation and provide a set of

guiding questions to improve our understanding of bacterial lignocellulose utilization.
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INTRODUCTION

The decomposition of plant biomass plays a significant role in environmental and
biotechnological settings (Zhang et al. 2020). As the largest source of renewable carbon
on the planet, the deconstruction of its polysaccharide components are heavily studied
(Von Freiesleben et al. 2018; Michalak et al. 2020; Mhatre et al. 2022). Plant cell wall
polysaccharides are broadly classified as either cellulose or hemicellulose. Cellulose
polymers are exclusively comprised of glucose with a single linkage type (Gardner and
Blackwell 1974). Alternatively, hemicelluloses possess greater linkage and sugar
varieties which can include xyloglucans, xylans, mannans, arabinans, and pectins
(Hoch 2007). This diversity in linkage and sugar type contributes to the insolubility and
recalcitrance of plant cell walls, making them difficult to degrade (Holland et al. 2020).

Environmental bacteria and fungi are the central decomposers of this material
(Pascoal et al. 2021), and produce Carbohydrate-Active Enzymes (CAZymes) for its
deconstruction (Henrissat et al. 2022). Considerable biochemical and bioinformatic
research has organized CAZymes into classes and families based on amino acid
sequence and are documented in the CAZy database (Drula et al. 2022). This resource
has facilitated efforts to predict and sort novel CAZymes for evolutionary phylogeny
studies of lignocellulose degradation (Aspeborg et al. 2012; Wu et al. 2023), as well as
enzyme engineering for industrial applications (Chettri and Verma 2023; Jayachandran
et al. 2023).

As bacterial lignocellulose degradation systems become more fully described,
work has branched out to several new areas to include the regulation of CAZyme-

encoding genes. While cellulase systems in both Gram-negative and Gram-positive
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bacteria have been reviewed (Liu et al. 2021; Ziles Domingues et al. 2022), there have
been much fewer for hemicellulase systems because of the large number of substrates
and enzymes required, as well as the assertion that Carbon Catabolite Repression
(CCR) is the dominant modulator of gene expression (Stulke and Hillen 1999). Despite
these challenges, recent hemicellulase-encoding gene regulation studies have
characterized novel systems that were leveraged to engineer a single bacterium
capable of fully degrading and fermenting lignocellulose (Mhatre et al. 2022; Singhania
et al. 2022).

The goal of this review is to consolidate previously summarized work for a single
phyla (Grondin et al. 2017; Lee et al. 2020) and provide commentary on the current
direction of regulation-based studies for genes encoding hemicellulases like:
xyloglucanases, xylanases, mannanases, arabinanases, and pectinases in both Gram-
negative and Gram-positive bacteria. Furthermore, this review discusses the breadth of
knowledge regarding CAZyme-encoding gene regulatory systems to include the recent
influx of transcriptomic and computational studies that predict regulons specific to
hemicellulase-encoding genes. We conclude with a few open questions and offer
suggestions on promising future directions for studying the regulation of hemicellulase-

encoding genes that may be of environmental or industrial interest.
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CANONICAL REGULATORY MECHANISMS FOR BACTERIAL HEMICELLULASE-

ENCODING GENE EXPRESSION

Expression of CAZyme-encoding genes requires precise regulation to ensure efficient
energy expenditure under specific nutrient conditions. Despite the multitude of
mechanisms that bacteria employ to regulate gene expression, there are only three
systems commonly used for CAZyme-encoding genes, specifically hybrid two-
component systems, extra cytoplasmic function-o/anti-o systems, and carbon catabolite
repression (Fig. 1). Given that these regulatory systems have been comprehensively
reviewed previously (Liu et al. 2019; Pinto et al. 2019; Franzino et al. 2022), we will only
briefly summarize each of their general functions and the current knowledge on these

systems that is relevant for the expression of hemicellulase-encoding genes.

Hybrid two-component systems. Hybrid two-component systems (HTCS) in bacteria
use a sensing/phosphorylation relay mechanism to up-regulate genes involved in
antibiotic resistance, virulence, biofilm formation, quorum sensing, and carbohydrate
metabolism (Gutu et al. 2013; Cui et al. 2018; Gellatly et al. 2018; Kampik et al. 2020).
This system, which is found in both Gram-negative and Gram-positive bacteria,
recognizes an external stimulus with a cytoplasmic membrane protein that initiates a
phosphorylation cascade to modulate gene expression (Howell et al. 2003). As shown
in Fig. 1A, a substrate binds the sensor domain of a transmembrane histidine kinase.
Substrate binding initiates a phosphate transfer from ATP to a histidine residue on the
cytoplasmic domain. The phosphorylated histidine kinase then transfers the phosphate

to a response regulator which binds the transcriptional start site of interest to modulate
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transcription (Buschiazzo and Trajtenberg 2019; Francis and Porter 2019). It should be
noted that there are examples of much lengthier phospho-relays with additional histidine
kinases and response regulators before RNA polymerase recruitment. Two specific
examples can be found in Bacteroides thetaiotaomicron and Bacillus cereus for glycan
utilization and stress response, respectively (Been et al. 2006; Sonnenburg et al. 2006).

Previous research on hybrid two-component systems characterized the
regulation of genes encoding xylanases, glucanases, arabinanases, and esterases from
a diverse set of Gram-negative and Gram-positive bacteria (Emami et al. 2009; Martens
et al. 2011; Shulami et al. 2014; Kampik et al. 2020). For example, in Gram-negative
Cellvibrio  japonicus, Bacteroides thetaiotaomicron, and Gram-positive
Ruminiclostridium cellulolyticum, it was noted that HTCS regulators induced expression
for biochemically or physiologically important xylanase-, arabinosidase-, and esterase-
encoding genes (Emami et al. 2009; Martens et al. 2011; Kampik et al. 2020). The
characterized HTCSs associated with xylanase and arabinanase-encoding gene
expression are now cataloged as response regulators belonging to the AraC/XyIS family
of transcriptional activators (Emami et al. 2009; Celik et al. 2013). This family has
recently been reviewed and is categorized based on two characteristic helix-turn-helix
DNA-binding motifs (Cortes-Avalos et al. 2021). Regulation predominantly occurs via
activation when the phosphorylated regulator binds to a recognized -10 and -35
consensus sequence up-stream of the promoter for RNA polymerase recruitment (Celik
et al. 2013). The sensing domains of these HTCS bind branched xylo-oligosaccharides
or arabino-oligosaccharides in the periplasmic space for Gram-negative bacteria

(Emami et al. 2009; Schwalm Il et al. 2017) and extracellularly for Gram-positive
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bacteria (Lansky et al. 2020). For the former, species like C. japonicus and B.
thetaiotaomicron require an efficient mechanism to degrade extracellular hemicellulose
into oligosaccharides and transport them to the periplasm where they can be sensed by
the corresponding HTCS. It is therefore unsurprising that these two species possess a
disproportionally high number of outer membrane transporters that can bring large
complex oligosaccharides into the periplasm (Emami et al. 2009; Larsbrink et al. 2014;

Blake et al. 2018; Pollet et al. 2021).

Extra Cytoplasmic Function (ECF)-o/anti-o systems. Similar to HTCS, Extra
Cytoplasmic Function (ECF)-o/anti-o systems are also comprised of a membrane-
spanning sensory protein with a cytoplasmic regulatory protein partner that controls
gene expression, with specific roles in bacterial virulence, stress response, and
carbohydrate catabolism (Sun et al. 2004; Alvarez-Martinez et al. 2007; Wang et al.
2019a). ECF-o/anti-o systems are found in both Gram-negative and Gram-positive
bacteria, but have been most well-characterized in Actinobacteria and human gut
symbionts belonging to the Bacteroides phylum (Martens et al. 2009; Bahari et al. 2011;
Huang et al. 2015; Despres et al. 2016a; Wang et al. 2019a). The anti-o element of the
system is a protein in the cytoplasmic membrane that binds a cytoplasmic ECF-o
protein (Helmann 2002) (Fig. 1B). Release of the ECF-o protein occurs upon substrate
binding, which can be a glycan, metal, or chemical stressor like limonene (Pudio et al.
2015; Marcos-torres et al. 2016; Goutam et al. 2017). The freed o-factor then binds to
RNA polymerase, forming a holoenzyme, and initiates transcription after binding a

recognized consensus mMRNA sequence (Bae et al. 2015).
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In the context of carbohydrate catabolism, ECF-o/anti-o systems are prominent
regulators in human gut symbionts, especially for the expression of genes encoding O-
glycan-degrading enzymes (Martens et al. 2008). ECF-o/anti-o systems in Bacteroides
species also frequently regulate genes encoding TonB-dependent transporters (e.qg.
SusC/D) (Martens et al. 2009). Furthermore, Gram-negative Cytophaga hutchinsonii
and Gram-positive Clostridium thermocellum also have well-characterized ECF-o/anti-o
systems that regulate cellulase-encoding gene expression (Nataf et al. 2010; Sand et al.
2015; Wang et al. 2019a). In C. thermocellum, cellulosomes are assembled using at
least six ECF-o/anti-o systems that are specific for distinct cellulolytic regulons (Ortiz de
Ora et al. 2018; Ichikawa et al. 2022).

In contrast to what is known about ECF-o/anti-o system to control cellulase-
encoding genes, the regulatory involvement of ECF-o/anti-o systems for hemicellulase-
encoding genes is less understood. Using the best described examples from
Actinobacteria, ECF-o/anti-o systems have been placed into families based on the
regulons they control (Huang et al. 2015). For example, ECF families 52 and 53 have
been computationally predicted to possess a C-terminal fusion domain comprised of the
anti-sigma factor sequence coupled with a transmembrane portion of the protein
(Marcos-Torres et al. 2022). More interestingly, some ECF52 and ECF53 proteins also
have computationally predicted glycosyl hydrolase catalytic domains and carbohydrate-
binding domains (Huang et al. 2015; Pinto et al. 2019), however experimental validation
has yet to be performed. In C. thermocellum xylanase-encoding genes are regulated by
alternative sigma factors ¢'® and ¢'” and the vegetative promoter o” (Sand et al. 2015;

Ichikawa et al. 2022). It was demonstrated that the vegetative o* provided basal
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expression of xylanase-encoding genes, while ¢'® and ¢ were employed for stronger
expression in the presence of xylans (Bahari et al. 2011; Sand et al. 2015).
Furthermore, the characterization of C. thermocellum ECF-o/anti-o systems aided in the
prediction of homologous regulators in related species like Psuedobacteroides

cellulosolvens, specifically for a pectin-degrading regulon (Ortiz de Ora et al. 2018).

Carbon Catabolite Repression. The final canonical system, carbon catabolite
repression (CCR), is widely known for controlling the preferential utilization of specific
carbon sources (typically glucose) over others (Ammar et al. 2018). In contrast to HTCS
and ECF systems, which work similarly in Gram-negative and Gram-positive bacteria,
the CCR mechanism in Gram-negative is markedly different compared to Gram-positive
bacteria (Kundig et al. 1964; Deutscher and Saier Jr 1983). In Gram-negative bacteria,
a phosphotransferase system is utilized wherein glucose is imported intracellularly and
simultaneously phosphorylated by a component of the transport protein (Ella).
Expression of non-glucose metabolizing genes have very low basal expression and
require activation (Fig. 1C). A phosphorylated El protein transfers a phosphate group to
the HPr protein, which in turn phosphorylates Ella. In the absence of glucose, there is
an abundance of phosphorylated Ella (Ella~P), which activates adenylate cyclase (AC)
via phosphorylation (Magasanik 1961; Feucht and Saier 1980). The resulting
accumulation of cAMP activates the cAMP Receptor Protein (CRP) and increases the
transcription of genes that encode the proteins responsible for the metabolism of non-

preferred carbon sources.
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In Gram-positive bacteria, expression of genes important to the metabolism of
non-glucose sugars requires inactivation of the repressor catabolite control protein
(CcpA) (Fig. 1D). This occurs in the absence of glucose wherein fructose 1,6-
bisphosphate (FBP) is not generated because glycolysis is not occurring. Without FBP,
histidine protein (HPr) cannot be phosphorylated and dimerize with CcpA to repress
transcription of genes involved in metabolizing non-preferred carbon sources
(Deutscher and Saier Jr 1983). It should be noted that CcpA can also act as a
transcriptional activator for quorum sensing (irpA), stress response (cidAB), and export
of excess carbon (ackA) in Streptococcus pneumoniae, Streptococcus mutans, and
Bacillus subtilis respectively (Henkin 1996; Kim et al. 2019a). Additionally, other
counter-examples of CCR in Pseudomonas sp. found preferential utilization of
succinate, citrate, or aromatic compounds over glucose (Liu 1952; Basu et al. 2006).

One example of CCR-based regulation for hemicellulase-encoding genes is
found in Bacillus subtilis and uses both CcpA and the repressor GmuR (Sadaie et al.
2008). Mannanase-encoding genes in B. subtilis are in an operon that also contains
genes encoding substrate-specific transporters and metabolic enzymes. In the presence
of cellobiose or mannobiose (and in the absence of glucose), expression of the mannan
utilization operon occurs due to a lack of fructose 1,6-bisphosphate. This results in
limited amounts of phosphorylated HPr, which is necessary for CcpA binding to the
promoter region. Consequently, the mannanase-encoding genes are de-repressed.
Mannanase-encoding genes are further regulated by the repressor GmuR, which
requires phosphorylation via GmuA, a component protein of the phosphotransferase

system (PTS) and a structural homolog to Ella (Sadaie et al. 2008). Briefly,
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glucomannan disaccharides are imported and phosphorylated via the PTS (comprised
of transport proteins GmuABC). Inverse to the processes described for carbon
catabolite repression, the presence of glucomannan oligosaccharides results in an
abundance of unphosphorylated GmuA. Consequently, GmuR cannot be
phosphorylated, which results in the transcription of mannanase-encoding genes.
Co-regulation of arabinanase and xylanase-encoding genes are found in Gram-
negative and Gram-positive bacteria, with two characterized repressors being AraR and
XyIR (Laikova et al. 2001; Rodionov et al. 2001). Both belong to the Lacl family of
transcriptional regulators and work in conjunction with CCR (Book et al. 2016; Ohashi et
al. 2021; Rodionov et al. 2021). Co-regulation of xylanase and arabinanase genes
provides an efficient means of streamlining gene expression given the monosaccharide
composition of lignocellulose, namely hexoses coming from cellulose and pentoses
coming from hemicellulose (Jamander et al. 2014; Kim et al. 2015). Not surprisingly,
CCR has been widely studied to characterize the regulation of lignocellulose-derived
sugar metabolism in Clostridium, Caldicellulosiruptor, Pseudomonas, and Escherichia

species (Gosset 2005; Vanfossen et al. 2009; Bruder et al. 2015; Liu et al. 2015).

Current Applications of Canonical Systems. The use of bacteria as lignocellulose
bioprocessors has renewed interest in the three canonical regulatory mechanisms for
biotechnologically relevant bacteria (Mearls et al. 2015; Taylor Il et al. 2018; EImore et
al. 2020; Ling et al. 2022). Using HTCS and ECF-o/anti-o systems, recent studies have
focused on regulation of polysaccharide utilization loci (PULs) containing hemicellulase-

encoding genes, especially in Bacteroides sp. (Luis et al. 2018; Mackie and Cann 2018;
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Pereira et al. 2021; Beidler et al. 2023). Similarly, C. thermocellum is commonly used to
study ECF-o/anti-o systems due to it possessing unique ¢' factors that can be studied
heterologously in B. subtilis (Munoz-Gutierrez et al. 2016). Comparative studies of C.
thermocellum o' factors were also important to the discovery that transcriptional
initiation of cellulosomal genes relied on an auto-proteolysis system for ECF upon
binding to the glycan of interest (Chen et al. 2023a). Likewise, dismantling CCR-related
mechanisms in biotechnologically relevant bacteria (e.g. E. coli, C. thermocellum, and
P. putida) found that co-utilization of xylose and glucose is more easily achieved with
intracellular cellobiose hydrolysis (Xiong et al. 2018; Wang et al. 2019b; Cabulong et al.
2021). Intracellular cellobiose hydrolysis and phosphorylation bypassed some of the
inhibitory effects caused by bacterial sensing/detection of extracellular glucose.
Moreover, Pseudomonas putida KT2440 has undergone extensive engineering to co-
metabolize glucose with cellobiose, galactose, xylose, and arabinose (Dvorak and de

Lorenzo 2018; Peabody V et al. 2019; Elmore et al. 2020).

TRANSCRIPTOMIC APPROACHES TO IDENTIFY HEMICELLULASE-ENCODING

GENE REGULATORY PATTERNS

The use of transcriptomic data to assess global changes in CAZyme-encoding gene
regulation has rapidly become a standard approach to identify critical components of
polysaccharide degradation (Gruninger et al. 2018; Lillington et al. 2020; Chen et al.
2023b). This method is particularly useful for non-model bacterial systems whose
regulatory mechanisms are less characterized compared to E. coli or B. subtilis. While it

should be noted that CAZyme-encoding gene expression was previously known to be
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regulated by growth rate and bacterial life cycle for Bacteroides succinogenes and
Clostridium thermocellum (Russell 1987; Rydzak et al. 2012), more recent reports have
uncovered unique differences in hemicellulase-encoding gene regulation for both Gram-
positive and Gram-negative bacteria. Below is a summarization of the recent
developments using transcriptomics to elucidate regulatory features in lignocellulose-

degrading bacteria.

Hemicellulase gene expression in Gram-positive species. Current RNAseq
analyses using Gram-positive bacteria grown on hemicelluloses have often revealed
highly specific gene expression responses (Blumer-schuette et al. 2017; La Rosa et al.
2019; Rodionov et al. 2021). For example, the human gut symbiont Roseburia
intestinalis has a substrate-specific response during growth on glucomannan and
galactomannan (Fig. 2A) (La Rosa et al. 2019). Notably, 16 up-regulated genes were
from two distinct mannan utilization loci that differ from PULs described in Bacteroides
by the absence of genes that encode TonB-dependent transporters. Additionally, R.
intestinalis growth on galactose (a component of galactomannan) did not result in up-
regulation of any of these genes, suggesting that mannose or manno-oligosaccharides
were the sole nutritional signal for mannan deconstruction (La Rosa et al. 2019).

Highly specific CAZyme-encoding gene regulation has been observed in Bacillus
sp. N16-5, where up-regulation of B-mannanase and a-galactosidase-encoding genes
was only observed when the bacterium was grown using galactomannan, but not on
xylan, pectin, CMC, or any tested monosaccharide (glucose, fructose, mannose,

galactose, arabinose, or xylose) (Song et al. 2013). Furthermore, Bacillus sp. N16-5
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grown using xylan only up-regulated 3-xylanase-encoding genes, but growth on xylan or
xylose up-regulated xylulokinase and xylose-related transporter-encoding genes.

As a third example, in Caldicellulosirupter species like C. bescii and C.
saccharolyticus, xylanase-encoding genes were strongly up-regulated during growth on
xylan (Fig. 2B) but repressed on either xylose or cellulose (Blumer-schuette et al. 2017;
Rodionov et al. 2021). Expression data of C. bescii when grown using xylan also
identified a putative key xylanase for extracellular xylan degradation (Xyn11A-2)
(Crosby et al. 2022); however, a comparison of enzymatic activity between the C. bescii
xylanases showed relatively mediocre activity for Xyn11A-2. The authors suspect this
observed difference in gene expression could be a compensatory mechanism to
overcome modest activity of Xyn11A-2. The use of transcriptomic data from C. bescii
when grown on xylan has also proven useful for pairing the important degradative loci to
their likely regulators, which included XynR, XyIR, AraR, BxgRS, and AxuRS (Rodionov
et al. 2021). Interestingly, transcriptomic analysis of C. saccharolyticus grown using
pectin found a much broader gene expression response than that observed on other
hemicelluloses (Blumer-schuette et al. 2017). Growth of C. saccharolyticus using pectin
elicited up-regulation of various CAZyme-encoding genes, including cellulases,
mannanases, Xylanases, arabinanases, pectinases, and chitinases (Fig. 2C).

As a final example, Clostridium sp. exhibited some divergence in their regulatory
circuits for xylanase-encoding genes (Petit et al. 2015; Munir et al. 2016). The
expression of xylanase-encoding genes possessed by C. termitidis were dependent on
xylan, but not xylose, cellobiose, or cellulose, while those belonging to C.

phytofermentans were up-regulated when grown on both xylan and cellulose. Alongside
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the differences in hemicellulase gene expression observed between growth media,
growth-rate is also a critical mediator of CAZyme gene expression in Clostridium sp.,
with several studies reporting C. thermocellum transcription of cellulase-encoding genes
dependent upon growth phase (Dror et al. 2003; Riederer et al. 2011). One interesting
exception was for a xylanase-encoding gene (xynC), which exhibited high expression

irrespective of growth rate (Dror et al. 2005).

Hemicellulase gene expression in Gram-negative species. For Gram-negative
bacterial species, transcriptomic studies have revealed much broader gene expression
responses than those observed in Gram-positive bacteria (Blake et al. 2018; Chen et al.
2018; Novak and Gardner 2023). For example, in Leeuwenhoekiella sp.
MAR_2009_132, and Salegentibacter sp. Hel_|_6, up-regulated a- and B-mannanase-
encoding genes were identified when these bacteria were grown on both a- or B-
mannan despite the selective activity of these CAZymes for each substrate (Chen et al.
2018). This suggested that these species regulate mannanase gene expression with
less specificity, possibly at the level of the mannose monosaccharide given that these
bacteria cannot differentiate between a- versus 3-mannan.

A broad gene expression response was revealed in the saprophyte Cellvibrio
Japonicus when grown on glucomannan (Fig. 2A) (Novak and Gardner 2023). Eight of
the ten predicted mannanase-encoding genes were up-regulated, as well as an
additional 46 CAZyme-encoding genes. Strong up-regulation of non-substrate specific
CAZyme-encoding genes in C. japonicus suggests that it is likely the presence of

complex polysaccharides that induce gene expression. Additionally, a previous study of
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the C. japonicus transcriptomic response on cellobiose also resulted in broader up-
regulation of cellulases and hemicellulases (Nelson et al. 2017). Interestingly, a much
more specific response was elicited when C. japonicus was grown on oat-spelt xylan
(Blake et al. 2018). This report concluded that C. japonicus only up-regulated xylanase
genes during mid-exponential growth, though a comparison of the RNAseq from
stationary phase showed up-regulation of genes encoding xylanases, arabinanases,
mannanases, and cellulases. In terms of growth rate affecting CAZyme-encoding gene
expression in C. japonicus, it was observed that expression was more prominent during
active growth compared to stationary phase (Blake et al. 2018; Novak and Gardner
2023).

Roseithermus sacchariphilus exhibited a transcriptomic response quite dissimilar
to C. japonicus when it was grown on beechwood xylan (Liew et al. 2020). This
bacterium had up-regulation of genes encoding cellulases, mannanases, xylanases,
arabinanases, pectinases, and other glycosidases (Fig. 2B). Surprisingly, pectinase-
encoding genes were the most prominently up-regulated CAZyme-encoding genes
when R. sacchariphilus was grown on xylan. The authors hypothesize that the broad
response was due to co-expression of genes encoding various glycosidic activities by
the same promoter. However, they also suggested that a multi-timepoint transcriptomic
analysis could reveal more about the patterns of hemicellulase gene expression.

Finally, expression of CAZyme-encoding genes in Bacteroides xylanisolvens also
elicited a broad gene expression response on oat-spelt xylan, with up-regulation of 150
carbohydrate utilization-encoding genes that included all identified PULs for xylan

utilization and 15 PULs for starch and pectic metabolism (Despres et al. 2016a). The
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authors hypothesized that the broad response was from detection of shared
oligosaccharides present in both oat-spelt xylan and pectins (i.e. arabinoside side-
chains). However, this response was very different when B. xylanisolvens was grown on
citrus pectin and resulted in a much more specific result (Fig. 2C) (Despres et al.
2016b). Here, researchers were able to compare the gene expression response on two
different types of pectins and discern the PULs that were most likely to be involved in
the degradation of different pectic-linkages. Specifically, PUL 2 was suspected to be
important to degrading type Il rhamnogalacturonan, PUL 13 was likely involved in de-
branching arabinose sidechains, and PULs 49 and 50 were the most up regulated on
both pectins and were suspected to be involved in degrading homogalacturonan and
type | rhamnogalacturonan, respectively. Additionally, B. xylanisolvens shared the traits
observed in other bacterial species with high expression of CAZyme-encoding genes

during active growth compared to stationary phase (Despres et al. 2016b).

Hemicellulase gene expression in bacterial co-culture. There has been increasing
interest in the metatranscriptomic of co-cultured bacteria using complex polysaccharide-
rich substrates given that environmental lignocellulose degradation is performed by a
microbial community. For example, a study of the Gram-positive Butyrivibrio hungatei
MB2003 transcriptome during mono- and co-culture with rumen gut symbiont
Butyrivibrio proteoclasticus B316 found that in monoculture, B. hungatei was unable to
grow on xylan or pectin despite the presence and expression of several hemicellulase-
encoding genes (Palevich et al. 2019). Strikingly, when in co-culture with B.

proteoclasticus, B. hungatei had a substantial increase in its growth capabilities at the
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expense of B. proteoclasticus final cell density. Since B. hungatei acts more as a sugar
scavenger than a hemicellulose-degrader, its RNAseq results in monoculture
unsurprisingly showed marked increases in the expression of many genes important to
translation, signal transduction, defensive mechanisms, lipid/amino acid metabolism,
and cell wall biogenesis compared to its co-cultured counterpart. During co-culture with
B. proteoclasticus, B. hungatei expressed fewer genes overall but exhibited more
specificity in the expression of genes encoding for carbohydrate metabolism (e.g. ABC
sugar transporters). Interestingly, B. proteoclasticus gene expression was relatively
unchanged between mono- and co-culture (excluding a few CAZyme-encoding genes
which were up-regulated during co-culture) despite the increase in competition provided
by culturing with B. hungatei.

As another example, the Gram-negative gut symbionts P. intestinalis, P. muris,
and P. rodentium underwent comparative metatranscriptomic analysis, and the study
concluded that P. intestinalis was the most competitive strain due to its distinct up-
regulation of PULs encoding xylanase and pectinase-encoding genes when the rat host
was given a diet heavy in arabinoxylans (Galvez et al. 2020). The three most up-
regulated glycoside hydrolase families in all three species were from GH43, GH2, and
GHZ28. These families contain members able to hydrolyze B-glucan, B-xylan, a-arabinan,
and pectic linkages (Lombard et al. 2014).

Co-cultures containing both Gram-positive and Gram-negative species have
been used to investigate the bottlenecks of complete lignocellulose bioconversion in the
guts of rumen or humans (Leth et al. 2018; Badhan et al. 2022). A recent

metatranscriptomic study examined a complex consortium of Gram-positive and Gram-
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negative gut symbionts in ruminant animals grown in ex vivo batch culture on Total
Tract Indigestible Residue (TTIR). The primary goal of the study was to assess the
bottlenecks in ruminant digestion to uncover mechanisms to enhance the system.
Transcripts encoding xylanases were abundant when the micro-community was grown
on TTIR, which indicated that heteroxylans and xyloglucans were the primary remaining
polysaccharide in the TTIR. It was hypothesized that the sheer quantity of inter- and
intramolecular bonds act as a hindrance to enzyme accessibility to the substrate.
Overall, there appears to be a distinguishing difference between the
hemicellulose-encoding gene expression patterns in Gram-positive versus Gram-
negative bacteria. Specifically, the narrowed specificity of gene expression observed in
Gram-positive compared to Gram-negative species. Additionally, investigations of co-
culture transcriptomics containing Gram-positive and/or Gram-negative communities on
lignocellulose have focused on the interspecies relationships and competition for carbon
acquisition (Palevich et al. 2019; Galvez et al. 2020; Badhan et al. 2022). The
knowledge obtained from these analyses has subsequently been applied in studies on
gut microbiomes and biotechnology applications, specifically for studies that
successfully predicted the impact of synthetic gut microbiota on host immune response
(Afrizal et al. 2022) and identified patterns in microbe abundance based on diet (Corbin

et al. 2023).

Computational prediction of transcriptional regulators using compilations of
transcriptomic data. In addition to the plethora of information provided by RNAseq

data from a singular dataset, compilations of such data can extrapolate more
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information on transcriptional regulatory systems using computational methods. For
example, transcriptomic compilations with DNA-binding motif studies have predicted
extensive transcriptional regulatory networks of several different bacteria (Poudel et al.
2020; Rychel et al. 2020). The known computationally predicted regulons of Gram-
negative plant bioprocessors is relatively exclusive to the fermentative bioprocessing
bacteria that possess few hemicellulases (Sastry et al. 2019; Lim et al. 2022). However,
this approach has yielded interesting results for Gram-positive species. For example in
C. thermocellum, a Lacl transcriptional regulator (GlyR2) was computationally predicted
as important for genes encoding two mannanases (man5A and man26A), a xylanase
(clo1313_2530), and two cellulases (clo1313_0413 and clo1313_1425) (Wilson et al.
2017; Hebdon et al. 2021). Previous experimental research on GlyR2 had identified it as
a mannobiose-responsive transcriptional repressor with only confirmed regulatory
activity on a mannanase-encoding gene (manbA) (Wilson et al. 2017). GlyR2 was
hypothesized to have indirect effects on transcriptional regulation of certain
hemicellulose-encoding genes that may require different conditions to de-repress other
genes with the recognized binding motif (Hebdon et al. 2021). Additionally, a C. bescii
genome analysis and comparison to other Caldicellulosiruptor species improved the
organism-specific bioprocessing model through the discovery of 16 key regulators
important to the degradation and metabolism of hemicellulose and pectin (Rodionov et
al. 2021). It was noted that most of these regulators were involved in the expression of
xylanase or pectinase-encoding genes, while genes that encoded cellulases,
mannanases, and amylases generally only had one regulator for each CAZyme type.

Additionally, the mechanistic regulatory actions of the predicted regulators were
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overwhelmingly repressive in function with the few activators belonging to the AraC-
family. Interestingly, the study found that most of these activators were involved in the

regulation of pectinase-encoding genes.

FUTURE DIRECTIONS

A thorough understanding of how hemicellulase-encoding genes are regulated is
essential to optimize lignocellulose bioprocessing (Chettri et al. 2020). Consequently,
detailed studies that include hemicellulase-encoding gene regulation are generally
conducted exclusively on well-characterized model bacteria and those already being
used as chassis in biotechnology applications (Xiong et al. 2018; Rodionov et al. 2021).
Given that metagenomic and metatranscriptomic data for less characterized
lignocellulolytic bacteria with unoptimized systems are available (Dai et al. 2015;
Kougias et al. 2018; Lopez-Mondejar et al. 2020) but beyond the scope of this review,
we have endeavored to summarize and highlight the current state of hemicellulose-
encoding gene regulation patterns between Gram-positive and Gram-negative bacteria.
Overall, we argue there are two critical features of hemicellulase-encoding gene
regulation that must be considered for optimization, which are (1) identifying the specific
metabolic inducer (often an oligosaccharide), and (2) mitigating the impacts of carbon
catabolite repression. Current lignocellulose bioconversion systems typically use Gram-
positive species for saccharification and Gram-negative species for fermentation (Dai et
al. 2015; Thapa et al. 2019). While it has been previously argued that co-culture or
consortia-based bioconversion processes will improve efficiency and completeness of

lignocellulose degradation (Chin et al. 2020; Kumar et al. 2023), the amount of strain
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engineering and optimization significantly increases for each strain added to the
process, especially given the current trend of focusing only on improving either
degradative or metabolic/fermentative capabilities. Therefore, the following commentary
will focus exclusively on the optimization of single bacterium bioprocessing systems for

the complete deconstruction and utilization of lignocellulose (Table 1).

Optimizing Gram-positive systems will require integration of degradative and
fermentative capabilities. Clostridia and Caldicellulosiruptor species are highly studied
genera for their prolific degradation of plant polymers (Artzi et al. 2018; Brunecky et al.
2018; Williams-Rhaesa et al. 2018). However, neither system has been successfully
engineered to fully metabolize and ferment all components of lignocellulose. In the case
of Clostridia systems, this is due to an inherent inability to ferment pentoses. A previous
attempt to engineer a pathway for xylose fermentation in C. thermocellum found that
while xylose and Avicel could be co-utilized, xylan and Avicel could not (Xiong et al.
2018). It was argued that this is likely due an inhibitory effect posed by cello-
oligosaccharides on xylanases or unknown regulators that repress xylanase gene
expression in the presence of cello-oligosaccharides. More recently, efforts have
transitioned to develop CRISPR/Cas systems or riboswitches (Marcano-Velazquez et
al. 2019; Walker et al. 2020) to mediate the observed repression of xylanase gene
transcription in the presence of cellodextrins or cellobiose.

In Caldicellulosiruptor systems the limiting factor is that the expression and
degradative efficiency of heterologously expressed CAZymes is low. C. bescii has been

extensively manipulated to improve its saccharifying proficiency via heterologous
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expression of xylanases (Kim et al. 2018; Crosby et al. 2022), however it has been
observed that degraded oligosaccharides repress expression of secreted enzymes.
Additionally, many heterologously expressed genes in C. bescii employ a highly active
constitutive promoter, which is unoptimized for lignocellulose bioprocessing due to the
energetic output required to constitutively and highly express heterologous CAZyme-
encoding genes (Conway et al. 2017; Kim et al. 2017; Lee et al. 2020). Therefore,
control over the expression of the heterologously expressed genes could spare the

metabolic burden of their high expression levels and improve this limitation.

Optimizing Gram-negative systems will require bolstering the potency of
lignocellulolytic capabilities. Gram-negative species elicit a much broader
hemicellulase-encoding gene regulatory response than Gram-positive bacteria. We
argue that this diversification of CAZyme gene expression is an underutilized resource
to optimize lignocellulose bioconversion in single bacterium systems. Biotechnology-
relevant model systems like E. coli and P. putida have been largely focused on
improving co-utilization of hexoses and pentoses by overcoming the effects of CCR
(Kim et al. 2019b; Peabody V et al. 2019; Elmore et al. 2020; Cabulong et al. 2021).
However, these systems are limited as they are unable to innately degrade
lignocellulose. The necessary step needed to drive either model into a fully self-
sufficient system is the inclusion of lignocellulolytic machinery. This approach has
several obstacles, most pressingly, identifying the minimally sufficient set of CAZymes
that can completely depolymerize plant biomass and engineering an efficient export

system for these CAZymes from the heterologous host.
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In contrast, the genes/proteins needed to ferment plant sugars or produce other
bioproducts are known and could be integrated into lignocellulolytic Gram-negative
species. One example of a system not yet tapped for industrial use but has to potential
to do so is Cellvibrio japonicus, a Gram-negative saprophyte that can fully degrade
lignocellulose (Deboy et al. 2008; Gardner et al. 2014; Larsbrink et al. 2014; Blake et al.
2018). C. japonicus has also been shown to make ethanol and rhamnolipids as targeted
products from lignocellulose bioconversion on a proof-of-concept scale (Gardner and
Keating 2010; Horlamus et al. 2018). Another Gram-negative model is Saccharophagus
degradans which also possesses a large number of CAZymes capable of degrading
polysaccharides including cellulose, xylan, and pectin (Ensor et al. 1999). Engineering
efforts using S. degradans have successfully generated strains capable of producing
polyhydroxyalkanoate (PHAs) from cellulose, xylan, and agarose (Esteban Alva Munoz
and Riley 2008; Sawant et al. 2017). However, S. degradans cannot generate ethanol
and still relies on co-culture with other microbes for its production (Takagi et al. 2016).
While both C. japonicus and S. degradans show promise with their degradative ability,
improvements to their genetic systems are still needed to heterologously express the

necessary metabolic pathways to produce high-value products.

Concluding statement. This review discussed mechanisms that regulate
hemicellulase-encoding gene expression in Gram-positive versus Gram-negative
bacteria. Experimental studies that characterize the molecular mechanisms of
hemicellulase gene expression are useful to identify relevant activators or repressors for

each regulon, and we argue that such research is essential for the field to significantly
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advance. Given the discussed limitations of the reviewed models, the field should
prioritize efforts that predict transcriptional regulatory networks and engineer the
requisite enzymes for plant sugar bioconversion in species innately capable of prolific

lignocellulose degradation.
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Figure 1. Common regulatory systems for Carbohydrate-Active Enzyme
(CAZyme) encoding genes in Gram-positive and Gram-negative bacteria. (A)
Hybrid two component system in Bacteroides thetaiotaomicron. Upon sensing of
arabinoxylan from the transmembrane domain, the intracellular histidine kinase (HK)
phosphorylates the associated response regulator (RR) which recruits RNA polymerase
for gene transcription. (B) ECF-o/anti-o factor system in Bacteroides xylanisolvens.
Binding of arabinoxylan to the carbohydrate domain of the transmembrane ECF protein
releases the intracellular o factor from the membrane-attached anti-o factor which aids
RNA polymerase in gene transcription. (C) Carbon catabolite repression in Gram-
negative Escherichia coli. In the absence of glucose, phosphorylated Ella accumulates
and activates adenylate cyclase (AC) via phosphorylation, which generates high cAMP
levels. The cAMP subsequently binds to the cAMP receptor protein (CRP) and initiates
transcription of hemicellulase-encoding genes. (D) Carbon catabolite repression in
Gram-positive Bacillus subtilis. In the absence of glucose, fructose 1,6-biphosphate is
not generated because glycolysis does not occur. Without fructose 1,6-biphosphate,
histidine protein (HPr) does not get phosphorylated and therefore cannot dimerize with
the carbon catabolite control protein (CcpA). Without this dimerization, the coupled
protein cannot inhibit transcription. For all panels, phosphate is shown as a gold circle
with a ‘P’, arabinoxylan is shown with orange stars for xylose and the green stars for
arabinose, fructose is shown as a green pentagon. Model generated with

BioRender.com.
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Figure 2. Differences in up-regulation of CAZyme-encoding genes from selected
Gram-positive and Gram-negative bacteria when grown using hemicelluloses. (A)
CAZyme-encoding gene expression of Gram-positive Roseburia intestinalis and Gram-
negative Cellvibrio japonicus on glucomannan. (B) CAZyme-encoding gene expression
response of Gram-positive Caldicellulosiruptor bescii and Gram-negative Roseithermus
sacchariphilus on xylan. (C) CAZyme-encoding gene expression response of Gram-
positive  Caldicellulosiruptor  saccharolyticus and Gram-negative Bacteroides

xylanisolvens on pectin.



Novak and Gardner (2023)

55

1204 Table 1. Current limitations of select bacterial bioprocessors and suggested
1205 research approaches.
Bacterium Current limitations Suggested approach
Gram-positive  Clostridium Requires synthetic Improve genetic
thermocellum biology to utilize non- tools to control
cellulose derived sugars regulation of
Engineered fermentation ~ heterologously
pathways for plant expressed genes
sugars repressed by
plant oligosaccharides
Caldicellulosiruptor Low expression and Improve
bescii degradative efficiency of transcriptional
heterologously control over
expressed CAZyme- heterologously
encoding genes expressed genes
Gram-negative  Cellvibrio No high-yielding, stable Develop a stably
Jjaponicus plasmid system for gene replicating plasmid
expression for gene expression
Does not produce any
current high-value
metabolite in abundance
Saccharophagus Poor genetic system Develop genetic
degradans Cannot natively ferment tools to engineer a
sugars to fuels and/or commodity product-
renewable chemicals producing strain
1206
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