

1 **Current models in bacterial hemicellulase-encoding gene regulation**
2
3
4
5
6
78 Jessica K. Novak and Jeffrey G. Gardner[#]
9
10
11
12
1314 **Running Title**
15 Regulation of bacterial hemicellulase-encoding genes
16
17
18
19
20
2122 **Keywords**
23 Carbon Catabolite Repression, Carbohydrate Active Enzyme, Extra Cytoplasmic Function,
24 Hemicellulose, Hybrid Two-Component Systems, Transcription Factor
25
26
27
28
2930 **Author Affiliations**
31 Department of Biological Sciences, University of Maryland – Baltimore County
32 Baltimore, Maryland, USA
33
34
35
36
3738 **#Correspondence**
39 Jeffrey G. Gardner
40 Department of Biological Sciences
41 University of Maryland – Baltimore County
42 Email: jgardner@umbc.edu
43 Phone: 410-455-3613
44 Fax: 410-455-3875
45

46 **ABSTRACT**

47 The discovery and characterization of bacterial carbohydrate active enzymes is a
48 fundamental component of biotechnology innovation, particularly for renewable fuels
49 and chemicals, however these studies have increasingly transitioned to exploring the
50 complex regulation required for recalcitrant polysaccharide utilization. This pivot is
51 largely due to the current need to engineer and optimize enzymes for maximal
52 degradation in industrial or biomedical applications. Given the structural simplicity of a
53 single cellulose polymer, and the relatively few enzyme classes required for complete
54 bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in
55 the literature. However, the diversity of hemicelluloses found in plant biomass and the
56 multitude of carbohydrate active enzymes required for their deconstruction has resulted
57 in a less comprehensive understanding of bacterial hemicellulase-encoding gene
58 regulation. Here we review the mechanisms of this process and common themes found
59 in the transcriptomic response during plant biomass utilization. By comparing regulatory
60 systems from both Gram-negative and Gram-positive bacteria, as well as drawing
61 parallels to cellulase regulation, our goals are to highlight the shared and distinct
62 features of bacterial hemicellulase-encoding gene regulation and provide a set of
63 guiding questions to improve our understanding of bacterial lignocellulose utilization.

64

65 **INTRODUCTION**

66 The decomposition of plant biomass plays a significant role in environmental and
67 biotechnological settings (Zhang et al. 2020). As the largest source of renewable carbon
68 on the planet, the deconstruction of its polysaccharide components are heavily studied
69 (Von Freiesleben et al. 2018; Michalak et al. 2020; Mhatre et al. 2022). Plant cell wall
70 polysaccharides are broadly classified as either cellulose or hemicellulose. Cellulose
71 polymers are exclusively comprised of glucose with a single linkage type (Gardner and
72 Blackwell 1974). Alternatively, hemicelluloses possess greater linkage and sugar
73 varieties which can include xyloglucans, xylans, mannans, arabinans, and pectins
74 (Hoch 2007). This diversity in linkage and sugar type contributes to the insolubility and
75 recalcitrance of plant cell walls, making them difficult to degrade (Holland et al. 2020).

76 Environmental bacteria and fungi are the central decomposers of this material
77 (Pascoal et al. 2021), and produce Carbohydrate-Active Enzymes (CAZymes) for its
78 deconstruction (Henrissat et al. 2022). Considerable biochemical and bioinformatic
79 research has organized CAZymes into classes and families based on amino acid
80 sequence and are documented in the CAZy database (Drula et al. 2022). This resource
81 has facilitated efforts to predict and sort novel CAZymes for evolutionary phylogeny
82 studies of lignocellulose degradation (Aspeborg et al. 2012; Wu et al. 2023), as well as
83 enzyme engineering for industrial applications (Chettri and Verma 2023; Jayachandran
84 et al. 2023).

85 As bacterial lignocellulose degradation systems become more fully described,
86 work has branched out to several new areas to include the regulation of CAZyme-
87 encoding genes. While cellulase systems in both Gram-negative and Gram-positive

88 bacteria have been reviewed (Liu et al. 2021; Ziles Domingues et al. 2022), there have
89 been much fewer for hemicellulase systems because of the large number of substrates
90 and enzymes required, as well as the assertion that Carbon Catabolite Repression
91 (CCR) is the dominant modulator of gene expression (Stölke and Hillen 1999). Despite
92 these challenges, recent hemicellulase-encoding gene regulation studies have
93 characterized novel systems that were leveraged to engineer a single bacterium
94 capable of fully degrading and fermenting lignocellulose (Mhatre et al. 2022; Singhania
95 et al. 2022).

96 The goal of this review is to consolidate previously summarized work for a single
97 phyla (Grondin et al. 2017; Lee et al. 2020) and provide commentary on the current
98 direction of regulation-based studies for genes encoding hemicellulases like:
99 xyloglucanases, xylanases, mannanases, arabinanases, and pectinases in both Gram-
100 negative and Gram-positive bacteria. Furthermore, this review discusses the breadth of
101 knowledge regarding CAZyme-encoding gene regulatory systems to include the recent
102 influx of transcriptomic and computational studies that predict regulons specific to
103 hemicellulase-encoding genes. We conclude with a few open questions and offer
104 suggestions on promising future directions for studying the regulation of hemicellulase-
105 encoding genes that may be of environmental or industrial interest.

106

107 **CANONICAL REGULATORY MECHANISMS FOR BACTERIAL HEMICELLULASE-**
108 **ENCODING GENE EXPRESSION**

109 Expression of CAZyme-encoding genes requires precise regulation to ensure efficient
110 energy expenditure under specific nutrient conditions. Despite the multitude of
111 mechanisms that bacteria employ to regulate gene expression, there are only three
112 systems commonly used for CAZyme-encoding genes, specifically hybrid two-
113 component systems, extra cytoplasmic function- σ /anti- σ systems, and carbon catabolite
114 repression (Fig. 1). Given that these regulatory systems have been comprehensively
115 reviewed previously (Liu et al. 2019; Pinto et al. 2019; Franzino et al. 2022), we will only
116 briefly summarize each of their general functions and the current knowledge on these
117 systems that is relevant for the expression of hemicellulase-encoding genes.

118

119 **Hybrid two-component systems.** Hybrid two-component systems (HTCS) in bacteria
120 use a sensing/phosphorylation relay mechanism to up-regulate genes involved in
121 antibiotic resistance, virulence, biofilm formation, quorum sensing, and carbohydrate
122 metabolism (Gutu et al. 2013; Cui et al. 2018; Gellatly et al. 2018; Kampik et al. 2020).
123 This system, which is found in both Gram-negative and Gram-positive bacteria,
124 recognizes an external stimulus with a cytoplasmic membrane protein that initiates a
125 phosphorylation cascade to modulate gene expression (Howell et al. 2003). As shown
126 in Fig. 1A, a substrate binds the sensor domain of a transmembrane histidine kinase.
127 Substrate binding initiates a phosphate transfer from ATP to a histidine residue on the
128 cytoplasmic domain. The phosphorylated histidine kinase then transfers the phosphate
129 to a response regulator which binds the transcriptional start site of interest to modulate

130 transcription (Buschiazza and Trajtenberg 2019; Francis and Porter 2019). It should be
131 noted that there are examples of much lengthier phospho-relays with additional histidine
132 kinases and response regulators before RNA polymerase recruitment. Two specific
133 examples can be found in *Bacteroides thetaiotaomicron* and *Bacillus cereus* for glycan
134 utilization and stress response, respectively (Been et al. 2006; Sonnenburg et al. 2006).

135 Previous research on hybrid two-component systems characterized the
136 regulation of genes encoding xylanases, glucanases, arabinanases, and esterases from
137 a diverse set of Gram-negative and Gram-positive bacteria (Emami et al. 2009; Martens
138 et al. 2011; Shulami et al. 2014; Kampik et al. 2020). For example, in Gram-negative
139 *Cellvibrio japonicus*, *Bacteroides thetaiotaomicron*, and Gram-positive
140 *Ruminiclostridium cellulolyticum*, it was noted that HTCS regulators induced expression
141 for biochemically or physiologically important xylanase-, arabinosidase-, and esterase-
142 encoding genes (Emami et al. 2009; Martens et al. 2011; Kampik et al. 2020). The
143 characterized HTCSs associated with xylanase and arabinanase-encoding gene
144 expression are now cataloged as response regulators belonging to the AraC/XylS family
145 of transcriptional activators (Emami et al. 2009; Celik et al. 2013). This family has
146 recently been reviewed and is categorized based on two characteristic helix-turn-helix
147 DNA-binding motifs (Cortes-Avalos et al. 2021). Regulation predominantly occurs via
148 activation when the phosphorylated regulator binds to a recognized -10 and -35
149 consensus sequence up-stream of the promoter for RNA polymerase recruitment (Celik
150 et al. 2013). The sensing domains of these HTCS bind branched xylo-oligosaccharides
151 or arabino-oligosaccharides in the periplasmic space for Gram-negative bacteria
152 (Emami et al. 2009; Schwalm III et al. 2017) and extracellularly for Gram-positive

153 bacteria (Lansky et al. 2020). For the former, species like *C. japonicus* and *B.*
154 *thetaiotaomicron* require an efficient mechanism to degrade extracellular hemicellulose
155 into oligosaccharides and transport them to the periplasm where they can be sensed by
156 the corresponding HTCS. It is therefore unsurprising that these two species possess a
157 disproportionately high number of outer membrane transporters that can bring large
158 complex oligosaccharides into the periplasm (Emami et al. 2009; Larsbrink et al. 2014;
159 Blake et al. 2018; Pollet et al. 2021).

160

161 **Extra Cytoplasmic Function (ECF)- σ /anti- σ systems.** Similar to HTCS, Extra
162 Cytoplasmic Function (ECF)- σ /anti- σ systems are also comprised of a membrane-
163 spanning sensory protein with a cytoplasmic regulatory protein partner that controls
164 gene expression, with specific roles in bacterial virulence, stress response, and
165 carbohydrate catabolism (Sun et al. 2004; Alvarez-Martinez et al. 2007; Wang et al.
166 2019a). ECF- σ /anti- σ systems are found in both Gram-negative and Gram-positive
167 bacteria, but have been most well-characterized in Actinobacteria and human gut
168 symbionts belonging to the *Bacteroides* phylum (Martens et al. 2009; Bahari et al. 2011;
169 Huang et al. 2015; Despres et al. 2016a; Wang et al. 2019a). The anti- σ element of the
170 system is a protein in the cytoplasmic membrane that binds a cytoplasmic ECF- σ
171 protein (Helmann 2002) (**Fig. 1B**). Release of the ECF- σ protein occurs upon substrate
172 binding, which can be a glycan, metal, or chemical stressor like limonene (Pudio et al.
173 2015; Marcos-torres et al. 2016; Goutam et al. 2017). The freed σ -factor then binds to
174 RNA polymerase, forming a holoenzyme, and initiates transcription after binding a
175 recognized consensus mRNA sequence (Bae et al. 2015).

176 In the context of carbohydrate catabolism, ECF- σ /anti- σ systems are prominent
177 regulators in human gut symbionts, especially for the expression of genes encoding O-
178 glycan-degrading enzymes (Martens et al. 2008). ECF- σ /anti- σ systems in *Bacteroides*
179 species also frequently regulate genes encoding TonB-dependent transporters (e.g.
180 SusC/D) (Martens et al. 2009). Furthermore, Gram-negative *Cytophaga hutchinsonii*
181 and Gram-positive *Clostridium thermocellum* also have well-characterized ECF- σ /anti- σ
182 systems that regulate cellulase-encoding gene expression (Nataf et al. 2010; Sand et al.
183 2015; Wang et al. 2019a). In *C. thermocellum*, cellulosomes are assembled using at
184 least six ECF- σ /anti- σ systems that are specific for distinct cellulolytic regulons (Ortiz de
185 Ora et al. 2018; Ichikawa et al. 2022).

186 In contrast to what is known about ECF- σ /anti- σ system to control cellulase-
187 encoding genes, the regulatory involvement of ECF- σ /anti- σ systems for hemicellulase-
188 encoding genes is less understood. Using the best described examples from
189 Actinobacteria, ECF- σ /anti- σ systems have been placed into families based on the
190 regulons they control (Huang et al. 2015). For example, ECF families 52 and 53 have
191 been computationally predicted to possess a C-terminal fusion domain comprised of the
192 anti-sigma factor sequence coupled with a transmembrane portion of the protein
193 (Marcos-Torres et al. 2022). More interestingly, some ECF52 and ECF53 proteins also
194 have computationally predicted glycosyl hydrolase catalytic domains and carbohydrate-
195 binding domains (Huang et al. 2015; Pinto et al. 2019), however experimental validation
196 has yet to be performed. In *C. thermocellum* xylanase-encoding genes are regulated by
197 alternative sigma factors σ^{16} and σ^{17} and the vegetative promoter σ^A (Sand et al. 2015;
198 Ichikawa et al. 2022). It was demonstrated that the vegetative σ^A provided basal

199 expression of xylanase-encoding genes, while σ^{I6} and σ^{I7} were employed for stronger
200 expression in the presence of xylans (Bahari et al. 2011; Sand et al. 2015).
201 Furthermore, the characterization of *C. thermocellum* ECF- σ /anti- σ systems aided in the
202 prediction of homologous regulators in related species like *Psuedobacteroides*
203 *cellulosolvens*, specifically for a pectin-degrading regulon (Ortiz de Ora et al. 2018).

204

205 **Carbon Catabolite Repression.** The final canonical system, carbon catabolite
206 repression (CCR), is widely known for controlling the preferential utilization of specific
207 carbon sources (typically glucose) over others (Ammar et al. 2018). In contrast to HTCS
208 and ECF systems, which work similarly in Gram-negative and Gram-positive bacteria,
209 the CCR mechanism in Gram-negative is markedly different compared to Gram-positive
210 bacteria (Kundig et al. 1964; Deutscher and Saier Jr 1983). In Gram-negative bacteria,
211 a phosphotransferase system is utilized wherein glucose is imported intracellularly and
212 simultaneously phosphorylated by a component of the transport protein (EII_A).
213 Expression of non-glucose metabolizing genes have very low basal expression and
214 require activation (**Fig. 1C**). A phosphorylated EI protein transfers a phosphate group to
215 the HPr protein, which in turn phosphorylates EII_A. In the absence of glucose, there is
216 an abundance of phosphorylated EII_A (EII_A-P), which activates adenylate cyclase (AC)
217 via phosphorylation (Magasanik 1961; Feucht and Saier 1980). The resulting
218 accumulation of cAMP activates the cAMP Receptor Protein (CRP) and increases the
219 transcription of genes that encode the proteins responsible for the metabolism of non-
220 preferred carbon sources.

221 In Gram-positive bacteria, expression of genes important to the metabolism of
222 non-glucose sugars requires inactivation of the repressor catabolite control protein
223 (CcpA) (**Fig. 1D**). This occurs in the absence of glucose wherein fructose 1,6-
224 bisphosphate (FBP) is not generated because glycolysis is not occurring. Without FBP,
225 histidine protein (HPr) cannot be phosphorylated and dimerize with CcpA to repress
226 transcription of genes involved in metabolizing non-preferred carbon sources
227 (Deutscher and Saier Jr 1983). It should be noted that CcpA can also act as a
228 transcriptional activator for quorum sensing (*trpA*), stress response (*cidAB*), and export
229 of excess carbon (*ackA*) in *Streptococcus pneumoniae*, *Streptococcus mutans*, and
230 *Bacillus subtilis* respectively (Henkin 1996; Kim et al. 2019a). Additionally, other
231 counter-examples of CCR in *Pseudomonas* sp. found preferential utilization of
232 succinate, citrate, or aromatic compounds over glucose (Liu 1952; Basu et al. 2006).

233 One example of CCR-based regulation for hemicellulase-encoding genes is
234 found in *Bacillus subtilis* and uses both CcpA and the repressor GmuR (Sadaie et al.
235 2008). Mannanase-encoding genes in *B. subtilis* are in an operon that also contains
236 genes encoding substrate-specific transporters and metabolic enzymes. In the presence
237 of cellobiose or mannobiose (and in the absence of glucose), expression of the mannan
238 utilization operon occurs due to a lack of fructose 1,6-bisphosphate. This results in
239 limited amounts of phosphorylated HPr, which is necessary for CcpA binding to the
240 promoter region. Consequently, the mannanase-encoding genes are de-repressed.
241 Mannanase-encoding genes are further regulated by the repressor GmuR, which
242 requires phosphorylation via GmuA, a component protein of the phosphotransferase
243 system (PTS) and a structural homolog to EII_A (Sadaie et al. 2008). Briefly,

244 glucomannan disaccharides are imported and phosphorylated via the PTS (comprised
245 of transport proteins GmuABC). Inverse to the processes described for carbon
246 catabolite repression, the presence of glucomannan oligosaccharides results in an
247 abundance of unphosphorylated GmuA. Consequently, GmuR cannot be
248 phosphorylated, which results in the transcription of mannanase-encoding genes.

249 Co-regulation of arabinanase and xylanase-encoding genes are found in Gram-
250 negative and Gram-positive bacteria, with two characterized repressors being AraR and
251 XylR (Laikova et al. 2001; Rodionov et al. 2001). Both belong to the LacI family of
252 transcriptional regulators and work in conjunction with CCR (Book et al. 2016; Ohashi et
253 al. 2021; Rodionov et al. 2021). Co-regulation of xylanase and arabinanase genes
254 provides an efficient means of streamlining gene expression given the monosaccharide
255 composition of lignocellulose, namely hexoses coming from cellulose and pentoses
256 coming from hemicellulose (Jamander et al. 2014; Kim et al. 2015). Not surprisingly,
257 CCR has been widely studied to characterize the regulation of lignocellulose-derived
258 sugar metabolism in *Clostridium*, *Caldicellulosiruptor*, *Pseudomonas*, and *Escherichia*
259 species (Gosset 2005; Vanfossen et al. 2009; Bruder et al. 2015; Liu et al. 2015).

260

261 **Current Applications of Canonical Systems.** The use of bacteria as lignocellulose
262 bioprocessors has renewed interest in the three canonical regulatory mechanisms for
263 biotechnologically relevant bacteria (Mearls et al. 2015; Taylor II et al. 2018; Elmore et
264 al. 2020; Ling et al. 2022). Using HTCS and ECF- σ /anti- σ systems, recent studies have
265 focused on regulation of polysaccharide utilization loci (PULs) containing hemicellulase-
266 encoding genes, especially in *Bacteroides* sp. (Luis et al. 2018; Mackie and Cann 2018;

267 Pereira et al. 2021; Beidler et al. 2023). Similarly, *C. thermocellum* is commonly used to
268 study ECF- σ /anti- σ systems due to it possessing unique σ^l factors that can be studied
269 heterologously in *B. subtilis* (Munoz-Gutierrez et al. 2016). Comparative studies of *C.*
270 *thermocellum* σ^l factors were also important to the discovery that transcriptional
271 initiation of cellulosomal genes relied on an auto-proteolysis system for ECF upon
272 binding to the glycan of interest (Chen et al. 2023a). Likewise, dismantling CCR-related
273 mechanisms in biotechnologically relevant bacteria (e.g. *E. coli*, *C. thermocellum*, and
274 *P. putida*) found that co-utilization of xylose and glucose is more easily achieved with
275 intracellular cellobiose hydrolysis (Xiong et al. 2018; Wang et al. 2019b; Cabulong et al.
276 2021). Intracellular cellobiose hydrolysis and phosphorylation bypassed some of the
277 inhibitory effects caused by bacterial sensing/detection of extracellular glucose.
278 Moreover, *Pseudomonas putida* KT2440 has undergone extensive engineering to co-
279 metabolize glucose with cellobiose, galactose, xylose, and arabinose (Dvorak and de
280 Lorenzo 2018; Peabody V et al. 2019; Elmore et al. 2020).

281

282 **TRANSCRIPTOMIC APPROACHES TO IDENTIFY HEMICELLULASE-ENCODING**
283 **GENE REGULATORY PATTERNS**

284 The use of transcriptomic data to assess global changes in CAZyme-encoding gene
285 regulation has rapidly become a standard approach to identify critical components of
286 polysaccharide degradation (Gruninger et al. 2018; Lillington et al. 2020; Chen et al.
287 2023b). This method is particularly useful for non-model bacterial systems whose
288 regulatory mechanisms are less characterized compared to *E. coli* or *B. subtilis*. While it
289 should be noted that CAZyme-encoding gene expression was previously known to be

290 regulated by growth rate and bacterial life cycle for *Bacteroides succinogenes* and
291 *Clostridium thermocellum* (Russell 1987; Rydzak et al. 2012), more recent reports have
292 uncovered unique differences in hemicellulase-encoding gene regulation for both Gram-
293 positive and Gram-negative bacteria. Below is a summarization of the recent
294 developments using transcriptomics to elucidate regulatory features in lignocellulose-
295 degrading bacteria.

296

297 **Hemicellulase gene expression in Gram-positive species.** Current RNAseq
298 analyses using Gram-positive bacteria grown on hemicelluloses have often revealed
299 highly specific gene expression responses (Blumer-schuette et al. 2017; La Rosa et al.
300 2019; Rodionov et al. 2021). For example, the human gut symbiont *Roseburia*
301 *intestinalis* has a substrate-specific response during growth on glucomannan and
302 galactomannan (**Fig. 2A**) (La Rosa et al. 2019). Notably, 16 up-regulated genes were
303 from two distinct mannan utilization loci that differ from PULs described in *Bacteroides*
304 by the absence of genes that encode TonB-dependent transporters. Additionally, *R.*
305 *intestinalis* growth on galactose (a component of galactomannan) did not result in up-
306 regulation of any of these genes, suggesting that mannose or manno-oligosaccharides
307 were the sole nutritional signal for mannan deconstruction (La Rosa et al. 2019).

308 Highly specific CAZyme-encoding gene regulation has been observed in *Bacillus*
309 sp. N16-5, where up-regulation of β -mannanase and α -galactosidase-encoding genes
310 was only observed when the bacterium was grown using galactomannan, but not on
311 xylan, pectin, CMC, or any tested monosaccharide (glucose, fructose, mannose,
312 galactose, arabinose, or xylose) (Song et al. 2013). Furthermore, *Bacillus* sp. N16-5

313 grown using xylan only up-regulated β -xylanase-encoding genes, but growth on xylan or
314 xylose up-regulated xylulokinase and xylose-related transporter-encoding genes.

315 As a third example, in *Caldicellulosirupter* species like *C. bescii* and *C.*
316 *saccharolyticus*, xylanase-encoding genes were strongly up-regulated during growth on
317 xylan (**Fig. 2B**) but repressed on either xylose or cellulose (Blumer-schuette et al. 2017;
318 Rodionov et al. 2021). Expression data of *C. bescii* when grown using xylan also
319 identified a putative key xylanase for extracellular xylan degradation (Xyn11A-2)
320 (Crosby et al. 2022); however, a comparison of enzymatic activity between the *C. bescii*
321 xylanases showed relatively mediocre activity for Xyn11A-2. The authors suspect this
322 observed difference in gene expression could be a compensatory mechanism to
323 overcome modest activity of Xyn11A-2. The use of transcriptomic data from *C. bescii*
324 when grown on xylan has also proven useful for pairing the important degradative loci to
325 their likely regulators, which included XynR, XylR, AraR, BxgRS, and AxuRS (Rodionov
326 et al. 2021). Interestingly, transcriptomic analysis of *C. saccharolyticus* grown using
327 pectin found a much broader gene expression response than that observed on other
328 hemicelluloses (Blumer-schuette et al. 2017). Growth of *C. saccharolyticus* using pectin
329 elicited up-regulation of various CAZyme-encoding genes, including cellulases,
330 mannanases, xylanases, arabinanases, pectinases, and chitinases (**Fig. 2C**).

331 As a final example, *Clostridium* sp. exhibited some divergence in their regulatory
332 circuits for xylanase-encoding genes (Petit et al. 2015; Munir et al. 2016). The
333 expression of xylanase-encoding genes possessed by *C. termittidis* were dependent on
334 xylan, but not xylose, cellobiose, or cellulose, while those belonging to *C.*
335 *phytofermentans* were up-regulated when grown on both xylan and cellulose. Alongside

336 the differences in hemicellulase gene expression observed between growth media,
337 growth-rate is also a critical mediator of CAZyme gene expression in *Clostridium* sp.,
338 with several studies reporting *C. thermocellum* transcription of cellulase-encoding genes
339 dependent upon growth phase (Dror et al. 2003; Riederer et al. 2011). One interesting
340 exception was for a xylanase-encoding gene (*xynC*), which exhibited high expression
341 irrespective of growth rate (Dror et al. 2005).

342

343 **Hemicellulase gene expression in Gram-negative species.** For Gram-negative
344 bacterial species, transcriptomic studies have revealed much broader gene expression
345 responses than those observed in Gram-positive bacteria (Blake et al. 2018; Chen et al.
346 2018; Novak and Gardner 2023). For example, in *Leeuwenhoekella* sp.
347 *MAR_2009_132*, and *Salegentibacter* sp. *Hel_I_6*, up-regulated α - and β -mannanase-
348 encoding genes were identified when these bacteria were grown on both α - or β -
349 mannan despite the selective activity of these CAZymes for each substrate (Chen et al.
350 2018). This suggested that these species regulate mannanase gene expression with
351 less specificity, possibly at the level of the mannose monosaccharide given that these
352 bacteria cannot differentiate between α - versus β -mannan.

353 A broad gene expression response was revealed in the saprophyte *Cellvibrio*
354 *japonicus* when grown on glucomannan (**Fig. 2A**) (Novak and Gardner 2023). Eight of
355 the ten predicted mannanase-encoding genes were up-regulated, as well as an
356 additional 46 CAZyme-encoding genes. Strong up-regulation of non-substrate specific
357 CAZyme-encoding genes in *C. japonicus* suggests that it is likely the presence of
358 complex polysaccharides that induce gene expression. Additionally, a previous study of

359 the *C. japonicus* transcriptomic response on cellobiose also resulted in broader up-
360 regulation of cellulases and hemicellulases (Nelson et al. 2017). Interestingly, a much
361 more specific response was elicited when *C. japonicus* was grown on oat-spelt xylan
362 (Blake et al. 2018). This report concluded that *C. japonicus* only up-regulated xylanase
363 genes during mid-exponential growth, though a comparison of the RNAseq from
364 stationary phase showed up-regulation of genes encoding xylanases, arabinanases,
365 mannanases, and cellulases. In terms of growth rate affecting CAZyme-encoding gene
366 expression in *C. japonicus*, it was observed that expression was more prominent during
367 active growth compared to stationary phase (Blake et al. 2018; Novak and Gardner
368 2023).

369 *Roseihermus sacchariphilus* exhibited a transcriptomic response quite dissimilar
370 to *C. japonicus* when it was grown on beechwood xylan (Liew et al. 2020). This
371 bacterium had up-regulation of genes encoding cellulases, mannanases, xylanases,
372 arabinanases, pectinases, and other glycosidases (**Fig. 2B**). Surprisingly, pectinase-
373 encoding genes were the most prominently up-regulated CAZyme-encoding genes
374 when *R. sacchariphilus* was grown on xylan. The authors hypothesize that the broad
375 response was due to co-expression of genes encoding various glycosidic activities by
376 the same promoter. However, they also suggested that a multi-timepoint transcriptomic
377 analysis could reveal more about the patterns of hemicellulase gene expression.

378 Finally, expression of CAZyme-encoding genes in *Bacteroides xylanisolvans* also
379 elicited a broad gene expression response on oat-spelt xylan, with up-regulation of 150
380 carbohydrate utilization-encoding genes that included all identified PULs for xylan
381 utilization and 15 PULs for starch and pectic metabolism (Despres et al. 2016a). The

382 authors hypothesized that the broad response was from detection of shared
383 oligosaccharides present in both oat-spelt xylan and pectins (i.e. arabinoside side-
384 chains). However, this response was very different when *B. xylanisolvans* was grown on
385 citrus pectin and resulted in a much more specific result (**Fig. 2C**) (Despres et al.
386 2016b). Here, researchers were able to compare the gene expression response on two
387 different types of pectins and discern the PULs that were most likely to be involved in
388 the degradation of different pectic-linkages. Specifically, PUL 2 was suspected to be
389 important to degrading type II rhamnogalacturonan, PUL 13 was likely involved in de-
390 branching arabinose sidechains, and PULs 49 and 50 were the most up regulated on
391 both pectins and were suspected to be involved in degrading homogalacturonan and
392 type I rhamnogalacturonan, respectively. Additionally, *B. xylanisolvans* shared the traits
393 observed in other bacterial species with high expression of CAZyme-encoding genes
394 during active growth compared to stationary phase (Despres et al. 2016b).

395

396 **Hemicellulase gene expression in bacterial co-culture.** There has been increasing
397 interest in the metatranscriptomic of co-cultured bacteria using complex polysaccharide-
398 rich substrates given that environmental lignocellulose degradation is performed by a
399 microbial community. For example, a study of the Gram-positive *Butyrivibrio hungatei*
400 MB2003 transcriptome during mono- and co-culture with rumen gut symbiont
401 *Butyrivibrio proteoclasticus* B316 found that in monoculture, *B. hungatei* was unable to
402 grow on xylan or pectin despite the presence and expression of several hemicellulase-
403 encoding genes (Palevich et al. 2019). Strikingly, when in co-culture with *B.*
404 *proteoclasticus*, *B. hungatei* had a substantial increase in its growth capabilities at the

405 expense of *B. proteoelasticus* final cell density. Since *B. hungatei* acts more as a sugar
406 scavenger than a hemicellulose-degrader, its RNAseq results in monoculture
407 unsurprisingly showed marked increases in the expression of many genes important to
408 translation, signal transduction, defensive mechanisms, lipid/amino acid metabolism,
409 and cell wall biogenesis compared to its co-cultured counterpart. During co-culture with
410 *B. proteoelasticus*, *B. hungatei* expressed fewer genes overall but exhibited more
411 specificity in the expression of genes encoding for carbohydrate metabolism (e.g. ABC
412 sugar transporters). Interestingly, *B. proteoelasticus* gene expression was relatively
413 unchanged between mono- and co-culture (excluding a few CAZyme-encoding genes
414 which were up-regulated during co-culture) despite the increase in competition provided
415 by culturing with *B. hungatei*.

416 As another example, the Gram-negative gut symbionts *P. intestinalis*, *P. muris*,
417 and *P. rodentium* underwent comparative metatranscriptomic analysis, and the study
418 concluded that *P. intestinalis* was the most competitive strain due to its distinct up-
419 regulation of PULs encoding xylanase and pectinase-encoding genes when the rat host
420 was given a diet heavy in arabinoxylans (Galvez et al. 2020). The three most up-
421 regulated glycoside hydrolase families in all three species were from GH43, GH2, and
422 GH28. These families contain members able to hydrolyze β -glucan, β -xylan, α -arabinan,
423 and pectic linkages (Lombard et al. 2014).

424 Co-cultures containing both Gram-positive and Gram-negative species have
425 been used to investigate the bottlenecks of complete lignocellulose bioconversion in the
426 guts of rumen or humans (Leth et al. 2018; Badhan et al. 2022). A recent
427 metatranscriptomic study examined a complex consortium of Gram-positive and Gram-

428 negative gut symbionts in ruminant animals grown in *ex vivo* batch culture on Total
429 Tract Indigestible Residue (TTIR). The primary goal of the study was to assess the
430 bottlenecks in ruminant digestion to uncover mechanisms to enhance the system.
431 Transcripts encoding xylanases were abundant when the micro-community was grown
432 on TTIR, which indicated that heteroxylans and xyloglucans were the primary remaining
433 polysaccharide in the TTIR. It was hypothesized that the sheer quantity of inter- and
434 intramolecular bonds act as a hindrance to enzyme accessibility to the substrate.

435 Overall, there appears to be a distinguishing difference between the
436 hemicellulose-encoding gene expression patterns in Gram-positive versus Gram-
437 negative bacteria. Specifically, the narrowed specificity of gene expression observed in
438 Gram-positive compared to Gram-negative species. Additionally, investigations of co-
439 culture transcriptomics containing Gram-positive and/or Gram-negative communities on
440 lignocellulose have focused on the interspecies relationships and competition for carbon
441 acquisition (Palevich et al. 2019; Galvez et al. 2020; Badhan et al. 2022). The
442 knowledge obtained from these analyses has subsequently been applied in studies on
443 gut microbiomes and biotechnology applications, specifically for studies that
444 successfully predicted the impact of synthetic gut microbiota on host immune response
445 (Afrizal et al. 2022) and identified patterns in microbe abundance based on diet (Corbin
446 et al. 2023).

447

448 **Computational prediction of transcriptional regulators using compilations of**
449 **transcriptomic data.** In addition to the plethora of information provided by RNAseq
450 data from a singular dataset, compilations of such data can extrapolate more

451 information on transcriptional regulatory systems using computational methods. For
452 example, transcriptomic compilations with DNA-binding motif studies have predicted
453 extensive transcriptional regulatory networks of several different bacteria (Poudel et al.
454 2020; Rychel et al. 2020). The known computationally predicted regulons of Gram-
455 negative plant bioprocessors is relatively exclusive to the fermentative bioprocessing
456 bacteria that possess few hemicellulases (Sastry et al. 2019; Lim et al. 2022). However,
457 this approach has yielded interesting results for Gram-positive species. For example in
458 *C. thermocellum*, a LacI transcriptional regulator (GlyR2) was computationally predicted
459 as important for genes encoding two mannanases (*man5A* and *man26A*), a xylanase
460 (*clo1313_2530*), and two cellulases (*clo1313_0413* and *clo1313_1425*) (Wilson et al.
461 2017; Hebdon et al. 2021). Previous experimental research on GlyR2 had identified it as
462 a mannobiose-responsive transcriptional repressor with only confirmed regulatory
463 activity on a mannanase-encoding gene (*man5A*) (Wilson et al. 2017). GlyR2 was
464 hypothesized to have indirect effects on transcriptional regulation of certain
465 hemicellulose-encoding genes that may require different conditions to de-repress other
466 genes with the recognized binding motif (Hebdon et al. 2021). Additionally, a *C. bescii*
467 genome analysis and comparison to other *Caldicellulosiruptor* species improved the
468 organism-specific bioprocessing model through the discovery of 16 key regulators
469 important to the degradation and metabolism of hemicellulose and pectin (Rodionov et
470 al. 2021). It was noted that most of these regulators were involved in the expression of
471 xylanase or pectinase-encoding genes, while genes that encoded cellulases,
472 mannanases, and amylases generally only had one regulator for each CAZyme type.
473 Additionally, the mechanistic regulatory actions of the predicted regulators were

474 overwhelmingly repressive in function with the few activators belonging to the AraC-
475 family. Interestingly, the study found that most of these activators were involved in the
476 regulation of pectinase-encoding genes.

477

478 **FUTURE DIRECTIONS**

479 A thorough understanding of how hemicellulase-encoding genes are regulated is
480 essential to optimize lignocellulose bioprocessing (Chettri et al. 2020). Consequently,
481 detailed studies that include hemicellulase-encoding gene regulation are generally
482 conducted exclusively on well-characterized model bacteria and those already being
483 used as chassis in biotechnology applications (Xiong et al. 2018; Rodionov et al. 2021).

484 Given that metagenomic and metatranscriptomic data for less characterized
485 lignocellulolytic bacteria with unoptimized systems are available (Dai et al. 2015;
486 Kougias et al. 2018; Lopez-Mondejar et al. 2020) but beyond the scope of this review,
487 we have endeavored to summarize and highlight the current state of hemicellulose-
488 encoding gene regulation patterns between Gram-positive and Gram-negative bacteria.

489 Overall, we argue there are two critical features of hemicellulase-encoding gene
490 regulation that must be considered for optimization, which are (1) identifying the specific
491 metabolic inducer (often an oligosaccharide), and (2) mitigating the impacts of carbon
492 catabolite repression. Current lignocellulose bioconversion systems typically use Gram-
493 positive species for saccharification and Gram-negative species for fermentation (Dai et
494 al. 2015; Thapa et al. 2019). While it has been previously argued that co-culture or
495 consortia-based bioconversion processes will improve efficiency and completeness of
496 lignocellulose degradation (Chin et al. 2020; Kumar et al. 2023), the amount of strain

497 engineering and optimization significantly increases for each strain added to the
498 process, especially given the current trend of focusing only on improving either
499 degradative or metabolic/fermentative capabilities. Therefore, the following commentary
500 will focus exclusively on the optimization of single bacterium bioprocessing systems for
501 the complete deconstruction and utilization of lignocellulose (**Table 1**).

502

503 **Optimizing Gram-positive systems will require integration of degradative and**
504 **fermentative capabilities.** *Clostridia* and *Caldicellulosiruptor* species are highly studied
505 genera for their prolific degradation of plant polymers (Artzi et al. 2018; Brunecky et al.
506 2018; Williams-Rhaesa et al. 2018). However, neither system has been successfully
507 engineered to fully metabolize and ferment all components of lignocellulose. In the case
508 of *Clostridia* systems, this is due to an inherent inability to ferment pentoses. A previous
509 attempt to engineer a pathway for xylose fermentation in *C. thermocellum* found that
510 while xylose and Avicel could be co-utilized, xylan and Avicel could not (Xiong et al.
511 2018). It was argued that this is likely due an inhibitory effect posed by cello-
512 oligosaccharides on xylanases or unknown regulators that repress xylanase gene
513 expression in the presence of cellobiose. More recently, efforts have
514 transitioned to develop CRISPR/Cas systems or riboswitches (Marcano-Velazquez et
515 al. 2019; Walker et al. 2020) to mediate the observed repression of xylanase gene
516 transcription in the presence of cellobiose.

517 In *Caldicellulosiruptor* systems the limiting factor is that the expression and
518 degradative efficiency of heterologously expressed CAZymes is low. *C. bescii* has been
519 extensively manipulated to improve its saccharifying proficiency via heterologous

520 expression of xylanases (Kim et al. 2018; Crosby et al. 2022), however it has been
521 observed that degraded oligosaccharides repress expression of secreted enzymes.
522 Additionally, many heterologously expressed genes in *C. bescii* employ a highly active
523 constitutive promoter, which is unoptimized for lignocellulose bioprocessing due to the
524 energetic output required to constitutively and highly express heterologous CAZyme-
525 encoding genes (Conway et al. 2017; Kim et al. 2017; Lee et al. 2020). Therefore,
526 control over the expression of the heterologously expressed genes could spare the
527 metabolic burden of their high expression levels and improve this limitation.

528

529 **Optimizing Gram-negative systems will require bolstering the potency of**
530 **lignocellulolytic capabilities.** Gram-negative species elicit a much broader
531 hemicellulase-encoding gene regulatory response than Gram-positive bacteria. We
532 argue that this diversification of CAZyme gene expression is an underutilized resource
533 to optimize lignocellulose bioconversion in single bacterium systems. Biotechnology-
534 relevant model systems like *E. coli* and *P. putida* have been largely focused on
535 improving co-utilization of hexoses and pentoses by overcoming the effects of CCR
536 (Kim et al. 2019b; Peabody V et al. 2019; Elmore et al. 2020; Cabulong et al. 2021).
537 However, these systems are limited as they are unable to innately degrade
538 lignocellulose. The necessary step needed to drive either model into a fully self-
539 sufficient system is the inclusion of lignocellulolytic machinery. This approach has
540 several obstacles, most pressingly, identifying the minimally sufficient set of CAZymes
541 that can completely depolymerize plant biomass and engineering an efficient export
542 system for these CAZymes from the heterologous host.

543 In contrast, the genes/proteins needed to ferment plant sugars or produce other
544 bioproducts are known and could be integrated into lignocellulolytic Gram-negative
545 species. One example of a system not yet tapped for industrial use but has the potential
546 to do so is *Cellvibrio japonicus*, a Gram-negative saprophyte that can fully degrade
547 lignocellulose (Deboy et al. 2008; Gardner et al. 2014; Larsbrink et al. 2014; Blake et al.
548 2018). *C. japonicus* has also been shown to make ethanol and rhamnolipids as targeted
549 products from lignocellulose bioconversion on a proof-of-concept scale (Gardner and
550 Keating 2010; Horlamus et al. 2018). Another Gram-negative model is *Saccharophagus*
551 *degradans* which also possesses a large number of CAZymes capable of degrading
552 polysaccharides including cellulose, xylan, and pectin (Ensor et al. 1999). Engineering
553 efforts using *S. degradans* have successfully generated strains capable of producing
554 polyhydroxyalkanoate (PHAs) from cellulose, xylan, and agarose (Esteban Alva Munoz
555 and Riley 2008; Sawant et al. 2017). However, *S. degradans* cannot generate ethanol
556 and still relies on co-culture with other microbes for its production (Takagi et al. 2016).
557 While both *C. japonicus* and *S. degradans* show promise with their degradative ability,
558 improvements to their genetic systems are still needed to heterologously express the
559 necessary metabolic pathways to produce high-value products.

560

561 **Concluding statement.** This review discussed mechanisms that regulate
562 hemicellulase-encoding gene expression in Gram-positive versus Gram-negative
563 bacteria. Experimental studies that characterize the molecular mechanisms of
564 hemicellulase gene expression are useful to identify relevant activators or repressors for
565 each regulon, and we argue that such research is essential for the field to significantly

566 advance. Given the discussed limitations of the reviewed models, the field should
567 prioritize efforts that predict transcriptional regulatory networks and engineer the
568 requisite enzymes for plant sugar bioconversion in species innately capable of prolific
569 lignocellulose degradation.

570

571 **DECLARATIONS**572 **ETHICS APPROVAL AND CONSENT TO PARTICIPATE**

573 N/A

574 **CONSENT FOR PUBLICATION**

575 N/A

576 **COMPETING INTERESTS**

577 This report was prepared as an account of work sponsored by an agency of the United
578 States Government. Neither the United States Government nor any agency thereof, nor
579 any of their employees, makes any warranty, express or implied, or assumes any legal
580 liability or responsibility for the accuracy, completeness, or usefulness of any
581 information, apparatus, product, or process disclosed, or represents that its use would
582 not infringe privately owned rights. Reference herein to any specific commercial
583 product, process, or service by trade name, trademark, manufacturer, or otherwise does
584 not necessarily constitute or imply its endorsement, recommendation, or favoring by the
585 United States Government or any agency thereof. The views and opinions of authors
586 expressed herein do not necessarily state or reflect those of the United States
587 Government or any agency thereof. The authors also declare that they have no conflict
588 of interest for this publication.

589 **FUNDING**

590 This work was supported by the National Science Foundation, Division of Environmental
591 Biology under Award Number 2038304.

592 **AUTHORS' CONTRIBUTIONS**

593 **JKN** led the manuscript writing.

594 **JGG** contributed to writing the manuscript. All authors read and approved the final
595 submitted version of the manuscript.

596 **ACKNOWLEDGEMENTS**

597 The authors wish to thank Gardner laboratory members for helpful discussions during
598 the writing of this review.

599 **AVAILABILITY OF DATA AND MATERIAL**

600 N/A

601

602 REFERENCES

603 Afrizal A, Jennings SA V, Hitch TCA, Riedel T, Basic M, Panyot A, Treichel N, Hager
604 FT, Wong EO-Y, Wolter B, Viehof A, von Strempe A, Eberl C, Buhl EM, Abt B,
605 Bleich A, Tolba R, Blank LM, Navarre WW, Kiessling F, Horz H-P, Torow N,
606 Cerovic V, Stecher B, Strowig T, Overmann J, Clavel T (2022) Enhanced cultured
607 diversity of the mouse gut microbiota enables custom-made synthetic communities.
608 *Cell Host Microbe* 30:1630–1645. <https://doi.org/10.1016/j.chom.2022.09.011>

609 Alvarez-Martinez CE, Lourenço RF, Baldini RL, Laub MT, Gomes SL (2007) The ECF
610 sigma factor σ T is involved in osmotic and oxidative stress responses in
611 *Caulobacter crescentus*. *Mol Biol* 66:1240–1255. <https://doi.org/10.1111/j.1365-2958.2007.06005.x>

613 Ammar EM, Wang X, Rao C V (2018) Regulation of metabolism in *Escherichia coli*
614 during growth on mixtures of the non-glucose sugars: arabinose, lactose, and
615 xylose. *Nat Sci Reports* 8:1–11. <https://doi.org/10.1038/s41598-017-18704-0>

616 Artzi L, Dadosh T, Milrot E, Levin-zaidman S, Morag E, Bayer EA (2018) Colocalization
617 and disposition of cellulosomes in *Clostridium clariflavum* as revealed by correlative
618 superresolution imaging. *MBio* 9:e00012-18

619 Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate
620 specificity and subfamily classification of glycoside hydrolase family 5 (GH5). *BMC
621 Evol Biol* 12. <https://doi.org/10.1186/1471-2148-12-186>

622 Badhan A, Low KE, Jones DR, Xing X, Milani MRM, Polo RO, Klassen L,
623 Venketachalam S, Hahn MG, Abbott DW, McAllister TA (2022) Mechanistic insights
624 into the digestion of complex dietary fibre by the rumen microbiota using

625 combinatorial high-resolution glycomics and transcriptomic analyses. *Comput*
626 *Struct Biotechnol J* 20:148–164

627 Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA (2015) Structure of a
628 bacterial RNA polymerase holoenzyme open promoter complex. *eLife* 4:1–23.
629 <https://doi.org/10.7554/eLife.08504>

630 Bahari L, Gilad Y, Borovok I, Bareket HK, Yakir D, Shoham Y, Lamed R, Bayer EA
631 (2011) Glycoside hydrolases as components of putative carbohydrate biosensor
632 proteins in *Clostridium thermocellum*. *J Ind Microbiol Biotechnol* 38:825–832.
633 <https://doi.org/10.1007/s10295-010-0848-9>

634 Basu A, Apte SK, Phale PS (2006) Preferential Utilization of Aromatic Compounds over
635 Glucose by *Pseudomonas putida* CSV86. *Appl Environ Microbiol* 72:2226–2230.
636 <https://doi.org/10.1128/AEM.72.3.2226>

637 Been M De, Francke C, Moezelaar R, Abbe T, Siezen RJ (2006) Comparative analysis
638 of two-component signal transduction systems of *Bacillus cereus*, *Bacillus*
639 *thuringiensis* and *Bacillus anthracis*. *Microbiology* 152:3035–3048.
640 <https://doi.org/10.1099/mic.0.29137-0>

641 Beidler I, Robb CS, Vidal-Melgosa S, Zühlke M-K, Bartosik D, Solanki V, Markert S,
642 Becher D, Schweder T, Hehemann J-H (2023) Marine Bacteroidetes use a
643 conserved enzymatic cascade to digest diatom β -mannan. *ISME* 17:276–285.
644 <https://doi.org/10.1038/s41396-022-01342-4>

645 Blake AD, Beri NR, Guttman HS, Cheng R, Gardner JG (2018) The complex physiology
646 of *Cellvibrio japonicus* xylan degradation relies on a single cytoplasmic β –
647 xylosidase for xylo-oligosaccharide utilization. *Mol Microbiol* 107:610–622.

648 <https://doi.org/10.1111/mmi.13903>

649 Blumer-schuette SE, Zurawski J V, Conway JM, Khatibi P, Lewis DL, Li Q, Chiang VL,

650 Kelly RM (2017) *Caldicellulosiruptor saccharolyticus* transcriptomes reveal

651 consequences of chemical pretreatment and genetic modification of lignocellulose.

652 *Microb Biotechnol* 10:1546–1557. <https://doi.org/10.1111/1751-7915.12494>

653 Book AJ, Lewin GR, Mcdonald BR, Takasuka TE, Fox G, Currie CR (2016) Evolution of

654 High Cellulolytic Activity in Symbiotic *Streptomyces* through Selection of Expanded

655 Gene Content and Coordinated Gene Expression. *PLoS Biol* 1–21.

656 <https://doi.org/10.1371/journal.pbio.1002475>

657 Bruder M, Moo-young M, Chung DA, Chou CP (2015) Elimination of carbon catabolite

658 repression in *Clostridium acetobutylicum* — a journey toward simultaneous use of

659 xylose and glucose. *Appl Microbiol Biotechnol* 99:7579–7588.

660 <https://doi.org/10.1007/s00253-015-6611-4>

661 Brunecky R, Chung D, Sarai NS, Hengge N, Russell JF, Young J, Mittal A, Pason P,

662 Wall T Vander, Michener W, Shollenberger T, Westpheling J, Himmel ME, Bomble

663 YJ (2018) Biotechnology for Biofuels High activity CAZyme cassette for improving

664 biomass degradation in thermophiles. *Biotechnol Biofuels* 11:1–12.

665 <https://doi.org/10.1186/s13068-018-1014-2>

666 Buschiazzo A, Trajtenberg F (2019) Two-component sensing and regulation: How do

667 histidine kinases talk with response regulators at the molecular level? *Annu Rev*

668 *Microbiol* 73

669 Cabulong RB, Bañares AB, Nisola GM, Lee W-K, Chung W-J (2021) Enhanced glycolic

670 acid yield through xylose and cellobiose utilization by metabolically engineered

671 *Escherichia coli*. Bioprocess Biosyst Eng 44:1081–1091.

672 <https://doi.org/10.1007/s00449-020-02502-6>

673 Celik H, Blouzard J-C, Voigt B, Becher D, Trotter V, Fierobe H-P, Tardif C, Pages S,

674 Philip P De (2013) A Two-Component System (XydS/R) Controls the Expression of

675 Genes Encoding CBM6-Containing Proteins in Response to Straw in *Clostridium*

676 *cellulolyticum*. PLoS One 8:e56063. <https://doi.org/10.1371/journal.pone.0056063>

677 Chen C, Dong S, Yu Z, Qiao Y, Li J, Ding X, Li R, Lin J, Bayer EA, Liu Y, Cui Q, Feng Y

678 (2023a) Essential autoproteolysis of bacterial anti- σ factor RsgI for transmembrane

679 signal transduction. Sci Adv 14. <https://doi.org/10.1126/sciadv.adg4846>

680 Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, Harder J, Avc B,

681 Becher D, Xie P, Amann RI, Hehemann J, Schweder T (2018) Alpha- and beta-

682 mannan utilization by marine Bacteroidetes. Environ Microbiol 20:4127–4140.

683 <https://doi.org/10.1111/1462-2920.14414>

684 Chen L, Qu Z, Yu W, Zheng L, Qiao H, Wang D, Wei B, Zhao Z (2023b) Comparative

685 genomic and transcriptome analysis of *Bacillus velezensis* CL-4 fermented corn

686 germ meal. AMB Express 13:1–12. <https://doi.org/10.1186/s13568-023-01510-5>

687 Chettri D, Verma AK (2023) Biological significance of carbohydrate active enzymes and

688 searching their inhibitors for therapeutic applications. Carbohydr Res 529:108853.

689 <https://doi.org/10.1016/j.carres.2023.108853>

690 Chettri D, Verma AK, Verma AK (2020) Innovations in CAZyme gene diversity and its

691 modification for biorefinery applications. Biotechnol Reports 28:1–17.

692 <https://doi.org/10.1016/j.btre.2020.e00525>

693 Chin DWK, Lim S, Pang YL, Lam MK (2020) Fundamental review of organosolv

694 pretreatment and its challenges in emerging consolidated bioprocessing. *Biofuels*
695 *Bioprod Biorefining* 14:808–829. <https://doi.org/10.1002/bbb.2096>

696 Conway JM, McKinley BS, Seals NL, Hernandez D, Khatibi PA, Poudel S, Giannone
697 RJ, Hettich RL, Williams-Rhaesa AM, Lipscomb GL, Adams MWW, Kelly RM
698 (2017) Functional analysis of the glucan degradation locus in *Caldicellulosiruptor*
699 *bescii* reveals essential roles of component glycoside hydrolases in plant biomass
700 deconstruction. *Appl Environ Microbiol* 83:e01828-17.
701 <https://doi.org/10.1128/AEM.01828-17>

702 Corbin KD, Carnero EA, Dirks B, Igudesman D, Yi F, Marcus A, Davis TL, Pratley RE,
703 Rittmann BE, Krajmalnik-Brown R, Smith SR (2023) Host-diet-gut microbiome
704 interactions influence human energy balance: a randomized clinical trial. *Nat*
705 *Commun* 14:3161. <https://doi.org/10.1038/s41467-023-38778-x>

706 Cortes-Avalos D, Martinez-Perez N, Ortiz-Moncada MA, Juarez-Gonzalez A, Vanos-
707 Vargas AA, Estrada-de los Santos P, Perez-Rueda E, Ibarra JA (2021) An update
708 of the unceasingly growing and diverse AraC/XylS family of transcriptional
709 activators. *FEMS Microbiol Lett* 45:1–13

710 Crosby JR, Laemthong T, Bing RG, Zhang K, Tanwee TNN, Lipscomb GL, Rodionov
711 DA, Zhang Y, Adams MWW, Kelly RM (2022) Biochemical and Regulatory
712 Analyses of Xylanolytic Regulons in *Caldicellulosiruptor bescii* Reveal Genus-Wide
713 Features of Hemicellulose Utilization. *Appl Environ Microbiol* 88:e01302-22

714 Cui C, Yang C, Song S, Fu S, Sun X, Yang L, He F, Zhang L-H, Zhang Y, Deng Y
715 (2018) A novel two-component system modulates quorum sensing and
716 pathogenicity in *Burkholderia cenocepacia*. *Mol Microbiol* 108:32–44.

717 <https://doi.org/10.1111/mmi.13915>

718 Dai X, Tian Y, Li J, Su X, Wang X, Zhao S, Liu L, Luo Y, Liu D, Zheng H, Wang J, Dong
719 Z, Hu S, Huang L (2015) Metatranscriptomic Analyses of Plant Cell Wall
720 Polysaccharide Degradation by Microorganisms in the Cow Rumen. *Appl Environ
721 Microbiol* 81:1375–1386. <https://doi.org/10.1128/AEM.03682-14>

722 Deboy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y,
723 Watkins K, Henrissat B, Gilbert HJ, Nelson KE (2008) Insights into Plant Cell Wall
724 Degradation from the Genome Sequence of the Soil Bacterium *Cellvibrio japonicus*.
725 *J Bacteriol* 190:5455–5463. <https://doi.org/10.1128/JB.01701-07>

726 Despres J, Forano E, Lepercq P, Comtet-marre S, Jubelin G, Chambon C, Yeoman CJ,
727 Miller MEB, Fields CJ, Martens E, Terrapon N, Henrissat B, White BA, Mosoni P
728 (2016a) Xylan degradation by the human gut *Bacteroides xylanisolvans* XB1A
729 involves two distinct gene clusters that are linked at the transcriptional level. *BMC
730 Genomics* 17:1–14. <https://doi.org/10.1186/s12864-016-2680-8>

731 Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G, Yeoman CJ, Miller MEB,
732 Fields CJ, Terrapon N, Bourvellec C Le, Renard CMGC, Henrissat B, White BA,
733 Mosoni P (2016b) Unraveling the pectinolytic function of *Bacteroides xylanisolvans*
734 using a RNA-seq approach and mutagenesis. *BMC Genomics* 17:1–14.
735 <https://doi.org/10.1186/s12864-016-2472-1>

736 Deutscher J, Saier Jr MH (1983) ATP-dependent protein kinase-catalyzed
737 phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the
738 phosphotransferase system in *Streptococcus pyogenes*. *Proc Natl Acad Sci U S A*
739 80:6790–6794. <https://doi.org/10.1073/pnas.80.22.6790>

740 Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y (2003) Regulation of the
741 Cellulosomal *celS* (*cel48A*) Gene of *Clostridium thermocellum* Is Growth Rate
742 Dependent. *J Bacteriol* 185:3042–3048. <https://doi.org/10.1128/JB.185.10.3042>

743 Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2005) Regulation of Major
744 Cellulosomal Endoglucanases of *Clostridium thermocellum* Differs from That of a
745 Prominent Cellulosomal Xylanase. *J Bacteriol* 187:2261–2266.
746 <https://doi.org/10.1128/JB.187.7.2261>

747 Drula E, Garron M, Dogan S, Lombard V, Henrissat B, Terrapon N (2022) The
748 carbohydrate-active enzyme database: functions and literature. *Nucleic Acids Res*
749 50:571–577

750 Dvorak P, de Lorenzo V (2018) Refactoring the upper sugar metabolism of
751 *Pseudomonas putida* for co-utilization of cellobiose, xylose, and glucose. *Metab*
752 *Eng* 48:94–108

753 Elmore JR, Dexter GN, Salvachúa D, Brien MO, Klingeman DM, Gorday K, Michener
754 JK, Peterson DJ, Beckham GT, Guss AM (2020) Engineered *Pseudomonas putida*
755 simultaneously catabolizes five major components of corn stover lignocellulose :
756 Glucose , xylose , arabinose , p-coumaric acid , and acetic acid. *Metab Eng* 62:62–
757 71. <https://doi.org/10.1016/j.ymben.2020.08.001>

758 Emami K, Topakas E, Nagy T, Henshaw J, Jackson KA, Nelson KE, Mongodin EF,
759 Murray JW, Lewis RJ, Gilbert HJ (2009) Regulation of the Xylan-degrading
760 Apparatus of *Cellvibrio japonicus* by a Novel Two-component System. *J Biol Chem*
761 284:1086–1096. <https://doi.org/10.1074/jbc.M805100200>

762 Ensor LA, Stosz SK, Weiner RM (1999) Expression of multiple complex polysaccharide-

763 degrading enzyme systems by marine bacterium strain 2-40. *J Ind Microbiol*
764 *Biotechnol* 23:123–126

765 Esteban Alva Munoz L, Riley MR (2008) Utilization of Cellulosic Waste From Tequila
766 Bagasse and Production of Polyhydroxyalkanoate (PHA) Bioplastics by
767 *Saccharophagus degradans*. *Agric Biosyst Eng* 100:882–888.
768 <https://doi.org/10.1002/bit.21854>

769 Feucht BU, Saier MH (1980) Fine control of adenylate cyclase by the
770 phosphoenolpyruvate:sugar phosphotransferase systems in *Escherichia coli* and
771 *Salmonella typhimurium*. *J Bacteriol* 141:603–610.
772 <https://doi.org/10.1128/jb.141.2.603-610.1980>

773 Francis VI, Porter SL (2019) Multikinase Networks : Two-Component Signaling
774 Networks Integrating Multiple Stimuli. *Annu Rev Microbiol* 13:1–25

775 Franzino T, Boubakri H, Cernava T, Abrouk D, Achouak W, Reverchon S, Nasser W,
776 Haichar F el Z (2022) Implications of carbon catabolite repression for plant-microbe
777 interactions. *Plant Commun* 3:1–21. <https://doi.org/10.1016/j.xplc.2021.100272>

778 Galvez EJ, Iljazovic A, Amend L, Lesker TR, Renault T, Thiemann S, Hao L, Roy U,
779 Gronow A, Charpentier E, Strowig T (2020) Distinct polysaccharide utilization
780 determines interspecies competition between intestinal *Prevotella* spp. *Cell Host*
781 *Microbe* 28:838–852

782 Gardner J, Keating DH (2010) Requirement of the Type II Secretion System for
783 Utilization of Cellulosic Substrates by *Cellvibrio japonicus*. *Appl Environ Microbiol*
784 76:5079–5087. <https://doi.org/10.1128/AEM.00454-10>

785 Gardner JG, Crouch L, Labourel A, Forsberg Z, Bukhman Y V, Vaaje-kolstad G, Gilbert

786 HJ, Keating DH (2014) Systems biology defines the biological significance of redox-
787 active proteins during cellulose degradation in an aerobic bacterium. 94:1121–
788 1133. <https://doi.org/10.1111/mmi.12821>

789 Gardner KH, Blackwell J (1974) The Structure of Native Cellulose. Biopolymers
790 13:1975–2001

791 Gellatly SL, Bains M, Breidenstein EBM, Strehmel J, Reffuveille F, Taylor PK, Yeung
792 ATY, Overhage J, Hancock REW (2018) Novel roles for two-component regulatory
793 systems in cytotoxicity and virulence-related properties in *Pseudomonas*
794 *aeruginosa*. AIMS Microbiol 4:173–191.
795 <https://doi.org/10.3934/microbiol.2018.1.173>

796 Gosset G (2005) Improvement of *Escherichia coli* production strains by modification of
797 the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4:1–
798 11. <https://doi.org/10.1186/1475-2859-4-14>

799 Goutam K, Gupta AK, Gopal B (2017) The fused SnoAL 2 domain in the *Mycobacterium*
800 *tuberculosis* sigma factor σ_J modulates promoter recognition. Nucleic Acids Res
801 45:9760–9772. <https://doi.org/10.1093/nar/gkx609>

802 Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H (2017) Polysaccharide
803 Utilization Loci: Fueling Microbial Communities. J Bacteriol 199:1–15

804 Gruninger RJ, Nguyen TT, Reid ID, Yanke JL, Wang P, Abbott DW, Tsang A, Mcallister
805 T (2018) Application of Transcriptomics to Compare the Carbohydrate Active
806 Enzymes That Are Expressed by Diverse Genera of Anaerobic Fungi to Degrade
807 Plant Cell Wall Carbohydrates. Front Microbiol 9:1–15.
808 <https://doi.org/10.3389/fmicb.2018.01581>

809 Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, Kaul RK,
810 Johansen HK, Hoiby N, Moskowitz SM (2013) Polymyxin Resistance of
811 *Pseudomonas aeruginosa* *phoQ* Mutants Is Dependent on Additional Two-
812 Component Regulatory Systems. *Antimicrob Agents Chemother* 57:2204–2215.
813 <https://doi.org/10.1128/AAC.02353-12>

814 Hebdon SD, Gerritsen AT, Chen Y, Marcano JG, Chou KJ (2021) Genome-Wide
815 Transcription Factor DNA Binding Sites and Gene Regulatory Networks in
816 *Clostridium thermocellum*. *Front Microbiol* 12:1–21.
817 <https://doi.org/10.3389/fmicb.2021.695517>

818 Helmann JD (2002) The Extracytoplasmic Function (ECF) Sigma Factors. *Adv Microb
819 Physiol* 46:47–110

820 Henkin TM (1996) The role of the CcpA transcriptional regulator in carbon metabolism
821 in *Bacillus subtilis*. *FEMS Microbiol Lett* 135:9–15

822 Henrissat B, Terrapon N, Coutinho PM, Lombard V, Drula E, Garron M-L, Hornung B
823 (2022) Carbohydrate-Active enZYmes Database. <http://www.cazy.org/>

824 Hoch G (2007) Cell wall hemicelluloses as mobile carbon stores in non-reproductive
825 plant tissues. *Funct Ecol* 21:823–834. <https://doi.org/10.1111/j.1365-2435.2007.01305.x>

827 Holland C, Ryden P, Edwards CH, Grundy MML (2020) Plant Cell Walls : Impact on
828 Nutrient Bioaccessibility. *MDPI Foods* 9:1–16

829 Horlamus F, Wittgens A, Noll P, Michler J, Muller I, Weggenmann F, Oellig C, Rosenau
830 F, Henkel M, Hausmann R (2018) One - step bioconversion of hemicellulose
831 polymers to rhamnolipids with *Cellvibrio japonicus*: A proof-of-concept for a

832 potential host strain in future bioeconomy. *Glob Chang Biol Bioenergy* 11:260–268.

833 <https://doi.org/10.1111/gcbb.12542>

834 Howell A, Dubrac S, Krogh K, Noone D, Fert J, Msadek T, Devine K (2003) Genes

835 controlled by the essential YycG / YycF two- component system of *Bacillus subtilis*

836 revealed through a novel hybrid regulator approach. *Mol Microbiol* 49:1639–1655.

837 <https://doi.org/10.1046/j.1365-2958.2003.03661.x>

838 Huang X, Pinto D, Fritz G, Mascher T (2015) Environmental Sensing in Actinobacteria:

839 a Comprehensive Survey on the Signaling Capacity of This Phylum. *J Bacteriol*

840 197:2517–2535. <https://doi.org/10.1128/JB.00176-15>

841 Ichikawa S, Ito D, Asaoka S, Abe R, Katsuo N, Ito T, Ito D, Karita S (2022) The

842 expression of alternative sigma-I7 factor induces the transcription of cellulosomal

843 genes in the cellulolytic bacterium *Clostridium thermocellum*. *Enzyme Microb*

844 *Technol* 156:110002. <https://doi.org/10.1016/j.enzmicro.2022.110002>

845 Jamander J, Hallstrom BM, Larsson G (2014) Simultaneous Uptake of Lignocellulose-

846 Based Monosaccharides by *Escherichia coli*. *Biotechnol Bioeng* 11:1108–1115.

847 <https://doi.org/10.1002/bit.25182>

848 Jayachandran D, Smith P, Irfan M, Sun J, Yarborough JM, Bomble YJ, Lam E,

849 Chundawat SPS (2023) Engineering and characterization of carbohydrate-binding

850 modules for imaging cellulose fibrils biosynthesis in plant protoplasts. *Biotechnol*

851 *Bioeng* 120:2253–2268. <https://doi.org/10.1002/bit.28484>

852 Kampik C, Denis Y, Pages S, Perret S, Tardif C, Fierobe H-P, de Philip P (2020) A

853 novel two-component system, XygS/XygR, positively regulates xyloglucan

854 degradation, import, and catabolism in *Ruminiclostridium cellulolyticum*. *Appl*

855 Environ Microbiol 86:e01357-20

856 Kim H, Waters A, Turner ME, Rice KC, Ahn S (2019a) Regulation of cid and lrg
857 expression by CcpA in *Streptococcus mutans*. Microbiology 165:113–123.
858 <https://doi.org/10.1099/mic.0.000744>

859 Kim J, Tremaine M, Grass JA, Purdy HM, Landick R, Kiley PJ, Reed JL (2019b)
860 Systems metabolic engineering of *Escherichia coli* improves co-conversion of
861 lignocellulose-derived sugars. Biotechnol J 14.
862 <https://doi.org/10.1002/biot.201800441>

863 Kim S-K, Himmel ME, Bomble YJ, Westpheling J (2018) Expression of a cellobiose
864 phosphorylase from *Thermotoga maritima* in *Caldicellulosiruptor bescii* improves
865 the phosphorolytic pathway and results in a dramatic increase in cellulolytic activity.
866 Appl Environ Microbiol 84:e02348-17. <https://doi.org/10.1128/AEM.02348-17>

867 Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) Heterologous
868 expression of a β-d-glucosidase in *Caldicellulosiruptor bescii* has a surprisingly
869 modest effect on the activity of the exoproteome and growth on crystalline
870 cellulose. J Ind Microbiol Biotechnol 44:1643–1651. <https://doi.org/10.1007/s10295-017-1982-4>

872 Kim SM, Choi BY, Ryu YS, Jung SH, Park JM, Kim G-H, Lee SK (2015) Simultaneous
873 utilization of glucose and xylose via novel mechanisms in engineered *Escherichia*
874 *coli*. Metab Eng 30:141–148. <https://doi.org/10.1016/j.ymben.2015.05.002>

875 Kougias PG, Campanaro S, Treu L, Tsapekos P, Armani A, Angelidaki I (2018) Spatial
876 Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading
877 Uncultured Bacteria as Revealed by Genomic-Centric Metagenomics. Appl Environ

878 Microbiol 84:e01244-18

879 Kumar V, Fox BG, Takasuka TE (2023) Consolidated bioprocessing of plant biomass to
880 polyhydroxyalkanoate by co-culture of *Streptomyces* sp . SirexAA-E and *Priestia*
881 *megaterium*. Bioresour Technol 376:128934.
882 <https://doi.org/10.1016/j.biortech.2023.128934>

883 Kundig W, Ghosh S, Roseman S (1964) Phosphate bound to histidine in a protein as an
884 intermediate in a novel phospho-transferase system. Proc Natl Acad Sci U S A
885 52:1067–1074. <https://doi.org/10.1073/pnas.52.4.1067>

886 La Rosa SL, Leth ML, Michalak L, Hansen ME, Pudlo NA, Glowacki R, Pereira G,
887 Workman CT, Arntzen MØ, Pope PB, Martens EC, Hachem MA, Westereng B
888 (2019) The human gut Firmicute *Roseburia intestinalis* is a primary degrader of
889 dietary β -mannans. Nat Commun 10:1–14. <https://doi.org/10.1038/s41467-019-10812-y>

890

891 Laikova ON, Mironov AA, Gelfand MS (2001) Computational analysis of the
892 transcriptional regulation of pentose utilization systems in the gamma subdivision of
893 Proteobacteria. FEMS Microbiol Lett 205:315–322

894 Lansky S, Salama R, Shulami S, Lavid N, Sen S, Schapiro I, Shoham Y, Shoham G
895 (2020) Carbohydrate-Binding Capability and Functional Conformational Changes of
896 AbnE, an Arabino-oligosaccharide Binding Protein. J Mol Biol 432:2099–2120.
897 <https://doi.org/10.1016/j.jmb.2020.01.041>

898 Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S,
899 Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm
900 SN, Davies GJ, Martens EC, Brumer H (2014) A discrete genetic locus confers

901 xyloglucan metabolism in select human gut Bacteroidetes. *Nature* 506:498–502.

902 <https://doi.org/10.1038/nature12907>

903 Lee LL, Crosby JR, Rubinstein GM, Laemthong T, Bing RG, Straub CT, Adams MWW,

904 Kelly RM (2020) The biology and biotechnology of the genus *Caldicellulosiruptor*:

905 recent developments in ‘Caldi World.’ *Extremophiles* 24:1–15.

906 <https://doi.org/10.1007/s00792-019-01116-5>

907 Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR,

908 Aachmann FL, Westereng B, Hachem MA (2018) Differential bacterial capture and

909 transport preferences facilitate co-growth on dietary xylan in the human gut. *Nat*

910 *Microbiol* 3:570–580. <https://doi.org/10.1038/s41564-018-0132-8>

911 Liew KJ, Bruce NC, Sani RK, Chong CS, Yaakop AS, Shamsir MS, Goh KM (2020)

912 Global transcriptomic responses of *Roseothermus sacchariphilus* strain RA in media

913 supplemented with beechwood xylan. *Microorganisms* 8:1–22.

914 <https://doi.org/10.3390/microorganisms8070976>

915 Lillington SP, Leggieri PA, Heom KA, Malley MAO (2020) ScienceDirect Nature’s

916 recyclers: anaerobic microbial communities drive crude biomass deconstruction.

917 *Curr Opin Biotechnol* 62:38–47. <https://doi.org/10.1016/j.copbio.2019.08.015>

918 Lim HG, Rychel K, Sastry A V, Bentley GJ, Mueller J, Schindel HS, Larsen PE, Laible

919 PD, Guss AM, Niu W, Johnson CW, Beckham GT, Feist AM, Palsson BO (2022)

920 Machine-learning from *Pseudomonas putida* KT2440 transcriptomes reveals its

921 transcriptional regulatory network. *Metab Eng* 72:297–310.

922 <https://doi.org/10.1016/j.ymben.2022.04.004>

923 Ling C, Peabody GL, Salvachúa D, Kim Y, Kneucker CM, Calvey CH, Monninger MA,

924 Munoz NM, Poirier BC, Ramirez KJ, John PCS, Woodworth SP, Magnuson JK,
925 Burnum-johnson KE, Guss AM, Johnson CW, Beckham GT (2022) Muconic acid
926 production from glucose and xylose in *Pseudomonas putida* via evolution and
927 metabolic engineering. *Nat Commun* 13:1–14. <https://doi.org/10.1038/s41467-022-32296-y>

929 Liu C, Sun D, Zhu J, Liu W (2019) Two-Component Signal Transduction Systems : A
930 Major Strategy for Connecting Input Stimuli to Biofilm Formation. *Front Microbiol* 9.
931 <https://doi.org/10.3389/fmicb.2018.03279>

932 Liu L, Huang W-C, Liu Y, Li M (2021) Diversity of cellulolytic microorganisms and
933 microbial cellulases. *Int Biodeterior Biodegradation* 163:105277.
934 <https://doi.org/10.1016/j.ibiod.2021.105277>

935 Liu P (1952) Utilization of carbohydrates by *Pseudomonas aeruginosa*. *J Bacteriol*
936 64:773–781

937 Liu Y, Rainey PB, Zhang X-X (2015) Molecular mechanisms of xylose utilization by
938 *Pseudomonas fluorescens*: overlapping genetic responses to xylose, xylulose,
939 ribose and mannitol. *Mol Microbiol* 98:553–570. <https://doi.org/10.1111/mmi.13142>

940 Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-
941 active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 42:490–495.
942 <https://doi.org/10.1093/nar/gkt1178>

943 Lopez-Mondejar R, Tlaskal V, Vetrovsky T, Stursova M, Toscan R, Nunes da Rocha U,
944 Baldrian P (2020) Metagenomics and stable isotope probing reveal the
945 complementary contribution of fungal and bacterial communities in the recycling of
946 dead biomass in forest soil. *Soil Biol Biochem* 148:1–11.

947 <https://doi.org/10.1016/j.soilbio.2020.107875>

948 Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A,

949 Terrapon N, Stott K, Lowe EC, Mclean R, Shearer K, Schückel J, Venditto I, Ralet

950 M-C, Henrissat B, Martens EC, Mosimann SC, Abbott DW, Gilbert HJ (2018)

951 Dietary pectic glycans are degraded by coordinated enzyme pathways in human

952 colonic *Bacteroides*. *Nat Microbiol* 3:210–219. <https://doi.org/10.1038/s41564-017-0079-1>

953

954 Mackie RI, Cann I (2018) Let them eat fruit. *Nat Microbiol* 3:127–129.

955 <https://doi.org/10.1038/s41564-018-0108-8>

956 Magasanik B (1961) Catabolite Repression. *Cold Spring Harb Symp Quant Biol* 26:249–

957 256. <https://doi.org/10.1101/SQB.1961.026.01.031>

958 Marcano-Velazquez JG, Lo J, Nag A, Maness PC, Chou KJ (2019) Developing

959 Riboswitch-Mediated Gene Regulatory Controls in Thermophilic Bacteria. *ACS*

960 *Synth Biol* 8:633–640. <https://doi.org/10.1021/acssynbio.8b00487>

961 Marcos-Torres FJ, Moraleda-Muñoz A, Contreras-Moreno FJ, Muñoz-Dorado J, Pérez J

962 (2022) Mechanisms of Action of Non-Canonical ECF Sigma Factors. *Int J Mol Sci*

963 23:3601. <https://doi.org/10.3390/ijms23073601>

964 Marcos-torres FJ, Perez J, Gomez-Santos N, Moraleda-Munoz A, Munoz-Dorado J

965 (2016) In depth analysis of the mechanism of action of metal-dependent sigma

966 factors: characterization of CorE2 from *Myxococcus xanthus*. *Nucleic Acids Res*

967 44:5571–5584. <https://doi.org/10.1093/nar/gkw150>

968 Martens EC, Chiang HC, Gordon JI (2008) Mucosal Glycan Foraging Enhances Fitness

969 and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. *Cell Host*

970 Microbe 4:447–457. <https://doi.org/10.1016/j.chom.2008.09.007>

971 Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, Nathan P, Abbott DW, Henrissat B,

972 Gilbert HJ, Bolam DN, Gordon JI (2011) Recognition and Degradation of Plant Cell

973 Wall Polysaccharides by Two Human Gut Symbionts. PLoS Biol 9:e1001221.

974 <https://doi.org/10.1371/journal.pbio.1001221>

975 Martens EC, Roth R, Heuser JE, Gordon JI (2009) Coordinate Regulation of Glycan

976 Degradation and Polysaccharide Capsule Biosynthesis by a Prominent Human Gut

977 Symbiont. J Biol Chem 284:18445–18457. <https://doi.org/10.1074/jbc.M109.008094>

978 Mearls EB, Olson DG, Herring CD, Lynd LR (2015) Development of a regulatable

979 plasmid-based gene expression system for *Clostridium thermocellum*. Appl

980 Microbiol Biotechnol 99:7589–7599. <https://doi.org/10.1007/s00253-015-6610-5>

981 Mhatre A, Kalscheur B, McKeown H, Bhakta K, Sarnaik AP, Flores A, Nielsen DR,

982 Wang X, Soundappan T, Varman AM (2022) Consolidated bioprocessing of

983 hemicellulose to fuels and chemicals through an engineered *Bacillus subtilis*-

984 *Escherichia coli* consortium. Renew Energy 193:288–298.

985 <https://doi.org/10.1016/j.renene.2022.04.124>

986 Michalak L, La Rosa SL, Leivers S, Lindstad LJ, Røhr ÅK, Aachmann FL, Westereng B

987 (2020) A pair of esterases from a commensal gut bacterium remove acetylations

988 from all positions on complex β -mannans. Proc Natl Acad Sci U S A 117:7122–

989 7130. <https://doi.org/10.1073/pnas.1915376117>

990 Munir RI, Spicer V, Krokkin O V., Shamshurin D, Zhang X, Taillefer M, Blunt W, Cicek

991 N, Sparling R, Levin DB (2016) Transcriptomic and proteomic analyses of core

992 metabolism in *Clostridium termididis* CT1112 during growth on α -cellulose, xylan,

993 cellobiose and xylose. *BMC Microbiol* 16:1–21. <https://doi.org/10.1186/s12866-016-0711-x>

995 Munoz-Gutierrez I, Ortiz de Ora L, Grinberg IR, Garty Y, Bayer EA, Shoham Y, Lamed
996 R, Borovok I (2016) Decoding Biomass-Sensing Regulons of *Clostridium*
997 *thermocellum* Alternative Sigma-I Factors in a Heterologous *Bacillus subtilis* Host
998 System. *PLoS One* 11:e0146316. <https://doi.org/10.1371/journal.pone.0146316>

999 Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL,
1000 Shoham Y (2010) *Clostridium thermocellum* cellulosomal genes are regulated by
1001 extracytoplasmic polysaccharides via alternative sigma factors. *Proc Natl Acad Sci
1002 U S A* 107:18646–18651. <https://doi.org/10.1073/pnas.1012175107>

1003 Nelson CE, Rogowski A, Morland C, Wilhite JA, Gilbert HJ, Gardner JG (2017)
1004 Systems analysis in *Cellvibrio japonicus* resolves predicted redundancy of b -
1005 glucosidases and determines essential physiological functions. *Mol Microbiol*
1006 104:294–305. <https://doi.org/10.1111/mmi.13625>

1007 Novak JK, Gardner JG (2023) Galactomannan utilization by *Cellvibrio japonicus* relies
1008 on a single essential α -galactosidase encoded by the *aga27A* gene. *Mol Microbiol*
1009 119:312–325. <https://doi.org/10.1111/mmi.15024>

1010 Ohashi K, Hataya S, Nakata A, Matsumoto K, Kato N, Sato W, Carlos-Shanley C,
1011 Beebe ET, Currie CR, Fox BG, Takasuka TE (2021) Mannose- and Mannobiose-
1012 Specific Responses of the Insect-Associated Cellulolytic Bacterium *Streptomyces*
1013 sp. Strain SirexAA-E. *Appl Environ Microbiol* 87:e02719-20

1014 Ortiz de Ora L, Lamed R, Liu YJ, Xu J, Cui Q, Feng Y, Shoham Y, Bayer EA, Muñoz-
1015 Gutiérrez I (2018) Regulation of biomass degradation by alternative σ factors in

1016 cellulolytic clostridia. *Sci Rep* 8:1–11. <https://doi.org/10.1038/s41598-018-29245-5>

1017 Palevich N, Kelly WJ, Ganesh S, Rakonjac J, Attwood GT (2019) *Butyrivibrio hungatei*
1018 MB2003 competes effectively for soluble sugars released by *Butyrivibrio*
1019 *proteoclasticus* B316 during growth on xylan or pectin. *Appl Environ Microbiol*
1020 85:e02056-18

1021 Pascoal C, Fernandes I, Seena S, Danger M, Ferreira V, Cássio F (2021) Linking
1022 Microbial Decomposer Diversity to Plant Litter Decomposition and Associated
1023 Processes in Streams. In: Swan CM, Boyero L, Canhoto C (eds) *The Ecology of*
1024 *Plant Litter Decomposition in Stream Ecosystems*. Springer International
1025 Publishing, Cham, pp 163–192

1026 Peabody V GL, Elmore JR, Martinez-Baird J, Guss AM (2019) Engineered
1027 *Pseudomonas putida* KT2440 co-utilizes galactose and glucose. *Biotechnol*
1028 *Biofuels* 12:1–7. <https://doi.org/10.1186/s13068-019-1627-0>

1029 Pereira G V, Abdel-Hamid AM, Dutta S, D'Alessandro-Gabazza CN, Wefers D, Farris
1030 JA, Bajaj S, Wawrzak Z, Atomi H, Mackie RI, Gabazza EC, Shukla D, Koropatkin
1031 NM, Cann I (2021) Degradation of complex arabinoxylans by human colonic
1032 Bacteroidetes. *Nat Commun* 12:1–21. <https://doi.org/10.1038/s41467-020-20737-5>

1033 Petit E, Coppi M V, Hayes JC, Tolonen AC, Warnick T, Latouf WG, Amisano D, Biddle
1034 A, Mukherjee S, Ivanova N, Lykidis A, Land M, Hauser L, Kyrpides N, Henrissat B,
1035 Lau J, Schnell DJ, Church GM, Leschine SB, Blanchard JL (2015) Genome and
1036 Transcriptome of *Clostridium phytofermentans*, Catalyst for the Direct Conversion
1037 of Plant Feedstocks to Fuels. *PLoS One* 10:1–18.

1038 <https://doi.org/10.1371/journal.pone.0118285>

1039 Pinto D, Liu Q, Mascher T (2019) ECF σ factors with regulatory extensions: the one-
1040 component systems of the σ universe. *Mol Microbiol* 112:399–409.
1041 <https://doi.org/10.1111/mmi.14323>

1042 Pollet RM, Martin LM, Koropatkin NM (2021) TonB-dependent transporters in the
1043 Bacteroidetes: Unique domain structures and potential functions. *Mol Microbiol*
1044 115:490–501. <https://doi.org/10.1111/mmi.14683>

1045 Poudel S, Tsunemoto H, Seif Y, Sastry A V., Szubin R, Xu S, Machado H, Olson CA,
1046 Anand A, Pogliano J, Nizet V, Palsson BO (2020) Revealing 29 sets of
1047 independently modulated genes in *Staphylococcus aureus*, their regulators, and
1048 role in key physiological response. *Proc Natl Acad Sci U S A* 117:17228–17239.
1049 <https://doi.org/10.1073/pnas.2008413117>

1050 Pudio NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC (2015) Symbiotic
1051 Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
1052 *MBio* 6:e01282-15. <https://doi.org/10.1128/mBio.01282-15.Editor>

1053 Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman Y V, Elsen NL, Fox BG
1054 (2011) Global Gene Expression Patterns in *Clostridium thermocellum* as
1055 Determined by Microarray Analysis of Chemostat Cultures on Cellulose or
1056 Cellobiose. *Appl Environ Microbiol* 77:1243–1253.
1057 <https://doi.org/10.1128/AEM.02008-10>

1058 Rodionov DA, Mironov AA, Gelfand MS (2001) Transcriptional regulation of pentose
1059 utilisation systems in the *Bacillus* / *Clostridium* group of bacteria. *FEMS Microbiol*
1060 Lett 205:305–314

1061 Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM,

1062 Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM,
1063 Klingeman DM, Poole II FL, Zhang Y, Kelly RM, Adams MWW (2021)
1064 Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate
1065 Utilization Genes in the Extreme Thermophile *Caldicellulosiruptor bescii*. mSystems
1066 6

1067 Russell JB (1987) Effect of Extracellular pH on Growth and Proton Motive Force of
1068 *Bacteroides succinogenes*, a Cellulolytic Ruminal Bacterium. Appl Environ
1069 Microbiol 53:2379–2383

1070 Rychel K, Sastry A V, Palsson BO (2020) Machine learning uncovers independently
1071 regulated modules in the *Bacillus subtilis* transcriptome. Nat Commun 11:1–10.
1072 <https://doi.org/10.1038/s41467-020-20153-9>

1073 Rydzak T, McQueen PD, Krokhin O V., Spicer V, Ezzati P, Dwivedi RC, Shamshurin D,
1074 Levin DB, Wilkins JA, Sparling R (2012) Proteomic analysis of *Clostridium*
1075 *thermocellum* core metabolism: Relative protein expression profiles and growth
1076 phase-dependent changes in protein expression. BMC Microbiol 12:1–18.
1077 <https://doi.org/10.1186/1471-2180-12-214>

1078 Sadaie Y, Nakadate H, Fukui R, Yee LM, Asai K (2008) Glucomannan utilization operon
1079 of *Bacillus subtilis*. FEMS Microbiol Lett 279:103–109.
1080 <https://doi.org/10.1111/j.1574-6968.2007.01018.x>

1081 Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I,
1082 Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y (2015) Three
1083 cellulosomal xylanase genes in *Clostridium thermocellum* are regulated by both
1084 vegetative SigA and alternative SigI6 factors. FEBS Lett 589:3133–3140.

1085 <https://doi.org/10.1016/j.febslet.2015.08.026>

1086 Sastry A V, Gao Y, Szubin R, Hefner Y, Xu S, Kim D, Choudhary KS, Yang L, King ZA,

1087 Palsson BO (2019) The *Escherichia coli* transcriptome mostly consists of

1088 independently regulated modules. *Nat Commun* 10:1–14.

1089 <https://doi.org/10.1038/s41467-019-13483-w>

1090 Sawant SS, Salunke BK, Taylor LE, Kim BS (2017) Enhanced Agarose and Xylan

1091 Degradation for Production of Polyhydroxyalkanoates by Co-Culture of Marine

1092 Bacterium, *Saccharophagus degradans* and Its Contaminant, *Bacillus cereus*.

1093 MDPI Appl Sci 7:225. <https://doi.org/10.3390/app7030225>

1094 Schwalm III ND, Townsed II GE, Groisman EA (2017) Prioritization of polysaccharide

1095 utilization and control of regulator activation in *Bacteroides thetaiotaomicron*. Mol

1096 Microbiol 104:32–45. <https://doi.org/10.1111/mmi.13609>

1097 Shulami S, Shenker O, Langut Y, Lavid N, Gat O, Zaide G, Zehavi A, Sonenshein AL,

1098 Shoham Y (2014) Multiple Regulatory Mechanisms Control the Expression of the

1099 *Geobacillus stearothermophilus* Gene for Extracellular Xylanase. *J Biol Chem*

1100 289:25957–25975. <https://doi.org/10.1074/jbc.M114.592873>

1101 Singhania RR, Patel AK, Singh A, Haldar D, Soam S, Chen C-W, Tsai M-L, Dong C-D

1102 (2022) Consolidated bioprocessing of lignocellulosic biomass: Technological

1103 advances and challenges. *Bioresour Technol* 354:1–9.

1104 <https://doi.org/10.1016/j.biortech.2022.127153>

1105 Song Y, Xue Y, Ma Y (2013) Global Microarray Analysis of Carbohydrate Use in

1106 Alkaliphilic Hemicellulolytic Bacterium *Bacillus* sp. N16-5. *PLoS One* 8:e54090.

1107 <https://doi.org/10.1371/journal.pone.0054090>

1108 Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI
1109 (2006) A hybrid two-component system protein of a prominent human gut symbiont
1110 couples glycan sensing *in vivo* to carbohydrate metabolism. Proc Natl Acad Sci U S
1111 A. <https://doi.org/10.1073/pnas.0603249103>

1112 Stölke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol
1113 2:195–201. [https://doi.org/10.1016/S1369-5274\(99\)80034-4](https://doi.org/10.1016/S1369-5274(99)80034-4)

1114 Sun R, Converse PJ, Ko C, Tyagi S, Morrison NE, Bishai WR (2004) *Mycobacterium*
1115 *tuberculosis* ECF sigma factor *sigC* is required for lethality in mice and for the
1116 conditional expression of a defined gene set. Mol Microbiol 52:25–38.
1117 <https://doi.org/10.1111/j.1365-2958.2003.03958.x>

1118 Takagi T, Morisaka H, Aburaya S, Tatsukami Y, Kuroda K, Ueda M (2016) Putative
1119 Alginate Assimilation Process of the Marine Bacterium *Saccharophagus degradans*
1120 2-40 Based on Quantitative Proteomic Analysis. Mar Biotechnol 18:15–23.
1121 <https://doi.org/10.1007/s10126-015-9667-3>

1122 Taylor II LE, Knott BC, Baker JO, Alahuhta PM, Hobday SE, Linger JG, Lunin V V,
1123 Amore A, Subramanian V, Podkaminer K, Xu Q, VanderWall TA, Schuster LA,
1124 Chaudhari YB, Adney WS, Crowley MF, Himmel ME, Decker SR, Beckham GT
1125 (2018) Engineering enhanced cellobiohydrolase activity. Nat Commun 9:1–10.
1126 <https://doi.org/10.1038/s41467-018-03501-8>

1127 Thapa SP, Li EWD, Lyu Q, Weisberg AJ, Stevens DM, Clarke CR, Coaker G, Chang JH
1128 (2019) The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive,
1129 Plant-Associated Bacteria. Annu Rev Phytopathol 57:341–65

1130 Vanfossen AL, Verhaart MRA, Kengen SMW, Kelly RM (2009) Carbohydrate Utilization

1131 Patterns for the Extremely Thermophilic Bacterium *Caldicellulosiruptor*
1132 *saccharolyticus* Reveal Broad Growth Substrate Preferences. *Appl Environ*
1133 *Microbiol* 75:7718–7724. <https://doi.org/10.1128/AEM.01959-09>

1134 Von Freiesleben P, Spodsberg N, Stenbæk A, Stålbrand H, Krogh KBRM, Meyer AS
1135 (2018) Boosting of enzymatic softwood saccharification by fungal GH5 and GH26
1136 endomannanasases. *Biotechnol Biofuels* 11:1–15. <https://doi.org/10.1186/s13068-018-1184-y>

1138 Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, Olson DG, Eckert
1139 CA (2020) Development of both type I–B and type II CRISPR/Cas genome editing
1140 systems in the cellulolytic bacterium *Clostridium thermocellum*. *Metab Eng*
1141 *Commun* 10:e00116. <https://doi.org/10.1016/j.mec.2019.e00116>

1142 Wang X, Zhang W, Zhou H, Chen G, Liu W (2019a) An Extracytoplasmic Function
1143 Sigma Factor Controls Cellulose Membrane Protein in *Cytophaga hutchinsonii*.
1144 *Appl Environ Microbiol* 85:e02606-18

1145 Wang Y, Horlamus F, Henkel M, Kovacic F, Schläfle S, Hausmann R, Wittgens A,
1146 Rosenau F (2019b) Growth of engineered *Pseudomonas putida* KT2440 on
1147 glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars
1148 as sustainable carbon sources. *Glob Chang Biol Bioenergy* 11:249–259.
1149 <https://doi.org/10.1111/gcbb.12590>

1150 Williams-Rhaesa AM, Awuku NK, Lipscomb GL, Poole FL, Rubinstein GM, Conway JM,
1151 Kelly RM, Adams MW (2018) Native xylose-inducible promoter expands the genetic
1152 tools for the biomass-degrading, extremely thermophilic bacterium
1153 *Caldicellulosiruptor bescii*. *Extremophiles* 22:629–638.

1154 <https://doi.org/10.1007/s00792-018-1023-x>

1155 Wilson CM, Klingeman DM, Schlachter C, Syed MH, Wu C, Guss AM, Brown SD (2017)

1156 LacI Transcriptional Regulatory Networks in *Clostridium thermocellum* DSM1313.

1157 Appl Environ Microbiol 83:e02751-16

1158 Wu X, Bei S, Zhou X, Luo Y, He Z, Song C, Yuan H, Pivato B (2023) Metagenomic

1159 insights into genetic factors driving bacterial niche differentiation between bulk and

1160 rhizosphere soils. Sci Total Environ 891:164221

1161 Xiong W, Reyes LH, Michener WE, Maness P-C, Chou KJ (2018) Engineering

1162 cellulolytic bacterium *Clostridium thermocellum* to co-ferment cellulose- and

1163 hemicellulose-derived sugars simultaneously. Biotechnol Bioeng 115:1755–1763.

1164 <https://doi.org/10.1002/bit.26590>

1165 Zhang B, Gao Y, Zhang L, Zhou Y (2020) The plant cell wall: Biosynthesis, construction,

1166 and functions. J Integr Plant Biol 63:251–272. <https://doi.org/10.1111/jipb.13055>

1167 Ziles Domingues S, Timmers LFSM, Eichelberger Granada C (2022) Cellulase

1168 production by bacteria is a strain-specific characteristic with a high biotechnological

1169 potential. A review of cellulosome of highly studied strains. Cellulose 29:8065–

1170 8083. <https://doi.org/10.1007/s10570-022-04790-5>

1171

1172

1173 **Figure 1. Common regulatory systems for Carbohydrate-Active Enzyme**
1174 **(CAZyme) encoding genes in Gram-positive and Gram-negative bacteria. (A)**

1175 Hybrid two component system in *Bacteroides thetaiotaomicron*. Upon sensing of
1176 arabinoxylan from the transmembrane domain, the intracellular histidine kinase (HK)
1177 phosphorylates the associated response regulator (RR) which recruits RNA polymerase
1178 for gene transcription. (B) ECF- σ /anti- σ factor system in *Bacteroides xylanisolvans*.
1179 Binding of arabinoxylan to the carbohydrate domain of the transmembrane ECF protein
1180 releases the intracellular σ factor from the membrane-attached anti- σ factor which aids
1181 RNA polymerase in gene transcription. (C) Carbon catabolite repression in Gram-
1182 negative *Escherichia coli*. In the absence of glucose, phosphorylated EII_A accumulates
1183 and activates adenylate cyclase (AC) via phosphorylation, which generates high cAMP
1184 levels. The cAMP subsequently binds to the cAMP receptor protein (CRP) and initiates
1185 transcription of hemicellulase-encoding genes. (D) Carbon catabolite repression in
1186 Gram-positive *Bacillus subtilis*. In the absence of glucose, fructose 1,6-biphosphate is
1187 not generated because glycolysis does not occur. Without fructose 1,6-biphosphate,
1188 histidine protein (HPr) does not get phosphorylated and therefore cannot dimerize with
1189 the carbon catabolite control protein (CcpA). Without this dimerization, the coupled
1190 protein cannot inhibit transcription. For all panels, phosphate is shown as a gold circle
1191 with a 'P', arabinoxylan is shown with orange stars for xylose and the green stars for
1192 arabinose, fructose is shown as a green pentagon. *Model generated with*
1193 *BioRender.com*.

1194

1195 **Figure 2. Differences in up-regulation of CAZyme-encoding genes from selected**
1196 **Gram-positive and Gram-negative bacteria when grown using hemicelluloses. (A)**
1197 CAZyme-encoding gene expression of Gram-positive *Roseburia intestinalis* and Gram-
1198 negative *Cellvibrio japonicus* on glucomannan. (B) CAZyme-encoding gene expression
1199 response of Gram-positive *Caldicellulosiruptor bescii* and Gram-negative *Roseithermus*
1200 *sacchariphilus* on xylan. (C) CAZyme-encoding gene expression response of Gram-
1201 positive *Caldicellulosiruptor saccharolyticus* and Gram-negative *Bacteroides*
1202 *xylanisolvans* on pectin.

1203

1204 **Table 1. Current limitations of select bacterial bioprocessors and suggested**
 1205 **research approaches.**

	Bacterium	Current limitations	Suggested approach
Gram-positive	<i>Clostridium thermocellum</i>	<ul style="list-style-type: none"> • Requires synthetic biology to utilize non-cellulose derived sugars • Engineered fermentation pathways for plant sugars repressed by plant oligosaccharides 	Improve genetic tools to control regulation of heterologously expressed genes
	<i>Caldicellulosiruptor bescii</i>	<ul style="list-style-type: none"> • Low expression and degradative efficiency of heterologously expressed CAZyme-encoding genes 	Improve transcriptional control over heterologously expressed genes
Gram-negative	<i>Cellvibrio japonicus</i>	<ul style="list-style-type: none"> • No high-yielding, stable plasmid system for gene expression • Does not produce any current high-value metabolite in abundance 	Develop a stably replicating plasmid for gene expression
	<i>Saccharophagus degradans</i>	<ul style="list-style-type: none"> • Poor genetic system • Cannot natively ferment sugars to fuels and/or renewable chemicals 	Develop genetic tools to engineer a commodity product-producing strain

1206

1207