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role in understanding the fundamental interactions of the Higgs boson. In this work we

consider di-Higgs events decaying into four b-quarks and propose to improve the experimental

sensitivity by utilizing a novel machine learning algorithm known as Symmetry Preserving
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cut-based and the Dense Neural Network-based analyses. At the Large Hadron Collider,

with a 14-TeV center-of-mass energy and an integrated luminosity of 300 fb−1, the Spa-Net

allows us to establish 95% C.L. upper limits in resonant production cross-sections that are

10% to 45% stronger than baseline methods. For non-resonant di-Higgs production, Spa-Net

enables us to constrain the self-coupling that is 9% more stringent than the baseline method.
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1 Introduction

Since the discovery of the 125-GeV Higgs boson, h, an immediate and pressing task has been

to determine the Higgs potential and self-interactions, in addition to measuring its couplings

to other SM particles, thereby verifying whether electroweak symmetry breaking (EWSB)

is achieved in the same way as the Standard Model (SM) prescribes [1, 2]. An important

parameter in the Higgs potential is the trilinear coupling ¼, which enters the potential as:

V (h) =
1

2
m2

hh2 + ¼vh3 + ¼4hh4 . (1.1)

Here mh = 125 GeV and the Higgs vacuum expectation value is v = 246 GeV. In the SM,

¼ = ¼SM = m2
h/(2v2) and ¼4h = ¼SM

4h = m2
h/(8v2). Phenomenologically the Higgs trilinear

coupling contributes to the pair production of Higgs bosons, which has not been observed

experimentally. In the SM, the leading-order Feynman diagrams contributing to the di-Higgs

production at a hadron collider, such as the Large Hadron Collider (LHC) at CERN, are

shown in figure 1, where ¼ features prominently.

An experimental verification of the Higgs potential has important implications, as it

is well known that the potential in the SM cannot induce a strong first-order electroweak

phase transition in the early Universe, which is a crucial ingredient to explain the observed

matter-antimatter asymmetry [3–5]. New physics should enter at an energy scale slightly

higher than the weak scale to modify the Higgs potential at finite temperatures, to facilitate a
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Figure 1. The leading-order Feynman diagrams of the di-Higgs production in the SM.

sufficiently strong first-order phase transition. In this case, the ¼ coupling would be modified

from its SM value, which could have a large impact on the di-Higgs production rate at the

LHC [6]. In addition, kinematic distributions of the Higgs pair could offer a unique window

into new particles and new interactions above the weak scale [7, 8].

With a mass of 125 GeV, the Higgs boson predominantly decays into a bb̄ pair. Therefore

hh → 4b channel offers the largest rate among all possible decays of the Higgs pair which,

nevertheless, suffers from the much larger background from multijets and multi-b’s production

of QCD. Furthermore, because of our inability to distinguish a b-jet from a b̄-jet, it is

a very challenging task experimentally to form the correct pairing among the 4 b’s to

reconstruct the Higgs mass and the associated kinematic distributions. In this work, we

would like to propose the use of machine learning algorithms from deep neural networks to

help improve the sensitivity of experimental searches in the 4b channel. More specifically,

we study the possibility of using a new neural network architecture called the Symmetry

Preserving Attention Network (Spa-Net) [9–11] to simultaneously perform signal/background

separation and identify the correct pairings among the 4 b-jets in the final states. To utilize

the advantages of Spa-Net, our analysis is applied in the resolved regime; a different model

structure would be required for the boosted regime [12]. We will demonstrate that Spa-

Net offers improved sensitivity over existing experimental techniques employed in the 4b

channel [13–17], as well as over an analysis invoking the Dense Neural Network (Dense-NN)

machine learning algorithm [18].

We will consider two types of analyses in di-Higgs productions. One involves the on-shell,

resonant production of a hypothetical new scalar particle, which subsequently decays into the

Higgs pair. As an explicit example, we consider the two-Higgs doublet models (2HDMs) in

the alignment limit [19–21], where the properties of the 125 GeV Higgs boson are SM-like. In

this case, the Higgs pair is produced through the decay product of the heavy scalar [22, 23].

We do not modify the SM contribution to the di-Higgs production in this scenario. The

other analysis, on the other hand, involves “non-resonant” production in the sense that we

alter the SM trilinear coupling ¼, of which the production cross-section is a function, and

does not invoke direct production of new particles.

This paper is organized as follows. In section 2, we describe the procedures employed for

generating both signal and background samples utilized in the training of neural networks.
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Section 3 discusses three different jet pairing methods. The first two are cut-based methods

inspired by an ATLAS analysis, while the last is done with Spa-Net. In section 4, we provide

the training procedures of Dense-NN and Spa-Net classifiers and how to employ these neural

network classifiers on the event selection task. In section 5, we perform the resonant analysis

and discuss how Spa-Net can improve the sensitivity of the search. In section 6, we build

classifiers to discriminate non-resonant signal and background events and then demonstrate

how Spa-Net performs better in constraining the Higgs trilinear coupling in comparison

with more traditional methods. Finally, we summarize in section 7.

2 Event generation

We use MadGraph5_aMC@NLO 3.3.1 [24] to generate both signal and background events at

the centre-of-mass (CM) energy
√

s = 13 TeV with the NNPDF23_nlo_as_0119 PDF set [25].

The LO matrix elements are considered. For parton showering and hadronization, we employ

Pythia 8.306 [26] with NNPDF2.3 LO PDF set. The detector simulation is performed using

Delphes 3.5.0 [27]. The jets are reconstructed with FastJet 3.3.4 [28] using the anti-

kt [29] algorithm with radius R = 0.4. Only jets with a transverse momentum of pT ≥ 20 GeV

are considered.

2.1 Signal event generation

We consider two types of di-Higgs events: resonant production through an on-shell new scalar

boson and non-resonant production in the SM with, however, a rescaled Higgs self-coupling

¼ = »λ¼SM.

For the resonant signal, Higgs boson pairs hh are produced via the decay of heavy CP-even

scalar H in the 2HDM, which itself is produced through the gluon-fusion channel. We consider

mH ranging from 300 GeV to 1200 GeV. In this mass range, the b-jets can be reconstructed

into four distinct energetic jets. The 2HDMC [30] calculator with HiggsBounds-5.10.2 [31–

35] and HiggsSignal-2.6.2 [36–39] extensions is used to compute the parameters at these

benchmark points, which are submitted to MadGraph5_aMC@NLO through the parameter card.

The non-resonant signal is produced at one-loop at the leading order, via the Feynman

diagrams shown in figure 1. The process is simulated using the MadGraph5_aMC@NLO 3.3.1

with the loop sm model. When considering non-resonant productions, we leave »λ as a free

parameter varying over the domain of [−10, 15].

The decays H → hh, h → bb are implemented by MadSpin [40]. For resonant analysis,

the b-tagging efficiency in Delphes is modified based on the ATLAS MV2c10 b-tagger at the

70% working point [41, 42]. At this working point, the light-jet (charm-jet) rejection is about

385 (12), which is the reciprocal of the false positive rate. For non-resonant analysis, the

b-tagging efficiency is modified based on the ATLAS DL1r 77% working point [43]. At this

working point, the light-jet (charm-jet) rejection is about 130 (4.9).

2.2 Background event generation

The main background is QCD multijet production: pp → bbbb. The resonant and non-resonant

analysis background is simulated using different b-tagging settings as described in section 2.1.

The sub-leading background is top-quark pair production, which contributes to less than

10% of the dominant background and is not included in the analysis. It is important to note

– 3 –
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Training Validation Testing

Resonant 950k 50k 100k

Non-resonant 171k 9k 18k

Table 1. Sizes of various samples used for neural network study in resonant and non-resonant analyses.

Each category consists of an equal size of signal and background samples.

that Pythia considers the initial-state radiation (ISR) and final-state radiation (FSR) at the

parton level. Therefore, there might be more than 4 jets after the jet clustering.

In generating both the signal and background events, we implement a basic “four-tag cut”,

which requires at least four b-tagged R = 0.4 anti-kt jets with pT > 40 GeV and pseudorapidity

η within the range |η| < 2.5. The numbers of events that passed this cut are given in table 1.

3 Jet pairing

To reconstruct two Higgs boson candidates, we use three different jet assignment methods.

The first two, ∆R+min-Dhh and min-∆R, are cut-based and inspired by the ATLAS analysis

in refs. [13, 15]. The third one makes use of the Spa-Net neural network [9–11], a novel

architecture specifically designed for the jet assignment task.

3.1 Cut-based pairing

In the ∆R + min-Dhh pairing method, the four b-jets with the highest pT are paired to

construct two Higgs boson candidates. There are three possible pairings for the jets. Only

the pairing that satisfies the following ∆R requirements is accepted:

360 GeV

m4j

− 0.5 < ∆Rlead
jj <

653 GeV

m4j

+ 0.475

235 GeV

m4j

< ∆Rsubl
jj <

875 GeV

m4j

+ 0.35



















if m4j < 1250 GeV ,

0 < ∆Rlead
jj < 1

0 < ∆Rsubl
jj < 1







if m4j > 1250 GeV ,

(3.1)

where the ∆Rlead
jj is the angular distance between the jets in the pT-leading Higgs boson

candidate and ∆Rsubl
jj for the sub-leading candidate, and m4j is the total invariant mass

of the four jets. The angular distance is calculated using the formula ∆R =
√

∆η2 + ∆ϕ2,

where ∆η and ∆ϕ represent the pseudorapidity and azimuthal angle differences between

the two jets, respectively.

If no pairing satisfies the above ∆R requirements, the event is dropped. If more than one

pairing satisfies the ∆R requirements, we choose the one with the minimum Dhh, defined as

Dhh =

∣

∣

∣mh1
− 120

110
mh2

∣

∣

∣

√

1 +
(

120

110

)2
, (3.2)

where mh1
, mh2

are the masses of the leading Higgs candidate and sub-leading Higgs candidate,

respectively. The quantity Dhh is the distance from (mh1
, mh2

) to the line connecting
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Figure 2. The high-level model structure of Spa-Net. Each E is an embedding layer, Ti is the

transformer encoder, and hi is the jet assignment result which contains two jets ji for the Higgs decay.

The particle transformer is a stack of transformer encoders. The global input is only used in the

non-resonant analysis.

(0 GeV, 0 GeV) and (120 GeV, 110 GeV). The values of 120 GeV and 110 GeV account for

energy loss.

In the min-∆R pairing method, the four b-tagged jets with the highest pT are used to

form the two Higgs boson candidates. The min-∆R method selects the pairing configuration

in which the higher-pT jet pair has the smallest ∆R separation.

3.2 Spa-Net pairing

In this subsection, we provide an overview of the Spa-Net’s model structure and explain

how this architecture is particularly well-suited for the jet assignment/pairing task. We also

describe our approach to constructing the training samples for Spa-Net. Our goal is to

train Spa-Net to recognize which jets arise from the decay of a given Higgs boson, thereby

identifying the correct pairing of the Higgs boson candidates.

Figure 2 shows the high-level model structure of Spa-Net [9–11]. The embedding

blocks encode the input features to the embedding vectors living in the latent space. These

embedding vectors are fed into the central transformer, which is a stack of transformer

encoders. The central transformer then outputs the event embedding vector, which is used in

the jet assignment and the classification tasks. For the jet assignment, the event embedding

vector is encoded by the particle transformers and the tensor attentions. Finally, Spa-Net

constructs the jet assignment results from these outputs. The network architecture has a

feed-forward structure for the classification head.

The key concept underlying Spa-Net is that it can encode inputs into an abstract

latent space and utilize attention mechanisms to learn contextual information about jet

relationships, which is used in subsequent tasks, thereby avoiding the permutation approach

in the classical methods.

There are several inherent symmetries in the jet assignment task. For example, the

detector signatures of quarks and anti-quarks are nearly indistinguishable. Consequently,
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it is important to consider all possible combinations of jets originating from these partons.

Moreover, the reconstruction task is insensitive to the swapping of specific labels. For

instance, in the di-Higgs case, swapping the pairing results of two Higgs would lead to the

same event reconstruction. The design of Spa-Net’s model structure and loss function

takes these symmetries into account.

Due to the properties of the transformer, the event embedding vector in Spa-Net is

independent of the order of the input jets. Moreover, Spa-Net utilizes the technique of

symmetric tensor attention [10], which constructs a tensor with permutation symmetries

of labels (e.g., the bb̄ and hh pairs). Therefore, the output also contains label permutation

symmetries. For the pairing loss function, Spa-Net utilizes the combined symmetric loss

that incorporates permutation symmetries with the cross-entropy loss, as defined in equation

6 of ref. [10]. These properties enable Spa-Net to preserve the symmetry inherent to the

jet assignment problems.

In our context, it is essential to emphasize that Spa-Net is not restricted to using

only the b-tagged jets for the jet assignment task, but considers all jets in an event. This

allows the network to make a correct prediction even in a situation where some of the jets

are mistagged. Therefore, Spa-Net can utilize a larger dataset in the pairing task than

the traditional methods.

The input features for the Spa-Net are a list of jets, each represented by its 4-component

vector (pT, η, ϕ, m) as well as a boolean b-tag, where ϕ is the azimuthal angle and m is the

invariant mass. To be specific, we only keep the 10 highest pT jets in each event. For each

event, we define the correct jet assignments by matching the jets to the simulated truth

quarks within an angular distance of ∆R < 0.4. In case a simulated truth quark is matched

to more than one jet, such an event will be dropped. Furthermore, some simulated truth

quarks may not be matched to any jet, in which case the event will not be used in training

either. The percentage of samples satisfying these matching conditions to the samples passing

the four-tag cut varies from 77% to 89%. Note that these matching conditions are only

required for training Spa-Net. However, in the final analysis, Spa-Net is applied to all

events passing the four-tag cut.

4 Neural network classifiers

After jet pairing, the next step is to distinguish the signal from the background. In addition

to a cut-based approach, two types of neural network classifiers are employed in this study:

the Dense-NN, which is a conventional deep learning architecture used as the baseline neural

network approach, and Spa-Net, which could also be used as a classifier to separate signal

from background.

To perform a Dense-NN-based analysis, we construct a Dense-NN classifier to distinguish

between signal and background events. We implement our Dense-NN using the library of the

Tensorflow [44]. The network consists of simple dense layers and the internal node uses the

rectified linear unit (ReLU) as the activation function. The categorical cross-entropy is used

as the loss function, which is then minimized by the Adam algorithm. Hyperparameters of the

Dense-NN are selected by utilizing the Optuna [45] hyperparameter optimization package.

The learning rate, hidden dimension, and the number of layers are optimized by performing

– 6 –
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100 iterations of hyperparameter optimization, and the set of hyperparameters that produces

the best classification accuracy is selected for full training.

Upon training, the Dense-NN is used to determine whether an event is a signal or a

background. The Dense-NN classifier assigns a signal score psignal to every event, which

represents the confidence that this event is a signal. An event is classified as a signal if its

psignal is larger than pth, a threshold score determined through the maximization of sensitivity

S/
√

B, where S and B represent the number of signal and background events, respectively.

For the Spa-Net classifier, it is important to note that the Spa-Net classification head

does not take the results from the jet assignment part. Using the transformer outputs alone

produces better performance compared to including the jet assignment results because errors

in the jet assignment part can affect the overall performance. However, even if we only use the

results from the classification head, we still train both the jet assignment and classification

tasks simultaneously by adding losses in both parts.

When training Spa-Net on both tasks, it is essential to provide more information than

just focusing on the classification task. The jet assignment information can help Spa-Net

build the embedding space structure. As a result, training on both tasks allows us to achieve

better performance while using the same size of training samples compared to only training

on the classification head.

The hyperparameters of Spa-Net are selected using the Optuna hyperparameter opti-

mization package. We optimize the learning rate, dropout rate, gradient clipping, L2 penalty,

hidden dimension, number of encoder layers, number of branch encoder layers, and number

of classification layers. Each set of hyperparameters is trained for 10 epochs. We perform 100

iterations of hyperparameter optimization, and the set of hyperparameters that produces the

best classification accuracy is selected for full training. The hyperparameter optimization

results are summarized in appendix A.

Following the hyperparameter optimization process, Spa-Net is trained for 50 epochs

using the AdamW optimizer with L2 regularization. The total loss in Spa-Net combines

the contributions from both jet assignment and classification parts, indicating that these

parts are not trained independently. The loss from each part is computed separately and

summed with equal weights.

Similarly, the Spa-Net assigns a signal score psignal to each event. To select the di-Higgs

candidate events, we set a requirement psignal > pth and the threshold pth is determined

through the maximization of sensitivity S/
√

B.

Additionally, in the resonant (non-resonant) analysis, Spa-Net consists of approximately

37.9 million (541 thousand) trainable parameters, which are significantly more than the

Dense-NN’s 268 thousand (136 thousand) parameters. Although such a larger number of

parameters allows the model to capture more complex patterns, it could also make the

training more challenging. Spa-Net is well-structured to handle these parameters, making

the training possible. Note in particular that Spa-Net is trained on both jet pairing and

classification simultaneously, while Dense-NN is trained only on the classification task.

5 Search for resonant Di-Higgs production

For resonant Higgs boson pairs, we describe the steps to set the 95% confidence level (CL)

upper limits on the cross-section of the resonant production of a new heavy scalar H decaying

– 7 –
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into two Higgs bosons hh and demonstrate that Spa-Net gives the best limit among all

three methods.

5.1 Event selection in resonant analysis

5.1.1 Cut-based selection

After jet pairing as described in section 3, we define the leading Higgs boson candidate

h1 to be the one with the highest scalar sum of jet pT. The sub-leading Higgs is denoted

by h2. The following transverse momentum cuts are further applied to the leading and

sub-leading Higgs candidates [13]:

plead
T > m4j × 0.5 − 103 GeV ,

psubl
T > m4j × 0.33 − 73 GeV ,

(5.1)

where m4j is the total invariant mass of the two Higgs candidates, plead
T is the transverse

momentum of the leading Higgs boson candidate, and psubl
T is for the sub-leading Higgs

boson candidate.

For background rejection, we first apply a cut on the pseudorapidity difference between

the two Higgs candidates |∆ηhh| < 1.5. Next, we define the quantity Xhh [13]

Xhh =

√

(

mh1
− 120 GeV

0.1mh1

)2

+

(

mh2
− 110 GeV

0.1mh2

)2

, (5.2)

where mh1
is the mass of the leading Higgs candidate, and mh2

is the mass of the sub-leading

Higgs candidate. Events with Xhh < 1.6 are considered as in the signal region. The reference

masses of 120 GeV and 110 GeV account for energy losses in the detector.

A top veto cut is needed to suppress the tt background. We form “W candidates” by

pairing every possible pair of jets with pT > 40 GeV and |η| < 2.5, including those that are

not selected as the h candidates. We then build “top quark candidates” by pairing the W

candidates with each remaining jet selected for the h candidates. For each possible top quark

candidate, we calculate the quantity XW t defined as [13]

XW t =

√

(

mW − 80 GeV

0.1mW

)2

+

(

mt − 173 GeV

0.1mt

)2

, (5.3)

where mW is the mass of the W candidate, and mt is the mass of the top quark candidate.

For each event, there are multiple XW t values, corresponding to different possible top quark

candidates. An event is vetoed if any of its XW t is less than 1.5.

5.1.2 Dense-NN selection

To use the Dense-NN classifier, we need first to apply jet assignments. We employ the

min-∆R and Spa-Net pairing methods to construct the Higgs candidates and generate two

separate training datasets. Subsequently, we utilize these datasets to train two separate

Dense-NN classifiers and use the signal scores to separate the signal from the background. The

input variables utilized by the Dense-NN classifiers are summarized in table 2, as inspired by

ref. [18]. These features include the 4-vector of the two Higgs candidates, the angular distance

– 8 –
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Reconstructed objects Input variables #

Higgs candidate (pT, η, ϕ, m) 8

Jet ∆R(j1, j2) 2

b-tagging Boolean for ji ∈ hcand
1,2 4

Di-Higgs system phh
T , mhh 2

Table 2. Input variables for the dense neural network in the resonant analysis.

∆R between the two jets associated with each Higgs candidate, the b-tagging information of

the four jets, and the transverse momentum of the di-Higgs system. The threshold values are

determined through the maximization of the sensitivity S/
√

B at mH = 1000 GeV events.

5.1.3 Spa-Net selection

Similar to the Dense-NN selection approach, in the Spa-Net approach we utilize the signal

scores generated by Spa-Net and set a specific threshold value. Events with a signal

score greater than or equal to this threshold will be considered candidate resonant events.

The threshold values are determined through the maximization of the sensitivity S/
√

B

at mH = 1000 GeV events.

5.2 Results from resonant searches

For the cut-based and Dense-NN selection methods, it is necessary to construct the Higgs boson

candidates. Figure 3 shows the pairing efficiency of various methods. All pairing methods

exhibit better performance in the higher mass region, while the pairing efficiency declines

more significantly as the mass goes below ∼ 500 GeV. This effect is especially noticeable in

the min-∆R method. This is because, in the low-resonance region, the Higgs boson obtains

lower energy, causing the b-jet pair to have a larger ∆R separation, resulting in reduced

performance. The Spa-Net pairing method outperforms other methods for all mass values.

Figure 4 shows the selection efficiency, defined to be the ratio of the number of events

that pass the final cut to the total number of events without applying any cuts, for the

cut-based selection with different pairing methods. The corresponding selection efficiencies

of background samples range from 9.4 × 10−5 to 2.82 × 10−4. All three pairing methods

exhibit similar performance. In the low-mass region, the efficiency is reduced due to the

lower energy. The min-∆R pairing method has even lower efficiency in this region due to

its inferior pairing performance.

Table 3 presents the training results for the neural network classifiers, where we use the

accuracy (ACC) and the area under the Receiver Operating Characteristic (ROC) curve (AUC)

as two evaluation metrics. The Dense-NN classifier with the Spa-Net pairing method shows

better performance than the Dense-NN with the min-∆R pairing method. The Spa-Net

classifier has the best performance among the three classifiers.

The difference between the Dense-NN and the Spa-Net classifiers arises from the input

features. While the Dense-NN employs well-known physical observables as the input features,

the Spa-Net classifier uses event embedding vectors. These vectors are generated using all

the information in the event, including both Higgs and background jets. Even though the
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Figure 4. The selection efficiency for samples with different mH .
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Classifier ACC AUC

Dense-NN with min-∆R pairing 0.865 ± 0.001 0.938 ± 0.001

Dense-NN with Spa-Net pairing 0.876 ± 0.001 0.946 ± 0.001

Spa-Net 0.894 ± 0.002 0.961 ± 0.001

Table 3. The classification performance of different neural network classifiers. The ACC and AUC

are evaluated based on 10 trainings.
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Figure 5. The variance ratio of the first ten principal components in resonant analysis.

event embedding vector cannot be readily interpreted as traditional physical observables,

it is found to be better suited for the event classification task. To understand the physical

information encoded in these event embedding vectors, further analysis is needed to find

out the relationship between the high-level physical observables and the components of the

event embedding vectors.

To better understand the embedding vectors, we have performed the Principal Component

Analysis (PCA), which uses an orthogonal linear transformation that transforms the data

to a new basis. (The PCA class from the scikit-learn [46] package is used.) In the new

basis, the components are ordered by their variance. Figure 5 shows the variance importance

for the first 10 principal components. The first three components can explain about 60%

of the total variance. This indicates that these components capture significant information

from the event embedding vectors. Therefore, in the following analysis, we employ only

these first three principal components.

To find the correlation between the first three principal components and selected Dense-

NN input features, we calculated the correlation coefficients, with the results shown in

figure 6. The features such as Higgs candidates’ pT, ∆R, di-Higgs system’s phh
T , and mhh have
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Figure 6. The correlation coefficients between the first three principal components and high-

level observables.

higher correlation coefficients with the principal components. This suggests that the event

embedding vectors indeed contain important and meaningful physical information. Also, the

transformer block in Spa-Net can learn and extract relevant physical information from the

input features and encode it into event embedding vectors.

Even though there is a high correlation between the embedding vector and high-level

observables, the better training results of Spa-Net imply that the embedding vector contains

additional information. This information might not correspond to the familiar high-level

physical parameters, which nonetheless proves effective for the classification task. These

findings highlight the fact that the Spa-Net can extract the relevant physical information

from the input data efficiently. In addition, the flexibility of Spa-Net allows it to construct

more suitable variables for the classification task. As a consequence, the training performance

exceeds that of utilizing only well-known physical parameters.

To obtain the upper limits on the cross-section of resonant Higgs boson pair production,

we use the reconstructed mhh distribution. From the binned mhh distribution, we can obtain

the likelihood function L, which consists of a product of Poisson distributions for the number

of events in each bin.

The signal strength µ is chosen as the parameter of interest (POI). The profile likelihood

ratio takes the following form:

−2∆ ln L(µ) ≡ −2 ln

(

L(µ)

L(µ̂)

)

, (5.4)

where µ̂ is the maximum likelihood estimate of µ. The upper limit on the signal strength is

computed by the package pyhf [47, 48], which is based on the CLs method [49]. The POI

is excluded at the 95% CL when CLs is less than 0.05. Then we can convert the results

to the upper limit of the cross-section.

In setting the upper limit, we consider a luminosity of L = 300 fb−1 for the 14-TeV

LHC. Since the kinematics of the 13-TeV and 14-TeV samples are similar, we can scale

the cross-sections to those of the 14-TeV samples. Figure 7 shows the upper limits on the

resonant Higgs pair production as a function of mH for different selection methods. While

all methods give similar results in the high resonance region, the Spa-Net selection has

superior performance, providing the most stringent constraints throughout the considered

mass range. The Dense-NN selection methods give higher upper limits than Spa-Net, and

the cut-based selection methods give the worst results. Specifically, Spa-Net selection

– 12 –



J
H
E
P
0
9
(
2
0
2
4
)
1
3
9

400 600 800 1000 1200
mH (GeV)

101

102

103

95
%

 C
L 

lim
it 

on
 

 (f
b)

Cut-based with ∆R+min-Dhh pairing

Cut-based with min-∆R pairing

Cut-based with Spa-Net pairing

Dense-NN with min-∆R pairing

Dense-NN with Spa-Net pairing

Spa-Net selection

Figure 7. The upper limit on the cross-section of resonant di-Higg production for different mH .

enables us to establish cross-section upper limits that are 10% to 45% stronger compared

to Dense-NN with min-∆R pairing.

Figure 8 shows the invariant mass mhh distributions using various selection methods. In

the high-mass region, the Dense-NN and Spa-Net selection methods let more background and

signal events pass. Consequently, the results are similar to those obtained by the cut-based

selection. In the low-mass region, the Spa-Net selection method can cut more background

events, which accounts for why the Spa-Net selection achieves more stringent upper limits

in this specific mass range.

6 Higgs self-coupling constraints

In this section, our signal events consist of non-resonant Higgs boson pairs with different Higgs

self-coupling scale factor »λ. Similar to the analysis on resonant production, we compare

the cut-based method with two distinct neural network classifiers, the Dense-NN and the

Spa-Net, which are used to identify candidate signal events. We will show that the Spa-Net

architecture is better suited for the event classification task, and the improved classification

results can yield stronger constraints on the coupling scale factor »λ.

6.1 Event selection in non-resonant analysis

6.1.1 Cut-based selection

The cut-based event selection methods are similar to that of the resonant analysis. In the

non-resonant analysis, we utilize the min-∆R and Spa-Net pairing methods. The high-level

physical variables of two Higgs boson candidates are used in subsequent selection steps

and analysis.
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Figure 8. The invariant mass mhh distribution for the cut-based selection with Spa-Net pairing

(blue dotted bins), the Dense-NN with Spa-Net pairing (orange dashed bins), and the Spa-Net

selection (green solid bins). The number of events is normalized to the target luminosity L = 300 fb−1.

Other pairing methods would give similar results to the corresponding selection method with Spa-

Net pairing.

To further reduce the multijet background, we apply a cut on the pseudorapidity difference

between the two Higgs candidates |∆ηhh| < 1.5. To reduce the tt background, we employ the

top veto cut. We compute the quantity XW t, corresponding to different possible top quark

candidates. An event is vetoed if any of its XW t is less than 1.5.

Finally, events with Xhh < 1.6 are considered as in the signal region (see eq. (5.2) for

the definition of Xhh). Those events would be used to determine the Higgs self-coupling

constraints.

6.1.2 Dense-NN selection

The signal samples are non-resonant samples with different »λ values. The network’s input

features are summarized in table 4, as inspired by ref. [18]. To obtain these input features,

the Higgs pairing needs to be determined first. We use the min-∆R pairing method and the
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Reconstructed objects Variables used for training #

Higgs candidate (pT, η, ϕ, m) 8

Jet ∆R(j1, j2) 2

Missing transverse momentum Emiss
T , ϕ(p⃗miss

T ) 2

Leptons Ne, Nµ 2

b-tagging Boolean for ji ∈ hcand
1,2 4

Di-Higgs system phh
T , mhh 2

Self coupling »λ 1

Table 4. Input variables for the dense neural network in the non-resonant analysis.

Spa-Net pairing method to construct the Higgs candidates and generate two separate training

datasets, which are then used to train two different Dense-NN classifiers. For training, we set

»λ = [−5, −3, −1, 1, 2, 3, 5, 7, 9, 12] and generate 9,000 samples for each value in the list. For

simplicity, we do not generate samples across the full range [−10, 15] mentioned in section 2.1,

as samples away from the boundaries do not improve the Dense-NN’s performance in the »λ

constraint setting. For background samples, since they lack specific »λ information for the

input feature, a »λ value is randomly chosen from the above list. We use the same sizes of

signal and background samples as the scheme given in table 1 in the neural network training.

For testing, the »λ input is scanned over the full range, and the average of outputs is

utilized as the final signal score psignal. An event is classified as a signal if its psignal is larger

than pth, which is determined by maximizing the sensitivity S/
√

B on the »λ = 1 sample.

6.1.3 Spa-Net selection

Here we utilize Spa-Net to perform both the jet assignment and signal/background clas-

sification tasks. The input data contains information about the reconstructed jets and the

global event features. Spa-Net would output both the jet pairing and the type of the

events (signal vs. background). In contrast to the Dense-NN classifier, the key advantage

is that Spa-Net can process the jet-level information and can preserve the permutation

symmetry inherent in the problem.

The input features contain a list of jets, where each jet is represented by its 4-component

vector (pT, η, ϕ, m) as well as a Boolean b-tag. Additionally, we input the self-coupling scale

factor »λ as the global feature of each event. The sample preparation and testing steps follow

the same procedure as described for the Dense-NN case in the previous section.

6.2 Non-resonant analysis results

To obtain the high-level physical observables for cut-based selection and Dense-NN training,

we need to construct the Higgs boson candidates with different jet assignment algorithms.

Figure 9 shows the pairing efficiency of the two jet pairing methods: min-∆R and Spa-Net.

Both methods exhibit their best performance around »λ = 2. For the min-∆R method,

the pairing efficiency ranges from 40% to 80% while for Spa-Net the pairing efficiency

ranges from 70% to 90%. Therefore, the Spa-Net pairing method outperforms the min-∆R

method for all coupling values. Figure 10 shows the selection efficiency for the cut-based
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Figure 9. The pairing performance for different »λ samples. The Spa-Net is trained on pairing and

classification tasks at the same time.

Classifier ACC AUC

Dense-NN with min-∆R pairing 0.799 ± 0.011 0.881 ± 0.012

Dense-NN with Spa-Net pairing 0.803 ± 0.004 0.884 ± 0.004

Spa-Net 0.828 ± 0.002 0.911 ± 0.001

Table 5. The classification performance of different selection methods. The ACC and AUC are

evaluated based on 10 trainings.

selection using different pairing methods. The curves of the selection efficiency are similar to

the ones of pairing efficiency, meaning that the selection efficiency and the pairing results

are highly correlated.

In table 5, we present the training results for the classifiers. The Dense-NN classifiers

perform similarly for both pairing methods, while the Spa-Net classifier performs best.

To better understand the event embedding vectors and find out the relationship between

the input features of Dense-NN and those of Spa-Net, we perform a similar analysis as

in the resonant case.

First, we performed the PCA on the event embedding vectors. Figure 11 shows the

variance importance for the first 10 principal components, with the first three components

being able to explain about 50% of the total variance. Since these components capture

significant information from the event embedding vectors, we focus on these first three

principal components in subsequent analysis.

Next, we compute the correlation coefficients between these principal components and

high-level physical observables. The results are shown in figure 12. The features such as
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Figure 10. The selection efficiency for different »λ samples. The selection efficiency is the ratio of

the number of events that pass the final cut to the total number of events without applying any cuts.

The corresponding selection efficiencies of background samples range from 9.7 × 10−5 to 2.72 × 10−4.
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Figure 11. The variance ratio of the first ten principal components in the non-resonant analysis.
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Figure 12. The correlation coefficients between the first three principal components and high-

level observables.

Expected Constraints

POI Signal strength µ Self-coupling »λ

S/B selection Lower Upper ∆»λ Lower Upper ∆»λ

Cut-based with min-∆R pairing −3.30 10.38 13.68 −3.27 10.33 13.60

Cut-based with Spa-Net pairing −3.58 10.47 14.05 −3.55 10.43 13.98

Dense-NN with min-∆R pairing −1.44 8.49 9.93 −1.44 8.49 9.93

Dense-NN with Spa-Net pairing −1.72 8.94 10.66 −1.72 8.99 10.71

Spa-Net selection −1.57 7.49 9.06 −1.56 7.57 9.13

Table 6. Constraints on »λ using different selection methods. We consider a luminosity of L = 300 fb−1

for the 14-TeV LHC.

Higgs candidates’ pT, ∆R, di-Higgs system’s phh
T , and mhh have higher correlation coefficients

with the principal components. These results are similar to the resonant case. These findings

suggest that the event embedding vectors indeed contain meaningful physical information.

Moreover, the flexibility of Spa-Net enables it to explore beyond the familiar physical

parameters, thereby allowing Spa-Net to obtain superior performance compared to the

traditional Dense-NN structure in classification tasks.

For the »λ constraints setting, we consider a luminosity of L = 300 fb−1 and use the

14-TeV cross-sections. Since the kinematics of the 13-TeV and 14-TeV samples are similar,

we can scale the cross-sections to those of the 14-TeV samples.

Similar to the resonant analysis, to obtain constraints on the Higgs self-coupling scale

factor »λ, we use the reconstructed mhh distribution, from which we compute the likelihood

function L consisting of a product of Poisson distributions for the number of events in each

bin. The signal strength µ is chosen as the POI. The values of the coupling »λ are excluded

at the 95% CL if the predicted cross-section of the signal model with that configuration is

excluded with CLs < 0.05. Alternatively, we can obtain the exclusion limit by using the

profile likelihood with the coupling »λ as POI. A scan of the profile likelihood ratio is taken

as a function of the coupling, and from this, we can set the 1.96σ-level constraints.

When using the signal strength µ as the POI, figure 13 displays the upper limits of

the hh cross-section as a function of »λ. The dip of the curves around »λ = 2.45 is due

to the complete destructive interference [50]. On the other hand, when using »λ as the

POI, the profile likelihood ratio scan for »λ is shown in figure 14. All results are presented

in table 6. The Spa-Net classifier shows a significant improvement in the upper bound
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Figure 13. The upper limits of the cross-section with different »λ. The theory prediction is the

cross-section computed from MadGraph5_aMC@NLO. The coupling »λ with the cross-section greater

than the upper limit would be excluded.
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Figure 14. The profile likelihood ratio scans for »λ. The blue line indicates the 1.96σ exclusion

boundary.
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of the »λ constraints. Regardless of the selected POI, the Spa-Net classifier provides the

strongest constraints on »λ. When using µ (»λ) as the POI, values of »λ beyond [−1.57, 7.49]

([−1.56, 7.57]) would be excluded at the 95% CL (1.96σ) level.

To achieve similar performance using the min-∆R Dense-NN classifier, the luminosity

would need to be scaled to L ≃ 400 fb−1. In this sense, the Spa-Net classifier offers a

luminosity gain of L = 100 fb−1. These results demonstrate that the Spa-Net classifier

outperforms other methods in constraining Higgs self-coupling scale factor »λ.

7 Conclusions

In this paper, we have utilized a novel deep neural network architecture called Spa-Net

to improve the analysis for di-Higgs events in the 4b final state. By comparing Spa-Net

with the traditional cut-based method, we have shown its better pairing efficiency in both

resonant and non-resonant scenarios. Moreover, Spa-Net also outperforms the Dense-NN

classifier in the classification task.

At the LHC with a 14-TeV C.M. energy and an integrated luminosity of 300 fb−1, Spa-

Net selection allows us to establish 95% C.L. cross-section upper limits in resonant analysis

that are 10% to 45% stronger compared to Dense-NN with min-∆R pairing. In non-resonant

analysis, the Spa-Net selection has provided 9% stronger bounds on »λ couplings when

compared to the baseline method, the min-∆R Dense-NN selection. To achieve similar

performance using the min-∆R Dense-NN selection, the luminosity would need to be scaled

to L = 400 fb−1. Therefore, the Spa-Net selection offers a luminosity gain of L = 100 fb−1.

The key difference between Dense-NN and Spa-Net classifiers is in the input features. The

Spa-Net classifier uses the embedding vectors as its input features. We have demonstrated

that embedding vectors are related to high-level physical observables and they can capture the

physical information from the events. This feature makes the embedding vectors well-suited

for event classification tasks.

Our current work focuses primarily on the efficacy of Spa-Net in the di-Higgs analysis.

However, we acknowledge the potential of alternative architectures such as Deep Sets [51]. A

possible research direction is to compare the performance of Deep Sets with that of Spa-Net

and traditional Dense-NN models. This could potentially shed more light on the relative

contributions of jet permutation invariance and particle label symmetries and explore the

impact of different input features. This analysis would deepen our understanding of the

underlying mechanisms of neural network architectures in physics analyses.

In conclusion, our work highlights the remarkable potential of Spa-Net in di-Higgs

event analysis. Through the superior performance in both jet pairing and classification

tasks, Spa-Net improves upper limits on production cross-sections and Higgs self-couplings.

Moreover, Spa-Net has been proven to be not biased on simulator-specific information [10],

suggesting its potential applicability to experiments. Beyond Higgs physics, the methodologies

developed here offer a promising approach for various analyses suffering from complex pairing

tasks, paving the way for future advancements in particle physics research.

Data and code availability. The training and testing datasets used in this study are

publicly available on Zenodo [52]. The code used for Spa-Net training in this paper is

accessible on GitHub [53].
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Parameter Resonant Non-resonant

min-∆R Spa-Net min-∆R Spa-Net

Learning rate 0.000227 0.000262 0.00495 0.000948

Batch Size 512 512 512 512

Hidden Dimensionality 256 256 256 256

Layer Count 5 5 3 2

Table 7. The hyperparameters used in Dense-NN training. The results of different pairing methods

are presented.

Parameter Resonant Non-resonant

Learning Rate 0.00049 0.00659

Training Epochs 50 50

Batch Size 2048 2048

Dropout 0.061 0.0059

L2 Gradient Clipping 0.445 0.425

L2 Penalty 0.000382 0.000374

Hidden Dimensionality 256 32

Central Encoder Count 8 8

Branch Encoder Count 4 2

Classification Layers 1 1

Assignment Loss Scale 1 1

Classification Loss Scale 1 1

Table 8. The hyperparameters used in Spa-Net training.
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