PUBLISHED FOR SISSA BY 4) SPRINGER

RECEIVED: March 19, 202/
REVISED: July 15, 2024
ACCEPTED: August 14, 202/
PUBLISHED: September 20, 2024

Deep learning to improve the sensitivity of Di-Higgs
searches in the 4b channel

Cheng-Wei Chiang ©,%? Feng-Yang Hsieh©,% Shih-Chieh Hsu®° and lan Low ©%¢
@Department of Physics, National Taiwan University,
Taipei 10617, Taiwan

bPhysics Division, National Center for Theoretical Sciences,
Taipei 10617, Taiwan

¢Department of Physics, University of Washington,

Seattle, WA 98195, U.S.A.

dHigh Energy Physics Division, Argonne National Laboratory,
Argonne, IL 60439, U.S.A.

¢Department of Physics and Astronomy, Northwestern University,

Evanston, IL 60208, U.S.A.

E-mail: chengwei@phys.ntu.edu.tw, £102220350@ntu.edu.tw, schsu@uw.edu,
ilow@northwestern.edu

ABSTRACT: The study of di-Higgs events, both resonant and non-resonant, plays a crucial
role in understanding the fundamental interactions of the Higgs boson. In this work we
consider di-Higgs events decaying into four b-quarks and propose to improve the experimental
sensitivity by utilizing a novel machine learning algorithm known as Symmetry Preserving
Attention Network (SPA-NET) — a neural network structure whose architecture is designed
to incorporate the inherent symmetries in particle reconstruction tasks. We demonstrate
that the SPA-NET can enhance the experimental reach over baseline methods such as the
cut-based and the Dense Neural Network-based analyses. At the Large Hadron Collider,
with a 14-TeV center-of-mass energy and an integrated luminosity of 300fb~!, the SPA-NET
allows us to establish 95% C.L. upper limits in resonant production cross-sections that are
10% to 45% stronger than baseline methods. For non-resonant di-Higgs production, SPA-NET
enables us to constrain the self-coupling that is 9% more stringent than the baseline method.
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1 Introduction

Since the discovery of the 125-GeV Higgs boson, h, an immediate and pressing task has been
to determine the Higgs potential and self-interactions, in addition to measuring its couplings
to other SM particles, thereby verifying whether electroweak symmetry breaking (EWSB)
is achieved in the same way as the Standard Model (SM) prescribes [1, 2]. An important
parameter in the Higgs potential is the trilinear coupling A\, which enters the potential as:

1
V(h) = 5m,%h? + Avh3 + Agpht. (1.1)

Here m;, = 125 GeV and the Higgs vacuum expectation value is v = 246 GeV. In the SM,
A= 2AM = m?/(20%) and Ay, = A3M = m2/(8v?). Phenomenologically the Higgs trilinear
coupling contributes to the pair production of Higgs bosons, which has not been observed
experimentally. In the SM, the leading-order Feynman diagrams contributing to the di-Higgs
production at a hadron collider, such as the Large Hadron Collider (LHC) at CERN, are
shown in figure 1, where A features prominently.

An experimental verification of the Higgs potential has important implications, as it
is well known that the potential in the SM cannot induce a strong first-order electroweak
phase transition in the early Universe, which is a crucial ingredient to explain the observed
matter-antimatter asymmetry [3-5]. New physics should enter at an energy scale slightly
higher than the weak scale to modify the Higgs potential at finite temperatures, to facilitate a
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Figure 1. The leading-order Feynman diagrams of the di-Higgs production in the SM.

sufficiently strong first-order phase transition. In this case, the A coupling would be modified
from its SM value, which could have a large impact on the di-Higgs production rate at the
LHC [6]. In addition, kinematic distributions of the Higgs pair could offer a unique window
into new particles and new interactions above the weak scale [7, §].

With a mass of 125 GeV, the Higgs boson predominantly decays into a bb pair. Therefore
hh — 4b channel offers the largest rate among all possible decays of the Higgs pair which,
nevertheless, suffers from the much larger background from multijets and multi-b’s production
of QCD. Furthermore, because of our inability to distinguish a b-jet from a b-jet, it is
a very challenging task experimentally to form the correct pairing among the 4 b’s to
reconstruct the Higgs mass and the associated kinematic distributions. In this work, we
would like to propose the use of machine learning algorithms from deep neural networks to
help improve the sensitivity of experimental searches in the 4b channel. More specifically,
we study the possibility of using a new neural network architecture called the Symmetry
Preserving Attention Network (SPA-NET) [9-11] to simultaneously perform signal/background
separation and identify the correct pairings among the 4 b-jets in the final states. To utilize
the advantages of SPA-NET, our analysis is applied in the resolved regime; a different model
structure would be required for the boosted regime [12]. We will demonstrate that Spa-
NET offers improved sensitivity over existing experimental techniques employed in the 4b
channel [13-17], as well as over an analysis invoking the Dense Neural Network (Dense-NN)
machine learning algorithm [18].

We will consider two types of analyses in di-Higgs productions. One involves the on-shell,
resonant production of a hypothetical new scalar particle, which subsequently decays into the
Higgs pair. As an explicit example, we consider the two-Higgs doublet models (2HDMs) in
the alignment limit [19-21], where the properties of the 125 GeV Higgs boson are SM-like. In
this case, the Higgs pair is produced through the decay product of the heavy scalar [22, 23].
We do not modify the SM contribution to the di-Higgs production in this scenario. The
other analysis, on the other hand, involves “non-resonant” production in the sense that we
alter the SM trilinear coupling A, of which the production cross-section is a function, and
does not invoke direct production of new particles.

This paper is organized as follows. In section 2, we describe the procedures employed for
generating both signal and background samples utilized in the training of neural networks.



Section 3 discusses three different jet pairing methods. The first two are cut-based methods
inspired by an ATLAS analysis, while the last is done with SPA-NET. In section 4, we provide
the training procedures of Dense-NN and SPA-NET classifiers and how to employ these neural
network classifiers on the event selection task. In section 5, we perform the resonant analysis
and discuss how SPA-NET can improve the sensitivity of the search. In section 6, we build
classifiers to discriminate non-resonant signal and background events and then demonstrate
how SPA-NET performs better in constraining the Higgs trilinear coupling in comparison
with more traditional methods. Finally, we summarize in section 7.

2 Event generation

We use MadGraph5_aMCONLO 3.3.1 [24] to generate both signal and background events at
the centre-of-mass (CM) energy /s = 13 TeV with the NNPDF23_nlo_as_0119 PDF set [25].
The LO matrix elements are considered. For parton showering and hadronization, we employ
Pythia 8.306 [26] with NNPDF2.3 L0 PDF set. The detector simulation is performed using
Delphes 3.5.0 [27]. The jets are reconstructed with FastJet 3.3.4 [28] using the anti-
k¢ [29] algorithm with radius R = 0.4. Only jets with a transverse momentum of pr > 20 GeV
are considered.

2.1 Signal event generation

We consider two types of di-Higgs events: resonant production through an on-shell new scalar
boson and non-resonant production in the SM with, however, a rescaled Higgs self-coupling
A = rAASM,

For the resonant signal, Higgs boson pairs hh are produced via the decay of heavy CP-even
scalar H in the 2HDM, which itself is produced through the gluon-fusion channel. We consider
my ranging from 300 GeV to 1200 GeV. In this mass range, the b-jets can be reconstructed
into four distinct energetic jets. The 2HDMC [30] calculator with HiggsBounds-5.10.2 [31—
35] and HiggsSignal-2.6.2 [36-39] extensions is used to compute the parameters at these
benchmark points, which are submitted to MadGraph5_aMC@NLO through the parameter card.

The non-resonant signal is produced at one-loop at the leading order, via the Feynman
diagrams shown in figure 1. The process is simulated using the MadGraph5_aMC@NLO 3.3.1
with the loop sm model. When considering non-resonant productions, we leave k) as a free
parameter varying over the domain of [—10,15].

The decays H — hh,h — bb are implemented by MadSpin [40]. For resonant analysis,
the b-tagging efficiency in Delphes is modified based on the ATLAS MV2c10 b-tagger at the
70% working point [41, 42]. At this working point, the light-jet (charm-jet) rejection is about
385 (12), which is the reciprocal of the false positive rate. For non-resonant analysis, the
b-tagging efficiency is modified based on the ATLAS DL1r 77% working point [43]. At this
working point, the light-jet (charm-jet) rejection is about 130 (4.9).

2.2 Background event generation

The main background is QCD multijet production: pp — bbbb. The resonant and non-resonant
analysis background is simulated using different b-tagging settings as described in section 2.1.
The sub-leading background is top-quark pair production, which contributes to less than
10% of the dominant background and is not included in the analysis. It is important to note



Training  Validation Testing
Resonant 950k 50k 100k
Non-resonant 171k 9k 18k

Table 1. Sizes of various samples used for neural network study in resonant and non-resonant analyses.
Each category consists of an equal size of signal and background samples.

that Pythia considers the initial-state radiation (ISR) and final-state radiation (FSR) at the
parton level. Therefore, there might be more than 4 jets after the jet clustering.

In generating both the signal and background events, we implement a basic “four-tag cut”,
which requires at least four b-tagged R = 0.4 anti-k; jets with pp > 40 GeV and pseudorapidity
1 within the range |n| < 2.5. The numbers of events that passed this cut are given in table 1.

3 Jet pairing

To reconstruct two Higgs boson candidates, we use three different jet assignment methods.
The first two, AR+ min-Dpj and min-AR, are cut-based and inspired by the ATLAS analysis
in refs. [13, 15]. The third one makes use of the SPA-NET neural network [9-11], a novel
architecture specifically designed for the jet assignment task.

3.1 Cut-based pairing

In the AR + min-Dy;, pairing method, the four b-jets with the highest pr are paired to
construct two Higgs boson candidates. There are three possible pairings for the jets. Only
the pairing that satisfies the following AR requirements is accepted:

mJ m4j . < ]250(;5‘7
4 f my;
— < AR« ———— 1+0.35
m ; 1) m4j (31)

0< AR}fad <1

if myj > 1250 GeV ,
0<ARF™ <1

where the AR}fad is the angular distance between the jets in the pr-leading Higgs boson
candidate and Astjubl for the sub-leading candidate, and my; is the total invariant mass
of the four jets. The angular distance is calculated using the formula AR = /An? + A¢2,
where An and A¢ represent the pseudorapidity and azimuthal angle differences between
the two jets, respectively.

If no pairing satisfies the above AR requirements, the event is dropped. If more than one
pairing satisfies the AR requirements, we choose the one with the minimum Dpy,, defined as

120
_ [y — S,

1+ (1)

where my,, , my, are the masses of the leading Higgs candidate and sub-leading Higgs candidate,

Dpp, (3.2)

respectively. The quantity Dy, is the distance from (mp,,mp,) to the line connecting
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Figure 2. The high-level model structure of SPA-NET. Each E is an embedding layer, T; is the
transformer encoder, and h; is the jet assignment result which contains two jets j; for the Higgs decay.
The particle transformer is a stack of transformer encoders. The global input is only used in the
non-resonant analysis.

(0GeV,0GeV) and (120 GeV,110GeV). The values of 120 GeV and 110 GeV account for
energy loss.

In the min-A R pairing method, the four b-tagged jets with the highest pt are used to
form the two Higgs boson candidates. The min-AR method selects the pairing configuration
in which the higher-pr jet pair has the smallest AR separation.

3.2 Spa-Net pairing

In this subsection, we provide an overview of the SPA-NET’s model structure and explain
how this architecture is particularly well-suited for the jet assignment/pairing task. We also
describe our approach to constructing the training samples for SPA-NET. Our goal is to
train SPA-NET to recognize which jets arise from the decay of a given Higgs boson, thereby
identifying the correct pairing of the Higgs boson candidates.

Figure 2 shows the high-level model structure of SPA-NET [9-11]. The embedding
blocks encode the input features to the embedding vectors living in the latent space. These
embedding vectors are fed into the central transformer, which is a stack of transformer
encoders. The central transformer then outputs the event embedding vector, which is used in
the jet assignment and the classification tasks. For the jet assignment, the event embedding
vector is encoded by the particle transformers and the tensor attentions. Finally, SPA-NET
constructs the jet assignment results from these outputs. The network architecture has a
feed-forward structure for the classification head.

The key concept underlying SPA-NET is that it can encode inputs into an abstract
latent space and utilize attention mechanisms to learn contextual information about jet
relationships, which is used in subsequent tasks, thereby avoiding the permutation approach
in the classical methods.

There are several inherent symmetries in the jet assignment task. For example, the
detector signatures of quarks and anti-quarks are nearly indistinguishable. Consequently,



it is important to consider all possible combinations of jets originating from these partons.
Moreover, the reconstruction task is insensitive to the swapping of specific labels. For
instance, in the di-Higgs case, swapping the pairing results of two Higgs would lead to the
same event reconstruction. The design of SPA-NET’s model structure and loss function
takes these symmetries into account.

Due to the properties of the transformer, the event embedding vector in SPA-NET is
independent of the order of the input jets. Moreover, SPA-NET utilizes the technique of
symmetric tensor attention [10], which constructs a tensor with permutation symmetries
of labels (e.g., the bb and hh pairs). Therefore, the output also contains label permutation
symmetries. For the pairing loss function, SPA-NET utilizes the combined symmetric loss
that incorporates permutation symmetries with the cross-entropy loss, as defined in equation
6 of ref. [10]. These properties enable SPA-NET to preserve the symmetry inherent to the
jet assignment problems.

In our context, it is essential to emphasize that SPA-NET is not restricted to using
only the b-tagged jets for the jet assignment task, but considers all jets in an event. This
allows the network to make a correct prediction even in a situation where some of the jets
are mistagged. Therefore, SPA-NET can utilize a larger dataset in the pairing task than
the traditional methods.

The input features for the SPA-NET are a list of jets, each represented by its 4-component
vector (pr,n,$,m) as well as a boolean b-tag, where ¢ is the azimuthal angle and m is the
invariant mass. To be specific, we only keep the 10 highest pr jets in each event. For each
event, we define the correct jet assignments by matching the jets to the simulated truth
quarks within an angular distance of AR < 0.4. In case a simulated truth quark is matched
to more than one jet, such an event will be dropped. Furthermore, some simulated truth
quarks may not be matched to any jet, in which case the event will not be used in training
either. The percentage of samples satisfying these matching conditions to the samples passing
the four-tag cut varies from 77% to 89%. Note that these matching conditions are only
required for training SPA-NET. However, in the final analysis, SPA-NET is applied to all
events passing the four-tag cut.

4 Neural network classifiers

After jet pairing, the next step is to distinguish the signal from the background. In addition
to a cut-based approach, two types of neural network classifiers are employed in this study:
the Dense-NN, which is a conventional deep learning architecture used as the baseline neural
network approach, and SPA-NET, which could also be used as a classifier to separate signal
from background.

To perform a Dense-NN-based analysis, we construct a Dense-NN classifier to distinguish
between signal and background events. We implement our Dense-NN using the library of the
Tensorflow [44]. The network consists of simple dense layers and the internal node uses the
rectified linear unit (ReLU) as the activation function. The categorical cross-entropy is used
as the loss function, which is then minimized by the Adam algorithm. Hyperparameters of the
Dense-NN are selected by utilizing the Optuna [45] hyperparameter optimization package.
The learning rate, hidden dimension, and the number of layers are optimized by performing



100 iterations of hyperparameter optimization, and the set of hyperparameters that produces
the best classification accuracy is selected for full training.

Upon training, the Dense-NN is used to determine whether an event is a signal or a
background. The Dense-NN classifier assigns a signal score pgignal to every event, which
represents the confidence that this event is a signal. An event is classified as a signal if its
Dsignal i larger than pyy,, a threshold score determined through the maximization of sensitivity
S/v/B, where S and B represent the number of signal and background events, respectively.

For the SPA-NET classifier, it is important to note that the SPA-NET classification head
does not take the results from the jet assignment part. Using the transformer outputs alone
produces better performance compared to including the jet assignment results because errors
in the jet assignment part can affect the overall performance. However, even if we only use the
results from the classification head, we still train both the jet assignment and classification
tasks simultaneously by adding losses in both parts.

When training SPA-NET on both tasks, it is essential to provide more information than
just focusing on the classification task. The jet assignment information can help SPA-NET
build the embedding space structure. As a result, training on both tasks allows us to achieve
better performance while using the same size of training samples compared to only training
on the classification head.

The hyperparameters of SPA-NET are selected using the Optuna hyperparameter opti-
mization package. We optimize the learning rate, dropout rate, gradient clipping, L2 penalty,
hidden dimension, number of encoder layers, number of branch encoder layers, and number
of classification layers. Each set of hyperparameters is trained for 10 epochs. We perform 100
iterations of hyperparameter optimization, and the set of hyperparameters that produces the
best classification accuracy is selected for full training. The hyperparameter optimization
results are summarized in appendix A.

Following the hyperparameter optimization process, SPA-NET is trained for 50 epochs
using the AdamW optimizer with L2 regularization. The total loss in SPA-NET combines
the contributions from both jet assignment and classification parts, indicating that these
parts are not trained independently. The loss from each part is computed separately and
summed with equal weights.

Similarly, the SPA-NET assigns a signal score pgignal to each event. To select the di-Higgs
candidate events, we set a requirement pgigna > pin and the threshold py, is determined
through the maximization of sensitivity S/v/B.

Additionally, in the resonant (non-resonant) analysis, SPA-NET consists of approximately
37.9 million (541 thousand) trainable parameters, which are significantly more than the
Dense-NN’s 268 thousand (136 thousand) parameters. Although such a larger number of
parameters allows the model to capture more complex patterns, it could also make the
training more challenging. SPA-NET is well-structured to handle these parameters, making
the training possible. Note in particular that SPA-NET is trained on both jet pairing and
classification simultaneously, while Dense-NN is trained only on the classification task.

5 Search for resonant Di-Higgs production

For resonant Higgs boson pairs, we describe the steps to set the 95% confidence level (CL)
upper limits on the cross-section of the resonant production of a new heavy scalar H decaying



into two Higgs bosons hh and demonstrate that SPA-NET gives the best limit among all
three methods.

5.1 Event selection in resonant analysis
5.1.1 Cut-based selection

After jet pairing as described in section 3, we define the leading Higgs boson candidate
h1 to be the one with the highest scalar sum of jet pp. The sub-leading Higgs is denoted
by hs. The following transverse momentum cuts are further applied to the leading and
sub-leading Higgs candidates [13]:

P >y x 0.5 — 103 GeV

5.1
PP > iy x 0.33 — 73GeV (5:1)

where my; is the total invariant mass of the two Higgs candidates, plq‘?ad is the transverse

momentum of the leading Higgs boson candidate, and p?ﬁ‘bl is for the sub-leading Higgs
boson candidate.
For background rejection, we first apply a cut on the pseudorapidity difference between

the two Higgs candidates |Anpy| < 1.5. Next, we define the quantity Xpj [13]

mp, — 120 GeV>2 <th — 110 GeV)2
X =) | —— T e 5.2
hh \/( 0.1mp, + 0.1mp, ’ (52)

where my,, is the mass of the leading Higgs candidate, and my,, is the mass of the sub-leading
Higgs candidate. Events with Xy, < 1.6 are considered as in the signal region. The reference
masses of 120 GeV and 110 GeV account for energy losses in the detector.

A top veto cut is needed to suppress the ¢ background. We form “W candidates” by
pairing every possible pair of jets with pp > 40 GeV and |n| < 2.5, including those that are
not selected as the h candidates. We then build “top quark candidates” by pairing the W
candidates with each remaining jet selected for the h candidates. For each possible top quark
candidate, we calculate the quantity Xy defined as [13]

mW—8OGeV>2 <mt—173GeV>2
Xwy = .
Wi \/( 0.lmwy * 0.1my ’ (5:3)

where myy is the mass of the W candidate, and my is the mass of the top quark candidate.
For each event, there are multiple Xyy; values, corresponding to different possible top quark
candidates. An event is vetoed if any of its Xyy; is less than 1.5.

5.1.2 Dense-NN selection

To use the Dense-NN classifier, we need first to apply jet assignments. We employ the
min-AR and SPA-NET pairing methods to construct the Higgs candidates and generate two
separate training datasets. Subsequently, we utilize these datasets to train two separate
Dense-NN classifiers and use the signal scores to separate the signal from the background. The
input variables utilized by the Dense-NN classifiers are summarized in table 2, as inspired by
ref. [18]. These features include the 4-vector of the two Higgs candidates, the angular distance



Reconstructed objects Input variables #
Higgs candidate (pT,m, ¢, M) 8
Jet AR(]l,jg) 2
b-tagging Boolean for j; € h‘f‘;d 4
Di-Higgs system p%h, mMph 2

Table 2. Input variables for the dense neural network in the resonant analysis.

AR between the two jets associated with each Higgs candidate, the b-tagging information of
the four jets, and the transverse momentum of the di-Higgs system. The threshold values are
determined through the maximization of the sensitivity S/v/B at my = 1000 GeV events.

5.1.3 Spa-Net selection

Similar to the Dense-NN selection approach, in the SPA-NET approach we utilize the signal
scores generated by SPA-NET and set a specific threshold value. Events with a signal
score greater than or equal to this threshold will be considered candidate resonant events.
The threshold values are determined through the maximization of the sensitivity S/v/B
at mg = 1000 GeV events.

5.2 Results from resonant searches

For the cut-based and Dense-NN selection methods, it is necessary to construct the Higgs boson
candidates. Figure 3 shows the pairing efficiency of various methods. All pairing methods
exhibit better performance in the higher mass region, while the pairing efficiency declines
more significantly as the mass goes below ~ 500 GeV. This effect is especially noticeable in
the min-A R method. This is because, in the low-resonance region, the Higgs boson obtains
lower energy, causing the b-jet pair to have a larger AR separation, resulting in reduced
performance. The SPA-NET pairing method outperforms other methods for all mass values.

Figure 4 shows the selection efficiency, defined to be the ratio of the number of events
that pass the final cut to the total number of events without applying any cuts, for the
cut-based selection with different pairing methods. The corresponding selection efficiencies
of background samples range from 9.4 x 107 to 2.82 x 1074, All three pairing methods
exhibit similar performance. In the low-mass region, the efficiency is reduced due to the
lower energy. The min-AR pairing method has even lower efficiency in this region due to
its inferior pairing performance.

Table 3 presents the training results for the neural network classifiers, where we use the
accuracy (ACC) and the area under the Receiver Operating Characteristic (ROC) curve (AUC)
as two evaluation metrics. The Dense-NN classifier with the SPA-NET pairing method shows
better performance than the Dense-NN with the min-AR pairing method. The SPA-NET
classifier has the best performance among the three classifiers.

The difference between the Dense-NN and the SPA-NET classifiers arises from the input
features. While the Dense-NN employs well-known physical observables as the input features,
the SPA-NET classifier uses event embedding vectors. These vectors are generated using all
the information in the event, including both Higgs and background jets. Even though the
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Classifier ACC AUC

Dense-NN with min-AR pairing  0.865 + 0.001 0.938 4+ 0.001
Dense-NN with SPA-NET pairing 0.876 +0.001 0.946 + 0.001
SPA-NET 0.894 +0.002 0.961 +0.001

Table 3. The classification performance of different neural network classifiers. The ACC and AUC
are evaluated based on 10 trainings.
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Figure 5. The variance ratio of the first ten principal components in resonant analysis.

event embedding vector cannot be readily interpreted as traditional physical observables,
it is found to be better suited for the event classification task. To understand the physical
information encoded in these event embedding vectors, further analysis is needed to find
out the relationship between the high-level physical observables and the components of the
event embedding vectors.

To better understand the embedding vectors, we have performed the Principal Component
Analysis (PCA), which uses an orthogonal linear transformation that transforms the data
to a new basis. (The PCA class from the scikit-learn [46] package is used.) In the new
basis, the components are ordered by their variance. Figure 5 shows the variance importance
for the first 10 principal components. The first three components can explain about 60%
of the total variance. This indicates that these components capture significant information
from the event embedding vectors. Therefore, in the following analysis, we employ only
these first three principal components.

To find the correlation between the first three principal components and selected Dense-
NN input features, we calculated the correlation coefficients, with the results shown in
figure 6. The features such as Higgs candidates’ pr, AR, di-Higgs system’s péﬂh, and mpy have
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Figure 6. The correlation coefficients between the first three principal components and high-
level observables.

higher correlation coefficients with the principal components. This suggests that the event
embedding vectors indeed contain important and meaningful physical information. Also, the
transformer block in SPA-NET can learn and extract relevant physical information from the
input features and encode it into event embedding vectors.

Even though there is a high correlation between the embedding vector and high-level
observables, the better training results of SPA-NET imply that the embedding vector contains
additional information. This information might not correspond to the familiar high-level
physical parameters, which nonetheless proves effective for the classification task. These
findings highlight the fact that the SPA-NET can extract the relevant physical information
from the input data efficiently. In addition, the flexibility of SPA-NET allows it to construct
more suitable variables for the classification task. As a consequence, the training performance
exceeds that of utilizing only well-known physical parameters.

To obtain the upper limits on the cross-section of resonant Higgs boson pair production,
we use the reconstructed myy, distribution. From the binned my,, distribution, we can obtain
the likelihood function L, which consists of a product of Poisson distributions for the number
of events in each bin.

The signal strength p is chosen as the parameter of interest (POI). The profile likelihood
ratio takes the following form:

_ L(p)
2AIn L(y) = —21n (L(ﬂ)) , (5.4)
where [i is the maximum likelihood estimate of y. The upper limit on the signal strength is
computed by the package pyhf [47, 48], which is based on the CLgs method [49]. The POI
is excluded at the 95% CL when CLg is less than 0.05. Then we can convert the results
to the upper limit of the cross-section.

In setting the upper limit, we consider a luminosity of £ = 300fb~! for the 14-TeV
LHC. Since the kinematics of the 13-TeV and 14-TeV samples are similar, we can scale
the cross-sections to those of the 14-TeV samples. Figure 7 shows the upper limits on the
resonant Higgs pair production as a function of my for different selection methods. While
all methods give similar results in the high resonance region, the SPA-NET selection has
superior performance, providing the most stringent constraints throughout the considered
mass range. The Dense-NN selection methods give higher upper limits than SPA-NET, and
the cut-based selection methods give the worst results. Specifically, SPA-NET selection
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Figure 7. The upper limit on the cross-section of resonant di-Higg production for different my.

enables us to establish cross-section upper limits that are 10% to 45% stronger compared
to Dense-NN with min-AR pairing.

Figure 8 shows the invariant mass my,, distributions using various selection methods. In
the high-mass region, the Dense-NN and SPA-NET selection methods let more background and
signal events pass. Consequently, the results are similar to those obtained by the cut-based
selection. In the low-mass region, the SPA-NET selection method can cut more background
events, which accounts for why the SPA-NET selection achieves more stringent upper limits
in this specific mass range.

6 Higgs self-coupling constraints

In this section, our signal events consist of non-resonant Higgs boson pairs with different Higgs
self-coupling scale factor k). Similar to the analysis on resonant production, we compare
the cut-based method with two distinct neural network classifiers, the Dense-NN and the
SPA-NET, which are used to identify candidate signal events. We will show that the SPA-NET
architecture is better suited for the event classification task, and the improved classification
results can yield stronger constraints on the coupling scale factor k.

6.1 Event selection in non-resonant analysis

6.1.1 Cut-based selection

The cut-based event selection methods are similar to that of the resonant analysis. In the
non-resonant analysis, we utilize the min-AR and SPA-NET pairing methods. The high-level
physical variables of two Higgs boson candidates are used in subsequent selection steps
and analysis.
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Figure 8. The invariant mass my; distribution for the cut-based selection with SPA-NET pairing
(blue dotted bins), the Dense-NN with SPA-NET pairing (orange dashed bins), and the SPA-NET
selection (green solid bins). The number of events is normalized to the target luminosity £ = 300 bt
Other pairing methods would give similar results to the corresponding selection method with Spa-

NET pairing.

To further reduce the multijet background, we apply a cut on the pseudorapidity difference
between the two Higgs candidates |Anpy| < 1.5. To reduce the ¢t background, we employ the
top veto cut. We compute the quantity Xy, corresponding to different possible top quark
candidates. An event is vetoed if any of its Xyy; is less than 1.5.

Finally, events with X, < 1.6 are considered as in the signal region (see eq. (5.2) for
the definition of Xp;,). Those events would be used to determine the Higgs self-coupling

constraints.

6.1.2 Dense-NN selection

The signal samples are non-resonant samples with different k) values. The network’s input
features are summarized in table 4, as inspired by ref. [18]. To obtain these input features,
the Higgs pairing needs to be determined first. We use the min-AR pairing method and the

— 14 —



Reconstructed objects Variables used for training #
Higgs candidate (pr, 7, ¢, M) 8
Jet AR(]l,jg) 2
Missing transverse momentum EMiss | g(piss) 2
Leptons Ne, Ny, 2
b-tagging Boolean for j; € h‘f‘:’g‘d 4
Di-Higgs system pﬁfh, Mhh 2
Self coupling K 1

Table 4. Input variables for the dense neural network in the non-resonant analysis.

SPA-NET pairing method to construct the Higgs candidates and generate two separate training
datasets, which are then used to train two different Dense-NN classifiers. For training, we set
kx=[-5,-3,-1,1,2,3,5,7,9,12] and generate 9,000 samples for each value in the list. For
simplicity, we do not generate samples across the full range [—10, 15] mentioned in section 2.1,
as samples away from the boundaries do not improve the Dense-NN’s performance in the k)
constraint setting. For background samples, since they lack specific k) information for the
input feature, a k) value is randomly chosen from the above list. We use the same sizes of
signal and background samples as the scheme given in table 1 in the neural network training.

For testing, the k) input is scanned over the full range, and the average of outputs is
utilized as the final signal score pgignal. An event is classified as a signal if its pgignal is larger
than py,, which is determined by maximizing the sensitivity S/v/B on the x) = 1 sample.

6.1.3 Spa-Net selection

Here we utilize SPA-NET to perform both the jet assignment and signal/background clas-
sification tasks. The input data contains information about the reconstructed jets and the
global event features. SPA-NET would output both the jet pairing and the type of the
events (signal vs. background). In contrast to the Dense-NN classifier, the key advantage
is that SPA-NET can process the jet-level information and can preserve the permutation
symmetry inherent in the problem.

The input features contain a list of jets, where each jet is represented by its 4-component
vector (pr,n, ¢, m) as well as a Boolean b-tag. Additionally, we input the self-coupling scale
factor k) as the global feature of each event. The sample preparation and testing steps follow
the same procedure as described for the Dense-NN case in the previous section.

6.2 Non-resonant analysis results

To obtain the high-level physical observables for cut-based selection and Dense-NN training,
we need to construct the Higgs boson candidates with different jet assignment algorithms.
Figure 9 shows the pairing efficiency of the two jet pairing methods: min-AR and SPA-NET.
Both methods exhibit their best performance around k) = 2. For the min-AR method,
the pairing efficiency ranges from 40% to 80% while for SPA-NET the pairing efficiency
ranges from 70% to 90%. Therefore, the SPA-NET pairing method outperforms the min-AR
method for all coupling values. Figure 10 shows the selection efficiency for the cut-based
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Figure 9. The pairing performance for different ) samples. The SPA-NET is trained on pairing and
classification tasks at the same time.

Classifier ACC AUC

Dense-NN with min-AR pairing  0.799 £ 0.011  0.881 £+ 0.012
Dense-NN with SPA-NET pairing 0.803 +0.004  0.884 + 0.004
SPA-NET 0.828 £0.002 0.911 4+ 0.001

Table 5. The classification performance of different selection methods. The ACC and AUC are
evaluated based on 10 trainings.

selection using different pairing methods. The curves of the selection efficiency are similar to
the ones of pairing efficiency, meaning that the selection efficiency and the pairing results
are highly correlated.

In table 5, we present the training results for the classifiers. The Dense-NN classifiers
perform similarly for both pairing methods, while the SPA-NET classifier performs best.
To better understand the event embedding vectors and find out the relationship between
the input features of Dense-NN and those of SPA-NET, we perform a similar analysis as
in the resonant case.

First, we performed the PCA on the event embedding vectors. Figure 11 shows the
variance importance for the first 10 principal components, with the first three components
being able to explain about 50% of the total variance. Since these components capture
significant information from the event embedding vectors, we focus on these first three
principal components in subsequent analysis.

Next, we compute the correlation coefficients between these principal components and
high-level physical observables. The results are shown in figure 12. The features such as

,16,



1071 5
1 ===+ Cut-based with min-AR pairing
~ Cut-based with SPA-NET pairing

>
O
c
Q2
S
=
0 10-2 1
c ]
o
S
O
Q
)
[92]

10_3 T T T T T T

-10 -5 0 5 10 15
Ka
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Figure 12. The correlation coeflficients between the first three principal components and high-
level observables.

Expected Constraints
POI Signal strength p Self-coupling

S/B selection Lower Upper Ax) Lower Upper Ak
Cut-based with min-AR pairing —3.30 10.38 13.68 —3.27 10.33 13.60
Cut-based with SPA-NET pairing —3.58 10.47 14.056 —3.55 10.43 13.98
Dense-NN with min-AR pairing —1.44  8.49 9.93 —144 849 9.93
Dense-NN with SPA-NET pairing —1.72 8.94 10.66 —1.72 8.99 10.71
SPA-NET selection —1.57 749 9.06 —1.56 7.57 9.13

Table 6. Constraints on y using different selection methods. We consider a luminosity of £ = 300 fb™*
for the 14-TeV LHC.

Higgs candidates’ pr, AR, di-Higgs system’s p%h, and mp;, have higher correlation coefficients
with the principal components. These results are similar to the resonant case. These findings
suggest that the event embedding vectors indeed contain meaningful physical information.
Moreover, the flexibility of SPA-NET enables it to explore beyond the familiar physical
parameters, thereby allowing SPA-NET to obtain superior performance compared to the
traditional Dense-NN structure in classification tasks.

For the k) constraints setting, we consider a luminosity of £ = 300fb~! and use the
14-TeV cross-sections. Since the kinematics of the 13-TeV and 14-TeV samples are similar,
we can scale the cross-sections to those of the 14-TeV samples.

Similar to the resonant analysis, to obtain constraints on the Higgs self-coupling scale
factor k), we use the reconstructed myy, distribution, from which we compute the likelihood
function L consisting of a product of Poisson distributions for the number of events in each
bin. The signal strength p is chosen as the POI. The values of the coupling x) are excluded
at the 95% CL if the predicted cross-section of the signal model with that configuration is
excluded with CLgs < 0.05. Alternatively, we can obtain the exclusion limit by using the
profile likelihood with the coupling k) as POI. A scan of the profile likelihood ratio is taken
as a function of the coupling, and from this, we can set the 1.960-level constraints.

When using the signal strength p as the POI, figure 13 displays the upper limits of
the hh cross-section as a function of k). The dip of the curves around k) = 2.45 is due
to the complete destructive interference [50]. On the other hand, when using k) as the
POI, the profile likelihood ratio scan for x) is shown in figure 14. All results are presented
in table 6. The SPA-NET classifier shows a significant improvement in the upper bound
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Figure 13. The upper limits of the cross-section with different ). The theory prediction is the
cross-section computed from MadGraph5_aMC@NLO. The coupling ) with the cross-section greater
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of the k) constraints. Regardless of the selected POI, the SPA-NET classifier provides the
strongest constraints on . When using p (ky) as the POI, values of k) beyond [—1.57,7.49]
([-1.56,7.57]) would be excluded at the 95% CL (1.960) level.

To achieve similar performance using the min-AR Dense-NN classifier, the luminosity
would need to be scaled to £ ~ 400fb~!. In this sense, the SPA-NET classifier offers a
luminosity gain of £ = 100fb~!. These results demonstrate that the SPA-NET classifier
outperforms other methods in constraining Higgs self-coupling scale factor xj.

7 Conclusions

In this paper, we have utilized a novel deep neural network architecture called SPA-NET
to improve the analysis for di-Higgs events in the 4b final state. By comparing SPA-NET
with the traditional cut-based method, we have shown its better pairing efficiency in both
resonant and non-resonant scenarios. Moreover, SPA-NET also outperforms the Dense-NN
classifier in the classification task.

At the LHC with a 14-TeV C.M. energy and an integrated luminosity of 300 fb~!, Spa-
NET selection allows us to establish 95% C.L. cross-section upper limits in resonant analysis
that are 10% to 45% stronger compared to Dense-NN with min-AR pairing. In non-resonant
analysis, the SPA-NET selection has provided 9% stronger bounds on k) couplings when
compared to the baseline method, the min-AR Dense-NN selection. To achieve similar
performance using the min-AR Dense-NN selection, the luminosity would need to be scaled
to £ = 400fb~!. Therefore, the SPA-NET selection offers a luminosity gain of £ = 100fb~!.

The key difference between Dense-NN and SPA-NET classifiers is in the input features. The
SPA-NET classifier uses the embedding vectors as its input features. We have demonstrated
that embedding vectors are related to high-level physical observables and they can capture the
physical information from the events. This feature makes the embedding vectors well-suited
for event classification tasks.

Our current work focuses primarily on the efficacy of SPA-NET in the di-Higgs analysis.
However, we acknowledge the potential of alternative architectures such as Deep Sets [51]. A
possible research direction is to compare the performance of Deep Sets with that of SPA-NET
and traditional Dense-NN models. This could potentially shed more light on the relative
contributions of jet permutation invariance and particle label symmetries and explore the
impact of different input features. This analysis would deepen our understanding of the
underlying mechanisms of neural network architectures in physics analyses.

In conclusion, our work highlights the remarkable potential of SPA-NET in di-Higgs
event analysis. Through the superior performance in both jet pairing and classification
tasks, SPA-NET improves upper limits on production cross-sections and Higgs self-couplings.
Moreover, SPA-NET has been proven to be not biased on simulator-specific information [10],
suggesting its potential applicability to experiments. Beyond Higgs physics, the methodologies
developed here offer a promising approach for various analyses suffering from complex pairing
tasks, paving the way for future advancements in particle physics research.

Data and code availability. The training and testing datasets used in this study are
publicly available on Zenodo [52]. The code used for SPA-NET training in this paper is
accessible on GitHub [53].
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Parameter Resonant Non-resonant

min-AR  SPA-NET | min-AR SPA-NET
Learning rate 0.000227 0.000262 | 0.00495  0.000948
Batch Size 512 512 512 512
Hidden Dimensionality | 256 256 256 256
Layer Count 5 5 3 2

Table 7. The hyperparameters used in Dense-NN training. The results of different pairing methods
are presented.

Parameter Resonant | Non-resonant
Learning Rate 0.00049 0.00659
Training Epochs 50 50
Batch Size 2048 2048
Dropout 0.061 0.0059
Lo Gradient Clipping 0.445 0.425

Lo Penalty 0.000382 | 0.000374
Hidden Dimensionality | 256 32
Central Encoder Count | 8 8
Branch Encoder Count | 4 2
Classification Layers 1 1
Assignment Loss Scale 1 1
Classification Loss Scale | 1 1

Table 8. The hyperparameters used in SPA-NET training.
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A Hyperparameters

The neural network hyperparameters are optimized by the Optuna hyperparameter optimiza-
tion package. Table 7 and table 8 provide the hyperparameters utilized in the Dense-NN
and SPA-NET training, respectively.
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