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We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in qua-

sicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a

free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their

evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion,

emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of

semicoherent interfaces and dislocation kinematics are given.
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I. INTRODUCTION

Quasicrystals (QCs) are aperiodic yet ordered arrange-

ments that lack translational symmetry but still possess

rotational symmetry. They exhibit distinctive, discrete diffrac-

tion patterns, which have been instrumental to their discovery

[1,2] and detection in both synthetic and natural materials

[3–6]. QCs exhibit exotic features such as low friction and

thermal conductivity, nonstick surface properties, and peculiar

electronic properties [7,8]. Importantly, quasicrystalline order

can be found in various systems, spanning from solid-state

materials to soft matter [9–15]. Moreover, QCs are intimately

related to mathematical tiling concepts explored well before

their discovery in actual materials [16,17] and emerge in more

exotic systems such as vibrating (macroscopic) granular ma-

terials [18] and quantum phase transitions [19].

QCs can be constructed via different procedures from a

periodic hyperlattice [20,21]. Via the strip-projection method,

for instance, one considers the hyperlattice points within two

parallel (flat) hypersurfaces (a hyperstrip) oriented with an

irrational slope with respect to the hyperlattice orientations.

The aperiodic structure is obtained by projecting the lattice

positions on one of these hypersurfaces. A classic exam-

ple is the 1D aperiodic arrangement corresponding to the

Fibonacci sequence constructed from a 2D square lattice with

this method [22]. Similarly, a 2D tenfold QC [23] or the iconic

3D icosahedral QC [1] can be constructed from periodic lat-

tices in 4D and 6D hyperspaces, respectively.
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A natural description leveraging discrete diffraction dia-

grams, which is thus valid for both periodic crystals and QCs

[24], is obtained via a smooth, dimensionless density field

ψ ≡ ψ (r) expanded in density waves [20,25]

ψ = ψ0 +

N

n=1

ηneiGn·r + c.c., (1)

with i the imaginary unit, c.c. the complex conjugate, and

{Gn} the discrete set of reciprocal-space vectors, at which

diffraction peaks are expected [26]. The complex amplitude

functions, ηn = φneiθn , are slowly varying (hydrodynamic)

fields, and ψ0 is the average density, which here is set to

zero for simplicity. The amplitudes encode lattice deforma-

tions through their phases θn, defined differently for periodic

crystals and QCs, as discussed in the following. Amplitudes

remain slowly varying for small deformations, i.e., in elastic

regimes and in the presence of isolated defects [27].

The density-wave representation (1) links directly to

Landau’s theories of phase transitions through free energy

functionals F [ψ]. Free energies for bulk QCs have been

discussed in seminal works [28,29]. Approaches like the

Swift-Hohenberg model [30,31], the phase field crystal model

(PFC) [32], as well as the classical density functional theory

[33,34], are based on free energies for smooth density fields

where deformations and interfaces can also be described.

Though primarily applied to ordered and periodic systems,

they have yielded remarkable results for QCs too [35–40].

These methods, however, focus on microscopic length scales,

preventing the description of large-scale systems and mechan-

ical properties approaching continuum limits.

In this work, we introduce and demonstrate a self-

consistent mesoscale field theory for QCs. This description

focuses on complex amplitudes {ηn}, building on coarse-

graining concepts introduced for microscopic densities in

crystalline systems [27,41,42]. Accordingly, it allows one to

describe macroscopic aspects, such as different phases and
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continuum elasticity, while naturally retaining microscopic

details, such as the symmetry of QCs and its impact on

dislocation nucleation, topological charge, and mechanical

properties. Although we discuss minimal settings regarding

simple QC symmetries and dynamical regimes, the formula-

tion we introduce here can be extended and applied to more

complex quasicrystalline systems and refined elasticity mod-

els. Still, we explicitly show that the proposed theory already

provides predictions concerning defect arrangements in QCs.

We present a free energy for the amplitudes representing the

quasicrystalline order in Sec. II. In Sec. III, we discuss how

such free energy naturally supports the description of dislo-

cations in QCs. Details concerning the underlying elasticity

theory are given in Sec. IV. We then apply the resulting theory,

first to the characterization of dislocation arrangements at a

small-angle grain boundary in Sec. V, clarifying a scenario

that significantly deviates from periodic crystals, and then to

the description of defect kinematics in Sec. VI. The main

conclusions are summarized in Sec. VII.

II. FREE ENERGY

We start with the Swift-Hohenberg energy functional used

in the classical PFC model [32],

Fψ =






A

2
ψ (q2 + ∇2)2ψ +

B

2
ψ2 +

C

3
ψ3 +

D

4
ψ4


dr,

(2)

with q controlling the characteristic wave number for mini-

mizers of Fψ (e.g., enforcing a periodicity of 2π/q for stripe

phases in 2D). For periodic crystals, a free energy func-

tional Fη depending on amplitudes η j can be derived using

a renormalization group approach or simply by expressing

ψ via the amplitude expansion (1) and integrating over the

unit cell [27,41]. It reads as

Fη,P =





⎡
⎣

N

n=1

A|Gnηn|
2 +

P

p=2

Bpζp

⎤
⎦ dr, (3)

with P = 4, Gn = ∇2 + 2iGn · ∇, and the polynomial term of

the energy density given by

ζ2 =


p,q

ηpηqδ0,Gp+Gq
= 2

N

n=1

|ηn|
2 = ,

ζ3 =


p,q,r

ηpηqηrδ0,Gp+Gq+Gr
,

ζ4 =


p,q,r,s

ηpηqηrηsδ0,Gp+Gq+Gr+Gs
, (4)

where the summations are from −N to +N excluding zero,

η−n = η∗
n , and G−n = −Gn. Explicit expressions for ζl for

various crystal symmetries can be found in Ref. [27]. We

remark the presence of the Kronecker delta in these terms,

meaning that products of the l amplitudes and their com-

plex conjugate are included if and only if the vector sum of

the corresponding reciprocal-space vectors (Gn) is zero. This

is known as resonance condition, where the corresponding

product of Fourier modes loses the microscopic periodicity

and, therefore, does not cancel out when integrated over the

unit cell.

QCs are characterized by aperiodic lattices in direct and

reciprocal space. For instance, 2D decagonal [D, shown in

Fig. 1(a)] and 3D icosahedral (I) QCs are well described by

the following sets of reciprocal-space vectors [1,23]:

GD

n = [cos(2πn/5), sin(2πn/5)],

GI

n = I0[cos(2πn/5), sin(2πn/5), 1/2],

GI

6 = [0, 0, 1], (5)

for 1 6 n 6 5 with I0 = 2/
√

5. Evidently, these sets of vec-

tors do not form periodic reciprocal lattices, as they feature

more independent elements than the dimensionality of the sys-

tem. These distinctive characteristics introduce two additional

aspects concerning Fη: (i) its original derivation relies on the

existence of a well-defined unit cell, which does not apply to

QCs; (ii) there is no set of three or four vectors Gn as defined

in Eq. (5) for which the resonance conditions in Eq. (4) are

realized, meaning that the QC is not a stable phase according

to the energy defined by Eqs. (3) and (4).

While a unit cell cannot be defined for QCs, quasi-unit-

cell descriptions [43] featuring overlapping local motifs were

proposed and verified experimentally [44]. Accordingly, we

found that averaging the microscopic density ψ above a char-

acteristic average width  results in a uniform field, justifying

the coarse-graining underlying Eq. (3) for QCs too. In particu-

lar, a coarse-grained density field ψ can be evaluated by the

Gaussian convolution in 2D [45,46],

ψ(r) =


dr ψ (r)

2πα2
exp


− (r − r)2

2α2


, (6)

where α is the coarse-graining length. Figure 1(b) shows

the result of applying Eq. (6) to the density of a decagonal

QC for different values of α. For α ∼  = 12.5932, relative

changes in the macroscopic density decrease by three orders

of magnitudes. It thus represents a suitable coarsening length

for decagonal QCs. Interestingly, this value corresponds to

the distance from the “center” of the QC to ten symmetric

density maxima, as shown in Fig. 1(c) (see red dashed line).

The existence of such a (finite) coarsening length justifies the

construction of free energy for the amplitudes in analogy to

previous works on periodic crystals [27]. Moreover, this free

energy is further shown below to be consistent with several

aspects of QCs that are accessible from other theories. We re-

mark that lengths below  value cannot be described well by

coarse-grained approaches, like our framework. On the other

hand, no upper bound exists for the validity of the proposed

approach.

The aforementioned issue concerning resonance conditions

can be overcome by increasing the degree of the free energy

polynomial (P). This concept traces back to the first theo-

ries of QCs for bulk systems [28,29]. For the decagonal or

icosahedral quasicrystal, it is enough to consider P = 6, which

corresponds to retaining the next two higher-order terms in the

polynomial entering the Swift-Hohenberg energy functional.

We remark that the highest order must be even to ensure the

existence of a global minimum. Explicitly, the free energy
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FIG. 1. Decagonal QC phase as minimizer of the free energy (7). (a) Tiling reconstructed from the density ψ as from Eq. (1) with Gn = GD

n

and constant, equal (real) amplitudes [shown explicitly in panel (b) for α = 0]. See also the Appendix A for further details on how the tiling is

constructed. (b) Plots of the coarse-grained density ψ for different values of the coarsening length α in Eq. (6). The red circle has a radius

of  = 12.5932. (c) Plots of the normalized density ψ̄ = ψ/ψmax along the directions x = 0 (blue) and y = 0 (yellow). The density peak

at y ∼  is highlighted by the red dashed line. (d) Free energy density for different phases varying B2 with B4 = 0, B5 = −100, B6 = 0.1

(independent of A). The decagonal QC phase results the minimizer of the free energy (7) for −0.592 . B2 . 0.026.

then results

Fη,6 =






N

n=1

A|Gnηn|
2 + B2ζ2 + B3ζ3 + B4ζ4 + B5ζ5

+ B6ζ6


dr, (7)

with ζ5 and ζ6 obtained by extending the sums in Eq. (4) to

products of five and six amplitudes, respectively. For decago-

nal QCs, the newly introduced terms read

ζD

5 =

⎛
⎝

5

j=1

η j

⎞
⎠ + c.c.,

ζD

6 = 720


i
j>i
k> j

|ηi|
2|η j |

2|ηk|
2 + 180



i
j =i

|ηi|
4|η j |

2

+ 20


i

|ηi|
6. (8)

For icosahedral QCs, there are no combinations of three or five

GI

n with zero sum, meaning that ζI

3 = ζI

5 = 0. The explicit

definition of ζ I
6 follows by considering the expression for ζ D

6

in Eq. (8) with an additional term reading (
6

j=1 η j ) + c.c.,

taking into account that the sum of the six vectors GI

n is zero.

Although not specifically addressed here, we expect that for

higher polynomial degrees P, the proposed free energy may

describe even more complex QC symmetries as stable phases.

Figure 1(d) shows that a decagonal QC phase mini-

mizes the free energy (7) for some parameters. We vary B2,

corresponding to a phenomenological temperature parameter

in analogy with classical PFC models [32]. Consistently, for

large B2, disordered/liquid phases are favored, while first QCs

and then stripe phases minimize the free energy when de-

creasing B2. By considering ψ0 = 0 and spatially dependent,

the theory can be straightforwardly extended to admit phase

coexistence [27,47], whose discussion is however beyond the

scope of the present work.

In its simplest form, the dynamics of the order parameter

in the PFC model is given by the conservative evolution law

∂ψ

∂t
= ∇2 δFψ

δψ
. (9)

Under similar assumptions underlying the derivation of

Fη,P [27], the evolution law for amplitudes approximating

Eq. (9) is

∂η j

∂t
= −|G j |

2 δFη,P

δη∗
j

= −|G j |
2

⎛
⎝AG2

nηn +

P

p=2

Bp∂η∗
n
ζp

⎞
⎠,

(10)

which describes the evolution of a QC similarly to peri-

odic crystals. An additional timescale to properly account

for elastic relaxation may also be considered, leveraging the

hydrodynamic formulation introduced in Ref. [48] that is

compatible with the proposed free energy. We expect this

extension to be relevant for fast dynamics and theoretical

analysis of competitive relaxation mechanisms. However, fo-

cusing here on assessing the fundamental aspects of the

proposed theory, we refrain from considering such an exten-

sion while targeting it in future works. Numerical examples
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are reported in the next sections, solving Eq. (10) via a

standard Fourier pseudospectral method for spatial discretiza-

tion [27]. Further details can be found in Appendix B. The

datasets generated and analyzed during the current study are

openly available in Ref. [49].

III. GROWTH AND DISLOCATIONS

The free energy, Eq. (7), and the corresponding dynamics,

Eq. (10), enable the study of out-of-equilibrium settings, their

evolution, and the deformation of QCs. Moreover, deforma-

tions and defects in QCs can be fully characterized via the

phase of the complex amplitudes {ηn}.

We recall that, unlike periodic crystals, the full description

of the order realized in QCs requires the definition of a peri-

odic lattice in a higher-dimensional space [20,21]. Namely,

a QC in 2D is represented by a periodic hyperlattice L in

a 4D hyperspace with coordinates r = r|| ⊕ r⊥, with r|| = r

the coordinates the so-called parallel space (|| = ), the

physical space of definition of the quasicrystal, and r⊥ the co-

ordinates of the so-called space (⊥) [22], required to define

L in addition to ||.

Elastic deformation of L can be generally described by

the displacement field U = u ⊕ w with u corresponding

to the displacements in ||, also called phonons, and w being

the displacements in ⊥, called phasons. From the deforma-

tion of the periodic density ψ (r − U) of L, the QC density

ψ = ψ (r)|r⊥=0 results

ψ =

N

n=1

φne−iθn

  
ηn

eiGn·r + c.c.,

θn = arg(ηn) = G||
n · u + G⊥

n · w, (11)

with G||
n = Gn, and G⊥

n can be constructed from G||
n accord-

ing to the QC rotational symmetry. Following Refs. [20,25],

for the decagonal QC we set G⊥
n = aG

||

(3n mod 5)
with a =

(1 +
√

5)/2. A refresher of the construction leading to

the definition of direct- and reciprocal-space vectors for

decagonal quasicrystals is reported in Appendix C for

completeness.

Note that the phase θn depends on both deformations u and

w. Dislocations in QCs inherently induce both phononic and

phasonic deformations [20,25] as they correspond to topo-

logical defects in the phase θn with the topological charge

given by


dθn = −2πsn = −(G||
n · b|| + G⊥

n · b⊥), (12)

sn the winding (integer) number, b|| =


du and b⊥ =


dw

Burgers vectors in || and ⊥, respectively.

An out-of-equilibrium system is illustrated in Fig. 2 by

a numerical simulation. Slightly misoriented quasicrystalline

seeds (i.e., rotated by some small angle β) are considered;

see Fig. 2(a). Using parameters that favor a QC phase, the

initial seeds grow and eventually merge with the formation

of topological defects [Fig. 2(b)], as indicated by localized

regions where  decreases, pointing to a loss of quasicrys-

talline order. Figures 2(c) and 2(d) show the reconstructed

density ψ and the tiling around a defect, deviating from the

FIG. 2. Growth of QCs seeds and defect nucleation. (a) Rotation

field ω at t = 0 initialized via amplitudes ηn = φnexp(i(M(β )G||
n −

G||
n ) · r) with M(β ) the standard rotation matrix [27] and |β| 6 5◦.

Grains with a small rotation are illustrated by dashed lines. (b) Rep-

resentative stage of growth, illustrated by . (c) and (d) ψ and tiling

in the region marked by the black square in panel (b) with a (yellow)

isoline at /max = 0.7 showing the defect location. Parameters as

in Fig. 1(d) with B2 = 0.02 and A = 1.

bulk, unperturbed phase (see Fig. 1). The proposed framework

thus allows for the description of not only bulk systems but

also complex scenarios in out-of-equilibrium settings, includ-

ing interfaces, deformations, and defects. Note that  also

enables easy detection of defects in QCs, not immediately

accessible from the density or tiling considered by other

theories.

IV. ELASTICITY

A self-consistent elasticity theory for QCs follows upon

the deformation of ψ . The elastic energy, including all terms

depending on deformation gradients, is

E =


e(∇u, ∇w) dr =


A

N

n=1

|Gnηn|
2 dr, (13)

as can be obtained by considering the polar representation of

complex amplitudes, with phase θn defined in Eq. (11), in the

free energy Fη,P. The stress fields can be computed from {ηn}

by taking the variational of E with respect to independent vari-

ations of the displacements, δE =


(σ
||

i j∂ jδui + σ⊥
i j ∂ jδwi ) dr,

where summation over repeated indices is implied. In terms

of amplitudes, δE becomes

δE = 4A

4

n=0


dr Im[(G∗

nη∗
n )(Qn, jηn)](∂ jδθn). (14)

See also Appendix D for its step-by-step derivation. We re-

mark that the expression above is general and, in analogy

with the amplitude expansions (1), it holds for both periodic
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crystals and QCs. For the latter, using Eq. (11) to expand the

amplitudes’ phase θn, we obtain

δE = 4A

4

n=0


dr Im[(G∗

nη∗
n )(Qn, jηn)](G

||

n,i∂ jδui

+ G⊥
n,i∂ jδwi ), (15)

where δu and δw are the infinitesimal variations of the

displacements in || and ⊥ subspace, respectively. Thus,

following from the definition of stress fields σ
||

i j = δF/δ(∂ jui )

and σ⊥
i j = δF/δ(∂ jwi ), we obtain

σ S
i j = 4A

N

n=1

GS
n,iIm[(G∗

nη∗
n )((∂ j + iG

||

n, j )ηn)]

≈ 8 φ2
0A

N

n=1

GS
n,iG

||

n, jG
||

n,k
∂kθn, (16)

with S = (||, ⊥) and φ0 the (real) value of amplitudes in the

bulk. The lowest order term reduces to the linear stress-strain

relation.

For small distortions, the elastic energy density of QCs

reduces to the quadratic form [50],

2e(∇u, ∇w) =Ci jklεi jεkl + Ki jkl∂ jwi∂lwk

+ Ri jklεi j∂lwk + R
i jkl∂ jwiεkl , (17)

with εi j = 1
2

(∂iu j + ∂ jui ) ≡ ε
||

i j and ∂iw j ≡ ε⊥
i j the phononic

and phasonic strains, respectively. The resulting constitutive

relations are

σ
||

i j = Ci jklε
||

kl
+ Ri jklε

⊥
kl ,

σ⊥
i j = R

i jklε
||

kl
+ Ki jklε

⊥
kl . (18)

By comparing these expressions for the stress field or the

elastic energy to their counterparts depending on amplitudes,

Eqs. (16) and (17), the elastic constants C, K, and R = RT

thus result

Ci jkl = 8Aφ2
0

N

n=1

G
||

n,iG
||

n, jG
||

n,k
G

||

n,l
,

Ri jkl = 16Aφ2
0

N

n=1

G
||

n,iG
||

n, jG
||

n,k
G⊥

n,l ,

Ki jkl = 16Aφ2
0

N

n=1

G
||

n,iG
⊥
n, jG

||

n,k
G⊥

n,l , (19)

consistent with known results for QCs [25,50]. For instance,

for decagonal QCs, Ci jkl = λδi jδkl + 2μ(δikδ jl + δilδ jk ) with

μ = λ = 5Aφ2
0 (isotropic, with a ratio close to experi-

ments, e.g., for Al–Ni–Co QCs [51]), Ki jkl = K1δikδ jl +

K2(δi jδkl − δilδ jk ) with K1 = 10(3 +
√

5)Aφ2
0 and K2 =

0, and R1111 = R1122 = −R2211 = −R2222 = R1221 = R2121 =

−R1212 = −R2112 = R = 5(1 +
√

5)Aφ2
0 , and 0 elsewhere

[50]. Additionally, inverting the expression of θn in Eq. (11)

allows us to determine directly phononic and phasonic strains

from a set of complex amplitudes extending the formalism

introduced in [42]. The corresponding equations are reported

in Appendix E.

Similarly to the classical PFC model, the considered for-

mulation shows limited control of the model parameter over

the elastic constants. We remark that an extended set of elastic

constants enter a more general elastic energy formulation

for QCs [52]. Furthermore, the proposed theory can be ex-

tended toward different elastic materials upon considering

more length scales in the differential operator in Eq. (7) [53]

or replacing it with the definition of a correlation function

(analogously to the so-called structural PFC model [54]).

Such extensions are indeed compatible with coarse-graining

and phase-stability concepts discussed in Sec. II, as well as

a description of defects and out-of-equilibrium scenarios pre-

sented in Sec. III.

With the quantities derived in this section, we may assess

the deformation of QCs described by amplitudes with known

results from continuum mechanics. For the latter, we can

consider the displacement field of a dislocation in an elasti-

cally isotropic QC from Ref. [55], its derivation to obtain the

analytic strain field, and then calculate the associated stress

field via Eq. (18). We refer to such stress field, explicitly re-

ported in Appendix F, as analytic, in contrast to the numerical

stress field computed from amplitudes via Eq. (16). We con-

sider in particular a dislocation dipole, with Burgers vectors

b|| = b⊥ = [0, ± 8
5
π sin( 4

5
π )]. This can be simulated by set-

ting displacement field in the initial condition for amplitudes

accordingly [27]. In Fig. 3, we show the numerical stress field

of one of these dislocations. Peculiar features observed for the

amplitude description of dislocations in crystals, such as an

inherent regularization of the elastic field at the dislocation

core [56,57] are observed here as well. Moreover, the com-

puted fields match almost perfectly the isolines corresponding

to the analytic stress produced by the same configuration in

the far field.

V. INSIGHTS ON SMALL-ANGLE GRAIN BOUNDARIES

The theory outlined in previous sections allows us to in-

spect nontrivial settings involving the interplay of growth and

dislocation nucleation. In particular, we highlight here the

description of defects and deformations during the growth

and impingement of two slightly misoriented QCs (rotated

±β), recently investigated in experiments [59]. A represen-

tative stage during growth is illustrated in Fig. 4(a). From

the phases θn, we can determine the (4D) Burgers vectors
b = b|| ⊕ b⊥. Defects with (five) different orientations form,

having two Burgers vector lengths |b1|
2 = 16

25
(5 −

√
5)π2

for the lowest-energy defects, and |b2|
2 = 24

25
(5 −

√
5)π2

for the second-lowest energy. Moreover, stress fields com-

puted via Eq. (16) are consistent with the ones obtained

by deriving analytic displacements [55] and multiplying by

elastic constants (19) for the same Burgers vectors (see also

Appendix F).

For periodic crystals, a straight semicoherent interface

hosting dislocations of the same kind is expected in the setting

of Fig. 4(a) (see, e.g., Ref. [60]). A significantly different

scenario thus emerges for QCs. Inherent phasonic deforma-

tions, absent in the initial rotation, are induced by defects

as described by Eq. (11). Moreover, a rotation by −3β in
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FIG. 3. Stress field of a dislocation in a decagonal QC. Numerical stress field components [Eq. (16), filled contour plot] are compared with

the analytic stress fields (reported in Appendix F, black isolines) for a dislocation with Burgers vectors b|| = b⊥ = [0, − 8

5
π sin( 4

5
π )]. Dashed

isolines correspond to negative values. Simulation parameters are set as in Fig. 2.

⊥ would be required to rotate the subspaces in a synchro-

nized manner; we recall that G⊥
n ∝ G

||

(3n mod 5)
. A || rotation

of the QCs thus introduces a geometric frustration, accom-

FIG. 4. Growth of QCs and semicoherent interfaces. (a) Rep-

resentative stage of the growth of two misoriented circular seeds

(β = ±4◦ set as in Fig. 2) with radius 4 and center-to-center dis-

tance of 9 along the y axis. (b) Growth as in (a) with an additional

rotation −3β in ⊥. Parameters as in Fig. 2. See also videos in the

Supplemental Material [58].

modated by the nucleation of defects of different kinds and

arranged over a more complex network [52]. For comparison,

Fig. 4(b) shows that a straight, semicoherent interface com-

posed of defects of the same kind is indeed obtained by the

additional −3β rotation in ⊥. However, this setting does not

correspond to a physical rotation of the QCs in ||, as it is

visible in the inset in Fig. 4(b), which deviates from a simple

rotation of the structure in Fig. 1(b). Due to such a nontrivial

phononic-phasonic deformation, the orientations of the QCs

are also varying in space and time, qualitatively reproducing

the evidence in [59], and nucleation of additional defects at the

surface occur at later stages, reminiscent of rearrangements

mediated by phasons [38,61].

VI. DEFECT KINEMATICS

Finally, we show that the proposed field theory also

captures self-consistently the driving force for disloca-

tion motion. Following the theoretical framework proposed

for crystals [62–64], we can track Burgers vector den-

sities BS for a dislocation at r0 via the zeros of ηn

corresponding to singularities in the phases θn. In partic-

ular, we may express BS as superposition of Dirac-delta

distributions δ(ηn),

B|| = b||δ(r − r0) = − 4π

N |b|||2

N

n=1

G||
n Dnδ(ηn),

B⊥ = b⊥δ(r − r0) = − 4π

Na2|b⊥|2

N

n=1

G⊥
n Dnδ(ηn), (20)

following from Eq. (12) upon contracting with GS
n .

Dn =
 jk

2i
∂ jη

∗
n∂kηn is the determinant of the coordinate
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transformation from r to [Re(ηn), Im(ηn)] [65]. BS and Dn

follow the continuity equations

∂t Dn + ∂ jJ
D
n, j = 0,

∂t B
S
i + ∂ jJ

B,S
i, j = 0, (21)

with current densities [66]

JD
n, j =  jkIm(∂tηn∂kη

∗
n ),

JB,S
i, j = bS

i v
S
j δ(r − r0), (22)

where vS is the dislocation velocity. Combining Eqs. (20) and

(22), we can determine a general expression for the disloca-

tion velocity in each subspace from JD
n and, thus, depending

on amplitudes {ηn} as well as their time evolution (N = 5

hereafter),

v
||

j =
2

5|b|||2

5

n=1

((b|| · G||
n )2 + (b|| · G||

n )(b⊥ · G⊥
n ))

JD
n, j

Dn


r=0

,

v
⊥
j =

2

5a2|b⊥|2

5

n=1

((b⊥ · G⊥
n )2+(b|| ·G||

n )(b⊥ ·G⊥
n ))

JD
n, j

Dn


r=0

.

(23)

As b⊥ · G⊥
n = 2π − b|| · G||

n [Eq. (12) with sn = 1], the defect

velocities in each subspace are not independent, but rather

constrained by

v|||b|||2 + v⊥a2|b⊥|2 =
8π2

5

5

n=1

JD
n

Dn

. (24)

Furthermore, the geometrical condition

1

|b|||2
((b|| · G||

n )2 + (b|| · G||
n )(b⊥ · G⊥

n ))

=
1

a2|b⊥|2
((b⊥ · G⊥

n )2 + (b|| · G||
n )(b⊥ · G⊥

n )), (25)

∀n ∈ {1, 2, ..., 5}, is sufficient for these velocities to be equal.

We note that having equal velocities in the two subspaces

has often been assumed in the modeling of dislocation mo-

tion in QCs [67]. Here, specific conditions are identified to

ensure or predict that this identity holds. In our numerical

experiments (e.g., Figs. 2 and 4), we observed the nucleation

of dislocations with the lowest and second-lowest energy, for

which |b|| ⊕ b⊥|2 = 16
25

(5 −
√

5)π2 and |b|| ⊕ b⊥|2 = 24
25

(5 −√
5)π2, respectively. For these dislocations, condition (25)

holds, meaning that dislocations nucleating at interfaces be-

tween misoriented or mismatched grains enjoy the property

v|| = v⊥. In this regime, from Eq. (24), we get an expression

for the unique defect velocity

v j =
8π2

5(|b|||2 + a2|b⊥|2)

5

n=1

JD
n, j

Dn

r=0 =
1

2

5

n=1

JD
n, j

Dn


r=0

,

(26)

where we used |b|||2 + a2|b⊥|2 = 16 π2/5 for the disloca-

tions in question. Evaluating the density current JD
n at r0

means evaluating ∂tηn|r=r0
≈ AG2ηn|r=r0

from Eq. (10) with

ζk|r=r0
= 0 due to amplitudes ηn vanishing at the core for

sn = 0 [64]. By approximating the singular part of the phase

θn with the isotropic vortex ansatz sn arctan(y/x) [62,63,68],

FIG. 5. Peach-Koehler force for selected dislocations in a

decagonal QC. (a) fPK from Eq. (30), generated by a dislocation at

the center of the panel on a test dislocation with opposite Burgers

vector. Direction (arrows) and magnitude (filled contour plot and

solid isolines) are obtained with the stress field computed from

amplitudes via Eq. (16) (Num.). Dashed isolines are obtained with

Eq. (18) exploiting analytic stress fields for dislocations reported in

Appendix F (Anl.). (b) Comparison between Num. (solid) and Anl.

(dashed) |fPK| varying the polar angle at a distance 5 from the

center of panel (a).

we get

JD
n, j

Dn


r=0

=
8A

sn

 jl G
||

n,l
G||

n,m∂mθn


r=0

=
8A

sn

 jl G
||

n,l
G||

n,m(G||
n,o∂muo + G⊥

n,o∂mwo)


r=0

, (27)

where we used Eq. (11) to express the phase in terms of

displacement fields. Then, we can rewrite Eq. (26) as

v j = 4A jl

5

n=1

1

sn

G
||

n,l
G||

n,m(G||
n,o∂muo + G⊥

n,o∂mwo)


r=0

= 4A jl


5

n=1

G||
n,m

sn


σ

||

lm
+


5

n=1

G⊥
n,m

sn


σ⊥

lm



r=0

. (28)

By evaluating the sums

5

n=1

G||
n,m

sn

=
5

4π
b||

m,

5

n=1

G⊥
n,m

sn

=
5a2

4π
b⊥

m, (29)

we finally obtain a Peach-Koehler (PK) type equation

vi = M f PK
i =

5A

π
i j (σ

||

jk
b

||

k
+ a2σ⊥

jkb⊥
k ), (30)

with M = 5A/π , retaining a dependence on both phononic

and phasonic deformation consistent with classical theories

[67,69].

An example of the PK force field evaluation is illustrated

in Fig. 5. We compute fPK acting one a test dislocation

with Burgers vector b|| = b⊥ = [0, 8
5
π sin( 4

5
π )] and that is

induced by stress field of an opposite-charged dislocation
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located at the origin. We report the result obtained by using

the stress field computed from {ηn} via Eq. (16) (numerical)

and, for comparison, the prediction exploiting analytic stress

field derived from the displacements in Ref. [55] (analytic);

see full expressions in Appendix F. Given a distribution of

dislocations, we can then compute the PK force field based

only on the symmetry of the QCs. Moreover, the compelling

agreement between the numerical and analytic force fields

further supports the consistency of the elasticity description

for QCs achieved in the proposed theory with continuum

mechanics while simultaneously capturing mesoscale aspects

like defect formation and interaction with no additional tuning

parameters.

VII. CONCLUSION

In summary, the proposed mesoscale field theory builds on

the density-wave description of QCs. It focuses on the slowly

varying complex amplitudes of the characteristic Fourier

modes of the microscopic density field. A free energy func-

tional for these amplitudes is introduced. This newly proposed

theory may be considered a mesoscale Landau theory for

phase transition in QCs, including mechanics. Elasticity and

dislocations, including phononic and phasonic deformations,

follow from the symmetry of the microscopic quasicrystalline

order and are shown to be consistent with classical continuum

mechanics results. Using this approach, we shed light on

the formation of semicoherent interfaces between misoriented

QCs. Dislocation kinematics is also shown to follow from

the proposed equation of motion for the amplitude. A model

closing the gap between micro- and macroscopic description

of QCs is thus established. We expect this theory to pave

the way for general mesoscale investigations of systems with

quasicrystalline order.
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APPENDIX A: TILING

To obtain the tiling shown in Figs. 1 and 2, we start

from the density field reconstructed from the amplitudes ac-

cording to Eq. (1). We numerically find all density maxima,

and we discard those under an arbitrary threshold. We found

that discarding maxima for which ψ/ψmax < 0.5 matches

other tiling representations of quasicrystals best (see, e.g.,

Ref. [38]). The coordinates of the density maxima remaining

after thresholding are then the coordinates of the vertices

we plot.

The length of the tile edge is once again arbitrary, as

the QC presents a distribution of interatomic distances with

multiple sharp peaks in noncommensurate positions. In our

description, a tiling matching those in literature, with edges

connecting most neighboring vertices and with no crossing

edges, is obtained by choosing an edge length l = 7.7 ± 0.1.

The same value was used for the relaxed QC in Fig. 1 and the

QC hosting defects in Fig. 2, resulting in broken edges for the

latter.

APPENDIX B: NUMERICAL METHOD

We numerically solve Eq. (10) for each amplitude ηn. The

first term on the right-hand side consists of an operator O

linear in the amplitude, while the second term is a nonlinear

polynomial N . We can thus rewrite it as

∂tηn = Oηn + N . (B1)

This equation is solved by a Fourier pseudospectral method

[27]. In brief, we may consider the (discrete) Fourier

transform of terms in Eq. (B1) and rewrite the equa-

tion for the coefficient of the Fourier modes. This results in

the equation

∂t [ηn]k = Ok[ηn]k + [ N ]k, (B2)

where [ηn]k is the Fourier transform of the amplitudes, Ok

is a linear term consisting of a simple algebraic expression

of the Fourier space coordinates k (for instance, [∇̂2ηn]k =

−|kn|
2[ηn]k), and [ N ]k the Fourier transform of N . Knowing

ηn at time t , and thus its Fourier transform as well as [ N ]k ,

the amplitudes at the next timestep t + t are given by the

following approximation:

[ηn]k (t + t ) ≈ [ηn]k (t )eOkt +
[ N ]k (t )

Ok

(eOkt − 1). (B3)

We remark that the linear term is exact, while the ap-

proximation follows from evaluating the nonlinear part. The

solution in real space is then obtained by an inverse Fourier

transform of [ηn]k . Our code is implemented in python,

and it exploits the established fast Fourier transform algo-

rithm FFTW, see also Ref. [57]. We use a timestep t =

1 and a uniform grid with ten mesh points per coarsening

length .

APPENDIX C: DEFINITIONS OF DIRECT-

AND RECIPROCAL-SPACE VECTORS FOR DECAGONAL

QUASICRYSTALS

Following seminal works for the decagonal quasicrystal

[25], we define five (four-dimensional) vectors bm belonging

to the hyperlattice L, and five vectors Gn belonging to its

reciprocal hyperlattice as

bm = b||
m ⊕ bb⊥

m, m = 0, ..., 4,

Gn = G||
n ⊕ aG⊥

n , n = 0, ..., 4, (C1)

where b||
m and b⊥

m are vectors in parallel and perpendicular

space, and G||
n and G⊥

n are vectors in their respective reciprocal

spaces, as introduced in Sec. III. The coefficients a, b allow

these vectors to have different norms. Owing to the symmetry

of decagonal QCs, the vectors in the parallel space (direct and
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reciprocal) are

b||
m = r[− sin(2πm/5), cos(2πm/5)],

G||
n = g[cos(2πn/5), sin(2πn/5)], (C2)

with r, g their respective lengths. The vectors in the perpen-

dicular space (direct and reciprocal) can be constructed by a

simple reindexing of those defined for the parallel space:

b⊥
m = b

||

3m, G⊥
n = G

||

3n. (C3)

We remark that, due to the periodicity of the sinusoids used

to construct the vectors in Eq. (C2), a modulo five opera-

tion is implied in all the indices in Eqs. (C2) and (C3), i.e.,

b
||

m+5i
= b||

m ∀i ∈ Z, and the same for the other vectors. In

order to determine the coefficients a, b, g, r, we can consider

a definition of phases following from Eq. (12):

θn−m = Gn ·bm

= gr(sin(2π (n − m)/5) + ab sin(6π (n − m)/5)).

(C4)

By imposing

θ1 =θ4 = gr(sin(2π/5) − ab sin(4π/5)) ≡ 0,

θ2 = −θ3 = gr(sin(4π/5) + ab sin(2π/5)) ≡ 2π , (C5)

which is not the unique choice but the one most commonly

considered in the literature, we get

ab =
1

2
(1 +

√
5),

gr =
2π

5


10 − 2

√
5. (C6)

We choose to take g = 1, meaning that the reciprocal lattice

vectors in parallel space have unit length, as usual in am-

plitude phase field crystal models [27]. We also take b = 1,

meaning that the direct lattice vectors have the same length in

both subspaces. Accordingly, a and r have well-defined values

determined by Eq. (C6) with g = b = 1.

APPENDIX D: ENERGY VARIATION

The elastic energy is given by Eq. (13). The differential

operator entering this equation can be written as

Gn = ∇2 + 2i(Gn · ∇ ) = ∂ j (∂ j + 2iGn, j ). (D1)

The variational of the amplitudes with respect to an arbitrary

phase variation δθn is

η
n = ηne−iδθn ≈ η

n = ηn(1 − iδθn), (D2)

so that

δηn = −iηnδθ . (D3)

For infinitesimal phase variations, we then have the following

relations between derivatives:

∂ jδηn = − i(∂ jηn)δθn − iηn(∂ jδθn)∇2δηn

= − i(∇2ηn)δθn − 2i(∂ jηn)(∂ jδθn)Gnδηn

= − i(∇2ηn)δθn − 2i(∂ jηn)(∂ jδθn)

+ 2(Gn, j∂ jηn)δθn + 2ηn(Gn, j∂ jδθn). (D4)

By rearranging terms, we get

Gnδηn = −i(Gnηn)(δθn) − 2i(Qn, jηn)(∂ jδθn), (D5)

where Qn, j = ∂ j + iGn, j .

The variational of the elastic energy with respect to ampli-

tude variations can then be written as

δE = A

4

n=0


dr[(Gnηn)(G∗

nδη∗
n ) + (Gnδηn)(G∗

nη∗
n )]

= 2A

4

n=0


dr Re[(G∗

nη∗
n )(Gnδηn)]. (D6)

By using the identities reported above,

(G∗
nη∗

n )(Gnδηn) = − i|Gnηn|
2(δθn) − 2i(G∗

nη∗
n )

× (Qn, jηn)(∂ jδθn). (D7)

The first term of the resulting expression is purely imaginary.

Therefore, only the second term contributes to (D6), and

Re[(G∗
nη∗

n )(Gnδηn)] = 2Im[(G∗
nη∗

n )(Qn, jηn)](∂ jδθn). (D8)

By inserting this last expression into Eq. (D6), we obtain the

expression reported in the main text, Eq. (14).

We note that the general expression for the stress ob-

tained by coarse graining the stress of the PFC density [27]

includes higher order terms w.r.t Eq. (16) obtained via the

energy variation above (see Sec. IV). However, it reduces to

the fields considered here by neglecting the highest (fourth)

order only, with the two equations thus delivering very similar

estimates.

APPENDIX E: STRAIN AND ROTATION FIELDS

FROM AMPLITUDES

To obtain expressions for strain and rotation fields as

a function of amplitudes, we first determine phonon and

phason displacement from the phases of amplitudes. To sim-

plify the notation, we redefine these phases, first introduced in

Eq. (11), as

θn = kn · u + aqn · w, (E1)

so that kn = G||
n , qn = G⊥

n , and a = (1 +
√

5)/2 the geomet-

rical factor determined in Appendix C.

The components of the displacement field ux, uy, wx, wy,

are computed by inverting Eq. (E1), extending a procedure

established for periodic crystal [42]. We consider four ampli-

tudes indexed by four (different) indexes l, m, n, o and rewrite

the algebraic problem in matrix form:



θl

θm

θn

θo



=



kx
l k

y

l
a qx

l a q
y

l

kx
m k

y
m a qx

m a q
y
m

kx
n k

y
n a qx

n a q
y
n

kx
o k

y
o a qx

o a q
y
o



·



ux

uy

w
x

w
y



. (E2)

By solving this system of equations, we obtain expressions for
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the components of the displacement fields:

ux =
1

κ0


θo


k

y

l
qy

mqx
n − q

y

l
ky

mqx
n − k

y

l
qx

mqy
n + qx

l ky
mqy

n + q
y

l
qx

mky
n

− qx
l qy

mky
n


+ θm


k

y

l
qy

nqx
o + q

y

l
qx

nky
o − qx

l qy
nky

o − q
y

l
ky

nqx
o

− k
y

l
qx

nqy
o + qx

l ky
nqy

o


+ θl


qy

mky
nqx

o + ky
mqx

nqy
o + qx

mqy
nky

o

− ky
mqy

nqx
o − qx

mky
nqy

o − qy
mqx

nky
o


+ θn


− k

y

l
qy

mqx
o

+ q
y

l
ky

mqx
o + k

y

l
qx

mqy
o − qx

l ky
mqy

o − q
y

l
qx

mky
o + qx

l qy
mky

o


,

(E3)

uy =
−1

κ0


θo


kx

l qy
mqx

n − q
y

l
kx

mqx
n − kx

l qx
mqy

n + qx
l kx

mqy
n + q

y

l
qx

mkx
n

− qx
l qy

mkx
n


+ θm


kx

l qy
nqx

o + q
y

l
qx

nkx
o + qx

l kx
nqy

o − q
y

l
kx

nqx
o

− qx
l qy

nkx
o − kx

l qx
nqy

o


+ θl


qx

mqy
nkx

o + qy
mkx

nqx
o + kx

mqx
nqy

o

− qx
mkx

nqy
o − kx

mqy
nqx

o − qy
mqx

nkx
o


+ θn


− kx

l qy
mqx

o

+ q
y

l
kx

mqx
o + kx

l qx
mqy

o − qx
l kx

mqy
o − q

y

l
qx

mkx
o + qx

l qy
mkx

o


,

(E4)

wx =
1

aκ0


θo


k

y

l
kx

mqy
n − kx

l ky
mqy

n − k
y

l
qy

mkx
n + q

y

l
ky

mkx
n + kx

l qy
mky

n

− q
y

l
kx

mky
n


+ θm


k

y

l
kx

nqy
o + q

y

l
ky

nkx
o + kx

l qy
nky

o − kx
l ky

nqy
o

− k
y

l
qy

nkx
o − q

y

l
kx

nky
o


+ θl


kx

mky
nqy

o + ky
mqy

nkx
o + qy

mkx
nky

o

− ky
mkx

nqy
o − qy

mky
nkx

o − kx
mqy

nky
o


+ θn


− k

y

l
kx

mqy
o

+ kx
l ky

mqy
o + k

y

l
qy

mkx
o − q

y

l
ky

mkx
o − kx

l qy
mky

o + q
y

l
kx

mky
o


,

(E5)

wy =
1

aκ0


θo


− k

y

l
kx

mqx
n + kx

l ky
mqx

n + k
y

l
qx

mkx
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(E6)

with

κ0 = det


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. (E7)

We remark that for the decagonal QC described via five

amplitudes, one can construct five solutions to Eq. (E2) as

only four amplitudes are needed; however, these solutions are

all equivalent.

Expressions for the strain fields ε
||

i j = 1
2

(∂iu j + ∂ jui ) and

ε⊥
i j = ∂iw j follow from the expression of the displacements.

The space-dependence of the displacements obtained by solv-

ing Eq. (E2) is fully contained in the phases θ j . Therefore,

spatial derivatives of displacements can be computed by us-

ing expressions analogous to (E3)–(E6) featuring ∂iθn terms

instead of θn. Derivatives of the phases can be generally com-

puted as [42]

∂θ j

∂xi

=
1

|η j |
2


∂Im(η j )

∂xi

Re(η j ) − ∂Re(η j )

∂xi

Im(η j )


, (E8)

from which strain tensor components can be expressed in

terms of the amplitudes and reciprocal-lattice vectors only.

For instance,
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(E9)

while other components of the strain tensor can be obtained

by proceeding analogously with other expressions and/or

derivatives. Note that the resulting strain components are con-

tinuously defined everywhere except at the core of dislocation,

where, however, the effective elastic constants vanish (see also

additional discussions for equations with a similar form in

Refs. [27,42]).

Similarly, the rotation fields can be derived from ampli-

tudes. Using the expressions for the displacement derived

above, one can compute them according to the following

definitions:

ω|| = ∇×u, ω⊥ = ∇×w, (E10)

representing rotations in  and ⊥ (planes), respectively. For

instance, to plot the rotation field ω ≡ ω|| illustrated in Fig. 2,

we selected the amplitude indices {l, m, n, o} = {1, 2, 3, 4}.

In this case, explicitly reporting the values of products of

reciprocal-space vector components for convenience, the ro-

tation fields result

ω|| ∼ 0.38 ∂x(θ1 + 0.618θ2 − 0.618θ3 − θ4)

+ 0.276 ∂y(θ1 + 2.618θ2 + 2.618θ3 + θ4), (E11)

ω⊥ ∼ 0.145 ∂x(θ1 + 1.618θ2 − 1.618θ3 − θ4)

+ 0.447 ∂y(θ1 + 0.382θ2 + 0.382θ3 + θ4). (E12)

APPENDIX F: ANALYTIC STRESS FIELDS

FOR A DISLOCATION IN AN ELASTICALLY

ISOTROPIC QUASICRYSTAL

Analytic expressions for the displacement fields u and w of

a dislocation in an elastically isotropic 2D QC (or in the plane

perpendicular to a straight dislocation line in 3D) have been

reported in Ref. [55]. By computing the strains ε
||

i j and and ε⊥
i j

from such expressions and via the constitutive relations (18),
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FIG. 6. Components of the analytic stress field, Eqs. (F1) and (F2), for a dislocation with the Burgers vector observed along the small-angle

grain boundary in Fig. 4. The Burgers vectors are b|| = [0, 2π

5

√
2(

√
5 + 5)], b⊥ = [0, − 4π

5


5 − 2

√
5].

we obtain the following analytic expression of the stress field:

σ ||
xx = (2λ + 3R)


b||

y x − b||
x y

6π (x2 + y2)


+ 2μ


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, (F1)

and
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. (F2)

To compare with numerical simulations, we consider the

elastic constants (19) in terms of λ, μ, R, K1,2 as obtained in

Sec. IV. In Fig. 6, we show the analytic stress components

for a dislocation of the same type as those observed along the

small angle grain boundary in Fig. 4 in the main text. It is

found to match well the corresponding numerical simulation,

similar to the prototypical case of the elastic field generated

by a dislocation dipole (Fig. 3).
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