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We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in qua-
sicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a
free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their

evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion,
emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of
semicoherent interfaces and dislocation kinematics are given.
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I. INTRODUCTION

Quasicrystals (QCs) are aperiodic yet ordered arrange-
ments that lack translational symmetry but still possess
rotational symmetry. They exhibit distinctive, discrete diffrac-
tion patterns, which have been instrumental to their discovery
[1,2] and detection in both synthetic and natural materials
[3-6]. QCs exhibit exotic features such as low friction and
thermal conductivity, nonstick surface properties, and peculiar
electronic properties [7,8]. Importantly, quasicrystalline order
can be found in various systems, spanning from solid-state
materials to soft matter [9-15]. Moreover, QCs are intimately
related to mathematical tiling concepts explored well before
their discovery in actual materials [16,17] and emerge in more
exotic systems such as vibrating (macroscopic) granular ma-
terials [18] and quantum phase transitions [19].

QCs can be constructed via different procedures from a
periodic hyperlattice [20,21]. Via the strip-projection method,
for instance, one considers the hyperlattice points within two
parallel (flat) hypersurfaces (a hyperstrip) oriented with an
irrational slope with respect to the hyperlattice orientations.
The aperiodic structure is obtained by projecting the lattice
positions on one of these hypersurfaces. A classic exam-
ple is the 1D aperiodic arrangement corresponding to the
Fibonacci sequence constructed from a 2D square lattice with
this method [22]. Similarly, a 2D tenfold QC [23] or the iconic
3D icosahedral QC [1] can be constructed from periodic lat-
tices in 4D and 6D hyperspaces, respectively.
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A natural description leveraging discrete diffraction dia-
grams, which is thus valid for both periodic crystals and QCs
[24], is obtained via a smooth, dimensionless density field
¥ = ¥ (r) expanded in density waves [20,25]

N
v =10+ Y me' T +ec., (1)

n=1

with § the imaginary unit, c.c. the complex conjugate, and
{G,} the discrete set of reciprocal-space vectors, at which
diffraction peaks are expected [26]. The complex amplitude
functions, 7, = ¢,e', are slowly varying (hydrodynamic)
fields, and vy is the average density, which here is set to
zero for simplicity. The amplitudes encode lattice deforma-
tions through their phases 6,,, defined differently for periodic
crystals and QCs, as discussed in the following. Amplitudes
remain slowly varying for small deformations, i.e., in elastic
regimes and in the presence of isolated defects [27].

The density-wave representation (1) links directly to
Landau’s theories of phase transitions through free energy
functionals F[y]. Free energies for bulk QCs have been
discussed in seminal works [28,29]. Approaches like the
Swift-Hohenberg model [30,31], the phase field crystal model
(PFC) [32], as well as the classical density functional theory
[33,34], are based on free energies for smooth density fields
where deformations and interfaces can also be described.
Though primarily applied to ordered and periodic systems,
they have yielded remarkable results for QCs too [35-40].
These methods, however, focus on microscopic length scales,
preventing the description of large-scale systems and mechan-
ical properties approaching continuum limits.

In this work, we introduce and demonstrate a self-
consistent mesoscale field theory for QCs. This description
focuses on complex amplitudes {n,}, building on coarse-
graining concepts introduced for microscopic densities in
crystalline systems [27,41,42]. Accordingly, it allows one to
describe macroscopic aspects, such as different phases and
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continuum elasticity, while naturally retaining microscopic
details, such as the symmetry of QCs and its impact on
dislocation nucleation, topological charge, and mechanical
properties. Although we discuss minimal settings regarding
simple QC symmetries and dynamical regimes, the formula-
tion we introduce here can be extended and applied to more
complex quasicrystalline systems and refined elasticity mod-
els. Still, we explicitly show that the proposed theory already
provides predictions concerning defect arrangements in QCs.
We present a free energy for the amplitudes representing the
quasicrystalline order in Sec. II. In Sec. III, we discuss how
such free energy naturally supports the description of dislo-
cations in QCs. Details concerning the underlying elasticity
theory are given in Sec. IV. We then apply the resulting theory,
first to the characterization of dislocation arrangements at a
small-angle grain boundary in Sec. V, clarifying a scenario
that significantly deviates from periodic crystals, and then to
the description of defect kinematics in Sec. VI. The main
conclusions are summarized in Sec. VII.

II. FREE ENERGY

We start with the Swift-Hohenberg energy functional used
in the classical PFC model [32],

_ Ao 22 B, C 3, D 4
Fw—/ﬂ[zlﬂ(q +V)1/f+21/f +31ﬂ +41/f}dr,

2

with g controlling the characteristic wave number for mini-
mizers of Fy, (e.g., enforcing a periodicity of 27 /g for stripe
phases in 2D). For periodic crystals, a free energy func-
tional F;, depending on amplitudes n; can be derived using
a renormalization group approach or simply by expressing
¥ via the amplitude expansion (1) and integrating over the
unit cell [27,41]. It reads as

N P
Fyp = / D AIG* 4+ Bygy | dr, ()
Q| p=1 p=2

with P = 4, G, = V2 + 2§G,, - V, and the polynomial term of
the energy density given by

N
=Y npngdoc,c, =2 Iml> =,
Pq n=1
&3 = Z npnan80,Gp+Gq+G,a
p.q,r
(o = Z NpTgNr1580,G,+G,+G,+G,» “)
D.q.1.S

where the summations are from —N to +N excluding zero,
n-, = n;, and G_, = —G,. Explicit expressions for ¢; for
various crystal symmetries can be found in Ref. [27]. We
remark the presence of the Kronecker delta in these terms,
meaning that products of the / amplitudes and their com-
plex conjugate are included if and only if the vector sum of
the corresponding reciprocal-space vectors (G,,) is zero. This
is known as resonance condition, where the corresponding
product of Fourier modes loses the microscopic periodicity

and, therefore, does not cancel out when integrated over the
unit cell.

QCs are characterized by aperiodic lattices in direct and
reciprocal space. For instance, 2D decagonal [D, shown in
Fig. 1(a)] and 3D icosahedral (Z) QCs are well described by
the following sets of reciprocal-space vectors [1,23]:

GP = [cos(27n/5), sin(2mn/5)],
Gf = Ip[cos(2nn/5), sin(2rn/5), 1/2],
GZ =10,0, 1], 5)

for l <n<<Swithly =2/ V5. Evidently, these sets of vec-
tors do not form periodic reciprocal lattices, as they feature
more independent elements than the dimensionality of the sys-
tem. These distinctive characteristics introduce two additional
aspects concerning F),: (i) its original derivation relies on the
existence of a well-defined unit cell, which does not apply to
QC:s; (ii) there is no set of three or four vectors G,, as defined
in Eq. (5) for which the resonance conditions in Eq. (4) are
realized, meaning that the QC is not a stable phase according
to the energy defined by Egs. (3) and (4).

While a unit cell cannot be defined for QCs, quasi-unit-
cell descriptions [43] featuring overlapping local motifs were
proposed and verified experimentally [44]. Accordingly, we
found that averaging the microscopic density ¥ above a char-
acteristic average width A results in a uniform field, justifying
the coarse-graining underlying Eq. (3) for QCs too. In particu-
lar, a coarse-grained density field (i) can be evaluated by the
Gaussian convolution in 2D [45,46],

’ _ )2
W) (r) = dr”/’(r)exp(—u), ©)

2ma? 202

where « is the coarse-graining length. Figure 1(b) shows
the result of applying Eq. (6) to the density of a decagonal
QC for different values of «. For « ~ A = 12.5932, relative
changes in the macroscopic density decrease by three orders
of magnitudes. It thus represents a suitable coarsening length
for decagonal QCs. Interestingly, this value corresponds to
the distance from the “center” of the QC to ten symmetric
density maxima, as shown in Fig. 1(c) (see red dashed line).
The existence of such a (finite) coarsening length justifies the
construction of free energy for the amplitudes in analogy to
previous works on periodic crystals [27]. Moreover, this free
energy is further shown below to be consistent with several
aspects of QCs that are accessible from other theories. We re-
mark that lengths below A value cannot be described well by
coarse-grained approaches, like our framework. On the other
hand, no upper bound exists for the validity of the proposed
approach.

The aforementioned issue concerning resonance conditions
can be overcome by increasing the degree of the free energy
polynomial (P). This concept traces back to the first theo-
ries of QCs for bulk systems [28,29]. For the decagonal or
icosahedral quasicrystal, it is enough to consider P = 6, which
corresponds to retaining the next two higher-order terms in the
polynomial entering the Swift-Hohenberg energy functional.
We remark that the highest order must be even to ensure the
existence of a global minimum. Explicitly, the free energy
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o = 12.5932

F—0.2

FIG. 1. Decagonal QC phase as minimizer of the free energy (7). (a) Tiling reconstructed from the density y as from Eq. (1) with G, = GP
and constant, equal (real) amplitudes [shown explicitly in panel (b) for « = 0]. See also the Appendix A for further details on how the tiling is
constructed. (b) Plots of the coarse-grained density () for different values of the coarsening length « in Eq. (6). The red circle has a radius
of A =12.5932. (c) Plots of the normalized density ¥ = v /¥m. along the directions x = 0 (blue) and y = 0 (yellow). The density peak
at y ~ A is highlighted by the red dashed line. (d) Free energy density for different phases varying B, with By = 0, Bs = —100, B¢ = 0.1
(independent of A). The decagonal QC phase results the minimizer of the free energy (7) for —0.592 < B, < 0.026.

then results
N

Fe= / |:ZA|gn77n|2 + B282 + B3g3 + Bagy + Bsis
Q

n=I

+36§6] dr, (N

with ¢s and ¢ obtained by extending the sums in Eq. (4) to
products of five and six amplitudes, respectively. For decago-
nal QCs, the newly introduced terms read

5
5 = rlnj +c.c.,
j=1

t& =720 [nilP ;P Iml” + 180 Y il In; 1?

i
j>i J#
k>j

+20) " Inil°. ®)

For icosahedral QCs, there are no combinations of three or five
G} with zero sum, meaning that ¢ = ¢Z = 0. The explicit
definition of ¢/ follows by considering the expression for ¢
in Eq. (8) with an additional term reading (]_[?:1 n;j)+c.c.,
taking into account that the sum of the six vectors GZ is zero.
Although not specifically addressed here, we expect that for
higher polynomial degrees P, the proposed free energy may
describe even more complex QC symmetries as stable phases.

Figure 1(d) shows that a decagonal QC phase mini-
mizes the free energy (7) for some parameters. We vary B,

corresponding to a phenomenological temperature parameter
in analogy with classical PFC models [32]. Consistently, for
large B,, disordered/liquid phases are favored, while first QCs
and then stripe phases minimize the free energy when de-
creasing B;. By considering ¥y # 0 and spatially dependent,
the theory can be straightforwardly extended to admit phase
coexistence [27,47], whose discussion is however beyond the
scope of the present work.

In its simplest form, the dynamics of the order parameter
in the PFC model is given by the conservative evolution law

W _ oF
ot sy
Under similar assumptions underlying the derivation of

F, p [27], the evolution law for amplitudes approximating
Eq. (9) is

®

P
= —IG;*| AGin + > Byt |

*
J p=2

8F,p
dn

on;
ot

=-IG;I

(10)
which describes the evolution of a QC similarly to peri-
odic crystals. An additional timescale to properly account
for elastic relaxation may also be considered, leveraging the
hydrodynamic formulation introduced in Ref. [48] that is
compatible with the proposed free energy. We expect this
extension to be relevant for fast dynamics and theoretical
analysis of competitive relaxation mechanisms. However, fo-
cusing here on assessing the fundamental aspects of the
proposed theory, we refrain from considering such an exten-
sion while targeting it in future works. Numerical examples
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are reported in the next sections, solving Eq. (10) via a
standard Fourier pseudospectral method for spatial discretiza-
tion [27]. Further details can be found in Appendix B. The
datasets generated and analyzed during the current study are
openly available in Ref. [49].

III. GROWTH AND DISLOCATIONS

The free energy, Eq. (7), and the corresponding dynamics,
Eq. (10), enable the study of out-of-equilibrium settings, their
evolution, and the deformation of QCs. Moreover, deforma-
tions and defects in QCs can be fully characterized via the
phase of the complex amplitudes {n,}.

We recall that, unlike periodic crystals, the full description
of the order realized in QCs requires the definition of a peri-
odic lattice in a higher-dimensional space [20,21]. Namely,
a QC in 2D is represented by a periodic hyperlattice £ in
a 4D hyperspace with coordinates T = r!l @ r*, with rll = r
the coordinates the so-called parallel space (Q! = Q), the
physical space of definition of the quasicrystal, and r' the co-
ordinates of the so-called space (1) [22], required to define
L in addition to Q!.

Elastic deformation of £ can be generally described by
the displacement field U=u @ w with u corresponding
to the displacements in !/, also called phonons, and w being
the displacements in Q-+, called phasons. From the deforma-
tion of the periodic density ¥ (¥ — U) of £, the QC density
Y = ¥ (F)|pL_g results

N

Y= E pe 0 Gt 4 cc,

~——
n=1 T

O = arg(n,) = Gl -u+G; - w, (11)

with G!! = G, and G; can be constructed from G!! accord-
ing to the QC rotational symmetry. Following Refs. [20,25],

for the decagonal QC we set G = aG|(|3nm0d5) with a =

1+ \/5)/2. A refresher of the construction leading to
the definition of direct- and reciprocal-space vectors for
decagonal quasicrystals is reported in Appendix C for
completeness.

Note that the phase 6, depends on both deformations u and
w. Dislocations in QCs inherently induce both phononic and
phasonic deformations [20,25] as they correspond to topo-
logical defects in the phase 6, with the topological charge
given by

ygden = 275, = —(G! - b+ G- bh), (12)

s, the winding (integer) number, b/l = ¢ du and b* = ¢ dw
Burgers vectors in Q! and Q*, respectively.

An out-of-equilibrium system is illustrated in Fig. 2 by
a numerical simulation. Slightly misoriented quasicrystalline
seeds (i.e., rotated by some small angle 8) are considered;
see Fig. 2(a). Using parameters that favor a QC phase, the
initial seeds grow and eventually merge with the formation
of topological defects [Fig. 2(b)], as indicated by localized
regions where @ decreases, pointing to a loss of quasicrys-
talline order. Figures 2(c) and 2(d) show the reconstructed
density ¢ and the tiling around a defect, deviating from the

(a) 10A]()
e O o

FIG. 2. Growth of QCs seeds and defect nucleation. (a) Rotation
field w at ¢ = 0O initialized via amplitudes n,, = ¢,exp(§(M (ﬂ)G‘n‘ —
GL') -r) with M(B) the standard rotation matrix [27] and |B| < 5°.
Grains with a small rotation are illustrated by dashed lines. (b) Rep-
resentative stage of growth, illustrated by ®. (c) and (d) ¥ and tiling
in the region marked by the black square in panel (b) with a (yellow)
isoline at ®/®,,,x = 0.7 showing the defect location. Parameters as
in Fig. 1(d) with B, = 0.02 and A = 1.

bulk, unperturbed phase (see Fig. 1). The proposed framework
thus allows for the description of not only bulk systems but
also complex scenarios in out-of-equilibrium settings, includ-
ing interfaces, deformations, and defects. Note that & also
enables easy detection of defects in QCs, not immediately
accessible from the density or tiling considered by other
theories.

IV. ELASTICITY

A self-consistent elasticity theory for QCs follows upon
the deformation of ¥r. The elastic energy, including all terms
depending on deformation gradients, is

N
E = /e(Vu, Vw)dr = /AZ|gnn,,|2dr, (13)

n=1

as can be obtained by considering the polar representation of
complex amplitudes, with phase 6, defined in Eq. (11), in the
free energy F; p. The stress fields can be computed from {»,}
by taking the variational of £ with respect to independent vari-
ations of the displacements, & = f(al.l} 0;éu; + ol-Jj‘ d;j6w;)dr,
where summation over repeated indices is implied. In terms
of amplitudes, &€ becomes

4
€ =4a Y [ drmiGn)Qu @86, (14)
n=0

See also Appendix D for its step-by-step derivation. We re-
mark that the expression above is general and, in analogy
with the amplitude expansions (1), it holds for both periodic
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crystals and QCs. For the latter, using Eq. (11) to expand the
amplitudes’ phase 6,, we obtain

4
8 =4A) / dr Im[(G:12)(Qn, 1) /(G 8;6u;
n=0

+ G,y 0;8wy), (15)

where du and éw are the infinitesimal variations of the
displacements in Q! and Q' subspace, respectively. Thus,
following from the definition of stress fields Uilj‘. = 8F/5(0;u;)
and o;; = 8F/8(d;w;), we obtain

N
o5 =4AY G5 Im[(G;n})((0; +1G)) )]
n=1

N
~8¢iA Y Gy G Gl by, (16)

ni >~ n,j o nk
n=1
with § = (]|, L) and ¢ the (real) value of amplitudes in the
bulk. The lowest order term reduces to the linear stress-strain
relation.
For small distortions, the elastic energy density of QCs
reduces to the quadratic form [50],

2e(Vu, VW) =Cijxi&;jen + Kijrdjw; 0wy
+ Rijusijdiwy + Ry, djwien, a7
with &;; = 1(u; + dju;) = el”J and d;w; = ¢;; the phononic

and phasonic strains, respectively. The resulting constitutive
relations are

I _ Il s
ij = CGijkigy + Rijui€ig,

1
Oij

o
= R}, 60, + Kijueh. (18)

By comparing these expressions for the stress field or the
elastic energy to their counterparts depending on amplitudes,
Egs. (16) and (17), the elastic constants C, K, and R’ = RT
thus result

N
Ciju = 8Ad; Z G‘nl,iG‘nl,lell.kG‘nl,l’
n=1

N

Riju = 16A¢} ) | G, G, G, Gy).
n=1
N

Kiju = 16A¢3 Y G\l Gy ,G) G,

ni=n,j S nk>nl>

19)

n=1

consistent with known results for QCs [25,50]. For instance,
for decagonal QCs, C;jx; = A8;;0u + 2u(8ixdj1 + 8;;8 1) with
n=>Ar= 5A¢§ (isotropic, with a ratio close to experi-
ments, e.g., for AI-Ni-Co QCs [51]), Kjju = K180 +
Ka(8ii8k — 848;x) with K; =103 + v/5)A¢2 and K, =
0, and Ry111 = Ri122 = —Ro211 = —Roopo = Rizo1 = Roioy =
—Ripp =—Rypn=R=5(1+ \/§)A¢§, and 0 elsewhere
[50]. Additionally, inverting the expression of 6, in Eq. (11)
allows us to determine directly phononic and phasonic strains
from a set of complex amplitudes extending the formalism

introduced in [42]. The corresponding equations are reported
in Appendix E.

Similarly to the classical PFC model, the considered for-
mulation shows limited control of the model parameter over
the elastic constants. We remark that an extended set of elastic
constants enter a more general elastic energy formulation
for QCs [52]. Furthermore, the proposed theory can be ex-
tended toward different elastic materials upon considering
more length scales in the differential operator in Eq. (7) [53]
or replacing it with the definition of a correlation function
(analogously to the so-called structural PFC model [54]).
Such extensions are indeed compatible with coarse-graining
and phase-stability concepts discussed in Sec. II, as well as
a description of defects and out-of-equilibrium scenarios pre-
sented in Sec. III.

With the quantities derived in this section, we may assess
the deformation of QCs described by amplitudes with known
results from continuum mechanics. For the latter, we can
consider the displacement field of a dislocation in an elasti-
cally isotropic QC from Ref. [55], its derivation to obtain the
analytic strain field, and then calculate the associated stress
field via Eq. (18). We refer to such stress field, explicitly re-
ported in Appendix F, as analytic, in contrast to the numerical
stress field computed from amplitudes via Eq. (16). We con-
sider in particular a dislocation dipole, with Burgers vectors
b = bt =0, :I:%yr sin(%n)]. This can be simulated by set-
ting displacement field in the initial condition for amplitudes
accordingly [27]. In Fig. 3, we show the numerical stress field
of one of these dislocations. Peculiar features observed for the
amplitude description of dislocations in crystals, such as an
inherent regularization of the elastic field at the dislocation
core [56,57] are observed here as well. Moreover, the com-
puted fields match almost perfectly the isolines corresponding
to the analytic stress produced by the same configuration in
the far field.

V. INSIGHTS ON SMALL-ANGLE GRAIN BOUNDARIES

The theory outlined in previous sections allows us to in-
spect nontrivial settings involving the interplay of growth and
dislocation nucleation. In particular, we highlight here the
description of defects and deformations during the growth
and impingement of two slightly misoriented QCs (rotated
+p), recently investigated in experiments [59]. A represen-
tative stage during growth is illustrated in Fig. 4(a). From
the phases ¢,, we can determine the (4D) Burgers vectors
b = bll @ b*. Defects with (five) different orientations form,
having two Burgers vector lengths [b|? = %(5 — «/g)nz
for the lowest-energy defects, and |52|2 = %(5 —5)n?
for the second-lowest energy. Moreover, stress fields com-
puted via Eq. (16) are consistent with the ones obtained
by deriving analytic displacements [55] and multiplying by
elastic constants (19) for the same Burgers vectors (see also
Appendix F).

For periodic crystals, a straight semicoherent interface
hosting dislocations of the same kind is expected in the setting
of Fig. 4(a) (see, e.g., Ref. [60]). A significantly different
scenario thus emerges for QCs. Inherent phasonic deforma-
tions, absent in the initial rotation, are induced by defects
as described by Eq. (11). Moreover, a rotation by —38 in
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FIG. 3. Stress field of a dislocation in a decagonal QC. Numerical stress field components [Eq. (16), filled contour plot] are compared with
the analytic stress fields (reported in Appendix F, black isolines) for a dislocation with Burgers vectors bl = bt = [0, — %n sin(%rr)]. Dashed
isolines correspond to negative values. Simulation parameters are set as in Fig. 2.

Q* would be required to rotate the subspaces in a synchro-

nized manner; we recall that G;- Gl(gn mods): A Q! rotation

of the QCs thus introduces a geometric frustration, accom-

Il
Tyy

I
J’H 1}

B W J/0g

=P

FIG. 4. Growth of QCs and semicoherent interfaces. (a) Rep-
resentative stage of the growth of two misoriented circular seeds
(B = £4° set as in Fig. 2) with radius 4A and center-to-center dis-
tance of 9A along the y axis. (b) Growth as in (a) with an additional
rotation —38 in Q1. Parameters as in Fig. 2. See also videos in the
Supplemental Material [58].

modated by the nucleation of defects of different kinds and
arranged over a more complex network [52]. For comparison,
Fig. 4(b) shows that a straight, semicoherent interface com-
posed of defects of the same kind is indeed obtained by the
additional —3 4 rotation in Q1. However, this setting does not
correspond to a physical rotation of the QCs in I, as it is
visible in the inset in Fig. 4(b), which deviates from a simple
rotation of the structure in Fig. 1(b). Due to such a nontrivial
phononic-phasonic deformation, the orientations of the QCs
are also varying in space and time, qualitatively reproducing
the evidence in [59], and nucleation of additional defects at the
surface occur at later stages, reminiscent of rearrangements
mediated by phasons [38,61].

VI. DEFECT KINEMATICS

Finally, we show that the proposed field theory also
captures self-consistently the driving force for disloca-
tion motion. Following the theoretical framework proposed
for crystals [62-64], we can track Burgers vector den-
sities BS for a dislocation at ry via the zeros of 1,
corresponding to singularities in the phases 6,. In partic-
ular, we may express BS as superposition of Dirac-delta
distributions 6(1,),

N
4
I — pll _ — _ Il
B! =blls(r —ry) = NbTP ,?21 G, D,3(n,),
47 N
1 _nl — 2 L
B-=b48(r—ry = —W G, D,5(n,), (20)

n=1

following from Eq. (12) upon contracting with G3.
D, = ;Lﬁkajn;faknn is the determinant of the coordinate

043285-6



MESOSCALE FIELD THEORY FOR QUASICRYSTALS

PHYSICAL REVIEW RESEARCH 6, 043285 (2024)

transformation from r to [Re(#n,), Im(n,)] [65]. BS and D,
follow the continuity equations

Dy +0;Jy; =0,
B + 9,05 =0, 1)
with current densities [66]
J;Ej = € Im(d; 1,9},
S = Bjvis(r — o), (22)

where v® is the dislocation velocity. Combining Eqs. (20) and
(22), we can determine a general expression for the disloca-
tion velocity in each subspace from JP? and, thus, depending
on amplitudes {n,} as well as their time evolution (N =5
hereafter),

Jb

2 I‘L
vj = ST 2 Z((b” G+ (- GHb” - G p

)

r=0

5 D

2 JD.

L= —— N (b GH* 0!G Gy =L
v = A n§=1j<( WV ®1-GHOT-G)

r=0
(23)
Asbt - G} =27 —bll. Gll [Eq. (12) with s, = 1], the defect
velocities in each subspace are not independent, but rather
constrained by

8 2 5 D
VIbIR + v bt 2 = 22 ZJ—" (24)

D,

=

n=1

Furthermore, the geometrical condition

W((b” G’ +® - GHDT - G))

1

= Zprp(@ G+ 01 GHK 6. (25)
vn e {1, 2, ..., 5}, is sufficient for these velocities to be equal.
We note that having equal velocities in the two subspaces
has often been assumed in the modeling of dislocation mo-
tion in QCs [67]. Here, specific conditions are identified to
ensure or predict that this identity holds. In our numerical
experiments (e.g., Figs. 2 and 4), we observed the nucleation
of dislocations with the lowest and second-lowest energy, for
which [bll @ bt 2 = 1£(5 — V/S)z? and bl @ bt > = 2(5 -
V52, respectively. For these dislocations, condition (25)
holds, meaning that dislocations nucleating at interfaces be-
tween misoriented or mismatched grains enjoy the property
v/l = vt In this regime, from Eq. (24), we get an expression
for the unique defect velocity

87'[2 i-]yl?l
v =
TSI+ a2bt?) &= D

where we used |b!'|2 4 a?|b*|> = 16 7%/5 for the disloca-
tions in question. Evaluating the density current JP at ry
means evaluating 9,1, |r=r, ~ Ag2nn|r=m from Eq. (10) with
Cklr=r, = 0 due to amplitudes 7, vanishing at the core for
s, # 0 [64]. By approximating the singular part of the phase
0, with the isotropic vortex ansatz s, arctan(y/x) [62,63,68],

s N[ 11171,

() dc 3 lIl(‘prD (l) - Ap]

A

FIG. 5. Peach-Koehler force for selected dislocations in a
decagonal QC. (a) fpx from Eq. (30), generated by a dislocation at
the center of the panel on a test dislocation with opposite Burgers
vector. Direction (arrows) and magnitude (filled contour plot and
solid isolines) are obtained with the stress field computed from
amplitudes via Eq. (16) (Num.). Dashed isolines are obtained with
Eq. (18) exploiting analytic stress fields for dislocations reported in
Appendix F (Anl.). (b) Comparison between Num. (solid) and Anl.
(dashed) |fpx| varying the polar angle at a distance SA from the
center of panel (a).

we get
T 8A
2 _—61G 1Gl) 0O
D,
r=0 r=0
8A

. (27)
r=0

= _6JIG;|1| lG‘n| m(G‘n| aamuo + Gigamwo)
s A n, , .

n

where we used Eq. (11) to express the phase in terms of
displacement fields. Then, we can rewrite Eq. (26) as

vj = 4Ae Z G” (GG By + G 8 wo)

n=1

r=0

5 5
=dhe;| (Y Gran | o1 +1> G\ 1 (28)
- Jjl Sn Olm S Oim .

n=1 n=1 ! r=0

By evaluating the sums

=" pt, 29
; Sn 4 " 29
we finally obtain a Peach-Koehler (PK) type equation
5A
v =M = e,,(a”b” +doiby), (30)

with M = 5A/m, retaimng a dependence on both phononic
and phasonic deformation consistent with classical theories
[67,69].

An example of the PK force field evaluation is illustrated
in Fig. 5. We compute fpx acting one a test dislocation
with Burgers vector bll = b* = [0, ¥ sin(27)] and that is
induced by stress field of an 0pp051te charged dislocation
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located at the origin. We report the result obtained by using
the stress field computed from {7,} via Eq. (16) (numerical)
and, for comparison, the prediction exploiting analytic stress
field derived from the displacements in Ref. [55] (analytic);
see full expressions in Appendix F. Given a distribution of
dislocations, we can then compute the PK force field based
only on the symmetry of the QCs. Moreover, the compelling
agreement between the numerical and analytic force fields
further supports the consistency of the elasticity description
for QCs achieved in the proposed theory with continuum
mechanics while simultaneously capturing mesoscale aspects
like defect formation and interaction with no additional tuning
parameters.

VII. CONCLUSION

In summary, the proposed mesoscale field theory builds on
the density-wave description of QCs. It focuses on the slowly
varying complex amplitudes of the characteristic Fourier
modes of the microscopic density field. A free energy func-
tional for these amplitudes is introduced. This newly proposed
theory may be considered a mesoscale Landau theory for
phase transition in QCs, including mechanics. Elasticity and
dislocations, including phononic and phasonic deformations,
follow from the symmetry of the microscopic quasicrystalline
order and are shown to be consistent with classical continuum
mechanics results. Using this approach, we shed light on
the formation of semicoherent interfaces between misoriented
QCs. Dislocation kinematics is also shown to follow from
the proposed equation of motion for the amplitude. A model
closing the gap between micro- and macroscopic description
of QCs is thus established. We expect this theory to pave
the way for general mesoscale investigations of systems with
quasicrystalline order.
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APPENDIX A: TILING

To obtain the tiling shown in Figs. 1 and 2, we start
from the density field reconstructed from the amplitudes ac-
cording to Eq. (1). We numerically find all density maxima,
and we discard those under an arbitrary threshold. We found
that discarding maxima for which ¥ /v¥m. < 0.5 matches
other tiling representations of quasicrystals best (see, e.g.,
Ref. [38]). The coordinates of the density maxima remaining
after thresholding are then the coordinates of the vertices
we plot.

The length of the tile edge is once again arbitrary, as
the QC presents a distribution of interatomic distances with
multiple sharp peaks in noncommensurate positions. In our
description, a tiling matching those in literature, with edges

connecting most neighboring vertices and with no crossing
edges, is obtained by choosing an edge length [ = 7.7 £ 0.1.
The same value was used for the relaxed QC in Fig. 1 and the
QC hosting defects in Fig. 2, resulting in broken edges for the
latter.

APPENDIX B: NUMERICAL METHOD

We numerically solve Eq. (10) for each amplitude 7,. The
first term on the right-hand side consists of an operator O
linear in the amplitude, while the second term is a nonlinear
polynomial A/. We can thus rewrite it as

O = On, + N. (B1)

This equation is solved by a Fourier pseudospectral method
[27]. In brief, we may consider the (discrete) Fourier
transform of terms in Eq. (B1) and rewrite the equa-
tion for the coefficient of the Fourier modes. This results in
the equation

Ol = Oclinlk + (N T, (B2)

where [7,,]x is the Fourier transform of the amplitudes, O,
is a linear term consisting of a simple algebraic expression

of the Fourier space coordinates k (for instance, (VI Ik =
— K, |*[%]x), and [N 1x the Fourier transform of A. Knowing
n, at time ¢, and thus its Fourier transform as well as [NV ],
the amplitudes at the next timestep ¢ + At are given by the
following approximation:

[le(t + A0 ~ [0 (1™ + %@M —1). (B3)
k

We remark that the linear term is exact, while the ap-
proximation follows from evaluating the nonlinear part. The
solution in real space is then obtained by an inverse Fourier
transform of [7,];. Our code is implemented in python,
and it exploits the established fast Fourier transform algo-
rithm FFTW, see also Ref. [57]. We use a timestep At =
1 and a uniform grid with ten mesh points per coarsening
length A.

APPENDIX C: DEFINITIONS OF DIRECT-
AND RECIPROCAL-SPACE VECTORS FOR DECAGONAL
QUASICRYSTALS

Following seminal works for the decagonal quasicrystal
[25], we define five (four-dimensional) vectors b, belonging
to the hyperlattice £, and five vectors G, belonging to its
reciprocal hyperlattice as

=b!l @ bb’,
=G!'®aG},

b, m=0,..,4,

G, n=0,..,4, (C1)
where bll and bl are vectors in parallel and perpendicular
space, and G! and G;- are vectors in their respective reciprocal
spaces, as introduced in Sec. III. The coefficients a, b allow
these vectors to have different norms. Owing to the symmetry
of decagonal QCs, the vectors in the parallel space (direct and
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reciprocal) are
bll = r[—sin(2zm/5), cos(2rm/5)],

Gl,‘ = g[cos(2mn/5), sin(2rn/5)], (C2)
with r, g their respective lengths. The vectors in the perpen-
dicular space (direct and reciprocal) can be constructed by a
simple reindexing of those defined for the parallel space:

b:=bl  Gl=G). (C3)
We remark that, due to the periodicity of the sinusoids used
to construct the vectors in Eq. (C2), a modulo five opera-
tion is implied in all the indices in Egs. (C2) and (C3), i.e.,
b ., =bllVie Z, and the same for the other vectors. In
order to determine the coefficients a, b, g, r, we can consider
a definition of phases following from Eq. (12):

O1-m =Gy - by,
= gr(sin(2n (n — m)/5) + absin(brw (n — m)/5)).
(C4)
By imposing

) = s = gr(sin(27 /5) — absin(47 /5)) = 0,
0y = —03 = gr(sin(4 /5) + absin(27 /5)) = 27,  (C5)
which is not the unique choice but the one most commonly

considered in the literature, we get

ab = %(1 +/5),

2
or = ?” 10 — 24/5. (C6)

We choose to take g = 1, meaning that the reciprocal lattice
vectors in parallel space have unit length, as usual in am-
plitude phase field crystal models [27]. We also take b =1,
meaning that the direct lattice vectors have the same length in
both subspaces. Accordingly, a and r have well-defined values
determined by Eq. (C6) withg =b = 1.

APPENDIX D: ENERGY VARIATION

The elastic energy is given by Eq. (13). The differential

operator entering this equation can be written as
Gy = V> 424G, - V) = 0;(0; + 2iG, ;). D1)

The variational of the amplitudes with respect to an arbitrary
phase variation &6, is
My = e A, = (1 = 886,), (D2)
so that
&n, = —in,80. (D3)

For infinitesimal phase variations, we then have the following
relations between derivatives:

381 = — 8(312)860, — 11,(3;86,)V>81,
= — 8(V20,)860, — 28(3;1,)(3;66,)Gnd s
= — 8(V*1,)86, — 28(3;1,)(3;6,)

+ 2((;n,jaj 77;1)89;1 + znn(Gn,Jajéen) (D4)

By rearranging terms, we get
Qn5'7n = _ﬁ(gnnn)((sgn) - ZE(Qn,jnn)(ajfsen)s (DS)
where Q,, ; = 0; + G, ;.

The variational of the elastic energy with respect to ampli-
tude variations can then be written as

4
8& =A2/dl‘[(gnnn)(g,’f5nﬁ)+(Qnrsnn)(g,fn,’i)]
n=0

4
=24y [ drRel@n)(@3n)l (D6)
n=0
By using the identities reported above,
(Ga i) (Gud1n) = — 81Gu1inl* (86,) — 28(Gymy)
X (Qn,j1n)(9;66,). D7)

The first term of the resulting expression is purely imaginary.
Therefore, only the second term contributes to (D6), and

Re[(G,1,)(Gndn:)]1 = 2Im[(G,;1;,)(Qn, j1)1(3;86,).  (DB)

By inserting this last expression into Eq. (D6), we obtain the
expression reported in the main text, Eq. (14).

We note that the general expression for the stress ob-
tained by coarse graining the stress of the PFC density [27]
includes higher order terms w.r.t Eq. (16) obtained via the
energy variation above (see Sec. IV). However, it reduces to
the fields considered here by neglecting the highest (fourth)
order only, with the two equations thus delivering very similar
estimates.

APPENDIX E: STRAIN AND ROTATION FIELDS
FROM AMPLITUDES

To obtain expressions for strain and rotation fields as
a function of amplitudes, we first determine phonon and
phason displacement from the phases of amplitudes. To sim-
plify the notation, we redefine these phases, first introduced in
Eq. (11), as

0, =Kk, -u+aq,-w, (ED)

so that k, = Gl,‘, qQ, = Gj, anda = (1 + \/5)/2 the geomet-
rical factor determined in Appendix C.

The components of the displacement field u,, uy, wy, wy,
are computed by inverting Eq. (E1), extending a procedure
established for periodic crystal [42]. We consider four ampli-
tudes indexed by four (different) indexes I/, m, n, o and rewrite
the algebraic problem in matrix form:

0; ki k aq  aq)| |u
On| |k knm aq,
0, |k K aq ag)| |w
0, kX ko aq. aqy| |w

aq,| |w
K (E2)

By solving this system of equations, we obtain expressions for
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the components of the displacement fields:
1

ng@W%ﬁ-%&%-@%%+ﬁ%%+d%@
— k) + 0k @y + a k) — gk, — akg;
— K a4,q, + aik,a)) + O (ankna, + kanal + dyank,

— K05 — kT, — anayk)) + 0u(— K 4
+ ql,qs + K a,q) — kG — @ a5k + g1 a)k)).
(E3)

-1 . o 1
ty =~ Ok 05 — a1k, = K, + i + @10k
— Gaky) + 0n (K @yay + q) ik + aikna) — a)kd
— gk — kK aa) + 0(anak, + ok, + knand)

— gkl — kgas — Quaiky) + 0.( — k' ga)
+ q gy + k@) — Ghng, — @ auk + G ak)).

(E4)

m m mn m

1 ' i ! ' ! ,
we = o Ok, ~ KKy, — K+ gk + K gk,

— gk k) + 0 (K kngy + gl + ki gk — kg,

1 ™m™n 1"n™o
— kK qyky — qkk)) + 61 (kg 4 K aks + ) kk)
— kyknah — aykuky — knank)) + 6, ( — Kk g
+ kg, + K ks — qknks — ki qnky + q/knk)),
(ES)
1 o ,
wy = —(0u( — K Ky + KTk + K ks — ik ks
ako
— kgLl + gk k) + O (kK + k) gk + g kk)

— Kkigy — qikky — ki qpk) + 0i(kykiay + gy kk,
+ knayky — kn kg — K dnks — aykiky) + 0, (k) Ky

— kikongy — Ky ks + qikn k4 ki gk — qikyky)),
(E6)

with

ki K a  q

ky kmo @y Gm
k@ g
ky koo a

ko = det ET)

We remark that for the decagonal QC described via five
amplitudes, one can construct five solutions to Eq. (E2) as
only four amplitudes are needed; however, these solutions are
all equivalent.

Expressions for the strain fields ‘91”] = %(Biu j +0dju;) and
sf]- = 0;w; follow from the expression of the displacements.
The space-dependence of the displacements obtained by solv-

ing Eq. (E2) is fully contained in the phases 6;. Therefore,
spatial derivatives of displacements can be computed by us-
ing expressions analogous to (E3)—(E6) featuring 9,0, terms
instead of 6,. Derivatives of the phases can be generally com-
puted as [42]

00; 1 <8Im(n i)

dRe(n;)
ox; B |77j|2 Relny) =

8)(,' 8x,-

Im(n;)), (E8)

from which strain tensor components can be expressed in
terms of the amplitudes and reciprocal-lattice vectors only.
For instance,

1 , , o ,
g@%W%%—ﬂ%%—@%%+%%%
+ g a5k — Gayk) + 0:0u(K O + @ gk
— gigk) — qka, — kK qq) + qikq)

+ 3.0/ (g k0qs + kndna, + aLalky — kndd,
— gLk g — Cqik)) + 0.0, (—k @,qs + q K,q

+ K q,q, — ak,a) — @) auk) + g, ak)).
(E9)

I — —
Exy = Oxlly =

while other components of the strain tensor can be obtained
by proceeding analogously with other expressions and/or
derivatives. Note that the resulting strain components are con-
tinuously defined everywhere except at the core of dislocation,
where, however, the effective elastic constants vanish (see also
additional discussions for equations with a similar form in
Refs. [27,42]).

Similarly, the rotation fields can be derived from ampli-
tudes. Using the expressions for the displacement derived
above, one can compute them according to the following
definitions:

o' = Vxu, ot = Vxw, (E10)

representing rotations in Q! and Q* (planes), respectively. For
instance, to plot the rotation field w = ! illustrated in Fig. 2,
we selected the amplitude indices {/, m, n, o} = {1, 2, 3, 4}.
In this case, explicitly reporting the values of products of
reciprocal-space vector components for convenience, the ro-
tation fields result

ol ~0.38 8,(6; + 0.6186, — 0.6186; — 6,)

+0.276 3,(6; + 2.6186, +2.61805 +64),  (El1)
wt ~0.145 8,(0; + 1.6180, — 1.61865 — 6,)
+ 0.447 9,(6; + 0.38260, + 0.3820; +604).  (E12)

APPENDIX F: ANALYTIC STRESS FIELDS
FOR A DISLOCATION IN AN ELASTICALLY
ISOTROPIC QUASICRYSTAL

Analytic expressions for the displacement fields u and w of
a dislocation in an elastically isotropic 2D QC (or in the plane
perpendicular to a straight dislocation line in 3D) have been
reported in Ref. [55]. By computing the strains elHj and and afj-
from such expressions and via the constitutive relations (18),
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FIG. 6. Components of the analytic stress field, Eqs. (F1) and (F2), for a dislocation with the Burgers vector observed along the small-angle
grain boundary in Fig. 4. The Burgers vectors are b!l = [0, 2?”«/ 25 +5)], bt = [0, —4?”\/ 5 —24/5].

we obtain the following analytic expression of the stress field:

bllx — bl Bllx(x? — 3y?) — blly(5x* 4 y?
aX'L:(ZA+3R)< y L3 ) ( (. y°) — byy( y )>7

67 (x2 +2) 61t (x? + y2)?
Sl ol — 2y (xz—yz)(bﬂx—i-byy) R byx + byy
e 3 (x2 4 y2)? 2r(x2 +y) )0

bllx — blly ) (”x'y(&c2 —Y) + b+ 5y2))7 (F1)

I'=@r—-3R <—y
o = ) 67 (x2 + y?) 671 (x2 + y2)2

4xy(blx + b+ bt btx
ol = R y(byx + byy) _K vy e y ’
3m(x% + y?)? 27 (x2 + y?) 27 (x% + y?)
i (x* = »*) Blx + blly) byy byy
0y = 2R 2 w22 — K oy ) T K 2o )
3 (x> +y%) 27 (x* +y*) 27 (x* + y*)
2 — 2 Blx 4 bl i n
ol = 2R(( )by y”) k() s )
Y 3 (x2 + y?)? 27 (x2 + y?) 27 (x2 +y?)

4xy(blx + bt bix bt
ol =—R —y( - ) +K|z——— - K —ar ) (F2)
Yy 37.[(x2 +y2)2 zn(xz +y2) 27‘[()62 +y2)
[

To compare with numerical simulations, we consider the small angle grain boundary in Fig. 4 in the main text. It is
elastic constants (19) in terms of A, i, R, K; ; as obtained in found to match well the corresponding numerical simulation,
Sec. IV. In Fig. 6, we show the analytic stress components similar to the prototypical case of the elastic field generated
for a dislocation of the same type as those observed along the by a dislocation dipole (Fig. 3).
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