
STAR: Sub-Entry Sharing-Aware TLB for

Multi-Instance GPU

Bingyao Li

University of Pittsburgh

bil35@pitt.edu

Yueqi Wang

University of Pittsburgh

yuw249@pitt.edu

Tianyu Wang

University of Pittsburgh

tiw81@pitt.edu

Lieven Eeckhout

Ghent University

lieven.eeckhout@ugent.be

Jun Yang

University of Pittsburgh

juy9@pitt.edu

Aamer Jaleel

NVIDIA

ajaleel@nvidia.com

Xulong Tang

University of Pittsburgh

tax6@pitt.edu

Abstract—NVIDIA’s Multi-Instance GPU (MIG) technology
enables partitioning GPU computing power and memory into sep-
arate hardware instances, providing complete isolation including
compute resources, caches, and memory. However, prior work
identifies that MIG does not partition the last-level TLB (i.e., L3
TLB), which remains shared among all instances. To enhance
TLB reach, NVIDIA GPUs reorganized the TLB structure with
16 sub-entries in each L3 TLB entry that have a one-to-one
mapping to the address translations for 16 pages of size 64 KB
located within the same 1 MB aligned range. Our comprehensive
investigation of address translation efficiency in MIG identifies
two main issues caused by L3 TLB sharing interference: (i) it
results in performance degradation for co-running applications,
and (ii) TLB sub-entries are not fully utilized before eviction.
Based on this observation, we propose STAR to improve the
utilization of TLB sub-entries through dynamic sharing of TLB
entries across multiple base addresses. STAR evaluates TLB
entries based on their sub-entry utilization to optimize address
translation storage, dynamically adjusting between a shared and
non-shared state to cater to current demand. We show that
STAR improves overall performance by an average of 28.7%
across various multi-tenant workloads.

Index Terms—multi-instance GPU, sub-entry TLB

I. INTRODUCTION

Graphics Processing Units (GPUs) are extensively utilized

in contemporary computing systems to accelerate performance

across various applications. As artificial intelligence/ML mod-

els evolve, GPU manufacturers are continually enhancing the

capabilities of individual GPUs to meet the surging compu-

tational demands [16], [20], [26], [52], [61], [64]. However,

previous research has shown that these emerging applications

still cannot fully exploit the existing GPU computational

resources due to different workloads facing various resource

bottlenecks and exhibiting different sensitivities to different

resources [6], [25], [29], [38], [58], [62].

To address the issue of underutilization, GPU vendors

are evolving to offer GPU resource partitioning capabilities

to enable multiple applications to share the same physical

GPU resources. NVIDIA’s Multi-Instance GPU (MIG) [36]

is one of the prominent GPU-sharing technologies. MIG

enables a single physical GPU to be divided into several

isolated instances, each with its own set of resources, including

streaming multiprocessors (SMs), local memory, and caches.

NVIDIA MIG is designed to offer isolation of resources for

each instance, ensuring performance without interference from

other instances. However, a recent study [63] has indicated that

while MIG effectively partitions most of the memory system, it

does not partition the last-level TLB (i.e., L3 TLB). The shared

L3 TLB allows the TLB to dynamically allocate its entries

based on the demand from various instances, optimizing the

use of the available TLB capacity. On the flip side, TLB shar-

ing also leads to contention among multi-tenant applications.

With the increasingly large data sets and wide memory

footprints of applications, the TLB has become a critical

performance bottleneck [32], [33], [41], [42], [44], [50].

Expanding the TLB size to alleviate this issue is impractical

due to hardware size constraints. In response, NVIDIA’s new

generation GPU (e.g., A100) presents an innovative TLB

architecture to enhance TLB reach. Specifically, in the L2 and

L3 TLBs, an entry comprises 16 sub-entries, each directly

corresponding to the address translation of 16 sequential

64 KB pages within a contiguous 1 MB-aligned segment,

as recently revealed through reverse-engineering [63]. By

compressing multiple translations into a single TLB entry,

the TLB can manage more data with fewer entries, thereby

reducing hardware overhead, while improving TLB efficiency

and boosting overall performance. A sub-entry TLB design

performs well for isolated workloads that use large contiguous

memory, however, in multi-tenant setups where the L3 TLB

is shared, this design can lead to sub-entry underutilization

because interference from co-runners causes frequent evictions

when only a portion of the sub-entries are used.

To understand the impact of L3 TLB contention in a multi-

tenant environment, we co-run representative GPU applica-

tions on an NVIDIA A100 GPU with MIG enabled, see

Figure 1 where each application runs within its own instance

while sharing the L3 TLB. The GPU is partitioned into varying

sizes of instances, including (3g, 2g, 2g) and (3g, 3g), where

‘g’ represents the allocation of computing resources; each

instance runs a single application. Performance is normalized

to each application running alone on its respective instance,

thereby having exclusive access to the L3 TLB. We observe
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Fig. 1. Performance of co-running applications on NVIDIA’s A100.

that L3 TLB contention significantly degrades the performance

of individual applications. This is because high access demand

and interference from co-running applications lead to severe

TLB thrashing. This thrashing extends the reuse distance

of address translations, making translations less likely to be

reused before they are evicted. It also leads to lower sub-entry

utilization at the point of eviction, as the interference from

concurrent requests accelerates TLB eviction (quantitative

results and detailed analysis are given in Section IV).

A large body of prior work focused on improving address

translation efficiency from multiple perspectives, including

contiguity-based range TLBs [24], [28], [41], [56], cluster

TLBs [42], [44], employing large pages [8], [40], [43], TLB

compression [51], and TLB speculation [10]. Many of these

optimizations are designed for single GPU/CPU setups run-

ning one application and are not effectively applicable to

MIG environments with multiple tenants. First, range-TLB,

cluster-TLB, and TLB-compression strategies are optimized

for sequential and stride memory access patterns, commonly

found within individual applications. Co-running applications

often have varied and unpredictable access patterns, making

it challenging for these TLB optimizations to consistently

capture the requested translations efficiently. Second, TLB

speculation relies on the assumption of consistent access

patterns to achieve accurate predictions. Similarly, in scenar-

ios where the L3 TLB is accessed by multiple applications

simultaneously, the interference between applications disrupts

the regularity of memory accesses, significantly diminishing

prediction accuracy. Third, using large pages can increase TLB

reach by reducing the number of TLB entries needed to cover

the same memory range. However, multi-tenant environments

often host a mix of applications with diverse memory access

patterns. While some applications can efficiently leverage large

pages, others with irregular or sparse access patterns may

not observe the same benefits. This variance leaves those

less suited to large pages still facing contention issues. Other

work, for example MASK [9], improves address translation

efficiency in multi-application environments by controlling

warp access to the shared TLB through an epoch- and token-

based scheme. Although this approach is effective at reducing

TLB thrashing, it helps little with TLB sub-entry utilization.

Motivated by these challenges, we systematically investigate

and optimize the address translation in MIG systems. Our

quantitative analysis reveals that contention in the L3 TLB

critically undermines MIG performance, primarily due to low

utilization of TLB sub-entries caused by multi-tenant interfer-

ence. To address this, we propose the Sub-EnTry ShAring-

AwaRe (STAR) TLB, which dynamically allows different

base addresses to share TLB entries. Specifically, instead

of defaulting to Least Recently Used (LRU) eviction upon

receiving a new address translation, our method evaluates

and selects an entry based on its current sub-entry utilization

that satisfies the sharing criteria for inserting the new address

translation. Additionally, our approach can dynamically switch

between a TLB entry’s shared and non-shared states, adapting

to the fluctuating demands of TLB sub-entries. We make the

following contributions:

• We show that a major performance bottleneck in MIG arises

from severe contention in the shared L3 TLB. We provide

a detailed analysis of how multi-tenant interference affects

address translation reuse and TLB sub-entry utilization.

• We propose STAR, a hardware design tailored to mitigate

the negative effects of multi-tenant interference and enhance

overall application performance. STAR enables multiple base

addresses to share the same TLB entry, enhancing sub-entry

utilization. It also dynamically switches between shared and

non-shared states to adapt to varying application demands.

• We show that STAR improves overall performance by an

average of 28.7% across a suite of multi-tenant workloads.

We show that STAR outperforms various TLB design alterna-

tives and is orthogonal to these approaches to achieve further

performance improvement.

II. BACKGROUND

A. Multi-Instance GPU

Modern GPUs, such as NVIDIA’s Ampere and Hopper

generations (e.g., A100 and H100), leverage Multi-Instance

GPU (MIG) technology to enhance resource utilization by

enabling the sharing and partitioning of GPU resources [1],

[37]. MIG technology allows a single GPU to be divided

into multiple GPU partitions, each operating as an indepen-

dent GPU instance with its own dedicated resources. The

partitioning includes SMs and the entire memory system,

including the on-chip crossbar ports, L2 cache banks, memory

controllers, and DRAM address buses, effectively eliminating

performance interference between different applications. Each

GPU instance contains at least one GPU Processing Cluster

(GPC) along with a designated portion of the GPU’s memory.

The current setup of MIG can support up to seven distinct

instances, offering predefined configurations including 1g, 2g,

3g, 4g, and 7g, where ‘g’ indicates a portion of the total

GPU compute resources. For instance, the smallest config-

uration available is 1g.5gb, providing 1/7 of the Streaming

Multiprocessors (SMs) and 5 GB of GPU memory. However,

configurations for 5g and 6g are not available.

The TLB organization in MIG is shown in Figure 2.

Specifically, MIG partitions the L1 and L2 TLBs along with

the GPCs: the L1 TLB is shared between the two SMs within

each Texture Processing Cluster (TPC), and the L2 TLB is

shared across the SMs of a GPC. However, interestingly,

prior work [63] reveals that the L3 TLB in today’s GPUs
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Fig. 2. TLB structure and address translation process in A100.

(e.g., NVIDIA’s Ampere generations) remains shared across

all instances in MIG-supported GPUs. This sharing indicates

that despite MIG’s comprehensive approach to partitioning,

the last-level TLB still lacks the isolation necessary to prevent

contention across different GPU instances.

B. Address Translation in MIG

Figure 2 also illustrates the address translation process in

MIG. Upon a memory request, the L1 cache is first checked.

The L1 TLB lookups are performed upon an L1 cache miss

( a ). If the request misses in the L1 TLB, it first checks the L1

Miss Status Holding Register (MSHR) to coalesce the same

requests, and the outstanding request is sent to the L2 TLB

for lookup ( b ). Similarly, requests missing in the L2 TLB are

sent to the L3 TLB ( c ), and requests that miss the L3 TLB are

further sent to the GPU memory management unit (GMMU)

to perform page table walks. If the page table walk fails, a

local page fault is generated and propagated to the host CPU

to resolve. It then initiates the target data transfer and updates

TLBs, caches, and page tables. Finally, the address translation

request is replayed after resolving the page fault.

TLB sub-entries: Traditionally, each TLB entry would di-

rectly map one virtual page to one physical page. This is

a straightforward, one-to-one relationship: each entry in the

TLB represents a single page of memory, as typically done

in L1 TLBs in the latest NVIDIA GPUs (e.g., NVIDIA’s

Ampere generations). However, these GPUs organize their L2

and L3 TLB entries differently to increase TLB reach [63].

Specifically, each of these entries contains 16 sub-entries,

which directly map to the address translations for 16 pages.

These pages can be either 64 KB or 2 MB in size, and all of

them fall within an aligned range of either 1 MB or 32 MB in

size, respectively. That means each sub-entry in a TLB entry

has a one-to-one relationship with a single page. Note that, in

TABLE I
BASELINE MULTI-INSTANCE GPU CONFIGURATION.

Module Configuration

SM 1 GHz, 108 in total

DRAM 5 GB per slice

L1 D-cache 64 KB, 2-way set associative

L1 I-cache 32 KB, 2-way set associative

L2 cache 2 MB per slice, 8-way set associative

L1 TLB 16 entries, 16-way, 1-cycle lookup latency,

TPC shared, LRU replacement policy

L2 TLB 128 entries, 8-way, 16 sub-entries per entry,

10-cycle lookup latency, GPC shared,

LRU replacement policy

L3 TLB 1024 entries, 8-way, 16 sub-entries per entry,

40-cycle lookup latency, GPU shared,

LRU replacement policy

Page table walk 8 page table walkers, GPC shared,

100-cycle latency per level [46], [47], [54]

Page walk cache 128 entries shared across page table walkers [46]

the sub-entry setting, if any TLB entry is evicted, all the 16

sub-entries associated with that TLB entry are invalidated.

Address translation in a sub-entry TLB proceeds as follows.

The virtual address of memory access is partitioned into a

virtual page number (VPN) and a page offset. The lower

bits of the VPN are further divided into a TLB index and

a sub-entry index, and the higher bits of the VPN serve as

the virtual page base (VPB). During a TLB lookup, the TLB

index is first used to identify the corresponding set ( d ). Then,

the VPB from the virtual address is compared with the VPB

within the set to check for a hit or miss ( e ). If there is an

entry hit, the process further checks the sub-entry index to

determine if the specific sub-entry is present in the TLB entry

( f ). A non-zero sub-entry indicates a TLB hit. Conversely, a

zero sub-entry or no matching VPB results in a TLB miss,

triggering a page table walk. When a valid translation for a

virtual address is found and if this virtual address is within

the range covered by an existing TLB entry, the translation

is added to the appropriate sub-entry slot. If no existing TLB

entry covers this address range, a new entry is created. This

involves evicting the least recently used (LRU) entry along

with zeroing all of its 16 sub-entries. The new translation is

then inserted into the corresponding sub-entry slot of the newly

established TLB entry.

III. METHODOLOGY

A. Baseline Configuration

We use MGPUSim [49] throughout the paper. To model

multi-instance GPU, we substantially modified MGPUSim by

adding (i) different cache, memory, and SM configurations

for different instance sizes, (ii) a shared L3 TLB (with sub-

entries) and sub-entries for the L2 TLB, and (iii) GMMUs for

each instance, including page walk cache, page walk queue,

page table walk thread, and the page table. Note that the exact

latency of a page walk depends on whether it hits the page

walk cache and whether it needs to wait for an available

page walk thread in the page walk queue. These processes

are all faithfully modeled in the simulator. In this paper, we

focus on a GPU partitioned into instances of sizes 3g, 2g,
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TABLE II
LIST OF APPLICATIONS.

Abbr. Application
Benchmark

Suite

Instruction

Count

L2 TLB

MPKI

Access

Pattern

ATAX
Matrix Transpose and

Vector Multiplication
Polybench 328,441,844 204.7 Stream, Stride

BICG
Sub Kernel of BiCG-

Stab Linear Solver
Polybench 321,758,896 208.9 Stream, Stride

FFT Fast Fourier Transform SHOC 409,534,464 0.5 Stream, Stride

BFS Breadth First Search SHOC 94,727,760 5.6 Random

ST Stencil 2D SHOC 59,289,600 21.9 Stream, Block

FIR Finite Impulse Resp. Hetero-Mark 192,675,840 0.3 Stream

PR Page Rank Hetero-Mark 316,669,952 0.44 Random

MT Matrix Transpose AMDAPPSDK 9,564,256 205.0 Stride

NW Needleman–Wunsch Rodinia 87,909,120 38.4
Stream,

Dependent

CONV Convolution 2D DNN-Mark 2,629,570,744 1.9 Stream, Stride

and 2g. The number of SMs, cache size, and memory size are

partitioned proportionally based on each instance size. Each

instance runs a single application. Our approach also applies

to various combinations of instance sizes and we provide a

sensitivity study with altering instance sizes in Section VI-B.

The baseline configuration is listed in Table I. The page size

is set to 64 KB as the MIG default configuration.

B. Applications

We use 10 applications from the Polybench [45],

SHOC [17], Hetero-Mark [48], AMDAPPSDK [7], Ro-

dinia [15], and DNN Mark [18] benchmark suites, which

are representative real-world applications. The details of the

applications are listed in Table II. These applications have

different computation intensities. For example, FFT and CONV

are compute-intensive and heavily use floating-point opera-

tions, whereas BICG and ATAX involve memory-intensive

operations. The applications also cover a wide range of access

patterns. Specifically, in the stream access pattern, data is

accessed sequentially, offering good locality and predictability.

In contrast, the stride access pattern, shown in operations like

matrix transpose, involves accessing data at a constant stride,

leading to non-sequential memory accesses. For example, in

MT, accessing elements column-wise in a row-major stored

matrix or vice versa involves memory accesses with a stride

equal to the number of rows or columns. In the dependent

access pattern, certain data is accessed depending on the

computation results of previous elements, such as in NW, where

each cell’s computation in the scoring matrix depends on the

values of its neighboring cells. In the block access pattern, data

is accessed in blocks or chunks. For example, in ST, data is

divided into blocks that fit into the cache, allowing for efficient

computation of the convolution operation over each block. In

the random access pattern, data is accessed in an irregular

and unpredictable order, commonly observed in graph traversal

algorithms (e.g., BFS) and web-ranking algorithms (e.g., PR).

To study multi-instance execution, we use the applications

listed in Table II to form multi-application workloads. We also

include applications with their smaller input size (indicated as

ApplicationName_s) to balance the application execution

times within the workload. Table III shows the eleven work-

loads, each consisting of three applications. The workloads are

TABLE III
MULTI-TENANCY WORKLOADS.

Abbr. Workload Applications Category

W1 workload1 MT, ATAX, BICG HHH

W2 workload2 MT, ATAX, ST HHM

W3 workload3 MT, NW, ST HMM

W4 workload4 MT_s, ST_s, FIR HML

W5 workload5 MT_s, BFS, PR HML

W6 workload6 MT_s, FFT, FIR HLL

W7 workload7 NW, CONV, ST_s MMM

W8 workload8 ST_s, NW, FFT MML

W9 workload9 BFS, BFS, PR MML

W10 workload9 ST_s, FIR, FFT MLL

W11 workload10 FFT, FFT, FIR LLL
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Fig. 3. The normalized performance of each application within the workload.

formed by analyzing the L3 TLB access intensity of each ap-

plication. Specifically, we measure each application’s misses-

per-kilo-instructions (MPKI) of the address translations at L2

TLB. Applications are then grouped into three categories based

on their L2 TLB MPKI values: Low (L, MPKI<1), Medium

(M , 1<MPKI<100), and High (H , MPKI>100). Accordingly,

workloads are formed representing various combinations of

these categories, including HHH , HHM , HMM , HML,

HLL, MMM , MML, MLL, and LLL. Given the possibility

of some applications finishing earlier than others during simul-

taneous execution, we adopt the same strategies as previous

studies to ensure continuous TLB contention [33], [46], [59].

That is, applications that are completed early are re-run until

the completion of the longest-running application within the

workload. The statistical data is gathered only during the initial

complete run of each application within any given workload.

IV. QUANTITATIVE ANALYSIS OF MIG MULTI-TENANCY

A. Overall Performance Characteristics

In a MIG-enabled GPU, the shared L3 TLB is a key source

of contention under multi-tenant execution. To quantify the

performance impact of interference and contention at the L3

TLB, we study normalized performance of individual appli-

cations within workloads and the average performance of the

nine workloads in Table III as shown in Figure 3. Specifically,

the normalized performance here is the performance of an

application executed in conjunction with other applications,

normalized to the performance of running alone. The average

performance is calculated as the harmonic mean of normalized

performance for all applications within a workload. Note that,

when an application runs alone, it uses the same instance size

but gets exclusive use of the full L3 TLB capacity. One can

make the following observations. First, L3 TLB contention

compromises the performance of individual applications. In
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W11, each application experiences a negligible performance

overhead. Conversely, in W1, there is an average performance

drop of 48%. Overall, the performance decreases by an average

of 40% compared to applications run independently. Second,

the performance degradation varies among different applica-

tions within the same workload. This variance is particularly

significant in applications with higher MPKI values. As shown

in W8, where the performance of FFT, with a low MPKI

of 0.5, drops by 6.6%, in contrast to NW, which suffers a

substantial 36.7% decrease with a medium MPKI of 38.4.

This is because applications with higher MPKI values are

more sensitive to TLB misses due to limited latency hiding

through context switching or other parallel threads. Third, the

performance degradation of the same application can vary

depending on the specific co-runners. Taking ST_s as an

example, its performance drops by 61% in W4 but only by

34% in W10. This is due to the co-running applications having

a higher MPKI in W4 than those in W10, which leads to more

severe L3 TLB contention.

We further investigate the reuse distance of translations for

multi-tenancy. The reuse distance is defined as the unique

translation count between two accesses to the same translation

from the same instance. The unique translations include all dis-

tinct translations originating from either the same application

or different applications. Specifically, we measure the reuse

distance of address translations that reach the L3 TLB.

Figure 4 presents the Cumulative Distribution Function

(CDF) of the translation reuse distances of four workloads with

representative MPKI mix, i.e., HHM, HMM, HML, and MML.

For comparison, we also show the reuse distance for each

application running alone, depicted in light dotted lines. We

observe that some applications (e.g., NW, FFT and FIR) show

very different reuse distances when they execute concurrently

with others versus running alone. For example, in its single-

run of NW, 94.2% translation reuses are less than the L3

TLB capacity (i.e., 16,384 sub-entries), indicating a higher

possibility of these reuses being accommodated within the

TLB. However, in W3, only 32.7% of the reuses in NW are

within the TLB capacity. This is because in W3, ST and MT

have high/medium MPKIs, and they generate a large number

of translation requests to the L3 TLB. Therefore, the reuse

distance of NW is extended. For applications such as ST_s in

0.0
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1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
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# of sub-entries occupied 
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Fig. 5. CDF of TLB sub-entry utilization when running in isolation.

W8, its reuse distance shows relatively little change compared

to its isolated run. This is because it generates intensive

translation requests that miss in the L2 TLB and therefore

consume a considerable portion of L3 TLB entries; at the

same time, its co-located application FFT has a lower MPKI,

thereby generating less contention for TLB resources. We also

marked the L3 TLB capacity in the figure. It is observed that

for applications with severe contention (e.g., MT), more than

80% of the translation reuses miss in the L3 TLB.

B. Sub-Entry Utilization Characterization

Recall that, when a TLB entry is evicted, the sub-entries

within the TLB entry are also evicted. This design is beneficial

for scenarios where memory accesses exhibit a contiguous

or linear pattern. In such cases, most sub-entries can be

utilized effectively before any TLB entry is evicted, thereby

maximizing the efficiency of the TLB. However, in situations

where memory access patterns are non-contiguous, particularly

in workloads with sparse or irregular memory access patterns,

some sub-entries might remain unused at the time of eviction.

We therefore study the utilization of sub-entries of each

application when it is evicted. Figure 5 shows the CDF of sub-

entry utilization of all applications listed in Table II running

in isolation. One can observe that applications with streaming

access patterns, such as FIR and FFT, tend to make full use of

TLB sub-entries before eviction due to their sequential access

nature. In contrast, the application MT exhibits low sub-entry

utilization (most TLB entries evicted with only four sub-entry

occupied). This is because MT has stride access patterns, where

accesses do not align well with the contiguous page mappings

of the sub-entries. Moreover, application ST, which exhibits a

block access pattern along with a stream pattern, shows nearly

50% of the TLB entries are evicted when only half of the

sub-entries are utilized. This is because of the mixed nature

of its memory accesses, i.e., sequential within blocks but non-

contiguous between them. Note that the memory footprints of

applications ATAX, BFS, BICG, and NW can fit in the address

coverage range of L3 TLB, therefore no eviction is observed

when they are running alone.

We further analyze the contention and interference impact

on sub-entry utilization when co-running applications. Fig-

ure 6 presents the sub-entry utilization of six workloads with

representative MPKI mix, i.e., HHH, HHM, HMM, HML,

MMM, and LLL. The darker solid lines in the figure represent

the sub-entry utilization of each application when co-running;

we also show the sub-entry utilization when applications run
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Fig. 6. CDF of TLB sub-entry utilization under co-running.

individually in lighter dot lines. One can make the following

observations. First, all applications within workload categories,

except LLL, show substantially less utilization of sub-entries

when a TLB entry is evicted compared to applications that

are run in isolation. For example, for ATAX in W1, 73.4% of

its TLB entries are evicted when less than half of the sub-

entries are used, even though there are no evictions when run

in isolation. Similarly, for application ST in W2, 66.3% of its

TLB entries are evicted with only one sub-entry used, whereas

43.4% of its TLB entries are evicted with fully occupied sub-

entries when run in isolation. More severe underutilization is

observed for workloads with a larger MPKI mix. Second, an

application may incur very different utilization in different

workloads. For example, ST_s in W4 has 69.8% of its TLB

entries with just two sub-entries used at the time of eviction.

In contrast, in W7, ST_s shows only 22.5% of its entries

evicted with two sub-entries used. This is because in W4, the

co-running application MT_s has high MPKI, which leads to a

greater number of translation requests to the L3 TLB, causing

ST_s to suffer from more frequent evictions before the sub-

entry is fully utilized due to increased contention.

Does promoting sub-entry to regular TLB entry solve

the problem? A straightforward approach to enhancing sub-

entry utilization would be to convert sub-entries into regular

TLB entries, thus eliminating the 1 MB virtual address range

alignment for each TLB entry and allowing any address to

utilize these sub-entries. However, such an expansion would

result in a significant hardware cost. In the baseline, each

way uses one comparator to match the incoming address with

stored tags. Requests that fall within a specific TLB entry

range directly map to the corresponding sub-entry, simplifying

comparisons. However, allowing any address to use a sub-entry

would require each of the 16 sub-entries in a TLB entry to have

its comparator. Since each TLB entry is associated with 16

sub-entries, this would increase the number of comparators by

16 for each way. We use CACTI [53] to estimate the TLB size:

under this design, the TLB size is 17.2× of the baseline. This

increase is impractical considering the constraints on GPU die

size. Therefore, it is important to explore a more efficient and

cost-effective approach to optimize TLB sub-entry utilization

without excessively increasing its size.

V. SUB-ENTRY SHARING-AWARE TLB

Our goal in this paper is to improve the MIG-enabled GPU

TLB hit rate, thereby boosting the performance of multi-

tenancy execution. While contention for a shared resource is

inevitable in environments where resources are limited, our

analysis in the previous section has revealed opportunities to

mitigate contention effects by optimizing the utilization of

TLB sub-entries.

To this end, we propose STAR, a hardware-supported TLB

sub-entry sharing mechanism that allows multiple base ad-

dresses to share a TLB entry of 16 sub-entries dynamically.

Our approach organizes sub-entries into multiple groups, allo-

cating each group to one base address for usage. However,

implementing an effective and efficient dynamic sub-entry

sharing mechanism is non-trivial and faces several challenges.

First, reducing the number of sub-entries allocated to each

base address changes the direct mapping from the original

design. It is important to resolve any resulting conflicts while

maintaining the correctness of address translation lookup.

Second, it is important to select appropriate base addresses for

sharing and determine when to share such that the utilization

can be maximized and minimize the performance impact

compared to the original sub-entry capacity. Third, enabling

sub-entry sharing, the TLB lookup and insertion procedure

should not significantly be increased compared to the baseline.

Finally, the proposed TLB sub-entry sharing should involve

minimum hardware overheads, offering a cost-effective and

scalable alternative to merely enlarging the TLB size.

A. Sub-Entry Sharing-Aware TLB Format

Figure 7 depicts the format of virtual addresses and the

content of a sharing-aware TLB entry. Specifically, the original

4-bit sub-entry index is split into an n-bit sub-entry index and a

(4−n)-bit Address Identify Bit (AIB). The value of n depends

on how many base addresses are sharing one TLB entry. In the

current design, we allow each original TLB entry to support

two base addresses, and each address can occupy eight sub-

entries (i.e., n = 3). This pre-determined value is based on

our characterization analysis presented in Section IV-B, where

we found over half of the TLB entries were evicted while less

than half of their 16 sub-entries were utilized. The shared TLB

entry also needs additional bits to maintain the metadata (e.g.,

valid/dirty bits) for each base address separately. Since each

base address is limited to using 8 sub-entries in our design,

the absence of a direct one-to-one mapping within a 1 MB

alignment could lead to conflicts for sub-entries with identical

index bits. To address this, our approach dictates that if a sub-

entry is already in use and a new request arrives with the same

sub-entry index bit, the new request will replace the existing
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v/d VPB bit AIB Space

2 bits Base1: 30 bits
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1 bit 52 bits &

2 bits Base2: 30 bits &

TLB entry

Sub-Entries

Fig. 7. Format of the virtual address and contents of a sharing-aware TLB
entry in sequential layout.
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layout

Physical 
Address

v/d VPB bit AIB Space

2 bits Base1: 30 bits
10

1 bit 52 bits &

2 bits Base2: 30 bits &

TLB entry

Sub-Entries

Address

Virtual Page Sub-Entry Identify TLB Page

Base (VPB) Index Bit (AIB) Index Offset

30 bits 3 bits 1 bit 7 bits 16 bits

Fig. 8. Format of the virtual address and contents of a sharing-aware TLB
entry in stride layout.

one. Consequently, at any given moment when a TLB entry

is shared, only one address translation with a particular sub-

entry index bit can be present in a TLB entry. The Address

Identify Bit (AIB) becomes essential here, serving to identify

which address is currently using the sub-entry.

Because of the diverse access patterns exhibited by ap-

plications, e.g., stream versus stride patterns, we introduce

a flexible method that dynamically allocates sub-entries to

base addresses based on the usage patterns of sub-entries.

Specifically, for scenarios where sub-entries are occupied

sequentially, we allocate the first half of the sub-entries to

the first base address and the second half to the second base

address. In this case, the last three bits of the sub-entry index

are used to identify positions within each base’s allocated

sub-entries. The first bit of the sub-entry index acts as the

Address Identify Bit (AIB) (shown in Figure 7). Alternatively,

if the occupied sub-entries show stride access patterns, the

sub-entries are interleavedly allocated between the two base

addresses according to the stride size. In our approach, we

pre-define stride size to 1. That is, the first base address is

assigned to sub-entries with even indices, whereas the second

base address is allocated to those with odd indices. In this case,

the first three bits of the sub-entry index are used to determine

the location of sub-entries (shown in Figure 8). These sub-

entry layout strategies are recorded in layout-bit (initially set

to ‘00’, indicating non-shared status). When inserting the new

base address, the choice between sequential or stride layout

depends on the current occupancy pattern of sub-entries: a

consecutive pattern triggers the sequential layout (layout bit

set to ‘01’), whereas a non-consecutive pattern activates stride

layout (layout bit set to ‘10’). The layout bit then determines

which index bits are used during lookup.

Note that choosing between different numbers of shared

base addresses leads to a trade-off between sub-entry uti-

lization and hardware overhead. More shared base addresses

increase sub-entry utilization but require more bits to be

stored in the TLBs and more cycles to compare each base

v/d

set 0 Base 1
0
1

Base 2

...

0
0

set n

way-0

&

Virtual
address

Hit

AIB

= =

1

2

4
1-bit comparator

VPB

offset
TLB
indexVPB

sub-entry
index

3layout
bit

AIB + physical address space

Fig. 9. TLB lookup process in STAR.

address. On the other hand, fewer shared base addresses reduce

hardware overhead and lookup latency, but lead to lower sub-

entry utilization. We provide sensitivity results with different

numbers of shared base addresses in Section VI-B.

B. TLB Lookup and Insertion Process

When to share? In our sub-entry sharing-aware TLB archi-

tecture, sub-entry sharing is allowed under specific conditions

to optimize utilization. Initially, the TLB works as the default

baseline, with each TLB entry independently managed until

all entries (ways) within the TLB set are allocated. At that

point when a new address arrives, instead of proceeding with

a Least Recently Used (LRU) entry eviction, we first check

how many sub-entries are actually being used in all entries

of that set. An entry is considered eligible for sharing if it

meets the following criteria: (i) less than eight sub-entries are

utilized, and (ii) only one base address is currently occupying

the entry. If multiple entries fit these criteria, we prefer to pair

the incoming base address with an existing entry from the

same process because access patterns within the same process

tend to be similar. If no matching process is found, we choose

the candidate where the current sub-entry utilization is the

lowest. Only if no entries meet these conditions for sharing

do we fall back to the baseline approach of evicting the least

recently used entry and inserting the new one.

STAR also supports dynamic shifts between the shared and

non-shared state. The shared TLB entry can still revert to the

non-shared state. Specifically, when a TLB entry, currently

shared between two base addresses, reaches a state where all 8

sub-entries allocated to one base are fully utilized, it indicates

the potential for an increase in demand for this process. Upon

the arrival of a new request that cannot be accommodated due

to fully utilized sub-entries for its corresponding base address,

the shared TLB entry will be reverted to being exclusively

used by one base with increasing demand. The other base

and its associated sub-entries are evicted from the TLB entry.

The TLB entry status is updated, which involves resetting the

layout bit, the metadata for the second base, and reorganizing

the sub-entries based on the 4-bit sub-entry index.
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Algorithm 1: TLB Lookup with Sub-Entry Sharing.

1 /* Lookup () */

2 Request arrives L3 TLB

3 Compare each entry in set with request’s VPB in parallel

4 if non-shared TLB entry then

5 Use 4-bit of sub-entry index

6 if find matched sub-entry then

7 TLB hit, respond with PFN concatenated with page offset

8 else

9 TLB miss, send request to GMMU for page table walk

10 else

11 Check base addresses sequentially

12 if find matched base address then

13 Check layout bit

14 if layout bit equals ‘01’ then

15 Use last three bits of sub-entry index

16 else

17 Use first three bits of sub-entry index

18 Locate sub-entry and compare AIB with request’s AIB

19 if AIB matches then

20 TLB hit

21 else

22 TLB miss

23 else

24 TLB miss

TLB Lookup: Figure 9 shows the TLB lookup procedure,

which is provided in Algorithm 1. Specifically, when a trans-

lation request arrives at the L3 TLB, it first identifies the

corresponding set. Each entry in that set is compared in paral-

lel with the request’s VPB. Two scenarios can happen. First,

the entry is non-shared with only one base address, indicated

by the layout bit set to ‘00’. The 4-bit sub-entry index is

then used to locate the corresponding sub-entry. Second, if an

entry contains two base addresses, these addresses are checked

sequentially ( 1 , 2 ). Upon identifying a matching entry, the

layout bit is checked to determine which bits should be used

to index the corresponding sub-entry ( 3 ). If the layout bit is set

to ‘01’, the last three bits of the sub-entry index are employed

to locate the specific sub-entry. On the other hand, if the layout

bit is set to ‘10’, the first three bits will be used. Once locating

the sub-entry, the Address Identify Bit (AIB) stored in the sub-

entry is compared with the request’s AIB ( 4 ). A matching

AIB indicates a TLB hit, and the PFN stored in the sub-entry

is concatenated with the page offset to form the requested

physical address. An AIB miss (also TLB miss) is handled the

same way as in the baseline which involves sending the request

to the GMMU for a page table walk. In our sequential L3 TLB

lookup, the lookup latency for a single base address remains

the same as the baseline at 40 cycles. This latency includes

the cycles required for the request to reach the L3 TLB, base

address comparison, data access, and TLB miss resolution.

Given that comparing base address typically requires 5-10

cycles [22], [23], we conservatively add an additional 10 cycles

for the second base address comparison. Thus, if both base

address lookups are required, the total lookup latency for this

TLB entry amounts to 50 cycles. All these latency overheads

are included in our evaluation.

TLB Insertion: The insertion algorithm is shown in Algo-

rithm 2. When a new address needs to be inserted, the index

Algorithm 2: TLB Insertion with Sub-Entry Sharing.

1 /* Insert ()*/

2 Find the TLB set for the virtual address.

/* Scenario 1: Base address hit */

3 if address matches an existing base then

4 if entry is shared then

5 Use the layout bit to find the sub-entry

6 if base’s sub-entries are full then

7 Make entry non-shared

8 Reset the layout bit

9 Reorganize sub-entries

10 else

11 Insert into sub-entry. Evict the original if needed

12 else

13 Insert translation with 4-bit index

14 else

/* Scenario 2: Miss all base addresses */

15 if there is an available entry in the set then

16 Insert new base address into first vacant entry

17 else

18 if conditions for sub-entry sharing are met then

19 Check access pattern of sub-entries

20 if sub-entries are continuously occupied then

21 Apply sequential layout; set layout bit to ‘01’

22 else

23 Apply stride layout; set layout bit to ‘10’

24 if sub-entry is already occupied by the original base then

25 Try to relocate the original entry

26 if alternative sub-entry is also occupied then

27 Evict the original entry to accommodate new

translation

28 else

29 Insert new address translation with determined layout

30 else

31 Evict least recently used (LRU) entry and insert new address

bits of the virtual page number are used to determine the set

in the TLB. Two scenarios can happen depending on whether

the address matches an existing base address in the identified

set. In the first scenario, if the base address hits, the following

process depends on the shared status of the TLB entry. For a

non-shared TLB entry (layout bit ‘00’), the address translation

is inserted into its corresponding sub-entry using the complete

4-bit sub-entry index. On the other hand, if the TLB entry

is shared by two base addresses, the layout bit determines

whether the last or first three bits of the index are used to

locate the sub-entry. In a situation where all sub-entries for the

inserted base address are full, it triggers a shift from a shared

to a non-shared state. That is, the metadata and sub-entries

associated with the other shared base address are evicted and

the layout bit is reset to ‘00’. The sub-entries will be relocated

using the 4-bit sub-entry index. Instead, if the sub-entries of

the inserted base address are not full, the incoming translation

is inserted into the sub-entry as indicated by the 3-bit sub-entry

index; if the target location is already occupied, the original

translation is removed.

In the second scenario, it misses all base addresses. If there

is an available entry within the set, the new base address is

inserted into this first vacant entry. Otherwise, the conditions

for sub-entry sharing are evaluated, as previously discussed.

If an entry is selected for sharing with the new base, the

access pattern of the current entry is checked to determine
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how to organize the shared sub-entries (i.e., sub-entry lay-

out). Specifically, if the sub-entries are occupied continuously

without any gaps, it is classified as a sequential pattern. For

such cases, the sequential layout will be applied to the sub-

entries, and the layout bit is set to ‘10’ (indicating a sequential

layout). The last three bits of the sub-entry index are used to

assign the address translation to its corresponding sub-entry.

In contrast, if there are empty slots among these sub-entries,

the pattern is identified as stride. The stride layout is then

employed (the layout bit is set to ‘10’), utilizing the first three

bits of the sub-entry index to map the address translation to a

sub-entry. It is important to note that when allocating a new

address translation to a sub-entry, it may happen that the sub-

entry is already in use by the original base address. In such

cases, we will attempt to relocate the original entry to another

sub-entry sharing the same index bits if it is unoccupied. If

this alternative sub-entry is also in use, the original address

translation that initially occupied the chosen sub-entry will be

evicted to accommodate the incoming new address translation.

Note that the insertion into the L3 TLB is off the critical path

and hence does not directly impact performance.

C. Hardware Overhead

In our configuration, the L3 TLB entries are augmented with

additional bits to support the new functionality: a layout bit for

sub-entry indexing layout, and an Address Identify Bit (AIB)

to identify which address currently occupies the sub-entry.

Each TLB entry now comprises two bases, with associated

valid/dirty bits, the virtual page base (VPB), AIB, and physical

address space (PAS). Therefore, the sharing-aware TLB entry

format requires an additional 2 bits (layout bit) + 16 bits (1

bit AIB per sub-entry) + 30 bits (second base address) + 2 bits

(v/d for second base address) = 50 bits per TLB entry. Given

that our L3 TLB design accommodates 1024 entries, and each

entry originally consists of 864 bits (2-bit v/d, 30-bit VPB,

and a 52-bit PAS per sub-entry), the introduction of sub-entry

sharing and associated metadata increases the size per entry

to 914 bits. Additionally, our design adds a 1-bit comparator

for each sub-entry to match the AIB. We use CACTI [53] to

estimate the area and power overhead of our approach. The

result shows 1.4% area overhead over the original L3 TLB

assuming a 22 nm technology node. Dynamic and leakage

power consumption increase by 0.3% and 5.3%, respectively.

Considering that TLBs account for a minor fraction of the

total system dynamic power (less than 1% [34], [51]), the

additional power overhead introduced by STAR is negligible

to the overall system power consumption.

VI. EVALUATION

A. Overall Performance

Figure 10 shows the performance improvements of indi-

vidual applications within each workload and the harmonic

average performance improvements (represented by the right-

most bar for each workload) of the multi-tenant workloads.

Results are normalized to the baseline multi-tenant execution.

Fig. 10. Normalized performance improvements offered by STAR.
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Fig. 11. L3 TLB hit rate of baseline and STAR.

Figure 11 plots the L3 TLB hit rate for each application in each

workload. One can make the following observations. First,

STAR improves performance by up to 51.3% with an average

of 28.7% across all workloads. The improvement is more

significant for workloads that suffer from severe contention in

the L3 TLB (i.e., high MPKI value). For example, W2 (HHM)

achieves 51.3% improvement and W7 (MMM) achieves 23.5%

improvement, respectively. This is because workloads with

high MPKI values benefit more from TLB optimizations as

each TLB miss leads to costly page table walks, directly

impacting performance. Our scheme effectively increases L3

TLB reach by sharing sub-entries, and as a result, the TLB

can accommodate more translations and also capture a larger

fraction of reused translations. Interestingly, FIR has very low

MPKI (0.3) while having 27.1% performance improvement

in W10 (MLL). This is because a large number of pending

requests are coalesced to the same TLB miss in the L2

MSHRs. Reducing TLB miss latency significantly benefits the

whole execution.

Second, the performance benefits come mainly from the

enhanced L3 TLB hit rates through sub-entry sharing. On

average, STAR improves L3 TLB hit rate by 32.8% across

all workloads. For example, the L3 TLB hit rate of ST

in W2 improves by 52%, which translates into a 52.7%

performance improvement. The improved TLB hit rate also

indicates an extended TLB reach, effectively reducing the

number of (expensive) page table walks.

Third, the performance improvement of the same applica-

tion differs across workloads. For example, MT_s achieves

a substantial 55% performance improvement in W6 versus

35% in W4. This variance can be attributed to how the other

applications within a workload interact with each other. In W6,

the stride access patterns of the co-located application FFT

result in low sub-entry utilization under the baseline scenario.

When STAR is applied, MT_s is able to dynamically share

the sub-entries that would otherwise remain underutilized by

FFT. Since the latter application does not fully utilize its

allocated sub-entries, sharing them with MT_s brings little

to no detriment to its performance, hence the significant
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Fig. 12. Performance of different layout strategy in STAR.

Fig. 13. CDF of sub-entry utilization of STAR.

improvement for MT_s. Conversely, in W4, applications such

as ST_s and FIR make more efficient use of their allocated

sub-entries, leaving fewer opportunities for MT_s to benefit

from sharing.

Finally, our approach does not comprise the performance of

any shared applications within the workload. This is because

our approach can dynamically shift between the shared and

non-shared states based on application demand. When an

application has a higher demand for sub-entries, our approach

allows for exclusive access to all sub-entries, as in the baseline

scenario, thus maintaining performance integrity.

In Figure 12, we analyze the performance of different

layout strategies, including sequential layout, stride layout,

and a combination of both (i.e., STAR). The results show that

sequential only, stride only, and sequential+stride achieve an

average of 19.2%, 19.7%, and 28.7% performance improve-

ment over the baseline, respectively. Workloads featuring a

stride access pattern (e.g., W1) perform better with the stride-

only layout. In contrast, workloads dominated by stream ap-

plications benefit more from the sequential layout (e.g., W10).

Note that, the improvement brought by STAR is less than the

sum of the improvements achieved by each layout individually.

While combining the two layouts should theoretically capture

the benefits of both, in practice, the mechanism that determines

which layout to use may not accurately predict the most

effective layout for the upcoming second base address. This is

because the layout is determined by the first base address that

occupies a sub-entry. If the first base address has a sequential

access pattern, the second base is consequently forced to adopt

the sequential layout, regardless of its optimal characteristics.

We further demonstrate the effectiveness of our approach by

plotting sub-entry utilization, as shown in Figure 13. We ob-
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Fig. 14. Normalized performance for each application within its workload
mix under STAR.

Fig. 15. STAR with a 4-base sharing TLB.

serve that STAR consistently achieves higher utilization rates

than the baseline, as indicated by the curves of STAR lying

closer to the bottom right compared to the baseline, indicating

a larger proportion of TLB entries with higher sub-entry

utilization. We calculate the average utilization by summing

up the product of the utilization fraction and the number

of occurrences for each eviction and dividing by the total

number of evictions. Our approach achieves on average 31.4%

improvement in sub-entry utilization over the baseline.

Figure 14 reports the performance for each application when

run alongside others under STAR normalized to its perfor-

mance when run in isolation. Per-application performance

drops by an average of 26.1% under STAR. In contrast, under

the baseline, performance is reduced by an average of 40%

(as previously reported in Figure 3). This demonstrates that

our approach effectively reduces the impact of multi-tenancy

interference and improves overall performance.

B. Sensitivity Analyses

Different number of shared base addresses: In our dis-

cussion so far, up to two base addresses can share the same

TLB entry. We now explore the option of having more base

addresses sharing the same entry (i.e., up to 4 base addresses).

That is, we allow scenarios where a TLB entry is used by one,

two and four base addresses. The 4-base sharing mechanism

works as follows. For entries with one or two base addresses,

the process remains identical to our initial design. If an entry

already has two base addresses and each utilizes fewer than

four sub-entries, we enable sharing among four base addresses

within that entry. To facilitate the varied sharing configurations

(1, 2 or 4 base addresses), we introduce a 3-bit layout indicator.

The initial state ‘000’ indicates no sharing, with the last

two bits specifying the sub-entry layout strategy. When the

entry is shared, the last two bits deviate from ‘00’ as in our

initial design, and the first bit indicates the current number

of shared base addresses in the entry. For example, ‘001’

indicates two bases sharing with a sequential layout, while

‘110’ represents four bases sharing with a stride layout. Our

design also incorporates the ability to dynamically transition
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Fig. 16. STAR with different stride sizes.

between non-shared, 2-base address shared, and 4-base address

shared states within the TLB. When a base address exhibits an

increased demand for sub-entries, and if the entry is currently

shared by four bases, we reduce the sharing to two bases, and

further one base to accommodate the demand.

Figure 15 shows the performance of 4-base sharing nor-

malized to baseline execution. On average, 4-base sharing

improves performance by 22.7% over the baseline. However, it

experiences a 6% performance reduction when compared to 2-

base sharing. This is because, 4-base sharing, while enhancing

utilization, introduces a trade-off by increasing address conflict

evictions. Specifically, four addresses are allocated to share

a single sub-entry (compared to two addresses sharing one

sub-entry in the initial design), the address conflict evictions

increase, which potentially reduces the TLB hit rate. Moreover,

the lookup process requires up to four sequential operations

in 4-base sharing, further exacerbating the lookup latency. We

also evaluate the hardware overhead of the 4-base sharing

approach with CACTI, and it shows a 3.6% area overhead

compared to the baseline.

Different stride sizes: We initially configured our stride layout

with a stride size of 1. Next, we study how varying stride

values affect our approach. Given that two base addresses

share the same entry, the feasible stride options are limited to

2, 4, and 8. Since a stride size of 8 corresponds to a sequential

layout (refer to ‘Sequential’ bar in Figure 12), we focus

on presenting the performance of our approach with stride

sizes of 2 and 4, normalized to the baseline, as illustrated in

Figure 16. It is important to note that while we vary the stride

sizes of the stride layout, the dynamic layout selection and

the shared to non-shared state switching mechanism remain

unchanged. The results indicate that STAR with different stride

sizes yields similar performance improvement. However, for

workloads dominated by stride access patterns (e.g., W1 and

W2), configurations with stride sizes of 2 and 4 perform worse

than stride size of 1. This is because a stride size of 1 ensures

that stride access patterns, whether they involve small or large

strides, the translations are distributed across different sub-

entries, effectively reducing conflicts. Conversely, while larger

stride sizes may accommodate small stride access patterns

efficiently, they tend to increase conflicts for larger stride

access patterns. Note that, in W5, larger stride sizes outperform

a stride size of 1 because the non-uniform distribution favored

by stride sizes of 2 and 4 is better aligned for applications

with irregular access patterns (i.e., BFS and PR).

Different instance sizes: We use the applications in Table II

to form multi-tenant workloads with different numbers of

applications, including five workloads with four applications

Fig. 17. STAR with different instance sizes.

TABLE IV
MULTI-TENANCY WORKLOADS WITH 4, 5 AND 6 APPLICATIONS.

Abbr. Workload Applications Category

W12 workload12 MT, MT, ATAX, BICG HHHH

W13 workload13 MT, ATAX, ST, NW HHMM

W14 workload14 MT, BICG, FFT, FIR HHLL

W15 workload15 CONV, NW, ST, ST MMMM

W16 workload16 CONV, NW, FFT, FIR MMLL

W17 workload17 MT, ATAX, ST, NW, FFT HHMML

W18 workload18 MT, ATAX, BICG, ST, NW, FFT HHHMML

each, one workload with five applications, and one with six

applications, as listed in Table IV. The whole GPU is parti-

tioned into different instance sizes depending on the number

of co-running applications, with each instance running one

application. Specifically, in W12-W16 (4-application work-

load), the GPU is divided into 2+2+2+1; in W17, it is divided

into 2+2+1+1+1; and in W18, it is 2+1+1+1+1+1. Figure 17

reports normalized performance for STAR. First, our approach

is able to deliver scalable performance improvements with

different instance sizes, achieving 14.6%, 15.3%, and 12.1%

performance improvement for the 4-, 5- and 6-application

workloads, respectively. Second, the performance improve-

ment is reduced as the number of co-running applications

increases. This is because, first, the decrease in instance size

leads to a corresponding reduction in L2 TLB size, which in

turn increases the number of requests directed to the L3 TLB.

Second, the increase in the number of co-running applications

intensifies the competition for the limited number of L3 TLB

entries which also impacts performance.

C. Comparison to TLB Alternatives

We compare STAR with three TLB design alternatives,

which feature 8 sub-entries per TLB entry while doubling the

number of ways or sets to keep total TLB capacity constant

relative to the baseline. The TLB entries are exclusively used

by one base address. Specifically, we consider (i) Half-Sub-

Double-Set: 256 sets, 8 ways, and 8 sub-entries per entry;

(ii) Half-Sub-Double-Way-Para: 128 sets, 16 ways, and 8 sub-

entries per entry — here we increase the number of compara-

tors with the number of ways such that all ways are compared

in parallel within a set; this approach significantly increases

hardware overheads; and (iii) Half-Sub-Double-Way-Seq: 128

sets, 16 ways, and 8 sub-entries per entry — we keep the same

number of comparators as the baseline to avoid significant

hardware overheads, such that two ways within a set are

checked sequentially. We compare the hardware overhead of

these alternatives using CACTI: both Half-Sub-Double-Set and

Half-Sub-Double-Way-Seq maintain overheads comparable to
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Fig. 18. Comparison of different TLB designs.

Fig. 19. STAR with a large 2 MB page.

the baseline with a 1.1% area increment; while Half-Sub-

Double-Way-Para incurs a significant 78.8% area increment

due to the increased number of comparators.

Figure 18 reports performance for each alternative compared

to STAR. All results are normalized to the baseline multi-

tenant execution. One can make the following observations.

First, STAR achieves the highest performance improvement

among all alternatives. Specifically, our approach achieves a

20%, 21.5%, and 16.1% performance improvement over Half-

Sub-Double-Set, Half-Sub-Double-Way-Seq, and Half-Sub-

Double-Way-Para, respectively. Second, halving the number

of sub-entries statically to 8 incurs a performance degradation.

For example, in W8, the performance of Half-Sub-Double-

Way-Para drops by 26.7% compared to the baseline. This is

because, in the baseline TLB design with 16 sub-entries, a

hit in any of the 16 sub-entries reduces the chance of the

TLB entry being evicted by the LRU scheme, potentially

keeping it in the TLB longer, benefiting other accesses to

one of the 16 sub-entries. This especially benefits the access

patterns with good spatial locality, where multiple accesses

are closely within a contiguous memory (e.g., ST). In contrast,

reducing the number of sub-entries to 8 weakens the capability

to exploit spatial locality (i.e., each hit now only benefits 8

sub-entries, compared to 16 in the baseline). Our approach

dynamically alternates between a shared and non-shared TLB

state, effectively enhancing the TLB sub-entry utilization while

maintaining the efficiency of spatial locality accesses.

D. Comparison to Large Pages

We now evaluate how STAR performs with a 2 MB large

page compared to a baseline with a 2 MB large page size,

see Figure 19. STAR achieves an average of 10% perfor-

mance improvement. This demonstrates that STAR remains

effective when adopting a larger page size. The performance

improvement is less compared to the 64 KB page size results.

This is because large pages naturally enhance TLB reach and

reduce the contention for limited TLB capacity. Nevertheless,

large pages still suffer from sub-entry underutilization, and the

eviction of a TLB entry covering a large address space can

have a more severe impact on performance due to the broader

Fig. 20. Comparison to static partitioning.

Fig. 21. Comparison with MASK [9].

range of addresses affected. Therefore, our approach continues

to be effective as it enhances TLB sub-entry utilization,

improves the hit rate, and increases overall performance.

E. Comparison to Static TLB Partitioning

One straightforward solution to mitigate contention is to

statically partition the L3 TLB. In this approach, we statically

partition the L3 TLB ways based on instance sizes. Specif-

ically, in our setup, the instances are sized as 3g, 2g, and

2g. Accordingly, the TLB ways are allocated as one instance

(the largest, at 3g) is assigned four ways of the TLB, while

the other two instances (both 2g) are allocated two ways

each. Figure 20 plots the performance of the static partition

normalized to the baseline shared L3 TLB. We observe an

average 6.8% performance degradation due to static parti-

tioning. Workloads combining applications with mixed MPKI

values, particularly those including at least one high/medium-

MPKI application (such as in W6, W8, and W10) suffer

from a more severe performance drop. This is because static

partitioning restricts the number of TLB entries available to

high/medium-MPKI applications, thus reducing the ability of

applications to accommodate increasing demands by taking

up entries from others. STAR is also adaptable to scenarios

with static partitioning, enabling two base addresses within the

same instance or process to share a single TLB entry. Figure 20

also shows the performance of our approach on top of static

partitioning. The results are normalized to the baseline shared

TLB. STAR+static partitioning achieves an average of 14%

performance improvement over static partitioning alone. This

is because our approach is able to further optimize sub-entry

utilization within individual processes, effectively increasing

the TLB hit rate and enhancing overall performance.

F. Comparison with State-of-the-Art

The previous work MASK [9] addressed shared TLB

contention in multi-application environments using TLB-Fill

Tokens to manage how many warps can fill the shared TLB,

and adjusted the TLB entries allocated to each application

based on its L2 TLB miss rate, thus reducing thrashing. It

also features a TLB bypass cache for entries from warps with

insufficient tokens. Note that MASK includes optimizations
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for both L2 cache and main memory interference. However, in

our MIG baseline configuration, the L2 cache and memory are

partitioned across different instances, which eliminates any in-

terference between these two components. Therefore, our com-

parison focuses only on the TLB optimizations implemented in

MASK. Figure 21 reports performance for STAR normalized

to MASK, where our approach achieves an average 25% per-

formance improvement over MASK. Although MASK effec-

tively manages TLB contention through dynamic partitioning,

it does not address the significant underutilization of sub-

entries, which critically impacts performance.

VII. RELATED WORK

Substantial prior studies have focused on address translation

optimizations to improve system performance [5], [10], [11],

[27], [31], [33], [41], [42], [55]. Several previous studies [10],

[43] enhanced TLB hit rates by employing speculative tech-

niques to predict the translations that miss in the TLBs. Many

studies have delved into methods designed for enhancing page

management to optimize the address translation process [2]–

[4], [30], [32], [35], [57], [60]. An alternate set of tech-

niques [12], [21], [24] improved TLB reach by generating

contiguous translations. Research proposals also suggested an

alternative memory management unit (MMU) cache structures,

to cache multiple levels of the page tables [11], [14]. Addi-

tionally, the research community has explored approaches to

increase TLB performance by using large pages and improving

super-page management [19], [39]. Bharadwaj et al. [13] co-

designed distributed TLBs with a lightweight interconnect to

realize scalable shared L2 TLBs. Li et al. [33] optimized

address translation in multi-GPUs through sharing and spilling

aware TLB design. Compared to all the prior efforts, our

research pioneers the optimization of MIG-enabled GPUs by

innovatively addressing TLB thrashing and implementing a

sharing mechanism for advanced TLB sub-entry designs.

VIII. CONCLUSION

In this paper targeting multi-instance GPUs, we comprehen-

sively study the address translation efficiency in multi-tenant

execution. Our investigation reveals that shared L3 TLB con-

tention significantly impacts performance by increasing TLB

thrashing and reducing the utilization of TLB sub-entries. To

address this problem, we propose STAR that enables dynamic

sharing of TLB entries among different base addresses. Exper-

imental results demonstrate that STAR substantially enhances

performance, delivering an average improvement of 28.7%

across a variety of multi-tenant workloads.
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