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Abstract

Cross spectral iris recognition has been shown to cause
a degradation in iris matching scenarios due to the inherent
differences between the NIR and visible spectra. This led
us to explore methods of iris domain translation, allowing
us to generate images between the NIR and visible domains
using generative adversarial networks (GANs). We train a
GAN network with an additional classifier component to act
as an identity-preserving module allowing the generator to
produce not only high quality, but identity-specific images.
We apply this method on three cross-spectral iris datasets,
namely, the Cross-eyed-cross-spectral iris database, the
PolyU bi-spectral database and the WVU Multispectral
database collected from our lab. We implement image en-
hancement techniques on the cropped iris images and un-
rolled, normalized iris images, allowing for the generator
to learn the iris texture with minimal noise surrounding the
iris and to show the performance of the generated images
in different matching scenarios. We show the performance
of our model by matching the generated iris images against
the true iris images in their translated domain. We show
that applying this image translation technique as a prepro-
cessing step increases the matching performance when ap-
plied to iris matching software, such as Neurotechnology’s
commercial iris recognition software, VeriEye and an open-
source iris recognition software, OSIRIS. Lastly, we per-
form an ablation study for each set of experiments by re-
moving the classifier component and comparing the results
with our model, showing that the competition between the
generator and classifier has an important role in learning
identity-specific features.

1Moktari Mostofa is now an ORISE Fellow with the US Food
and Drug Administration, Silver Spring, MD 20993 (email: mok-
tari.mostofa@fda.hhs.gov). This work is conducted inspired by her previ-
ous work during her graduate student status at the Department of Computer
Science and Electrical Engineering, Morgantown, WV 26506, USA.

2The results presented here were obtained for a project supported by the
Center for Identification Technology Research and the National Science
Foundation under Grant No. 1650474.

1. Introduction
Iris recognition is a widely used biometric modality due

to the unique variations of the iris tissue, offering high ac-
curacy whether it be for identification or verification [3].
However, some applications of iris recognition, such as
cross spectral iris recognition that could be used to match
opportunistic iris images extracted from face images to NIR
iris galleries, are still experiencing challenges to implemen-
tation. This is due to the inherent differences between the
two typical near infrared (NIR; 800-900 nm) iris images and
those captured in the visible spectrum (400-700 nm).

Iris images are generally captured in the NIR spectrum
which offers the ability to image the iris texture clearly re-
gardless of eye color. Visible iris images, as shown from [1],
also suffer from a lack of clarity in texture when the individ-
ual has darkly pigmented irises, resulting in a poor-quality
image with less discriminate features than NIR images of
the same individual. This brings a new complication when
trying to match images from two disparate spectral ranges,
as individuals with darker pigmented irises could see a de-
crease in match reliability where individuals with lighter-
colored irises would not. However, there are several bene-
fits to visible iris imaging that outweigh these shortcomings,
including the ability to capture high quality 50+MP images,
potential long-distance imaging, and the lower cost and
higher availability of visible iris sensors (i.e., visible cam-
eras). Visible images are also highly desirable for lighter
eyes since more texture can be captured than in an NIR im-
age. Existing data from surveillance videos and facial im-
ages can also be extracted, allowing for an expansion of the
field.

Because of the limitations of both spectra, it would be
significant for researchers to develop methods to translate
between the near infra-red (NIR) domain, where a major-
ity of large scale iris galleries are collected, and the visible
(VIS) domain, where a larger population will have access to
recognition systems.

Since a majority of iris galleries are obtained in the NIR
spectrum, it would be highly strenuous to ask the partici-
pants to re-enroll using visible wavelength systems, as some
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large-scale datasets can have millions of samples, creating a
discrepancy with newly captured iris probes and previously
enrolled iris galleries. This is where a domain-translation
architecture can be significant, allowing for previously en-
rolled images or newly enrolled images to be translated be-
tween domains to replicate intra-spectral matching. If a
module has the ability to learn the spectral differences be-
tween iris images captured in the NIR vs VIS wavelengths,
while keeping identity-specific features in tact, this would
allow for the enrollment of images between domains with
only one capture.

The goal of this paper is to analyze the performance of
deep generative models on both unrolled, normalized iris
images and segmented iris images to generalize the transla-
tion performance of NIR to VIS and VIS to NIR. A module
dedicated for identity preservation is added to a Generative
Adversarial Network (GAN) to keep the translated image as
true to the original identity as possible. The trained model
is then evaluated visually and empirically to show the per-
formance enhancement with identity preservation as a key
component to the success of the generator. The primary
contributions of this work are:

• The proposal of an identity preserving module in-
tended to guide the generator to class-specific features.

• An evaluation of the architecture on cropped and un-
rolled iris images, allowing for a generalization of the
model and removing the need of the preprocessing
step, especially when conducting matching analysis on
closed source software such as VeriEye, which doesn’t
accept the input of an unrolled iris

• An evaluation of three cross-spectral datasets, high-
lighting the benefits and drawbacks to each in different
processing scenarios.

2. Related Work

Cross-spectral iris recognition has received the attention
of many researchers, and there are several approaches to try
to mitigate the effects of sensor differences. Nalla and Ku-
mar [16] suggests using Markov random fields and domain
adaption to synthesize features between domains. Vyas and
Kanumuri [27] extracted features of the different spectrum’s
using template partitioning. Recently, there have been mul-
tiple research papers that have focused on increasing the
match performance of cross-spectral iris recognition using
deep learning based approaches. Wei et al. [29] extracts fea-
tures by learning a device-specific band that then translates
between the two domains, training an adversarial model on
learning these distributions. Wang and Kumar [28] imple-
ment deep hashing to extract sparse features and reduce the
size of iris templates for matching.

Since the goal of this network is to generate iris images
through adversarial learning, it is important to note the work
in the area of iris and periocular synthesis. Mostofa et al.
[14] produced a model to learn the common embedding of
visible and NIR normalized iris images through a latent vec-
tor in the generator model. They also created a translation
network from a 16-layer ResNet model to translate between
the NIR and VIS spectrum’s [15]. Both of these methods
have only experimented on unrolled iris images. Poster et
el. [22] and Hernandez Diaz [7] used a similar technique for
the synthesis of periocular images using the Cross-Spectral
and POLYU Bispectral datasets. These methods both show
that Coupled GAN (cpGAN) and conditional GAN (cGAN)
architectures have a great generalizability and can learn key
differences between domains well.

Though these approaches achieve low EER and high per-
formance for their task, they did not directly have a com-
ponent for preserving the identity of the individual during
the image transformation. They also focused on iris codes,
which require preprocessing and cannot be used in every iris
recognition software (VeriEye [19], for example only ac-
cepts segmented iris images) or the periocular region, which
although is an important biometric trait in it’s own right, the
goal of this method is to improve the generators ability to
replicate iris texture, and the added noise of the surrounding
periocular region would force the generator to learn features
not related to the iris. This is why we have applied an iris
crop method as proposed in [13] to eliminate as much noise
surrounding the iris in order to force the generator to be
more selective in it’s synthesized features.

Though the scope of this paper is through the lens of
iris recognition, there are also implementations of gener-
ative models through facial recognition that can be trans-
ferred between domains. Shen et al. [25] implement a
three-player GAN with an additional classifier component
to preserve identity features across poses and shows promis-
ing results for generative models. Other researchers are ap-
plying identity-preserving features for face super-resolution
[2; 11]. Since these networks are gaining popularity for fa-
cial recognition, it poses a question of whether these meth-
ods can be translated to other modalities such as iris recog-
nition.

3. Datasets
Three cross-spectral datasets were used for the train-

ing and testing of these experiments. The Cross-Eyed
Iris/Periocular Dataset [24] consists of 120 individuals and
8 images per eye, resulting in 1,920 images per spectrum at
400x300 resolution. The images in this dataset were taken
simultaneously with a custom dual-lensed sensor, allowing
for the NIR and VIS images of each individual to be paired.

The second dataset used in this work is the Hong Kong
Polytechnic University Cross-Spectral Iris Images Database
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(PolyU) [17], consisting of 209 individuals and 15 images
per eye, resulting in 6,270 images per spectrum at 640x480
resolution. The images in this dataset were taken on a cross-
spectral camera, allowing for the NIR and VIS images of
each individual to be paired.

The final dataset is a dataset collected from our research
lab at West Virginia University, which we will refer to as
the WVU Multispectral Iris Dataset (this dataset is available
upon request) which consists of 1,248 individuals with 2 im-
ages for the left iris and 2 images for the right iris, resulting
in 4,992 images per spectrum at 640x480 resolution. This
dataset does not take images synchronously similar to the
other two datasets. This gives us the ability to experiment
with the real-world scenario where the gallery is composed
of images taken at a different time as the probes.

3.1. Preprocessing

In order to evaluate the overall performance of a genera-
tive model on iris texture, the datasets were processed in two
ways. The iris boundary is found using the method from
[30], applying median filtering to the image and enhancing
the features to extract the iris region and the iris is then lo-
calized and normalized according to the rubber sheet format
introduced by John Daugman [4] by converting the polar
coordinates of the iris to a 64x512 sheet. The resulting nor-
malized image was then enhanced using the methods from
Nagam et al. [20], where the background-subtracted im-
age is enhanced using contrast-limited adaptive histogram
equalization (CLAHE) to obtain the final enhanced normal-
ized iris image. We test the normalized iris images using
the OSIRIS software.

The second method for processing the datasets was di-
rect enhancement of the original cropped iris image. This
method was conducted to translate directly between the cap-
tured iris image without the need to be normalized and
allows for researchers to transform the images as needed
without being limited to the iris code, which cannot be di-
rectly translated back to an iris image. The iris detection and
segmentation technique from the method described above
was used. The mask boundaries were then converted to co-
ordinates to crop the original iris image and eliminate the
periocular region around the iris. This acquires an image
similar to Figure 1, with some of the inner periocular re-
gion still visible. For this reason, we adopted the prepro-
cessing step from [13], removing the region outside of the
iris to eliminate as much noise as possible from the train-
ing images. The last step is feature enhancement, where
histogram equalization was applied to each image, which is
intended to distribute the image histogram evenly across the
entire intensity of the image. Figure 1 shows that it greatly
increases the details of the images. It is also worth noting
that we chose to use the gray-scale version for the visible
images, which was chosen so the generator focuses on the

texture more than the color. We test the cropped images
using the VeriEye software.

Example images from each dataset are shown in the top
row of Figure 1, as well as the processed images showing
the enhancement processes of the normalized iris images
and cropped iris images.

4. Model Architecture

The structure of our model was based on Mostofa et al.
[14; 15] with additional components to improve the robust-
ness and identity-preserving aspect of the model, inspired
by Shen et al. [25]. A generative adversarial network was
trained on both the normalized iris images and cropped iris
images to compare the performance of both preprocessing
techniques.

Figure 2 shows the basic architecture of the adversar-
ial network and the classifier module. Similar to the work
in [14; 15], a UNet [23] architecture with a Resnet-18 [6]
backbone was implemented for both generators. We imple-
mented a PatchGAN architecture introduced by Isola et al.
[8] for the discriminators, to improve the quality of the im-
ages. We implemented a Resnet-18 network as the identity-
preserving component, acting as a classifier which predicts
the class the generated images belong to. The learning rate
for each model was fixed at 1e-4 and we used Adam opti-
mizer [12] for each model.

5. Objective Functions

In a conventional GAN architecture [5], the generator
(G) and Discriminator (D) are competing in a min-max
game to improve the quality of generated images based on
a constant competition between the two objective functions.
When the generator model produces a synthetic (or fake)
image, the image will run through multiple convolutional
blocks in the discriminator, resulting in a final value be-
tween 0 and 1, where 0 is classified as a fake sample, and 1
is classified as a real sample, and finally passing the infor-
mation back to the generator to update it’s weights accord-
ingly. In our approach, two generative adversarial networks
with players GV IS , GNIR, DV IS and DNIR are trained
with an additional player, Classifier C. GNIR and GV IS

will receive an input image in the VIS or NIR spectrums,
respectively. They then produce an image xV IS→NIR or
xNIR−→V IS . The goal of GV IS and GNIR in a standard
GAN model is to produce realistic images within the tar-
get distribution that DV IS and DNIR cannot distinguish be-
tween a real image, and also minimize any auxiliary losses,
commonly including structural and feature loss. The sec-
tions below go in detail about the loss functions that guide
our model to the optimal output. To simplify the next sec-
tion, we will be assigning x as the feature space we are
translating to, either NIR or VIS, and each translation model
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Figure 1. Examples of visible and NIR images from each dataset, as well as the processing step for each image. The first row is the original
images cropped to just show iris area, with the order from left to right being: POLYU VIS, POLYU NIR, Cross-Eyed VIS, Cross-Eyed
NIR, WVU Multispectral VIS, WVU Multispectral NIR. The second row shows the enhanced circle-cropped images for each eye, the third
row shows the normalized iris codes for each eye, and the fourth row shows the enhanced normalized iris codes for each eye. The second
and fourth rows are used for training the GANs.

Figure 2. The proposed method, (Top) consisting of a UNet generator and PatchGAN discriminator. Each image is passed through it’s
respective generator and translated to the opposite modality. From there, the fake image is passed through the discriminator, which will
evaluate the quality of the image. A perceptual module is used, where the feature map extracted from the 11th layer of a VGG16 network
is used to preserve the high-level features of the fake images. (Bottom) Shows the process of the classifier network. The classifier is a
ResNet-18 architecture with an auxiliary component before the fully connected layer to help guide the generator. The classifier is then
optimized using a cross entropy loss where it learns to classify real and fake images into their original class before transformation.
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will inherit the same loss functions. The two translation
methods were also trained simultaneously but disjoint, so
GV IS has no knowledge of the progress of GNIR and vice
versa.

5.1. Adversarial Loss

We made use of the relativistic discriminator, first intro-
duced by Jolicoeur-Martineau [10], which is used to stabi-
lize training by making it’s predictions based on a relation-
ship between the real data and fake data. Here, the discrim-
inator is trying to determine if the real data is more realistic
than the fake data. Using this method for our network and
defining these equations for each GAN, D(x) is defined as:

D(x) = σ(L(xR)− L(xF )), (1)

where L(*) is the non-transformed layer of the discrimina-
tor, σ(∗) is the activation function and xR is the real sample
in the x domain and xF is the fake sample in the x domain,
will give an adversarial loss of:

min
G

max
D

V (D,G) = ExR
[logD(x)]

+ExF
[log (1−D(G(x)))]

(2)

, where G(x) is the generated data in x domain, and D(*)
is the discriminator prediction. ExR

[∗] is the discrimina-
tor output on real images, which the discriminator attempts
to maximize. ExF

[∗] is the discriminator output on fake
images, which the generator attempts to minimize and the
discriminator attempts to maximize.

5.2. Classifier Loss

The addition of the classifier is for the purpose of guid-
ing the generator to class-specific synthesis. The competi-
tion between the generator and classifier will stabilize the
generator to not only produce high quality images, but im-
ages that keep the individual features in tact. With this in
mind, the classifier has the job of classifying real and syn-
thesized images in their original class, where the genera-
tor is attempting to pull classes of real and fake images to-
gether. For example, if we are translating between NIR to
VIS, the classifier is punished if it classifies the fake VIS
image in the visible spectrum, and is encouraged to classify
the fake VIS as it’s corresponding NIR class.

For each generator, we will define real samples as xR and
fake samples as xF as we did earlier. Since the classifier
has the job of classifying both spectrum’s of iris images,
the fully connected layer consists of 2*N nodes, where N is
the number of classes shared between the visible and NIR

spectrum’s. This brings the classifier loss to:

LCR
= −

2∗N∑
c=1

(ℓ⃗Rid)j log(C(xR)j)

LCF
= −λCF

2∗N∑
c=1

(ℓ⃗Fid)j log(C(xF )j)

(3)

where ℓ⃗Rid is the label vector for the real sample and ℓ⃗Fid is the
label vector for the fake sample, and C(*) is the output of
the classifier’s fully-connected layer. Using the same logic
as [25], the real images should carry more weight during
classification. This is why a weight term, λCF

, is added
into the final classifier loss, which we set to 0.4.

The generator is attempting to pull the real and fake
classes closer together, trying to minimize the distance be-
tween the real and fake images of the same identity. From
Figure 2, we add an auxiliary loss to the classifier, C, to ex-
tract the feature map before the fully connected layer. When
the generator produces an image very similar to the origi-
nal image, these feature maps will become closer together
decreasing the distance. However, the classifier will suf-
fer since it is attempting to separate the fake image into it’s
original class, hence allowing the generator and classifier
to compete. If we define the loss obtained from the feature
maps as the identity-preserving loss, and the output of the
feature layer of the classifier as F(*), we take the cosine em-
bedding loss to show the distance between the two extracted
feature layers,

LIP,G = 1− F (xR) · F (xF )

|F (xR)||F (xF )|
, (4)

allowing the generator to minimize this function.

5.3. Auxiliary Losses

We implement perceptual loss [9] in order to preserve the
high-level features of the generated images. Feature maps
extracted from the 11-th layer of a pretrained VGG-16 [26]
are extracted from both the real and fake images and we cal-
culate the mean squared error of those feature maps to feed
back to the generator. We also implement a reconstruction
loss by taking the Mean squared error of the real and fake
images.

6. Experimental Results
A series of experiments were run on each dataset, and the

trained generators were evaluated on how well their trans-
lated images performed against a gallery of the true im-
ages. We explored the results of the generated normalized
irises by first matching the non-translated NIR and VIS iris
codes through OSIRIS [21], an open source iris recogni-
tion software, and then applying our translated images to the
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software as well. Our generated cropped images were run
through a licensed software, VeriEye [19] and the matching
performance of true images was compared with the match-
ing performance of the generated images.

We show the results from matching each probe image
to each gallery image, which we will call the All-to-All
method, as well as applying score fusion to the results,
which we will call the Score Fusion method. Score fusion
is the process of combining scores to achieve an optimal re-
sult. In our case, we fused the scores of the same identity
to output a single value. This is useful if there are multiple
images in the gallery of each individual, so noisy or incor-
rectly segmented images don’t hold as much weight during
matching. In order to quantify the performance of the gen-
erated images, we report the EER for each test, which is
the point at which the false acceptance rate and true accep-
tance rate are equal, and show the Detection Error Tradeoff
(DET) curves. We also show the performance of our model
with and without a classifier for the normalized iris method.

6.1. POLYU Bi-spectral Dataset

For the first set of experiments, we trained our model on
the POLYU Bi-spectral dataset. We used the same train/test
split as [7; 14; 18]. For each class, the first 10 instances
are used for training and the remaining 5 instances are used
for testing. We report the DET curves for the original non-
translated NIR vs VIS, Fake NIR vs Real NIR, trained with
and without a classifier, and Fake VIS vs Real VIS, trained
with and without a classifier. It can be seen from Figure 3
that our method significantly improves the recognition per-
formance. Applying translation without a classifier reduces
the EER from 0.2331 to 0.1315 and 0.1401, respectively for
the All-to-All method. Applying the classifier component
decreases the values even more to 0.1203 and 0.1266, re-
spectively. Applying score fusion significantly reduces the
EER to 0.0550 and 0.0718, with the best performing model
being the VIS vs Fake VIS with a classifier component. We
did not include the cropped results for the POLYU dataset,
as the model was not able to outperform the original images.

6.2. Cross-Eyed Dataset

For our next set of experiments we trained our model
on the Cross-Eyed dataset. We followed the train/test split
from [7; 14; 18] again by using the first 5 instances of each
subject as the training set and the remaining 3 as the test
set. Figure 4 (Top) shows that the best performing method
for All-to-All matching is the VIS vs Fake VIS with a clas-
sifier component, decreasing the baseline EER from 0.0995
to 0.0648. When applying score fusion, the VIS vs Fake
VIS with a classifier component decreases the baseline EER
from 0.0542 to 0.0250, showing the best performance.

Applying the model to the cropped iris images, Figure

Figure 3. DET Curves from the POLYU dataset on the normalized
iris images, showing the All-to-All matching method and the score
fusion method.

4 (Bottom) shows an increase in performance for the NIR
vs Fake NIR for both the All-to-All and score fusion meth-
ods. For the All-to-All method, we experience the highest
drop in EER from the NIR vs Fake NIR model, decreasing
the EER from 0.2925 to 0.1909. Applying score fusion de-
creases the EER even more, from 0.1638 for the baseline to
0.0798 for NIR vs Fake NIR.

Figure 4. DET Curves from the Cross-Eyed dataset on the normal-
ized iris images (top) and cropped iris images (bottom), showing
the All-to-All matching method and the score fusion method.
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6.3. WVU Multispectral Iris Dataset

For the next experiment we trained our model on the
WVU Multispectral Iris dataset. Since each class only has
2 images and there are 2,384 classes, we chose to split the
dataset differently than the first two. We chose this so the
training set had more samples per class, and allowing it to
better learn class-specific features instead of splitting the
dataset evenly to only contain one sample per class. We
adopted the method used in [14] where we use 750 samples
as the testing set. In order to mimic a real-world situation,
we trained on both samples from the first 1,634 classes and
one sample from the final 750 classes. The test set contains
the second image from the final 750 classes.

Figure 5 shows the DET curves for the normalized iris
images as well as the cropped images for the WVU Multi-
spectral Iris dataset. Our All-to-All method saw an increase
in performance for the normalized iris images, with VIS vs
Fake VIS with a classifier component slightly exceeding the
VIS vs Fake VIS without a classifier component. The base-
line EER is decreased from 0.2733 to 0.1587. We applied
our method to the cropped iris images as well, however,
none of the models were able to outperform the baseline,
which obtained an EER of 0.2434.

The performance of this dataset is much lower than the
POLYU and Cross-Eyed datasets, and two things can at-
tribute to that. 1. The images in this dataset were taken
disjointly, so there are multiple iris images that have dif-
ferent pupil dilation’s, reflections, and rotated iris images.
This affected the learning ability of the model. This is es-
pecially difficult for the cropped iris images since there is
large variability in the images, requiring further research.
2. Because of the use of a classifier, more images per class
(or iris) are ideal for training a classifier model. However,
these limitations reflect real-world scenarios, since iris im-
ages won’t likely be taken in both spectra simultaneously.
The performance of this dataset should be further explored
to reflect these situations.

This dataset obtained a lower overall EER for the nor-
malized iris images, however the cropped iris images were
able to obtain a much higher TAR at lower FAR than the
normalized model. The normalized iris images obtained
0.661 TAR@FAR=0.1 and 0.1559 TAR@FAR=0.01, and
0.0366 TAR@FAR=0.001 where the cropped iris images
obtained 0.6875 TAR@FAR=0.1, 0.597 TAR@FAR=0.01,
and 0.5531 TAR@FAR=0.001. Allowing the threshold
value to be set low allows for a very low false acceptance
rate, while rejecting lower quality genuine matches, which
is less detrimental for security purposes.

6.4. Generated Images

This section shows the visualization of the generated im-
ages, showing high-performing generated images as well as
lower-performing images. Though the image enhancement

Figure 5. DET Curves from the WVU Multispectral Iris dataset,
showing the All-to-All matching method for the normalized iris
images (Top) and cropped iris images (Bottom).

technique greatly increases the iris features, there are limi-
tations for noisy and dark images. We show three examples
of the generators performance on the datasets in Figures 6
,7 and 8, with different performances.

It can be seen from the images in Figure 6 that the Cross-
Eyed cropped models were able to learn class-specific fea-
tures within the iris texture well, with visually appealing
results. This translated well into the matching performance,
with a significant increase in EER from the baseline.

Figure 7 shows an example from the WVU Multispectral
dataset where the performance from one modality (NIR)
outperforms the other (VIS). This is reflected in the DET
curves, where the NIR vs Fake NIR model performed
slightly worse than the baseline, however the VIS vs Fake
VIS model performed significantly worse than both. We
suspect that our model would perform better on this model
with a larger sample of same-class images, and future work
on this dataset could include data augmentation to synthe-
size same-class samples.

Lastly, Figure 8 shows the poor performance that our
models showed on the cropped images of the POLYU
dataset. Since many of the images had darkly pigmented
irises, the texture was sparsely highlighted, unlike the
Cross-Eyed and WVU Multispectral Iris datasets. This
caused a degradation in the cropped images, while the nor-

Authorized licensed use limited to: West Virginia University. Downloaded on December 03,2024 at 19:50:00 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

(c) (d)

Figure 6. Samples of generated cropped images from the Cross-
Eyed dataset, showing the translation between domains, with (a)
real visible iris, (b) real NIR iris, (c) generated visible iris, and
(d) generated NIR iris. This was a well-performing image on the
matcher for both the NIR and VIS fake images.

(a) (b)

(c) (d)

Figure 7. Samples of generated cropped images from the WVU
Multispectral iris dataset, showing the translation between do-
mains, with (a) real visible iris, (b) real NIR iris, (c) generated vis-
ible iris, and (d) generated NIR iris. This iris generated a higher
match score than the baseline for the NIR vs Fake NIR but per-
formed poorly on the VIS vs Fake VIS dataset

malized images were less affected. This dataset shows that
normalizing iris images is still more robust with noisy and
highly pigmented irises and more research is needed to
highlight these features in cropped iris images consistently.

(a) (b)

(c) (d)

Figure 8. Samples of generated cropped images from the POLYU
dataset learned by the generator, with (a) real visible iris, (b) real
NIR iris, (c) generated visible iris, and (d) generated NIR iris.
These images performed poorly in all macthing scenarios. This
was the worst performing dataset for cropped iris images.

7. Conclusion

The performance of our models show that the addition
of the classifier component introduces a consistent increase
in performance, guiding the generator with valuable class-
specific information. We were able to show the benefits
of applying a classifier to work as an identity-preserving
module as well as introduce a new method of enhancement
that hasn’t been deeply explored in iris generation. This
work also shows the performance of generation models on
cropped iris images, which is a much more difficult task due
to the noise introduced from the pupil and reflections, but
can be valuable and more robust with a smaller acceptable
FAR, which is valuable for security, especially biometrics.

In future work, we hope to create better feature-
enhancement techniques for highly variable datasets such as
the POLYU dataset, as well as improving the performance
of the model with disjoint images, which becomes a chal-
lenge when the images aren’t normalized. However, one
benefit to cropped iris images is the lower FAR, as shown in
the VeriEye results for the WVU Multispectral Iris dataset.
Though the EER is higher for the cropped images, they are
able to achieve a much higher TAR with a low FAR. This al-
lows a higher threshold value to be applied for score-based
matchers such as VeriEye, with a low FAR, which is more
detrimental than a false reject. Future research would be
valuable to move from normalized to cropped iris images,
as the overall performance isn’t caught up yet, however, the
results are promising and should be explored further.

Authorized licensed use limited to: West Virginia University. Downloaded on December 03,2024 at 19:50:00 UTC from IEEE Xplore.  Restrictions apply. 



References
[1] M. A. M. Abdullah, J. A. Chambers, W. L. Woo, and

S. S. Dlay. Iris biometrie: Is the near-infrared spec-
trum always the best? In 2015 3rd IAPR Asian Confer-
ence on Pattern Recognition (ACPR), pages 816–819,
2015.

[2] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua. Towards
open-set identity preserving face synthesis, 2018.

[3] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn. Im-
age understanding for iris biometrics: A survey. Com-
puter Vision and Image Understanding, 110(2):281–
307, 2008.

[4] J. Daugman. How iris recognition works. IEEE Trans-
actions on Circuits and Systems for Video Technology,
14(1):21–30, 2004.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial networks, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition, 2015.

[7] K. Hernandez-Diaz, F. Alonso-Fernandez, and
J. Bigün. Cross-spectral periocular recognition
with conditional adversarial networks. 2020 IEEE
International Joint Conference on Biometrics (IJCB),
pages 1–9, 2020.

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial net-
works, 2018.

[9] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses
for real-time style transfer and super-resolution, 2016.

[10] A. Jolicoeur-Martineau. The relativistic discriminator:
a key element missing from standard GAN. CoRR,
abs/1807.00734, 2018.

[11] J. Kim, G. Li, I. Yun, C. Jung, and J. Kim. Edge and
identity preserving network for face super-resolution.
Neurocomputing, 446:11–22, July 2021.

[12] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980, 2014.

[13] N. Kohli, D. Yadav, M. Vatsa, R. Singh, and A. Noore.
Synthetic iris presentation attack using idcgan. In
2017 IEEE International Joint Conference on Biomet-
rics (IJCB), pages 674–680, 2017.

[14] M. Mostofa, S. Mohamadi, J. Dawson, and N. M.
Nasrabadi. Deep gan-based cross-spectral cross-
resolution iris recognition. IEEE Transactions on Bio-
metrics, Behavior, and Identity Science, 3(4):443–463,
2021.

[15] M. Mostofa, F. Taherkhani, J. Dawson, and N. M.
Nasrabadi. Cross-spectral iris matching using condi-
tional coupled gan. In 2020 IEEE International Joint
Conference on Biometrics (IJCB), pages 1–9, 2020.

[16] P. R. Nalla and A. Kumar. Toward more accurate
iris recognition using cross-spectral matching. IEEE
Transactions on Image Processing, 26(1):208–221,

2017.
[17] P. R. Nalla and A. Kumar. Toward more accurate

iris recognition using cross-spectral matching. IEEE
Transactions on Image Processing, 26(1):208–221,
2017.

[18] P. R. Nalla and A. Kumar. Toward more accurate
iris recognition using cross-spectral matching. IEEE
Transactions on Image Processing, 26(1):208–221,
2017.

[19] Neurotechnology. Verieye sdk,
https://www.neurotechnology.com/verieye.html.

[20] A. Nigam, Lovish, A. Bendale, and P. Gupta. Efficient
iris recognition system using relational measures. In
Computational Forensics: 5th International Work-
shop, IWCF 2012, Tsukuba, Japan, November 11,
2012 and 6th International Workshop, IWCF 2014,
Stockholm, Sweden, August 24, 2014, Revised Se-
lected Papers, page 55–66, Berlin, Heidelberg, 2015.
Springer-Verlag.

[21] N. Othman, B. Dorizzi, and S. Garcia-Salicetti. Osiris:
An open source iris recognition software. Pattern
Recognition Letters, 82:124–131, 2016. An insight on
eye biometrics.

[22] D. Poster and N. M. Nasrabadi. Synthesis-guided fea-
ture learning for cross-spectral periocular recognition.
CoRR, abs/2111.08738, 2021.

[23] O. Ronneberger, P. Fischer, and T. Brox. U-net: Con-
volutional networks for biomedical image segmenta-
tion, 2015.

[24] A. Sequeira, L. Chen, P. Wild, J. Ferryman, F. Alonso-
Fernandez, K. B. Raja, R. Raghavendra, C. Busch, and
J. Bigun. Cross-eyed - cross-spectral iris/periocular
recognition database and competition. In 2016 Inter-
national Conference of the Biometrics Special Interest
Group (BIOSIG), pages 1–5, 2016.

[25] Y. Shen, P. Luo, J. Yan, X. Wang, and X. Tang.
Faceid-gan: Learning a symmetry three-player gan for
identity-preserving face synthesis. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 821–830, 2018.

[26] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition,
2015.

[27] R. Vyas, T. Kanumuri, and G. Sheoran. Cross spectral
iris recognition for surveillance based applications.
Multimedia Tools and Applications, 78, 03 2019.

[28] K. Wang and A. Kumar. Cross-spectral iris recogni-
tion using cnn and supervised discrete hashing. Pat-
tern Recognition, 86:85–98, 2019.

[29] J. Wei, Y. Wang, Y. Li, R. He, and Z. Sun. Cross-
spectral iris recognition by learning device-specific
band. IEEE Transactions on Circuits and Systems for
Video Technology, 32(6):3810–3824, 2022.

[30] Z. Zhao and A. Kumar. An accurate iris segmenta-

Authorized licensed use limited to: West Virginia University. Downloaded on December 03,2024 at 19:50:00 UTC from IEEE Xplore.  Restrictions apply. 



tion framework under relaxed imaging constraints us-
ing total variation model. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 3828–
3836, 2015.

Authorized licensed use limited to: West Virginia University. Downloaded on December 03,2024 at 19:50:00 UTC from IEEE Xplore.  Restrictions apply. 


