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Abstract—FPGAs offer a flexible platform for accelerating
deep neural network (DNN) inference, particularly for non-
uniform workloads featuring fine-grained unstructured sparsity
and mixed arithmetic precision. To leverage these redundan-
cies, an emerging approach involves partially or fully unrolling
computations for each DNN layer. That way, parameter-level
and bit-level ineffectual operations can be completely skipped,
thus saving the associated area and power. Regardless, unrolled
implementations scale poorly and limit the size of a DNN that
can be unrolled on an FPGA. This motivates the investigation
of new reconfigurable architectures to improve the efficiency of
unrolled DNNs, while taking advantage of sparsity and mixed
precision. To enable this, we present Kratos: a focused FPGA
benchmark of unrolled DNN primitives with varying levels
of sparsity and different arithmetic precisions. Our analysis
reveals that unrolled DNNs can operate at very high frequencies,
reaching the maximum frequency limit of an Arria 10 device.
Additionally, we found that substantial area reductions can be
achieved through fine-grained sparsity and low bit-width. We
build on those results to tailor the FPGA fabric for unrolled
DNNs through an architectural case study demonstrating ~2x
area reduction when using smaller LUT sizes within current
FPGAs. This paves the way for further exploration of new
programmable architectures that are purpose-built for sparse and
low-precision unrolled DNNs. Our source code and benchmark
are available on github.com/abdelfattah-lab/Kratos-benchmark.

I. INTRODUCTION

Deep Neural Network (DNN) inference has become one of
the most important compute workloads of our time, spanning
many applications from image [1]-[5] and speech recognition
[6] to natural language processing [7]-[9] and autonomous
driving [10]-[13]. GPUs and custom ASIC chips currently
dominate DNN inference, particularly because of their high
compute capacity and memory bandwidth. This enables very
efficient dense matrix multiplication on these platforms. How-
ever, it has been shown, time and again, that DNNs exhibit
very high levels of fine-grained sparsity [14] and can toler-
ate low and mixed arithmetic precision [15]—two intrinsic
properties that are challenging to accelerate on existing DNN
accelerators. This begs the question of whether there are more
suitable architectures for sparse and low-precision DNNs.

FPGAs provide an attractive acceleration platform because
of their high flexibility and bit-level programmability. How-
ever, the reconfigurability overhead is generally very high,
making FPGAs approximately an order of magnitude less
efficient when compared to an ASIC implementation [16],
[17]. Even though many innovative and sparse-aware DNN
accelerator architectures were introduced on FPGAs [18]-
[23], none gained enough traction to compete with current
GPUs or ASICs. Nevertheless, there is an emerging style of

DNN acceleration on FPGAs that holds promise. Specifically,
unrolled DNN implementations, wherein a DNN accelerator
contains partially or fully unrolled computation engines that
are specialized for each DNN layer.

Fig. 1 shows a conceptual diagram of unrolled DNNs and
the area of a 64x64 matrix multiplication on an Arria 10
GX 1150 FPGA [24]. Full unrolling means having a hardware
multiply-accumulate (MAC) unit for each MAC operation in
the matrix multiplication, as shown in Fig. 1(a). This naive
unrolling quickly utilizes most of the FPGA area (63%) as
shown in Fig. 1(d). However, we consider unrolled DNN
implementations that are specialized, pruned, and quantized.
Specialization of MAC units means converting them to mul-
tiply with constant weight parameters, as shown in Fig. 1(b).
This drastically reduces compute area (~4x) by optimizing
the MAC circuitry and by leveraging bit-level sparsity within
the parameter values. Combining specialization with pruning
and quantization, as shown in Fig. 1(c), further reduces area
by ~150x down to just 0.1% of the FPGA for 4096 effective
FLOPs, making unrolled DNNs practical on current FPGAs.
Indeed, there are a number of recent works that successfully
leverage this implementation methodology of unrolled DNNs
on FPGAs, especially for smaller DNNs with very high
throughput requirements [25]-[31].

A key advantage of unrolled DNNs on FPGAs is the
proportional reduction in circuit area and efficiency gains
from all forms of redundancy. Conventional DNN accelerators,
including GPUs, achieve only ~15% performance/watt im-
provement from 50% structured sparsity, even with dedicated
hardware support [32], far short of the expected 2x. FPGA’s
bit-level reconfigurability accelerates fine-grained and unstruc-
tured sparsity effectively. However, capacity limits exist: a
4-MFLOP DNN can be fully unrolled on an Arria 10 GX
1150 FPGA, as shown in Fig. 1, but this is suitable only
for small DNNG, highlighting the need for FPGA architectural
exploration to enhance efficiency.

Open-source CAD and architecture exploration frameworks
like VTR [33] enable us to examine architectural tradeoffs,
including LUT sizes, interconnection flexibility, and new hard
blocks. We can prototype new programmable devices based
on FPGAs, specifically designed to accelerate unrolled DNNSs.
This motivates our work on Kratos': a benchmark suite for
unrolled DNNs with unstructured sparsity and mixed preci-
sion.

IKratos personifies strength in Greek mythology. Our benchmark leverages
the strength of FPGAs, specifically bit-level programmability, to accelerate
sparse DNNs.



| Parameter Buffer |

Para m9<3uffer |

(a) Unrolled DNN (b) Specialize (32-bit weight)

Fig. 1: Diagram of unrolled DNNs and the area of a 64x64 matrix multgication on an FPGA. Naive unrolling quickly utilizes most of the

FPGA area (63%), but specialization (1), pruning (2), and quantization

effective FLOPs.

More specifically, we make the following contributions:

1) We introduce the Kratos benchmark. A circuit benchmark
suite of unrolled convolutional and general matrix mul-
tiplication (GEMM) DNN layers with different levels of
fine-grained sparsity and numerical precisions.

2) Unlike other FPGA benchmarks, our SystemVerilog code
is human-readable, parameterized, and extensible, in ad-
dition to being compatible with both commercial (Quartus
Prime) and academic (VTR) CAD flows.

3) We present area and delay characteristics of our bench-
mark, showing that fully-unrolled DNNs can far exceed
the clock network limitations on Arria 10 FPGAs. We
also observe linear improvements in efficiency with re-
spect to higher sparsity and lower bitwidth.

4) We perform an FPGA architectural case study investi-
gating the most efficient LUT size for unrolled DNNs.
We show ~2x FPGA area reduction by tailoring FPGA
logic blocks for unrolled DNNs, paving the way for the
investigation of new purpose-built devices for sparse and
low-precision DNN acceleration.

While existing FPGA benchmarks provide valuable insights
for general-purpose applications, they fall short in addressing
the specific needs of unrolled DNNs with fine-grained spar-
sity and mixed precision. Kratos fills this gap by offering
a specialized benchmark suite and related tools that enable
architectural exploration and optimization for unrolled DNNs.
This is crucial for designing next-generation programable
accelerators that can fully leverage the potential of unrolled
DNN:s, achieving higher throughput and efficiency compared
to traditional dense execution models.

II. RELATED WORK

Unrolled DNNs follow the synchronous dataflow design
paradigm, where DNN layers are partially or fully unrolled
on an FPGA to match throughput between layers [34],
[35]. This approach efficiently implements binary/ternary
DNNs [30], high-throughput data analysis [31], and anomaly
detection [28]. Recent work focuses on tailoring fully unrolled
DNNs to FPGAs using LUT primitives, low arithmetic preci-
sion, and high unstructured sparsity [25]-[27], achieving high
efficiency compared to traditional DNN accelerators [19].

FPGA Benchmark circuits have commonly been used to
guide the architecture exploration of FPGAs [36]. Tradition-
ally, a variety of benchmarks from different domains are
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TABLE I: The Kratos Benchmarks.

Unrollin; Input / Weight Output /

Kernel Factor & C;)cle Dup%icate Cyc{)e

gemmt  row-parallel 1xn - 1xp

gemmt fully-unrolled m X n mXx n X p

gemms  row-parallel 1xn - 1xp

convld pixelwise Fy x1x 1. - 1x1xO.
convld  fully-unrolled Iw x1x 1. Oy X Ow X1 x O
conv2d  pixelwise Fy X Fp, x I — 1x1xO.
conv2d  row-parallel Iw X Fp, X I Oy X Oy X1 X O¢
conv2d fully-unrolled Iy X I X Ic OwOpX Oy XOp XO¢

1 All kernels accept user-defined sparsity € [0, 1] and precision € No.

2 gemmt = multiply-add tree implementation of GEMM.

3 gemms = weight-stationary systolic implementation of GEMM.
used [37] to maintain the general-purpose nature of FPGAs.
Recently, some DNN-focused benchmarks have addressed the
need for domain-specific FPGA fabrics for DNN acceleration.
Koios [38] includes DNN accelerator circuits with varied im-
plementations, and Roorda et al. [39] released a flexible, auto-
generated DNN benchmark suite for new DSP architecture
investigation. Kratos focuses on (1) unrolled DNN implemen-
tations, (2) unstructured sparsity and mixed precision, and (3)
enhancing FPGA logic and routing architecture.

DNN-Optimized FPGAs have been proposed by improving
logic blocks for low-precision DNNs [40], [41], enhancing
DSPs with more low-precision computation [42], [43], or
augmenting BRAMs with compute capabilities [44]-[47]. We
aim to use Kratos for investigating optimized logic block
and routing architectures to create new domain-specific pro-
grammable devices for enhanced unrolled DNN performance.

III. BENCHMARK DESCRIPTION
A. Kernels

The Kratos benchmark contains 8 kernels as shown in Table
I. These kernels implement two main DNN operations: GEMM
and convolution, which are heavily used by a wide range of
DNNs. The GEMM operation is used by the fully-connected
layer which is ubiquitous in many DNNs such as long short-
term memory [6] and transformers [7], while the convolution
operation dominates convolutional neural networks [1]. Since
Kratos focuses on unrolled DNNs, weights are embedded
into circuit connections like LUTs rather than memory. For
instance, during multiplication, the input goes directly into
LUTs, producing the output without needing to access a
multiplier or load weights from BRAM.



The GEMM dataflow is shown in Fig. 2(a), where the input
matrix x™*™ is multiplied by the unrolled weight matrix
w™ P to generate the output matrix y™*P. Kratos contains
two types of hardware implementations for GEMM that use
multiply-adder tree (gemmt) and weight-stationary systolic
array (gemms) as shown in Fig. 3(a) and (b), respectively.
The datapath of our design is heavily pipelined by inserting
registers between every stage of multiplication or addition. For
convolution, Kratos contains 1-D convolution (convid) and
2-D convolution (conv2d) implemented using the multiply-
adder tree. Fig. 2(b) shows the dataflow of conv2d, where
the Iy x I, x I. input feature map is convolved with the
F, x Fp, x I. x O, filter matrix to generate the O,, x Op, x O,
output feature map. The convld kernel has a similar dataflow
as conv2d except that I, = Oy, = F}, = 1. Using multiply-
adder trees allows pruning leaves of zero weights while the
traditional systolic array still needs structural registers to keep
systolic and thus leads to low resource efficiency.

B. Input Unrolling Factors

All weights are fully unrolled in the Kratos kernels to
take full advantage of parameter-level sparsity. An important
design consideration is the input unrolling factor—this quan-
tifies the portion of the input tensor that can be processed
simultaneously, and directly affects the resulting throughput.
Kratos supports three input unrolling factors as illustrated
in Fig. 2 and described below. The different color boxes
indicate the number of elements processed in one cycle. This
visual representation helps to understand the efficiency gains
achieved through our approach.

Pixelwise: This unrolling factor is applicable to convolution.
As shown in Fig. 2(b), the pixelwise unrolling generates one
pixel along all channels of the output feature map in parallel.
Row-Parallel: This unrolling factor is applicable to both
GEMM and convolution. The row-parallel unrolling generates
one row of the output matrix for GEMM, and one row along all
channels of the output feature map for convolution in parallel
as shown in Fig. 2(a) and (b), respectively.

Fully-Unrolled: For fully-unrolled GEMM, the whole output
matrix can be generated in one shot as shown in Fig. 2(a). The
fully-unrolled 1-D convolution is the same as the row-parallel
1-D convolution since O, = 1. For fully-unrolled 2-D convo-
lution, the entire input feature is processed simultaneously to
obtain the whole output feature map in one shot as shown in
Fig. 2(b).

The unrolling factor impacts hardware design and resource
utilization. For instance, the row-parallel gemmt implementa-
tion broadcasts one row of the input matrix to the unrolled
weight, generating one row of the output matrix per cycle.
Input and weight duplication can improve throughput by
processing more inputs in parallel. In fully unrolled imple-
mentations, the entire input matrix is processed simultane-
ously, obtaining the whole output matrix in 1 cycle, with a
throughput of m X n X p operations. However, for gemms, this
results in diminishing returns due to the systolic propagation
penalty [48]. For convolution, weight duplication is necessary
for row-parallel and fully-unrolled implementations. We use
BRAM for pixelwise unrolling and a shift-register network
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Fig. 2: Dataflow of (a) GEMM and (b) convolution for differen
input unrolling factors: pixelwise, row-parallel, and fully-unrolled.
The weight/filter is always fully unrolled
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Fig. 3: Hardware implementation of GEMM: (a) multiply-adder tree
and (b) weight-stationary systolic array.

for row-parallel and fully-unrolled kernels to ensure sufficient
input bandwidth.

C. CAD for FPGA Architecture Exploration

One of the main motivations of this work is to evaluate
existing FPGA architectures and explore new optimized archi-
tectures for unrolled DNNs. To achieve this, Kratos is designed
to be compatible with both the commercial Intel Quartus Prime
and the open-source VTR [33] flow.

Creating a VTR-compatible benchmark has long been a
labor-intensive process due to the limited Verilog syntax cover-
age of VIR’s Odin II synthesis front-end [49]. However, Odin
II provides efficient partial technology mapping for balancing
soft logic and hard blocks of a target FPGA architecture.
Recently, VTR has integrated Yosys [50], an open-source
synthesis tool with extensive Verilog-2005 and System Verilog
support such as the “generate” statement. The new VTR
synthesis front-end using a combination of Yosys for synthesis
and Odin II for partial mapping [51] significantly reduces the
efforts of handling unsupported Verilog syntax. Hence, the
Kratos benchmark uses this newly released VTR flow.

D. Benchmark Workflow

Unlike many previous FPGA benchmarks [37], [38] that
provide a fixed Verilog design for every kernel, Kratos pro-
vides Python scripts to automatically generate the top-level
SystemVerilog module given user-provided design parame-
ters specified in a Python dictionary. These modules contain
the pre-implemented kernels we mentioned above and the
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Fig. 4: Logic block diagram of the baseline FPGA for VTR archi-
tectural exploration.

embedded weights for synthesize. Thanks to the enhanced
synthesis front-end of VTR, our SystemVerilog is human-
readable, parameterized, performance-optimized, and exten-
sible. After generating the hardware description, the Python
scripts generate the necessary flow scripts to run either Intel
Quartus Prime or VTR and report the performance and area
results.

All kernels in the Kratos benchmark are parameterized by
the dimensions of inputs and weights, as well as sparsity and
precision. Sparsity specifies the percentage of zero elements
in the weight tensor, and precision specifies the data width
of inputs and weights. To simulate unstructured sparsity,
we generate the weight matrix with the desired amount of
non-zero elements and randomly shuffle their location. For
precision, Kratos allows any integer data type, but it can be
easily extended to support other data formats by changing
the hardware description of the MAC unit. In addition, all
kernels are functionally verified by simulating kernels running
on random weights and inputs with Modelsim and comparing
results with ground truth To facilitate large-scale design space
exploration, Kratos tools set also provides a batch job script
that allows users to define multiple sizes, precisions, and
sparsities, and it will launch flows for different combinations.

1V. EVALUATION METHODOLOGY
A. Experimental Setup

To quantify the efficiency of existing FPGA architectures
for unrolled DNNs, we use the Intel Quartus Prime Software
Version 22.3 and Arria 10 GX 1150 when running all Kratos
benchmarks. To conduct FPGA architectural exploration, we
use a customized version of VTR? As a sanity check to verify
the successful parsing of our benchmark through VTR, we
compare the resource utilization reported by VTR and Quartus
for all kernels and observe +10% variation on average.

The baseline FPGA for our VTR experiments has a Stratix-
IV-like architecture using 40 nm technology and is available

20ur fork from the VTR main branch includes better SystemVerilog
support, an option to manually specify the top module, and several bug fixes.

TABLE II: Kratos Design Space for Evaluation.

Unroll . Input Weight Output
Kernel Factor! Size! Difn2 Dimg3 Dimg
gemmt RP S 32 x 32 32 x 32 32 x 32
gemmt RP L 128 x 128 128 x 128 128 x 128
gemmt FU S 16 x 16 16 x 16 16 x 16
gemmt FU L 32 x 32 32 x 32 32 x 32
gemms RP S 16 x 16 16 x 16 16 x 16
gemms RP L 128 x 128 128 x 128 128 x 128
convld PW S 32x1x64 3x3 30 x 30 x 64
convld PW L 32x1x64 3x3 30 x 30 x 128
convld FU S 32x1x8 3 x3 30 x 30 x 8
convld FU L 32x1x16 3 x3 30 x 30 x 16
conv2d PW S 25 x25x32 3x3 23 x 23 x 64
conv2d PW L 25 x25x64 3 x3 23 X 23 X 64
conv2d RP S 8x8x8 3x3 6x6x8
conv2d RP L 8 x 8 x 16 3x3 6 X 6 x 16
conv2d FU S 8x8x4 3 x3 6 xX6x4
conv2d FU L 8X8x%x8 3 x3 6 X6 X8

! PW: pixelwise. RP: row-parallel. FU: fully-unrolled. S: small. L: large.
2 Format: m x n for GEMM, Iy X I, x I. for convolution.

3 Format: n x p for GEMM, Fy x F}, for convolution.

4 Format: p X k for GEMM, Oy x O}, x O, for convolution.

in the official VTR release. The logic block (LB) diagram of
this architecture is shown in Fig. 4, which contains I = 52
input pins and a default of N = 10 basic logic elements
(BLEs). Each BLE contains a LUT with size K = 6 and
the two outputs can be optionally registered. The BLE can
also operate in the fracturable LUT mode where each 6-
LUT can be fractured into two 5-LUTSs, or the arithmetic
mode where the two hard adders receive inputs from four
4-LUTs. To facilitate architectural exploration, we develop
a Python-based architecture file generator to automatically
modify different LB parameters. The area and delay of the
modified LB are extracted from COFFE 2.0 [52] and scaled
to 40 nm technology. During VTR routing, we set the default
router option to perform a binary search to find the minimum
routing channel width W required to route the circuit.

B. Design Space

The Kratos benchmark enables large design space explo-
ration by allowing users to specify arbitrary kernel sizes, as
well as sparsity and precision. For our experiments, we use the
set of kernel sizes as shown in Table II, which contains two
size variants (small and large) for all kernels. The convolution
kernels have a stride of 1 without padding. For every kernel
size, we evaluate 10 evenly spaced sparsity from 0 to 0.9, and
4 data precision (1-bit, 2-bit, 4-bit, 8-bit). Note that the kernel
sizes are chosen to ensure that they can pass the placement
and routing under the lowest sparsity level (i.e., no sparsity)
and the highest data precision (8-bit).

V. EXPERIMENTAL RESULTS

In this section, we present area and frequency trends of
Kratos benchmark circuits to highlight the effect of sparsity
and precision. In addition, we present a proof-of-concept
architectural exploration case study to investigate the LUT size
for unrolled DNNs, and the potential area savings compared
to current general-purpose FPGAs.
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Fig. 5: Normalized ALM utilization on Arria 10 vs. sparsity for
(a) GEMM, (b) convld, and (c¢) conv2d kernels. The solid black
line highlights the ideal trend where the ALM utilization linearly
decreases with higher sparsity.

A. Area and Frequency Trends on Arria 10

Resource utilization vs. sparsity. Fig. 5 shows the nor-
malized adaptive logic module (ALM) utilization vs. sparsity
for different Kratos kernels on Arria 10 GX 1150. The error
bars indicate the range of ALM utilization under different
precisions, with the interquartile range marked by filled rect-
angles. Most kernels exhibit a near-ideal linear reduction in
ALM utilization with increased sparsity, demonstrating the
effectiveness of FPGAs in accelerating unrolled DNNs. The
row-parallel gemms deviates from this trend; at 0.9 sparsity,
its ALM utilization is reduced by only 46% and 31% for
small and large designs, respectively. This is due to gemms’
structured datapath with delay registers between processing
elements, which hampers optimization of zero-weight MAC
units. Conversely, the multiply-adder tree implementation
prunes zero branches entirely during synthesis, eliminating the
need for LUTs and registers as sparsity increases.

Resource utilization vs. bit-width. As we decrease bitwidth,
area decreases super-linearly as shown in Fig. 6. This is
expected because multipliers scale quadratically with bit-
width while adders scale linearly and control circuitry remains
constant. Further inspection of Fig. 6 reveals comparative
area savings trends from higher sparsity and lower bit-width.
For instance, when we inspect the 8-bit conv2d-FU-L plot,
reducing the precision to 4-bits leads to a 2.9-fold decrease
in area. Achieving a similar reduction in area for an 8-bit
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Fig. 6: Normalized ALM utilization on Arria 10 vs.
different sparsity levels.
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Fig. 7: Frequency ranges of (a) small and (b) large Kratos circuits
under different sparsity and precision on Arria 10. The circle on each
error bar marks the average.

implementation would require high sparsity levels, ranging
from 80% to 90%. Recent research is beginning to explore how
pruning compares with quantization in terms of accuracy [53].
Together with our hardware efficiency results, this opens
the door for more extensive studies on accuracy-efficiency
tradeoffs for pruning, quantization, and their combination.
Critical Path Delay. Fig. 7 shows the frequency ranges of
small and large Kratos kernels on Arria 10. There is a clear
trend in favor of higher unrolling factors, with our heavily-
pipelined fully-unrolled designs reaching the maximum fre-
quency supported on Arria 10. In this case, the unrestricted
fmax can reach 1GHz by Quartus timeing report, and the
restricted fmax can reach over 600Mhz. Conversely, the row-
parallel and pixelwise implementations suffer from higher
critical path delays within the control and buffering circuitry
but are still capable of reaching frequencies 300—-600 MHz.
The high speeds attainable with unrolled DNNs, combined
with their direct area savings from fine-grained sparsity and
reduced bit-width motivate further investigation of new FPGA
architectures to enable larger DNN deployments.

B. Architectural Exploration Case Study

Using the baseline architecture described in Section IV-A,
we conduct a case study to find the optimal LUT size for
unrolled DNNs. We evaluate four LB architectures whose LUT
sizes K vary from 3 to 6. For each different LUT size, we
determine the corresponding number of LB input pins I with
N = 10 basic logic elements based on the empirical equation
I =& (N+1) from prior work [54]. We use VTR to evaluate
the four architectures on three kernels gemmt-RP-S, convld-
PW-S, conv2d-PW-S from Table II as these designs balance
silicon footprint and data throughput. While fully unrolled



TABLE III: Resource utilization, silicon area, and performance under different LUT sizes, sparsity, and precision.

Precision = 8-bit Precision = 4-bit
Sparsity | K ! gemmt-RP-S conv1ld-PW-S conv2d-PW-S gemmt-RP-S conv1d-PW-S conv2d-PW-S

Area  Fmax .~ Area  Fmax Area  Fmax .~ Area  Fmax Area  Fmax .~ Area  Fmax

FLBS (1m2) (MHz) | FEBS (mm?) (MHz) | FLBS (mm?) (MHz) | 2B (mam2) (MHz) | FEBS (mim?) (MHz) | FEBS (mm?) (MHz)

3 | 113 1.88 931 | 134 224 440 204 340 386 |097 1.62 1779 |113 189 1136 |17.1 284 877

0% 4 1106 218 1247 | 128 262 455 |19.1 393 419 (097 20 1704 | 113 233 1164 [17.0 350 79.1
? 5 | 1.06 267 1020 | 128 322 535 |19.2 483 400 | 097 245 1720 |11.3 285 1189 |17.0 429 814

6 |1.06 3.62 1145|128 437 465 |192 656 377 |097 332 1678 |114 389 1189 |17.1 585 934

3 1066 111 1469 |805 134 726 |124 206 496 | 05 0.83 1798 |6.01 100 1187 |9.07 151 929

50% 4 1063 129 1438 |758 156 73.7 | 115 236 465 | 05 1.02 179.8 | 6.01 123 106.0 |9.06 18.6 87.2
° 5 1063 159 1449|757 19.1 654 |114 288 482 | 05 125 1723 |6.01 151 106.8 |9.06 22.8 88.6

6 |063 215 1356 |7.57 259 700 |114 39.0 486 | 05 1.7 1734 | 6.01 206 119.5 |9.06 31.0 738

3 1021 035 1694 |274 456 100.1 | 45 748 769 | 0.1 017 1799 | 125 2.09 1240 |2.02 337 106.0

90% 4 1021 043 1658 |258 531 109.1 [4.13 848 99.0 | 0.1 021 179.1 | 1.24 255 1344 [ 193 396 1053
¢ 5 1021 052 1665 |258 651 1253 (408 103 861 | 0.1 026 1835|124 3.12 118.0 |1.92 483 103.7

6 1021 0.7 1659 |258 8.83 101.1 405 138 924 | 0.1 035 181.6 |1.24 424 1324 |1.92 6.56 108.7
'For K = 3,4,5,6, the maximum channel widths required to route all designs are W = 102,96,90,90, which gives a tiles area of

1664um?,2053um?, 2520um?, 3420um? from COFFE [52] after normalizing to 40 nm technology.
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Fig. 8: Normalized area-delay product (ADP) for the Kratos circuits
in Table III

designs offer the best clock frequency, practical constraints
and the need to run multiple experiments necessitated choosing
smaller, more manageable designs in this initial exploration.

For every architecture, we extract the maximum routing
channel width W reported by VTR that can fit all designs,
which is then passed to COFFE [52] to compute the LB area
(including routing) with a given (K, I,W). The total silicon
area of a kernel is then calculated by multiplying the LB
utilization and the LB area. All reported results are averaged
over 3 runs using different random seeds

The experiment results summarized in Table III show po-
tential savings of ~2x when reducing the LUT size from 6
(default in most Intel FPGAs) to 3. This comes with a 10-20%
degradation in critical path delay for 8-bit kernels, whereas a
small improvement is observed for most 4-bit designs. We
hypothesize that smaller 4-bit MAC units are more likely to
fit within a single logic block, even with K = 3, compared to
8-bit counterparts. When optimizing the FPGA device for area-
delay product, Fig. 8 favors the smallest LUT size (K = 3)
except for one circuit (gemmt-RP-S with 8-bit precision and
no sparsity). This strongly indicates the superiority of smaller
LUTs for unrolled DNN implementations.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the efficiency advantages of unrolled DNNs,
we created a benchmark suite to enable the architectural
exploration of new programmable hardware devices for ac-

celerating unrolled DNNs. Our empirical analysis shows that
unrolled DNNs on FPGA can run at very high speed, can
can significantly benefit from improvements in efficiency with
fine-grained sparsity and reduced arithmetic precision — two
properties that are not easily attainable with conventional DNN
accelerators. Furthermore, we performed an architectural case
study to reveal ~2 X possible area savings from exploring the
optimal LUT size of contemporary FPGA architectures to suit
unrolled DNNs better.

While we can’t optimize a general-purpose FPGA solely for
unrolled DNNs, future work can explore integrating special-
ized bit-programmable fabrics within general-purpose FPGAs
or creating new bit-programmable devices specifically for
unrolled DNNs. One goal of Kratos is to inspire research on
new programmable architectures that are much more efficient
(e.g., 10 — 100x) than current FPGAs, maintaining linear and
quadratic efficiency scaling with sparsity and low precision,
respectively. Although the size of unrolled DNNs that can
fit on current FPGAs is small, future works can explore
algorithmic optimizations such as weight sharing and time-
domain multiplexing to drastically increase the capacity of
unrolled DNNSs that can fit on the target bit-programmable
device. For example, with weight sharing [55], there can be
one large unrolled layer that is shared throughout the DNN,
and a small accelerator for “adapter” layers that run much
slower. Although time-domain multiplexing (investigated by
Tabula Inc.) has been proven challenging for general-purpose
FPGAs, it could be a really good fit for programmable devices
targeting unrolled DNNs with a much simpler CAD flow
due to domain specialization, and can achieve multiplicative
efficiency on mapping larger unrolled DNNs. We believe
that the Kratos benchmark is the first and valuable step to
begin investigating unrolled DNNs on programmable archi-
tectures, which is a promising research direction because it
addresses an open problem in DNN research: how to fully
leverage fine-grained unstructured sparsity and mixed preci-
sion effectively—something that current accelerators cannot
handle.
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