
Kratos: An FPGA Benchmark for Unrolled DNNs
with Fine-Grained Sparsity and Mixed Precision

Xilai Dai, Yuzong Chen, Mohamed S. Abdelfattah

Department of Electrical and Computer Engineering, Cornell University

{xd44, yc2367, mohamed}@cornell.edu

Abstract—FPGAs offer a flexible platform for accelerating
deep neural network (DNN) inference, particularly for non-
uniform workloads featuring fine-grained unstructured sparsity
and mixed arithmetic precision. To leverage these redundan-
cies, an emerging approach involves partially or fully unrolling
computations for each DNN layer. That way, parameter-level
and bit-level ineffectual operations can be completely skipped,
thus saving the associated area and power. Regardless, unrolled
implementations scale poorly and limit the size of a DNN that
can be unrolled on an FPGA. This motivates the investigation
of new reconfigurable architectures to improve the efficiency of
unrolled DNNs, while taking advantage of sparsity and mixed
precision. To enable this, we present Kratos: a focused FPGA
benchmark of unrolled DNN primitives with varying levels
of sparsity and different arithmetic precisions. Our analysis
reveals that unrolled DNNs can operate at very high frequencies,
reaching the maximum frequency limit of an Arria 10 device.
Additionally, we found that substantial area reductions can be
achieved through fine-grained sparsity and low bit-width. We
build on those results to tailor the FPGA fabric for unrolled
DNNs through an architectural case study demonstrating ∼2×
area reduction when using smaller LUT sizes within current
FPGAs. This paves the way for further exploration of new
programmable architectures that are purpose-built for sparse and
low-precision unrolled DNNs. Our source code and benchmark
are available on github.com/abdelfattah-lab/Kratos-benchmark.

I. INTRODUCTION

Deep Neural Network (DNN) inference has become one of

the most important compute workloads of our time, spanning

many applications from image [1]–[5] and speech recognition

[6] to natural language processing [7]–[9] and autonomous

driving [10]–[13]. GPUs and custom ASIC chips currently

dominate DNN inference, particularly because of their high

compute capacity and memory bandwidth. This enables very

efficient dense matrix multiplication on these platforms. How-

ever, it has been shown, time and again, that DNNs exhibit

very high levels of fine-grained sparsity [14] and can toler-

ate low and mixed arithmetic precision [15]—two intrinsic

properties that are challenging to accelerate on existing DNN

accelerators. This begs the question of whether there are more

suitable architectures for sparse and low-precision DNNs.

FPGAs provide an attractive acceleration platform because

of their high flexibility and bit-level programmability. How-

ever, the reconfigurability overhead is generally very high,

making FPGAs approximately an order of magnitude less

efficient when compared to an ASIC implementation [16],

[17]. Even though many innovative and sparse-aware DNN

accelerator architectures were introduced on FPGAs [18]–

[23], none gained enough traction to compete with current

GPUs or ASICs. Nevertheless, there is an emerging style of

DNN acceleration on FPGAs that holds promise. Specifically,

unrolled DNN implementations, wherein a DNN accelerator

contains partially or fully unrolled computation engines that

are specialized for each DNN layer.
Fig. 1 shows a conceptual diagram of unrolled DNNs and

the area of a 64×64 matrix multiplication on an Arria 10

GX 1150 FPGA [24]. Full unrolling means having a hardware

multiply-accumulate (MAC) unit for each MAC operation in

the matrix multiplication, as shown in Fig. 1(a). This naı̈ve

unrolling quickly utilizes most of the FPGA area (63%) as

shown in Fig. 1(d). However, we consider unrolled DNN

implementations that are specialized, pruned, and quantized.

Specialization of MAC units means converting them to mul-

tiply with constant weight parameters, as shown in Fig. 1(b).

This drastically reduces compute area (∼4×) by optimizing

the MAC circuitry and by leveraging bit-level sparsity within

the parameter values. Combining specialization with pruning

and quantization, as shown in Fig. 1(c), further reduces area

by ∼150× down to just 0.1% of the FPGA for 4096 effective

FLOPs, making unrolled DNNs practical on current FPGAs.

Indeed, there are a number of recent works that successfully

leverage this implementation methodology of unrolled DNNs

on FPGAs, especially for smaller DNNs with very high

throughput requirements [25]–[31].
A key advantage of unrolled DNNs on FPGAs is the

proportional reduction in circuit area and efficiency gains

from all forms of redundancy. Conventional DNN accelerators,

including GPUs, achieve only ∼15% performance/watt im-

provement from 50% structured sparsity, even with dedicated

hardware support [32], far short of the expected 2×. FPGA’s

bit-level reconfigurability accelerates fine-grained and unstruc-

tured sparsity effectively. However, capacity limits exist: a

4-MFLOP DNN can be fully unrolled on an Arria 10 GX

1150 FPGA, as shown in Fig. 1, but this is suitable only

for small DNNs, highlighting the need for FPGA architectural

exploration to enhance efficiency.
Open-source CAD and architecture exploration frameworks

like VTR [33] enable us to examine architectural tradeoffs,

including LUT sizes, interconnection flexibility, and new hard

blocks. We can prototype new programmable devices based

on FPGAs, specifically designed to accelerate unrolled DNNs.

This motivates our work on Kratos1: a benchmark suite for

unrolled DNNs with unstructured sparsity and mixed preci-

sion.

1Kratos personifies strength in Greek mythology. Our benchmark leverages
the strength of FPGAs, specifically bit-level programmability, to accelerate
sparse DNNs.

a
rX

iv
:2

4
0
7
.0

6
0
3
3
v
1

[c

s.
A

R
]

 8
 J

u
l

2
0
2
4

y

w1 x1

...

Parameter Buffer

(w1 ... wK … wN)

y

x1

...

x2 xK

×wK ...

xN

y

(a) Unrolled DNN (b) Specialize (32-bit weight) (c) Pruned + Quantized (6-bit weight)

① ②③

w2 x2 wN xN

Parameter Buffer

×wN×w2×w1

+

× × ×

σ +

σ

x1

...

x2 xK

×wK ...

xN

Parameter Buffer

×wN×w2×w1

+

σ

~~

63%

19.6%

2.4%
0.1%

(d) Area

① ② ③

U
nro

lle
d

Fig. 1: Diagram of unrolled DNNs and the area of a 64×64 matrix multiplication on an FPGA. Naı̈ve unrolling quickly utilizes most of the
FPGA area (63%), but specialization 1 , pruning 2 , and quantization 3 reduce area by 600× down to just 0.1% of the FPGA for 4096
effective FLOPs.

More specifically, we make the following contributions:

1) We introduce the Kratos benchmark. A circuit benchmark

suite of unrolled convolutional and general matrix mul-

tiplication (GEMM) DNN layers with different levels of

fine-grained sparsity and numerical precisions.

2) Unlike other FPGA benchmarks, our SystemVerilog code

is human-readable, parameterized, and extensible, in ad-

dition to being compatible with both commercial (Quartus

Prime) and academic (VTR) CAD flows.

3) We present area and delay characteristics of our bench-

mark, showing that fully-unrolled DNNs can far exceed

the clock network limitations on Arria 10 FPGAs. We

also observe linear improvements in efficiency with re-

spect to higher sparsity and lower bitwidth.

4) We perform an FPGA architectural case study investi-

gating the most efficient LUT size for unrolled DNNs.

We show ∼2× FPGA area reduction by tailoring FPGA

logic blocks for unrolled DNNs, paving the way for the

investigation of new purpose-built devices for sparse and

low-precision DNN acceleration.

While existing FPGA benchmarks provide valuable insights

for general-purpose applications, they fall short in addressing

the specific needs of unrolled DNNs with fine-grained spar-

sity and mixed precision. Kratos fills this gap by offering

a specialized benchmark suite and related tools that enable

architectural exploration and optimization for unrolled DNNs.

This is crucial for designing next-generation programable

accelerators that can fully leverage the potential of unrolled

DNNs, achieving higher throughput and efficiency compared

to traditional dense execution models.

II. RELATED WORK

Unrolled DNNs follow the synchronous dataflow design

paradigm, where DNN layers are partially or fully unrolled

on an FPGA to match throughput between layers [34],

[35]. This approach efficiently implements binary/ternary

DNNs [30], high-throughput data analysis [31], and anomaly

detection [28]. Recent work focuses on tailoring fully unrolled

DNNs to FPGAs using LUT primitives, low arithmetic preci-

sion, and high unstructured sparsity [25]–[27], achieving high

efficiency compared to traditional DNN accelerators [19].
FPGA Benchmark circuits have commonly been used to

guide the architecture exploration of FPGAs [36]. Tradition-

ally, a variety of benchmarks from different domains are

TABLE I: The Kratos Benchmarks.

Kernel
Unrolling
Factor

Input /
Cycle

Weight
Duplicate

Output /
Cycle

gemmt row-parallel 1× n – 1× p

gemmt fully-unrolled m× n m× n× p

gemms row-parallel 1× n – 1× p

conv1d pixelwise Fw × 1× Ic – 1× 1×Oc

conv1d fully-unrolled IW × 1× Ic Ow× Ow × 1×Oc

conv2d pixelwise Fw × Fh × Ic – 1× 1×Oc

conv2d row-parallel IW × Fh × Ic Ow× Ow × 1×Oc

conv2d fully-unrolled IW × Ih × Ic OwOh× Ow×Oh×Oc

1 All kernels accept user-defined sparsity ∈ [0, 1] and precision ∈ N>0.
2 gemmt = multiply-add tree implementation of GEMM.
3 gemms = weight-stationary systolic implementation of GEMM.

used [37] to maintain the general-purpose nature of FPGAs.

Recently, some DNN-focused benchmarks have addressed the

need for domain-specific FPGA fabrics for DNN acceleration.

Koios [38] includes DNN accelerator circuits with varied im-

plementations, and Roorda et al. [39] released a flexible, auto-

generated DNN benchmark suite for new DSP architecture

investigation. Kratos focuses on (1) unrolled DNN implemen-

tations, (2) unstructured sparsity and mixed precision, and (3)

enhancing FPGA logic and routing architecture.

DNN-Optimized FPGAs have been proposed by improving

logic blocks for low-precision DNNs [40], [41], enhancing

DSPs with more low-precision computation [42], [43], or

augmenting BRAMs with compute capabilities [44]–[47]. We

aim to use Kratos for investigating optimized logic block

and routing architectures to create new domain-specific pro-

grammable devices for enhanced unrolled DNN performance.

III. BENCHMARK DESCRIPTION

A. Kernels

The Kratos benchmark contains 8 kernels as shown in Table

I. These kernels implement two main DNN operations: GEMM

and convolution, which are heavily used by a wide range of

DNNs. The GEMM operation is used by the fully-connected

layer which is ubiquitous in many DNNs such as long short-

term memory [6] and transformers [7], while the convolution

operation dominates convolutional neural networks [1]. Since

Kratos focuses on unrolled DNNs, weights are embedded

into circuit connections like LUTs rather than memory. For

instance, during multiplication, the input goes directly into

LUTs, producing the output without needing to access a

multiplier or load weights from BRAM.

The GEMM dataflow is shown in Fig. 2(a), where the input

matrix xm×n is multiplied by the unrolled weight matrix

wn×p to generate the output matrix ym×p. Kratos contains

two types of hardware implementations for GEMM that use

multiply-adder tree (gemmt) and weight-stationary systolic

array (gemms) as shown in Fig. 3(a) and (b), respectively.

The datapath of our design is heavily pipelined by inserting

registers between every stage of multiplication or addition. For

convolution, Kratos contains 1-D convolution (conv1d) and

2-D convolution (conv2d) implemented using the multiply-

adder tree. Fig. 2(b) shows the dataflow of conv2d, where

the IW × Ih × Ic input feature map is convolved with the

Fw×Fh×Ic×Oc filter matrix to generate the Ow×Oh×Oc

output feature map. The conv1d kernel has a similar dataflow

as conv2d except that Ih = Oh = Fh = 1. Using multiply-

adder trees allows pruning leaves of zero weights while the

traditional systolic array still needs structural registers to keep

systolic and thus leads to low resource efficiency.

B. Input Unrolling Factors

All weights are fully unrolled in the Kratos kernels to

take full advantage of parameter-level sparsity. An important

design consideration is the input unrolling factor—this quan-

tifies the portion of the input tensor that can be processed

simultaneously, and directly affects the resulting throughput.

Kratos supports three input unrolling factors as illustrated

in Fig. 2 and described below. The different color boxes

indicate the number of elements processed in one cycle. This

visual representation helps to understand the efficiency gains

achieved through our approach.

Pixelwise: This unrolling factor is applicable to convolution.

As shown in Fig. 2(b), the pixelwise unrolling generates one

pixel along all channels of the output feature map in parallel.

Row-Parallel: This unrolling factor is applicable to both

GEMM and convolution. The row-parallel unrolling generates

one row of the output matrix for GEMM, and one row along all

channels of the output feature map for convolution in parallel

as shown in Fig. 2(a) and (b), respectively.

Fully-Unrolled: For fully-unrolled GEMM, the whole output

matrix can be generated in one shot as shown in Fig. 2(a). The

fully-unrolled 1-D convolution is the same as the row-parallel

1-D convolution since Oh = 1. For fully-unrolled 2-D convo-

lution, the entire input feature is processed simultaneously to

obtain the whole output feature map in one shot as shown in

Fig. 2(b).

The unrolling factor impacts hardware design and resource

utilization. For instance, the row-parallel gemmt implementa-

tion broadcasts one row of the input matrix to the unrolled

weight, generating one row of the output matrix per cycle.

Input and weight duplication can improve throughput by

processing more inputs in parallel. In fully unrolled imple-

mentations, the entire input matrix is processed simultane-

ously, obtaining the whole output matrix in 1 cycle, with a

throughput of m×n×p operations. However, for gemms, this

results in diminishing returns due to the systolic propagation

penalty [48]. For convolution, weight duplication is necessary

for row-parallel and fully-unrolled implementations. We use

BRAM for pixelwise unrolling and a shift-register network

Input Feature

Iw

Ih
Fw

Ic

Oc

Unrolled Filter

Output Feature

Ow

Oh

Oc

1

Fw

Ic

Pixelwise Fully-UnrolledRow-Parallel

Fh

Fh 1

m

n

1

n

p

m

1

p

Input Matirx Output MatrixUnrolled Weight

(a)

(b)

Fig. 2: Dataflow of (a) GEMM and (b) convolution for different
input unrolling factors: pixelwise, row-parallel, and fully-unrolled.
The weight/filter is always fully unrolled

Weight-Stationary Systolic Array

Shift-Reg

Input Buffer

Multiply-Adder Tree

y1,1

+

×
w1,1

×
w2,1

+

×
wn,1

...

...

+

×p

x [1, :]

x [2, :]

x [m, :]

...

Shift-Reg

Input Buffer

...

x1,1

...

y[:, 1]

xm,1

...

xm,n x1,n

...

(a)

...

psum psumpsum

...×
wn,1

×
wn,p

×
wn,2

...

...

... ...

×
w1,1

×
w1,p

×
w1,2

...

(b)

y[:, 2] y[:, p]

Fig. 3: Hardware implementation of GEMM: (a) multiply-adder tree
and (b) weight-stationary systolic array.

for row-parallel and fully-unrolled kernels to ensure sufficient

input bandwidth.

C. CAD for FPGA Architecture Exploration

One of the main motivations of this work is to evaluate

existing FPGA architectures and explore new optimized archi-

tectures for unrolled DNNs. To achieve this, Kratos is designed

to be compatible with both the commercial Intel Quartus Prime

and the open-source VTR [33] flow.

Creating a VTR-compatible benchmark has long been a

labor-intensive process due to the limited Verilog syntax cover-

age of VTR’s Odin II synthesis front-end [49]. However, Odin

II provides efficient partial technology mapping for balancing

soft logic and hard blocks of a target FPGA architecture.

Recently, VTR has integrated Yosys [50], an open-source

synthesis tool with extensive Verilog-2005 and SystemVerilog

support such as the ”generate” statement. The new VTR

synthesis front-end using a combination of Yosys for synthesis

and Odin II for partial mapping [51] significantly reduces the

efforts of handling unsupported Verilog syntax. Hence, the

Kratos benchmark uses this newly released VTR flow.

D. Benchmark Workflow

Unlike many previous FPGA benchmarks [37], [38] that

provide a fixed Verilog design for every kernel, Kratos pro-

vides Python scripts to automatically generate the top-level

SystemVerilog module given user-provided design parame-

ters specified in a Python dictionary. These modules contain

the pre-implemented kernels we mentioned above and the

L
o

c
a
l

C
ro

s
s
b

a
r

Fracturable K-LUT

(K-1)-LUT

FF

Arithmetic Mode

Cout

Cout

+

+

(K-1)-LUT

O1

O2

O3

O4

.
.
. N BLEs

(K-2)-LUT

(K-2)-LUT

(K-2)-LUT

(K-2)-LUT

K mux
/ BLE

.
.
.

K mux
/ BLE

local
feedback

I input pins

...

W routing channel

BLE

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

FF

FF

FF

Fig. 4: Logic block diagram of the baseline FPGA for VTR archi-
tectural exploration.

embedded weights for synthesize. Thanks to the enhanced

synthesis front-end of VTR, our SystemVerilog is human-

readable, parameterized, performance-optimized, and exten-

sible. After generating the hardware description, the Python

scripts generate the necessary flow scripts to run either Intel

Quartus Prime or VTR and report the performance and area

results.
All kernels in the Kratos benchmark are parameterized by

the dimensions of inputs and weights, as well as sparsity and

precision. Sparsity specifies the percentage of zero elements

in the weight tensor, and precision specifies the data width

of inputs and weights. To simulate unstructured sparsity,

we generate the weight matrix with the desired amount of

non-zero elements and randomly shuffle their location. For

precision, Kratos allows any integer data type, but it can be

easily extended to support other data formats by changing

the hardware description of the MAC unit. In addition, all

kernels are functionally verified by simulating kernels running

on random weights and inputs with Modelsim and comparing

results with ground truth To facilitate large-scale design space

exploration, Kratos tools set also provides a batch job script

that allows users to define multiple sizes, precisions, and

sparsities, and it will launch flows for different combinations.

IV. EVALUATION METHODOLOGY

A. Experimental Setup

To quantify the efficiency of existing FPGA architectures

for unrolled DNNs, we use the Intel Quartus Prime Software

Version 22.3 and Arria 10 GX 1150 when running all Kratos

benchmarks. To conduct FPGA architectural exploration, we

use a customized version of VTR2 As a sanity check to verify

the successful parsing of our benchmark through VTR, we

compare the resource utilization reported by VTR and Quartus

for all kernels and observe ±10% variation on average.
The baseline FPGA for our VTR experiments has a Stratix-

IV-like architecture using 40 nm technology and is available

2Our fork from the VTR main branch includes better SystemVerilog
support, an option to manually specify the top module, and several bug fixes.

TABLE II: Kratos Design Space for Evaluation.

Kernel
Unroll
Factor1 Size1 Input

Dim2
Weight
Dim3

Output
Dim4

gemmt RP S 32× 32 32× 32 32× 32
gemmt RP L 128× 128 128× 128 128× 128
gemmt FU S 16× 16 16× 16 16× 16
gemmt FU L 32× 32 32× 32 32× 32
gemms RP S 16× 16 16× 16 16× 16
gemms RP L 128× 128 128× 128 128× 128
conv1d PW S 32× 1× 64 3× 3 30× 30× 64
conv1d PW L 32× 1× 64 3× 3 30× 30× 128
conv1d FU S 32× 1× 8 3× 3 30× 30× 8
conv1d FU L 32× 1× 16 3× 3 30× 30× 16
conv2d PW S 25× 25× 32 3× 3 23× 23× 64
conv2d PW L 25× 25× 64 3× 3 23× 23× 64
conv2d RP S 8× 8× 8 3× 3 6× 6× 8
conv2d RP L 8× 8× 16 3× 3 6× 6× 16
conv2d FU S 8× 8× 4 3× 3 6× 6× 4
conv2d FU L 8× 8× 8 3× 3 6× 6× 8

1 PW: pixelwise. RP: row-parallel. FU: fully-unrolled. S: small. L: large.
2 Format: m× n for GEMM, IW × Ih × Ic for convolution.
3 Format: n× p for GEMM, FW × Fh for convolution.
4 Format: p× k for GEMM, OW ×Oh ×Oc for convolution.

in the official VTR release. The logic block (LB) diagram of

this architecture is shown in Fig. 4, which contains I = 52

input pins and a default of N = 10 basic logic elements

(BLEs). Each BLE contains a LUT with size K = 6 and

the two outputs can be optionally registered. The BLE can

also operate in the fracturable LUT mode where each 6-

LUT can be fractured into two 5-LUTs, or the arithmetic

mode where the two hard adders receive inputs from four

4-LUTs. To facilitate architectural exploration, we develop

a Python-based architecture file generator to automatically

modify different LB parameters. The area and delay of the

modified LB are extracted from COFFE 2.0 [52] and scaled

to 40 nm technology. During VTR routing, we set the default

router option to perform a binary search to find the minimum

routing channel width W required to route the circuit.

B. Design Space

The Kratos benchmark enables large design space explo-

ration by allowing users to specify arbitrary kernel sizes, as

well as sparsity and precision. For our experiments, we use the

set of kernel sizes as shown in Table II, which contains two

size variants (small and large) for all kernels. The convolution

kernels have a stride of 1 without padding. For every kernel

size, we evaluate 10 evenly spaced sparsity from 0 to 0.9, and

4 data precision (1-bit, 2-bit, 4-bit, 8-bit). Note that the kernel

sizes are chosen to ensure that they can pass the placement

and routing under the lowest sparsity level (i.e., no sparsity)

and the highest data precision (8-bit).

V. EXPERIMENTAL RESULTS

In this section, we present area and frequency trends of

Kratos benchmark circuits to highlight the effect of sparsity

and precision. In addition, we present a proof-of-concept

architectural exploration case study to investigate the LUT size

for unrolled DNNs, and the potential area savings compared

to current general-purpose FPGAs.

Fig. 5: Normalized ALM utilization on Arria 10 vs. sparsity for
(a) GEMM, (b) conv1d, and (c) conv2d kernels. The solid black
line highlights the ideal trend where the ALM utilization linearly
decreases with higher sparsity.

A. Area and Frequency Trends on Arria 10

Resource utilization vs. sparsity. Fig. 5 shows the nor-

malized adaptive logic module (ALM) utilization vs. sparsity

for different Kratos kernels on Arria 10 GX 1150. The error

bars indicate the range of ALM utilization under different

precisions, with the interquartile range marked by filled rect-

angles. Most kernels exhibit a near-ideal linear reduction in

ALM utilization with increased sparsity, demonstrating the

effectiveness of FPGAs in accelerating unrolled DNNs. The

row-parallel gemms deviates from this trend; at 0.9 sparsity,

its ALM utilization is reduced by only 46% and 31% for

small and large designs, respectively. This is due to gemms’

structured datapath with delay registers between processing

elements, which hampers optimization of zero-weight MAC

units. Conversely, the multiply-adder tree implementation

prunes zero branches entirely during synthesis, eliminating the

need for LUTs and registers as sparsity increases.

Resource utilization vs. bit-width. As we decrease bitwidth,

area decreases super-linearly as shown in Fig. 6. This is

expected because multipliers scale quadratically with bit-

width while adders scale linearly and control circuitry remains

constant. Further inspection of Fig. 6 reveals comparative

area savings trends from higher sparsity and lower bit-width.

For instance, when we inspect the 8-bit conv2d-FU-L plot,

reducing the precision to 4-bits leads to a 2.9-fold decrease

in area. Achieving a similar reduction in area for an 8-bit

Fig. 6: Normalized ALM utilization on Arria 10 vs. precision under
different sparsity levels.

Fig. 7: Frequency ranges of (a) small and (b) large Kratos circuits
under different sparsity and precision on Arria 10. The circle on each
error bar marks the average.

implementation would require high sparsity levels, ranging

from 80% to 90%. Recent research is beginning to explore how

pruning compares with quantization in terms of accuracy [53].

Together with our hardware efficiency results, this opens

the door for more extensive studies on accuracy-efficiency

tradeoffs for pruning, quantization, and their combination.
Critical Path Delay. Fig. 7 shows the frequency ranges of

small and large Kratos kernels on Arria 10. There is a clear

trend in favor of higher unrolling factors, with our heavily-

pipelined fully-unrolled designs reaching the maximum fre-

quency supported on Arria 10. In this case, the unrestricted

fmax can reach 1GHz by Quartus timeing report, and the

restricted fmax can reach over 600Mhz. Conversely, the row-

parallel and pixelwise implementations suffer from higher

critical path delays within the control and buffering circuitry

but are still capable of reaching frequencies 300–600 MHz.

The high speeds attainable with unrolled DNNs, combined

with their direct area savings from fine-grained sparsity and

reduced bit-width motivate further investigation of new FPGA

architectures to enable larger DNN deployments.

B. Architectural Exploration Case Study

Using the baseline architecture described in Section IV-A,

we conduct a case study to find the optimal LUT size for

unrolled DNNs. We evaluate four LB architectures whose LUT

sizes K vary from 3 to 6. For each different LUT size, we

determine the corresponding number of LB input pins I with

N = 10 basic logic elements based on the empirical equation

I = K

2
(N+1) from prior work [54]. We use VTR to evaluate

the four architectures on three kernels gemmt-RP-S, conv1d-

PW-S, conv2d-PW-S from Table II as these designs balance

silicon footprint and data throughput. While fully unrolled

TABLE III: Resource utilization, silicon area, and performance under different LUT sizes, sparsity, and precision.

Sparsity K 1

Precision = 8-bit Precision = 4-bit

gemmt-RP-S conv1d-PW-S conv2d-PW-S gemmt-RP-S conv1d-PW-S conv2d-PW-S

kLBs
Area

(mm2)
Fmax
(MHz)

kLBs
Area

(mm2)
Fmax
(MHz)

kLBs
Area

(mm2)
Fmax
(MHz)

kLBs
Area

(mm2)
Fmax
(MHz)

kLBs
Area

(mm2)
Fmax
(MHz)

kLBs
Area

(mm2)
Fmax
(MHz)

0%

3 1.13 1.88 93.1 13.4 22.4 44.0 20.4 34.0 38.6 0.97 1.62 177.9 11.3 18.9 113.6 17.1 28.4 87.7

4 1.06 2.18 124.7 12.8 26.2 45.5 19.1 39.3 41.9 0.97 2.0 170.4 11.3 23.3 116.4 17.0 35.0 79.1

5 1.06 2.67 102.0 12.8 32.2 53.5 19.2 48.3 40.0 0.97 2.45 172.0 11.3 28.5 118.9 17.0 42.9 81.4

6 1.06 3.62 114.5 12.8 43.7 46.5 19.2 65.6 37.7 0.97 3.32 167.8 11.4 38.9 118.9 17.1 58.5 93.4

50%

3 0.66 1.11 146.9 8.05 13.4 72.6 12.4 20.6 49.6 0.5 0.83 179.8 6.01 10.0 118.7 9.07 15.1 92.9

4 0.63 1.29 143.8 7.58 15.6 73.7 11.5 23.6 46.5 0.5 1.02 179.8 6.01 12.3 106.0 9.06 18.6 87.2

5 0.63 1.59 144.9 7.57 19.1 65.4 11.4 28.8 48.2 0.5 1.25 172.3 6.01 15.1 106.8 9.06 22.8 88.6

6 0.63 2.15 135.6 7.57 25.9 70.0 11.4 39.0 48.6 0.5 1.7 173.4 6.01 20.6 119.5 9.06 31.0 73.8

90%

3 0.21 0.35 169.4 2.74 4.56 100.1 4.5 7.48 76.9 0.1 0.17 179.9 1.25 2.09 124.0 2.02 3.37 106.0

4 0.21 0.43 165.8 2.58 5.31 109.1 4.13 8.48 99.0 0.1 0.21 179.1 1.24 2.55 134.4 1.93 3.96 105.3

5 0.21 0.52 166.5 2.58 6.51 125.3 4.08 10.3 86.1 0.1 0.26 183.5 1.24 3.12 118.0 1.92 4.83 103.7

6 0.21 0.7 165.9 2.58 8.83 101.1 4.05 13.8 92.4 0.1 0.35 181.6 1.24 4.24 132.4 1.92 6.56 108.7

1 For K = 3, 4, 5, 6, the maximum channel widths required to route all designs are W = 102, 96, 90, 90, which gives a tiles area of
1664um2, 2053um2, 2520um2, 3420um2 from COFFE [52] after normalizing to 40 nm technology.

Fig. 8: Normalized area-delay product (ADP) for the Kratos circuits
in Table III.

designs offer the best clock frequency, practical constraints

and the need to run multiple experiments necessitated choosing

smaller, more manageable designs in this initial exploration.

For every architecture, we extract the maximum routing

channel width W reported by VTR that can fit all designs,

which is then passed to COFFE [52] to compute the LB area

(including routing) with a given (K, I,W). The total silicon

area of a kernel is then calculated by multiplying the LB

utilization and the LB area. All reported results are averaged

over 3 runs using different random seeds

The experiment results summarized in Table III show po-

tential savings of ∼2× when reducing the LUT size from 6

(default in most Intel FPGAs) to 3. This comes with a 10–20%

degradation in critical path delay for 8-bit kernels, whereas a

small improvement is observed for most 4-bit designs. We

hypothesize that smaller 4-bit MAC units are more likely to

fit within a single logic block, even with K = 3, compared to

8-bit counterparts. When optimizing the FPGA device for area-

delay product, Fig. 8 favors the smallest LUT size (K = 3)

except for one circuit (gemmt-RP-S with 8-bit precision and

no sparsity). This strongly indicates the superiority of smaller

LUTs for unrolled DNN implementations.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the efficiency advantages of unrolled DNNs,

we created a benchmark suite to enable the architectural

exploration of new programmable hardware devices for ac-

celerating unrolled DNNs. Our empirical analysis shows that

unrolled DNNs on FPGA can run at very high speed, can

can significantly benefit from improvements in efficiency with

fine-grained sparsity and reduced arithmetic precision — two

properties that are not easily attainable with conventional DNN

accelerators. Furthermore, we performed an architectural case

study to reveal ∼2× possible area savings from exploring the

optimal LUT size of contemporary FPGA architectures to suit

unrolled DNNs better.
While we can’t optimize a general-purpose FPGA solely for

unrolled DNNs, future work can explore integrating special-

ized bit-programmable fabrics within general-purpose FPGAs

or creating new bit-programmable devices specifically for

unrolled DNNs. One goal of Kratos is to inspire research on

new programmable architectures that are much more efficient

(e.g., 10− 100×) than current FPGAs, maintaining linear and

quadratic efficiency scaling with sparsity and low precision,

respectively. Although the size of unrolled DNNs that can

fit on current FPGAs is small, future works can explore

algorithmic optimizations such as weight sharing and time-

domain multiplexing to drastically increase the capacity of

unrolled DNNs that can fit on the target bit-programmable

device. For example, with weight sharing [55], there can be

one large unrolled layer that is shared throughout the DNN,

and a small accelerator for “adapter” layers that run much

slower. Although time-domain multiplexing (investigated by

Tabula Inc.) has been proven challenging for general-purpose

FPGAs, it could be a really good fit for programmable devices

targeting unrolled DNNs with a much simpler CAD flow

due to domain specialization, and can achieve multiplicative

efficiency on mapping larger unrolled DNNs. We believe

that the Kratos benchmark is the first and valuable step to

begin investigating unrolled DNNs on programmable archi-

tectures, which is a promising research direction because it

addresses an open problem in DNN research: how to fully

leverage fine-grained unstructured sparsity and mixed preci-

sion effectively—something that current accelerators cannot

handle.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” arxiv preprint
arxiv:1704.04861, 2017.

[4] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4510–
4520, 2018.

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” arxiv preprint
arxiv:2010.11929, 2020.

[6] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) Network,” arxiv preprint
arxiv:1808.03314, 2018.

[7] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in
Advances in Neural Information Processing Systems (NIPS), 2017.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
North American Chapter of the Association for Computational Linguis-
tics (ACL), 2019.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” in Advances in
Neural Information Processing Systems (NIPS), 2019.

[10] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only
Look Once: Unified, Real-Time Object Detection,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 779–788, 2016.

[11] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
arxiv preprint arxiv:1804.02767, 2018.

[12] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
Series in 2021,” 2021. [Online]. Available: https://arxiv.org/abs/2107.
08430

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu,
and A. C. Berg, “SSD: Single Shot MultiBox Detector,” in European
Conference on Computer Vision (ECCV), 2015.

[14] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p.
1135–1143.

[15] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 8612–8620.

[16] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, 2007.

[17] A. Boutros, S. Yazdanshenas, and V. Betz, “You cannot improve what
you do not measure: Fpga vs. asic efficiency gaps for convolutional
neural network inference,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 11, no. 3, dec 2018.

[18] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. B. J. Dally, “Ese: Efficient speech
recognition engine with sparse lstm on fpga,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17, 2017, p. 75–84.

[19] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling, and G. R. Chiu, “Dla:
Compiler and fpga overlay for neural network inference acceleration,”
in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL). Los Alamitos, CA, USA: IEEE Computer
Society, aug 2018, pp. 411–4117.

[20] H. Fan, T. Chau, S. I. Venieris, R. Lee, A. Kouris, W. Luk, N. D.
Lane, and M. S. Abdelfattah, “Adaptable butterfly accelerator for
attention-based nns via hardware and algorithm co-design,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2022, pp. 599–615.

[21] J. Meng, S. K. Venkataramanaiah, C. Zhou, P. Hansen, P. N. What-
mough, and J. sun Seo, “Fixyfpga: Efficient fpga accelerator for deep
neural networks with high element-wise sparsity and without exter-
nal memory access,” International Conference on Field-Programmable
Logic and Applications (FPL), pp. 9–16, 2021.

[22] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An efficient
hardware accelerator for sparse convolutional neural networks on fpgas,”
IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019.

[23] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. chen Zhan, Y. Liu, M. Wu,
and L. Zhang, “Efficient and effective sparse lstm on fpga with bank-
balanced sparsity,” Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2019.

[24] I. Corp., “Intel® Arria® 10 FPGA and SoC FPGA,” https://www.
intel.com/content/www/us/en/products/details/fpga/arria/10.html, 2023,
accessed: 10/03/2023.

[25] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “High-throughput
dnn inference with logicnets,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2020, pp. 238–238.

[26] E. Wang, J. J. Davis, P. K. Cheung, and G. A. Constantinides, “Lutnet:
Learning fpga configurations for highly efficient neural network infer-
ence,” IEEE Transactions on Computers, vol. 69, no. 12, pp. 1795–1808,
dec 2020.

[27] E. Wang, J. J. Davis, G.-I. Stavrou, P. Y. K. Cheung, G. A. Con-
stantinides, and M. Abdelfattah, “Logic shrinkage: Learned fpga netlist
sparsity for efficient neural network inference,” p. 101–111, 2022.

[28] B. Lou, D. Boland, and P. Leong, “Fsead: A composable fpga-based
streaming ensemble anomaly detection library,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 16, no. 3, jun 2023.

[29] M. Nazemi, A. Fayyazi, A. Esmaili, A. Khare, S. N. Shahsavani, and
M. Pedram, “Nullanet tiny: Ultra-low-latency dnn inference through
fixed-function combinational logic,” in 2021 IEEE 29th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2021, pp. 266–267.

[30] S. Tridgell, M. Kumm, M. Hardieck, D. Boland, D. Moss, P. Zipf,
and P. H. W. Leong, “Unrolling ternary neural networks,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 4, oct 2019.

[31] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for
particle physics,” JINST, vol. 13, no. 07, p. P07027, 2018.

[32] J. Pool, A. Sawarkar, and J. Rodge, “Accelerating infer-
ence with sparsity using the nvidia ampere architecture
and nvidia tensorrt,” https://developer.nvidia.com/blog/
accelerating-inference-with-sparsity-using-ampere-and-tensorrt, Jul
2021.

[33] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Pa-
tros, J. Luu, K. B. Kent, and V. Betz, “Vtr 8: High performance cad and
customizable fpga architecture modelling,” ACM Trans. Reconfigurable
Technol. Syst., 2020.

[34] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs,” in IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2016, pp. 40–47.

[35] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2017, p. 65–74.

[36] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson, “The vtr project: Architecture
and cad for fpgas from verilog to routing,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2012, p. 77–86.

[37] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling
large and complex benchmarks in academic cad,” International Confer-
ence on Field Programmable Logic and Applications, pp. 1–8, 2013.

[38] A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. Damghani,
S. Mehta, S. Kate, P. Patel, K. B. Kent, V. Betz, and L. K. John, “Koios:
A deep learning benchmark suite for fpga architecture and cad research,”
in 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), sep 2021, pp. 355–362.

[39] E. Roorda, S. Rasoulinezhad, P. H. W. Leong, and S. J. E. Wilton,
“Fpga architecture exploration for dnn acceleration,” ACM Trans. Re-
configurable Technol. Syst., vol. 15, no. 3, may 2022.

[40] S. Rasoulinezhad, Siddhartha, H. Zhou, L. Wang, D. Boland, and
P. H. W. Leong, “Luxor: An fpga logic cell architecture for effi-

cient compressor tree implementations,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. Association for Computing Machinery, 2020, p. 161–171.

[41] A. Boutros, M. Eldafrawy, S. Yazdanshenas, and V. Betz, “Math doesn’t
have to be hard: Logic block architectures to enhance low-precision
multiply-accumulate on fpgas,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2019, p.
94–103.

[42] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity:
Enhanced dsp blocks for low-precision deep learning on fpgas,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 35–357.

[43] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. Leong, “Pir-dsp: An fpga
dsp block architecture for multi-precision deep neural networks,” in 2019
IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019, pp. 35–44.

[44] Y. Chen and M. S. Abdelfattah, “BRAMAC: Compute-in-BRAM Ar-
chitectures for Multiply-Accumulate on FPGAs,” in 31st IEEE Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2023.

[45] A. Arora, T. Anand, A. Borda, R. Sehgal, B. Hanindhito, J. Kulkarni,
and L. K. John, “CoMeFa: Compute-in-Memory Blocks for FPGAs,”
in 30th IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2022.

[46] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi,
C. Augustine, R. R. Iyer, and R. Das, “Compute-Capable Block RAMs
for Efficient Deep Learning Acceleration on FPGAs,” in 29th IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2021.

[47] Y. Chen, J. Dotzel, and M. S. Abdelfattah, “M4BRAM: Mixed-Precision
Matrix-Matrix Multiplication in FPGA Block RAMs,” in International
Conference on Field Programmable Technology (ICFPT), 2023.

[48] C. Eckert, A. K. Subramaniyan, X. Wang, C. Augustine, R. Iyer, and
R. Das, “Eidetic: An in-memory matrix multiplication accelerator for
neural networks,” IEEE Transactions on Computers, vol. 72, no. 6, pp.
1539–1553, 2023.

[49] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii - an
open-source verilog hdl synthesis tool for cad research,” IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines, pp. 149–156, 2010.

[50] C. Wolf, “Yosys Open SYnthesis Suite,” 2012. [Online]. Available:
https://yosyshq.net/yosys/

[51] S. A. Damghani and K. B. Kent, “Yosys+odin-ii: The odin-ii partial
mapper with yosys coarse-grained netlists in vtr,” Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2022.

[52] S. Yazdanshenas and V. Betz, “Coffe 2: Automatic modelling and
optimization of complex and heterogeneous fpga architectures,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 1, pp. 1 – 27, 2019.

[53] A. Kuzmin, M. Nagel, M. van Baalen, A. Behboodi, and T. Blankevoort,
“Pruning vs quantization: Which is better?” 2023. [Online]. Available:
https://arxiv.org/abs/2307.02973

[54] E. Ahmed and J. S. Rose, “The effect of lut and cluster size on deep-
submicron fpga performance and density,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 12, pp. 288–298, 2000.

[55] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, “Albert: A lite bert for self-supervised learning of language
representations,” 2019. [Online]. Available: https://arxiv.org/abs/1909.
11942

	Introduction
	Related Work
	Benchmark Description
	Kernels
	Input Unrolling Factors
	CAD for FPGA Architecture Exploration
	Benchmark Workflow

	Evaluation Methodology
	Experimental Setup
	Design Space

	Experimental Results
	Area and Frequency Trends on Arria 10
	Architectural Exploration Case Study

	Conclusions and Future Work
	References

