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Abstract

Quality assessment of fingerprints captured using digi-
tal cameras and smartphones, also called fingerphotos, is a
challenging problem in biometric recognition systems. As
contactless biometric modalities are gaining more atten-
tion, their reliability should also be improved. Many fac-
tors, such as illumination, image contrast, camera angle,
etc., in fingerphoto acquisition introduce various types of
distortion that may render the samples useless. Current
quality estimation methods developed for fingerprints col-
lected using contact-based sensors are inadequate for fin-
gerphotos. We propose Utility guided Fingerphoto Quality
Assessment (UFQA), a self-supervised dual encoder frame-
work to learn meaningful feature representations to assess
fingerphoto quality. A quality prediction model is trained
to assess fingerphoto quality with additional supervision of
quality maps. The quality metric is a predictor of the utility
of fingerphotos in matching scenarios. Therefore, we use
a holistic approach by including fingerphoto utility and lo-
cal quality when labeling the training data. Experimental
results verify that our approach performs better than the
widely used fingerprint quality metric NFIQ2.2 and state-
of-the-art image quality assessment algorithms on multiple
publicly available fingerphoto datasets.

1. Introduction
Quality estimation in biometric recognition systems is

crucial for several reasons. First, acquisition systems must
ensure the quality of biometrics during enrollment. Allow-
ing poor quality samples in the datasets will lead to ineffi-
cient use of resources. Second, having a majority of high-
quality samples in the reference set will allow the recog-
nition systems to match the subject with lower false non-
match rates (FNMR) accurately. Finally, poor quality sam-
ples may introduce spurious features and fool the matcher
into incorrectly recognizing the subject. This behavior
poses serious security threats in sensitive areas such as law
enforcement and access control. Therefore, the objective

Figure 1. Comparison between fingerphoto quality assessment
methods. (a) Conventional approach to obtain quality through pre-
processing, such as filtering, histogram equalization, etc. and ap-
plying NFIQ2. (b) Our proposed UFQA model that incorporates
fingerphoto utility and local information to predict quality.

of the quality assessment task is to identify the recognition
utility of all samples in the corpus, thereby reducing the
false match rate (FMR).

In recent years, contactless biometric modalities have be-
come a preferred choice for personal identification. The
acquisition of such biometrics is hygienic and convenient
for the user. However, new challenges arise with new ac-
quisition systems. In terms of fingerprint modality, finger-
prints are collected using conventional touch-based sensors.
Whereas, contactless acquisition systems use smartphones,
digital cameras, and touchless sensors [4] to capture fin-
gerprints, which we refer to as fingerphotos. Fingerprint
acquisition can be affected by a variety of factors, such
as skin conditions, moisture, dryness, etc. In addition to
this, depending on user cooperation, the interaction between
the sensor surface and the finger causes the fingerprints to
contain elastic distortions and inconsistent ridge-valley pat-
terns.

On the other hand, fingerphoto acquisition is less con-
strained than contact-based methods. As a result, finger-
photos suffer from various drawbacks. First, the cylindrical
shape of the finger causes perspective distortions, which are
responsible for a significant loss of peripheral areas of the
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finger. Second, camera positioning and lighting conditions
introduce inconsistent illumination and image contrast, re-
sulting in poor ridge-valley patterns. Third, if the subject
has trembling fingers, the fingerphotos will turn out blurry
and challenging to match. Additionally, because of all these
arbitrary covariate (nuisance) factors, the fingerphotos ex-
hibit regional distortions. A poorly focused camera may
capture a particular image region, and improper illumina-
tion may occlude visible ridges. Lastly, the fingerphotos
are not readily usable for the current recognition systems.
A pre-processing pipeline is required to extract useful fea-
tures that can be used for matching [3, 22, 33].

Therefore, the fingerphoto quality metric should ac-
count for the shortcomings mentioned above. This can be
achieved through robust feature extraction that analyzes the
fingerphoto characteristics with respect to useful identity in-
formation. Hand-crafted feature extraction has been around
for decades. Initially, NIST Fingerprint Image Quality 2
(NFIQ2.2) [36] proposed extracting several feature maps,
such as a direction map, low contrast, low flow, high curve,
and a summarized quality map to estimate quality. These
features are highly effective in predicting the utility of the
fingerprint; however, only some of the features are relevant
to the case of fingerphotos. The authors in [44] consid-
ered three factors, ridge quality, minutiae reliability, and
finger position, to compute various features for latent fin-
gerprint quality. The same concept of feature extraction is
proposed for fingerphotos that explicitly account for camera
settings and lighting conditions of the images during acqui-
sition [18, 20, 33].

Although the methods that use hand-crafted feature ex-
traction are reliable, computational expense is still in ques-
tion. Quality assessment must be equally efficient for
faster and less constrained acquisition systems. Olsen et
al. showed a promising direction to reduce the computa-
tional complexity of conventional methods using the neu-
ral network-based algorithm [1]. Furthermore, recent ad-
vances in representation learning have increased the capa-
bilities to extract reliable features relevant to desired modal-
ities [26, 27, 32]. Many approaches using deep neural net-
works have been proposed for biometric recognition tasks
[23]. Therefore, a representation-learning-based approach
for fingerprint quality estimation appears to be a promising
candidate.

Nonetheless, there are several challenges to estimate the
quality of finger photographs. In most cases, the border ar-
eas of a fingerphoto are either the background or the dis-
torted ridges because of the curved shape of the finger. Un-
even ridge-valley patterns and non-uniform distortions af-
fect the visibility of region of interest (ROI). To deal with
the regional distortions, we propose an additional task in
our quality estimation model to learn the features of the
regional quality of the fingerphoto. In addition, the lack

of availability of large fingerphoto training datasets under-
mines the learning capacity of a neural network. Therefore,
we use existing large contact-based fingerprint datasets for
transfer learning. It ensures that the network learns to ex-
tract reliable fingerprint representations. Then, we use the
available fingerphoto datasets to fine-tune this model. Data
annotation using reliable labels is another challenge of the
quality estimation system. We use a labeling algorithm de-
veloped for fingerprints and modify it to satisfy our con-
straints. Lastly, a recognition system is essential to evaluate
the estimated quality. To the best of our knowledge, current
recognition systems are not entirely optimized for match-
ing fingerphotos. Therefore, we have to rely on these sys-
tems to evaluate our quality metric. We provide a general
overview of the conventional approach to fingerphoto qual-
ity assessment and our proposed UFQA in Figure 1. For the
sake of brevity, we use ‘fingerprint’ and ‘fingerphoto’ termi-
nologies for the finger samples collected from a touch-based
sensor and a smartphone/digital camera, respectively.

Our main contributions are listed below:

• We propose UFQA, a self-supervised dual encoder
framework with a fusion module and a quality predic-
tion network to assess fingerphoto quality that operates
as a predictor of recognition utility.

• We make a holistic labeling process to consider image
characteristics and identity information of fingerpho-
tos for training the model.

• We evaluate our method on multiple publicly available
datasets and demonstrate its effectiveness by compar-
ing it with three image quality assessment (IQA) algo-
rithms.

This paper is organized as follows: In Section 2, we re-
view the related work and the literature. Next, in Section
3, we discuss the label generation process and the proposed
quality assessment model. Section 4 addresses datasets and
evaluation experiments to analyze the performance of our
quality metric. Later in Section 5, we discuss the ablation
study to evaluate some of the critical components of the pro-
posed method. Finally, Section 6 summarizes the work and
concludes the paper.

2. Related Work
In this section, we review previous work on the assess-

ment of the quality of fingerprints and fingerphotos.

2.1. Fingerprint Quality Assessment
Many approaches have been proposed to estimate the

quality of fingerprints. These methods are based on lo-
cal and global hand-crafted feature extraction [19, 21, 31,
37, 42]. Alonso et al. show a comparative analysis of the
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various fingerprint quality assessment methods [2]. Fron-
thaler et al. use the orientation tensor of the fingerprint to
assess the signal strength in the fingerprint image. In ad-
dition, they fuse multiple algorithms to obtain the quality
score [8]. Yao et al. proposes a weighted sum of features
extracted from fingerprints. They use prior, texture-based,
and minutiae-based features to compute quality [43]. NIST
NFIQ2 is a widely used fingerprint quality assessment algo-
rithm that has high predictive power for the recognition util-
ity of the sample. It uses a vector of 24 features to compute
the quality score [35]. These features include frequency
domain analysis, orientation certainty, ridge valley unifor-
mity, minutiae quality, ROI-based features, and local qual-
ities. Recent approaches use neural network-based feature
extraction to estimate quality. Olsen et al. proposed using
self-organizing maps to cluster fingerprint patches based on
spatial information. The high-level representation of the
fingerprint is then fed to a Random Forest classifier [1].
The authors in [38] assess the confidence in the detection
of minutiae and use it to compute the quality of the finger-
print.

2.2. Fingerphoto Quality Assessment

With increasing exposure to fingerphotos, multiple meth-
ods have been proposed to assess the quality of the image of
fingerphotos. Labati et al. extract 45 features from the fin-
gerphoto and select the subset of the best features to feed to
a neural network-based classifier [18]. Priesnitz et al. pro-
pose preprocessing steps for fingerphotos such that NFIQ2
can be applied to estimate the quality [30]. The authors
in [20] use a block-based approach to compute the quality
of the entire image. They extract 12 features from image
blocks and use a Support Vector Machine (SVM) [11] clas-
sifier to get a quality class.

Multiple studies have been conducted to assess the fin-
gerprint matching ability of fingerphotos [3, 4, 33]. Parziale
and Chen propose a coherence-based approach that uses lo-
cal gradients to estimate the quality of local patches [28].
Wild et al., while studying the interoperability between
fingerprints and fingerphotos, proposes a fingerphoto en-
hancement process and uses NFIQ2 to estimate quality [41].
Kauba et. al. used edge detection to estimate ridges in the
image and calculate quality based on a threshold [15].

The review of the literature shows that the assessment of
fingerphoto quality is still an open problem. It is essential
to fine-tune the feature extraction and selection process to
assess the fingerphoto utility. In addition, the regional dis-
tortions and the nature of fingerphotos differ significantly
from the fingerprints. Therefore, the quality metric should
account for these factors. The NFIQ2 is a robust tool for fin-
gerprint quality estimation, which is a promising direction
to address these issues.

ecdf

Figure 2. ECDF plot with normalized matching scores on the x-
axis and CDF on the y-axis. The dots in the plot show the split
location for each class.

3. Proposed Method
Our goal in this study is to assess the image quality based

on the assumption that the low-quality images are difficult
to match using any fingerprint matcher. To achieve this, we
emphasize fingerphoto quality by learning better represen-
tations through matching scores of pairs of images. The
proposed algorithm consists of two encoders to extract fea-
tures, a feature fusion module, and a quality prediction net-
work. The extracted features are sent to our proposed qual-
ity assessment module to return the quality of the finger-
photo. Here, we discuss the generation of quality labels in
Section 3.1, the quality assessment model in Section 3.2,
and finally, the implementation details in Section 3.3.

3.1. Quality Label Generation

Labeling training data with a reliable quality score is es-
sential in the quality assessment process using neural net-
works. Furthermore, in the case of biometric data, quality
should be proportional to the recognition performance (i.e.,
utility) of the fingerprint. Therefore, we need a quality la-
bel generation process that considers crucial properties of
the ridge patterns and minutiae points while deciding the
fingerprint quality.

Grother and Tabassi proposed a recognition
performance-based procedure to annotate samples with the
quality class [9]. The procedure involves using a fingerprint
matcher to obtain similarity scores between the gallery and
probe sets. Then, on the basis of the normalized scores,
two sets are formed such that the pair belongs to one set
if the matching score of the genuine pair is greater than
all its impostor pairs. The two sets generate two empirical
cumulative distribution functions (ECDFs) that are used to
classify the reference samples into five categories. Finally,
five fingerprint matchers are tasked to classify the same
sample and assign the quality label to the sample if all
matchers predicted the same class. If the assigned label
is different, they modify the threshold and re-assign it. If
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Figure 3. Quality label generation process flow. The labels obtained in the figure are for the probe set. We switch the gallery and probe sets
and repeat the process to get the labels for the gallery set.
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Figure 4. Generated quality labels for different samples. The num-
ber in the upper right corner represents the quality label for each
image. Zoom in for better view.

disagreement persists, the fingerprint is discarded from the
training set.

For the generation of fingerphoto labels, due to the lim-
ited amounts of publicly available data and the difference
between fingerprints and fingerphotos, we make two mod-
ifications to the above procedure. First, we compute only
one ECDF plot for the entire dataset for each matcher.
To categorize the data, we empirically select ten classes,
since having ten classes allows for more fine-grained qual-
ity scores. Figure 2 shows the ECDF plot and the corre-
sponding divisions. Second, fingerprint matchers play a vi-
tal role in the quality label generation process. The quality
label might be affected depending on the features used to
match two fingerprints. Therefore, bias toward a matcher
is always possible if it is involved in the label generation
process. As Grother and Tabassi suggested in [9], we use
two commercial matchers mentioned in Section 4.2 to as-
sign quality labels to mitigate this problem. In the event of
disagreement on the label between the matchers, we adopt
the policy of averaging the labels from the two matchers
rather than discarding the samples.

This process is well grounded to annotate fingerprints.
However, fingerphotos differ in the stages of acquisition,
processing, and feature extraction compared to fingerprints.
A vital drawback in the method discussed above is the de-
pendence on the feature extraction of the matchers involved
in the generation of the labels. Failure of matchers to ex-

tract reliable features from poor quality fingerphotos may
result in lower genuine scores and higher impostor scores.
This causes an imbalance in the ECDF, resulting in mis-
labeled data. Therefore, to alleviate this problem, we in-
troduce the local quality ratio of the fingerphoto to weigh
the generated quality class. It prevents poor-quality images
from having higher-quality labels, while preserving the la-
bels of high-quality fingerphotos. The local quality ratio is
the ratio between the number of high-quality patches and
the total number of patches. The quality of patches is ob-
tained using the Mindtct minutiae detection algorithm from
NIST [17]. Each patch is assigned a quality between zero
and four, with zero being poor quality. We set two as the
threshold to count the patch as high-quality. The process
of generating the label for each image is shown in Figure
3. Figure 4 provides some samples with the quality labels
assigned using the algorithm provided.

3.2. Quality Assessment Model
For brevity, we discuss the quality assessment model

separately in two parts: feature extraction is discussed in
3.2.1 and quality prediction is discussed in 3.2.2.

3.2.1 Feature extraction

Our proposed quality assessment model, UFQA, comprises
a self-supervised learning framework with two encoders
and a feature fusion module. Both encoders use a ResNet18
[10] architecture without global average pooling and fully
connected layers. In the data labeling process, we observed
the effectiveness of including matching scores to assess fin-
gerphoto quality. We exploit this further by proposing a
self-supervised dual encoder scheme that receives a candi-
date and a gallery fingerphoto. Note that the gallery finger-
photo is not a high-quality reference image, as widely used
in reference-based image quality assessment algorithms. In
our setup, the input fingerphotos could be a mated or non-
mated pair. The embeddings from the two encoders are
fused together in the feature fusion module.
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Figure 5. The architecture of the proposed UFQA model. The input to the network is two fingerphotos, and the output features from the
candidate encoder are used to predict the image quality between 0 and 100 using the quality prediction network. The feature fusion module
is displayed on the right side of the figure.

This module consists of a self-attention block followed
by a fully connected layer. The conventional self-attention
mechanism from [40] is used to discover the relationship
between the two embeddings. The self-attention serves the
purpose of highlighting similarities in identity-related infor-
mation from the two fingerphotos if they belong to the same
subject. The self-attention module applies a fully connected
layer to the features received from the candidate encoder to
obtain key and value representations, while the query comes
from the gallery features. The attention map is computed
using a dot product between query and transposed key rep-
resentations followed by a softmax layer. Finally, the dot
product between the value and the attention map is com-
puted and is again projected to return to the original shape.
The network architecture for the feature extraction part is
provided in Figure 5.

This way of fusing the two features helps the network
to focus on minutiae points and ridge-valley patterns in the
fingerphoto and it tries to learn the discrepancies in non-
mated pairs. To this aim, we train the dual encoder and the
fusion module jointly with the following objective function:

Lfeat = λ1‖s− F (ϕ(.),ω(.))‖2 + λ2Lsim, (1)

where, ϕ(.),ω(.) are candidate and gallery encoders, re-
spectively. F (.) is the fusion module and s is the matching
score for the corresponding pair. The matching score for the
input pair is obtained from two matchers that use minutiae-
based fingerprint matching. λ1 and λ2 are the scaling coef-
ficients set to 10.0 and 2.0, respectively. Lastly, Lsim is the
cosine embedding loss as given below:

Lsim =

{
1− cos(xc,xg) if y = 1

max(0, cos(xc,xg)−m)) if y = −1.
(2)

Here, xc and xg are embeddings produced by the encoders
ϕ and ω, respectively. y is the label indicating the mated or
non-mated pair, while m is the margin set to 0. cos(.) is the
cosine similarity given by:

cos(xc,xg) =
xc · xg

max(‖xc‖2 · ‖xg‖2, ε)
, (3)

where, ε is set to 1e− 8. This objective function minimizes
the distance between two embeddings if they belong to the
same subject. Moreover, this injects the utility of the candi-
date fingerphoto into quality assessment via predicting the
matching score and bringing similar embeddings closer. Fi-
nally, during inference, only the candidate encoder ϕ is used
to get the features for quality prediction.

3.2.2 Quality prediction

The quality prediction network P (ϕ(.)) learns to estimate
quality using the embeddings of the candidate fingerphoto.
The embeddings acquired from the candidate encoder are
rich with the necessary information from the fingerphoto.
Therefore, the same information used for the matching can
be wielded to predict a quality score. To do this, we use an
average pooling layer and a fully connected layer followed
by a sigmoid function to obtain the quality score between 0
and 100.

Fingerphotos often suffer from distortions due to illumi-
nation, lightning conditions, self-occlusion, etc. Such fac-
tors affect the minutiae and ridge patterns non-uniformly.
Therefore, accounting for local distortions is imperative in
computing the overall image quality [6, 38]. To this end,
we use regional quality information using C(ϕ(.)) to im-
prove quality prediction. Here, C is a multi-layer percep-
tron (MLP) with three fully connected layers and Leaky
ReLU as activation. We use the embeddings from the candi-
date encoder ϕ(.) to learn the regional quality distribution in
the fingerphoto. This additional learning works as an aux-
iliary task that benefits the primary task of global quality
estimation. We use the quality maps from Mindtct to train
C(.). More analysis on this is discussed in Section 5.2.

Our primary task is to estimate a single score for the en-
tire image. However, quality maps include spatial infor-
mation on quality. Therefore, in addition to the L2 loss in
pixel space, we incorporate error minimization of the mean
and standard deviation of the quality map. This ensures that
the overall distribution of the predicted quality map remains

Authorized licensed use limited to: West Virginia University. Downloaded on December 03,2024 at 20:01:38 UTC from IEEE Xplore.  Restrictions apply. 



Matcher Method PolyU RidgeBase Multimodal

Bozorth3

NFIQ2.2 0.0552 0.1826 0.0730
HyperIQA 0.0558 0.1816 0.0760
AIT 0.0576 0.1808 0.0740
UFQA (Ours) 0.0549 0.1810 0.0675

VeriFinger SDK

NFIQ2.2 0.0019 0.1557 0.0365
HyperIQA 0.0020 0.1537 0.0412
AIT 0.0019 0.1505 0.0380
UFQA (Ours) 0.0014 0.1495 0.0327

IDKit SDK

NFIQ2.2 0.0108 0.1483 0.0025
HyperIQA 0.0111 0.1478 0.0024
AIT 0.0101 0.1430 0.0022
UFQA (Ours) 0.0092 0.1427 0.0013

Table 1. pAUC achieved by the EDC plots of UFQA (Ours) and
other image quality assessment algorithms. Our method outper-
forms the other methods for three different datasets.

closer to the ground truth. The objective function for train-
ing the quality prediction network is as follows:

Lqual = λ3‖qg − F (ϕ(Ic))‖2
+ λ4(‖qr − C(ϕ(Ic))‖2
+ ‖µ(qr)− µ(C(ϕ(Ic)))‖2
+ ‖σ(qr)− σ(C(ϕ(Ic)))‖2),

(4)

where, Ic represents the input fingerphoto. qg and qr rep-
resent the ground truth quality score and the quality map,
respectively. λ3 and λ4 are scaling factors and are empiri-
cally set to 0.1 and 10, respectively.

3.3. Implementation Details
We initialize the network with the ResNet-18 architec-

ture pre-trained on ImageNet [5] and train the quality pre-
dictor P (ϕ(.)) on fingerprints. Since fingerphotos are not
as abundant as fingerprints, we train the model to learn the
quality estimation of fingerprints and transfer the knowl-
edge to fingerphotos. For training the model with finger-
prints, we use NFIQ2.2 to generate quality labels and mini-
mize L2 loss. We assume that, by using a sufficiently large
dataset, the network can learn to extract features relevant to
NFIQ2.2. Further, to modify the network parameters to suit
the fingerphoto quality prediction task, we fine-tune it using
the labels generated from the approach discussed in Section
3.1.

For model training, we used the PyTorch framework [29]
with two Nvidia RTX 3090 Ti GPUs. Adam optimizer [16]
was used to train the model with a learning rate of 2e − 4
and a weight decay of 5e− 4. A polynomial scheduler was
used to decay the learning rate. We trained the network
on fingerprints for 50 epochs and later fine-tuned it for 30
epochs for fingerphotos with a batch size of 100.

4. Experiments
In this section, we dive into the experiments we con-

ducted to verify the usefulness of UFQA and compare

it with state-of-the-arts in fingerphoto quality assessment.
First, we discuss the datasets used for training and testing.
Next, we discuss the evaluation protocol used to assess the
performance of quality estimation during our experiments.
Finally, we present the results obtained during the experi-
ments.

4.1. Datasets
As mentioned in Section 3.3, we first train our model on

fingerprints and then fine-tune it on fingerphotos. For the
first step, we used the Multimodal dataset [24] and the NIST
SD 302 dataset [7] to train and test the model on finger-
prints. The Multimodal dataset has approximately 70,000
fingerprints from 2,175 subjects collected using two differ-
ent sensors over a four-year period. Similarly, the NIST
SD 302 dataset contains 7,701 samples from 200 subjects.
We combine the fingerprints from the two datasets and ap-
ply six different augmentations: blurring, flipping, rotation,
random cropping, adding Gaussian noise, and dropout. Us-
ing these augmentations, we generated around 0.5 million
samples for training. Then, we use NFIQ2.2 to obtain the
quality label for each fingerprint.

In the second step, to fine-tune the model on finger-
photos, we use the Multimodal dataset and the RidgeBase
dataset [13, 14]. After combining both datasets, we get
28,545 fingerphotos from 688 subjects for training. To
include samples of various qualities and make the model
effective during image acquisition, we preserve the natu-
ral distribution of the datasets. Therefore, apart from skin
masking and grayscaling, no preprocessing is performed
on the datasets. As mentioned in Section 3.1, we require
gallery and probe sets to obtain labels and train the model.
To this end, we create genuine pairs using multiple in-
stances of a fingerphoto from the same subject. The im-
postor pairs are created with a different fingerphoto from a
different subject.

We use three publicly available datasets to evaluate the
model trained on fingerphotos. The first evaluation set
is contactless 2D to contact-based 2D fingerprint images
database version 1.0 by the Hong Kong Polytechnic Uni-
versity [22] referred to as the PolyU dataset. This dataset
contains 1,800 fingerphotos from 300 subjects collected us-
ing a digital CMOS camera. The second set has 2,229 sam-
ples from the RidgeBase dataset. Finally, the last dataset
consists of 309 samples from the Multimodal dataset.

4.2. Evaluation Protocol
Our quality assessment method assumes that quality is

an indicator of the accuracy of fingerphoto recognition.
Therefore, we use the EDC plots as evaluation criteria to
assess the effectiveness of the predicted quality score [9].
The EDC is a performance metric used to evaluate the util-
ity of quality assessment algorithms. It shows how the er-
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Figure 6. EDC plots for three different datasets using two COTS matchers. The columns represent the data sets, and the rows represent the
matchers used in the evaluation experiment. All experiments were carried out at a fixed false match rate (FMR) of 0.001. In each plot, the
red curve represents NFIQ2.2, green represents HyperIQA, pink represents AIT, while the black represents UFQA (Ours).

ror rate changes as some low-quality samples are discarded.
As low-quality samples are rejected from matching exper-
iments, the error rate approaches zero. This behavior indi-
cates that a good quality assessment algorithm should have
low error and rejection rates. For plotting these curves, we
used three matching algorithms. They are the open-source
Bozorth3 matcher [17] and the COTS matchers VeriFinger
SDK v10.0 by Neurotechnology [25] and IDKit SDK v8.0
by Innovatrics [12]. We consider an FNMR with fixed FMR
of 1e − 3 to report the verification error rates in the EDC
plots. In addition, we compare the partial area under the
curve (pAUC) for the EDC plots to quantify the error in a
discard fraction range of [0− 0.2].

Furthermore, it is essential to analyze whether the
model generates relevant embeddings for quality assess-
ment. Therefore, we study the distribution of features using
t-distributed Stochastic Neighbor Embedding (t-SNE) [39].
t-SNE uses dimensionality reduction to visualize and inter-
pret high-dimensional embeddings.

4.3. Results

Here, we discuss the results of the evaluation experi-
ments on three test sets. The EDC plots obtained using three
matchers are shown in Figure 6. We compare our method
with HyperIQA [34], a sharpness-based metric proposed
by Kauba et al. [15] referred to as AIT, and the widely
used quality estimation method NFIQ2.2. Previous stud-
ies have shown the applicability of NFIQ2.2 to estimate

Figure 7. Comparison of 2D t-SNE visualization of features of
samples from Multimodal dataset between (a) HyperIQA, (b) our
model without the fusion module, (c) our model without the qual-
ity map supervision, and (d) the proposed model. The red and blue
datapoints indicate low and high quality, respectively.

fingerphoto quality. Although trained on fingerprints, the
NFIQ2.2 feature vector includes relevant features impor-
tant for assessing fingerphoto quality [14, 30, 41]. However,
pre-processing of fingerphotos is a crucial factor in quality
assessment using NFIQ2.2. From the EDC plots, it is evi-
dent that overall our method outperforms other methods on
all datasets using all three matchers. These results can be
interpreted as the proposed network learning to extract rele-
vant features inherently, which perhaps NFIQ2.2 and other
methods fail to achieve. pAUC scores for the EDC plots are
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Figure 8. Samples of the quality map obtained using our method
for six fingerphotos. The upper row shows low-quality samples
with local distortions in the images, and the bottom row shows
high quality samples.

reported in Table 1.
In addition to the EDC plots, Figure 7 shows the t-SNE

visualization of the features extracted from our model and
HyperIQA. It is evident that the proposed model distinctly
differentiates between low- and high-quality fingerphotos.
For visualization, samples with quality scores less than 40
are considered low-quality, and the remaining are marked
as high-quality. Lastly, we visualize the regional quality
maps to illustrate the ability of the network to capture se-
mantic details such as black background, distorted regions,
high-quality ridge-valley patterns, etc. Figure 8 shows sev-
eral fingerphotos and their corresponding predicted quality
maps. Due to the self-attention mechanism and the weakly
supervised regional quality estimation approach, the net-
work is capable of focusing on the useful regions and disre-
garding the regional distortions that affect the overall qual-
ity.

5. Ablation Study
In this section, we analyze two aspects of the quality

assessment process. First, we discuss the effectiveness of
an additional encoder to obtain better representations of the
fingerphotos. Later, Section 5.2 addresses the improvement
in quality assessment performance by adding an auxiliary
task to predict quality maps.

5.1. Dual Encoder for Better Representations
Learning better representations is vital in our approach to

IQA. To this aim, we introduced the dual encoder scheme,
which accepts a pair of gallery and probe fingerphotos. Ini-
tially, we train the model with a single encoder without the
fusion module. However, since it focuses more on the image
characteristics than the matching ability of the fingerphoto,
we observed that features extracted from this model possess
a limited capability to represent various quality levels. Fig-
ure 7 (b) shows that the data points that represent low- and
high-quality fingerphotos are extensively intermixed. On
the contrary, our proposed model with the self-supervised
dual encoder framework allows meaningful representations
with the help of matching scores and cosine embedding
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Figure 9. EDC plot for the model without the regional quality es-
timation, shown by the red curve, and the proposed model, shown
by the green curve. VeriFinger SDK v10.0 was used to obtain the
matching scores.

loss. This is reflected in Figure 7 (d) and in the EDC plot in
Figure 9.

5.2. Effect of Regional Quality Estimation
More high-quality patches in the image advocate that

matchers can extract better features from the image. This
ultimately leads to a reliable quality label obtained through
normalized matching scores. Here, we attempt to test this
hypothesis by eliminating the additional task that predicts
the quality map. Figure 9 shows the EDC plot for the
model without the regional quality estimator and the pro-
posed model. We can notice a considerable drop in qual-
ity prediction performance. Furthermore, the comparison in
Figures 7 (c) and (d) supports the hypothesis that the addi-
tion of the quality map helps to generalize the network and
create a sufficient distinction between low- and high-quality
fingerphotos.

6. Conclusion
In this study, we presented, UFQA, an approach to esti-

mate fingerphoto quality that accounts for the image utility
as well as local quality. We proposed a self-supervised dual
encoder-based architecture to predict a fingerphoto quality
score. Moreover, we used a secondary encoder to obtain
representations relevant to the identity of the fingerphotos.
We pose the quality metric as an indicator of recognition
performance to generate the labels and evaluate the model.
Our evaluation of various publicly available datasets shows
the efficacy and robustness of UFQA compared to current
fingerprint quality estimators. We analyze various aspects
of our quality assessment model in an extensive ablation
study. The quality assessment of fingerphotos is a vital
problem with the increasing use of contactless fingerprints,
and we hope that this work contributes to the advancement
of fingerphoto biometric.
Acknowledgements. This material is based upon a work
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