
BBS: Bi-directional Bit-level Sparsity for

Deep Learning Acceleration

Yuzong Chen

Cornell University

New York, NY, USA

yc2367@cornell.edu

Jian Meng

Cornell University

New York, NY, USA

jm2787@cornell.edu

Jae-sun Seo

Cornell University

New York, NY, USA

js3528@cornell.edu

Mohamed S. Abdelfattah

Cornell University

New York, NY, USA

mohamed@cornell.edu

Abstract—Bit-level sparsity methods skip ineffectual zero-bit
operations and are typically applicable within bit-serial deep
learning accelerators. This type of sparsity at the bit-level is
especially interesting because it is both orthogonal and compat-
ible with other deep neural network (DNN) efficiency methods
such as quantization and pruning. Furthermore, it comes at little
or no accuracy degradation and can be performed completely
post-training. However, current bit-sparsity approaches lack
practicality because of (1) load imbalance from the random
distribution of zero bits, (2) unoptimized external memory access
because all bits are fetched from off-chip memory, and (3) high
hardware implementation overhead, including large multiplexers
and shifters to support sparsity at the bit level.

In this work, we improve the practicality and efficiency of bit-
level sparsity through a novel algorithmic bit-pruning, averaging,
and compression method, and a co-designed efficient bit-serial
hardware accelerator. On the algorithmic side, we introduce bi-
directional bit sparsity (BBS). The key insight of BBS is that we
can leverage bit sparsity in a symmetrical way to prune either
zero-bits or one-bits. This significantly improves the load balance
of bit-serial computing and guarantees the level of sparsity to
be more than 50%. On top of BBS, we further propose two
bit-level binary pruning methods that require no retraining, and
can be seamlessly applied to quantized DNNs. Combining binary
pruning with a new tensor encoding scheme, BBS can both
skip computation and reduce the memory footprint associated
with bi-directional sparse bit columns. On the hardware side,
we demonstrate the potential of BBS through BitVert, a bit-
serial architecture with an efficient PE design to accelerate DNNs
with low overhead, exploiting our proposed binary pruning.
Evaluation on seven representative DNN models shows that our
approach achieves: (1) on average 1.66× reduction in model size
with negligible accuracy loss of < 0.5%; (2) up to 3.03× speedup
and 2.44× energy saving compared to prior DNN accelerators.

Index Terms—Deep learning accelerator, bit-serial computing,
hardware-software co-design, sparsity, model compression

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated remark-

able accomplishments in many important fields such as com-

puter vision and natural language processing. However, the

growth of DNN model size and complexity continues to

outpace the scaling of compute performance in existing hard-

ware platforms [12]. Bridging this performance gap is very

desirable for wider adoption of DNNs, particularly in edge

scenarios that demand both high performance and energy

efficiency. Codesigning novel DNN compression algorithms,

together with accelerators for the efficient deployment of the

compressed models, is a promising way to achieve this goal.

Numerous efficiency algorithms [21], [30], [31] and hard-

ware prototypes [6], [13], [14], [42], [43] have been proposed

to leverage value-based sparsity in DNNs to reduce the cost

of storing and deploying DNNs. Yet the degree of such value

sparsity, which depends on the underlying model architecture,

can strongly limit the resulting hardware performance. For

instance, recent transformer-based DNNs show limited or no

activation sparsity with GeLU and sigmoid activation func-

tions [7], [9]. Even for single-sided sparse accelerators that

target weight sparsity, plenty of time and cost are spent on

retraining the model to balance the degree of sparsity and accu-

racy loss. Unfortunately, in many real-world cases, retraining

may become impractical for end users due to cost constraints

and lack of access to the original training dataset [3], [39]. This

challenge is particularly pronounced in recent large language

models [40], [47] that contain billions of parameters, making

retraining even more resource and data intensive. Hence, there

is a strong need to further enhance the efficiency of DNN

accelerators without imposing retraining.

Another line of DNN compression research focuses on post-

training quantization (PTQ), which represents DNN operands

in lower precision without retraining the model [15], [24],

[25], [32], [36], [44], [45]. For example, researchers have

designed new quantization data types such as the Microscaling

format [36], where a group of low-precision operands can

share an 8-bit exponent to balance the accuracy and memory

footprint. However, Microscaling still requires a floating-point

pipeline to handle the shared 8-bit exponent, resulting in

higher hardware cost than integer quantization. On the other

hand, state-of-the-art PTQ algorithms can already reduce the

operand precision to 8-bit integer with negligible accuracy

loss [24], [32], [44]. Unfortunately, a quantized 8-bit DNN

shows extremely low value sparsity (less than 5% as will

be shown in the next section), since it tries to utilize all

quantization levels as much as possible to reduce the quan-

tization error. This fundamental quantization-sparsity tension

poses a big performance bottleneck in existing value-based

DNN accelerators [16], [38].

In order to jointly exploit the efficiency of quantization and

sparsity, a series of bit-serial DNN accelerators exploit bit-

level sparsity [1], [19], [20], [26], [37], [39]. Unlike coarse-

grained value sparsity that is incompatible with quantization,

the bit-level sparsity targets the abundant zero bits in the

1

ar
X

iv
:2

4
0
9
.0

5
2
2
7
v
1
  
[c

s.
L

G
] 

 8
 S

ep
 2

0
2
4



KL Div = 1.8 E-6 KL Div = 8 E-7

Original 2's Complement

2's Complement w.  

Bi-directional Sparse 

Columns (Ours), MSE = 0.75

Sign Magnitude w. Zero  

Bit Columns (Previous)  

MSE = 1.75

(a) (b) (c)

ResNet-50  

Conv4.1.3 

INT8 Weight

PTQ INT5 Weight 

KL Div = 5.1 E-6

Pruned Bit Columns ❶

❷

❶

❷

77 78761 0 10 0 11 0 1 0 00 0 11 0 1 1 00 0 11 0

-25 -26-240 1 11 0 11 1 1 0 01 1 00 0 0 1 01 0 11 1

-11 -10-120 0 11 1 11 1 1 0 01 0 10 0 0 1 01 1 11 1

6 640 1 00 0 10 0 0 0 00 0 10 0 0 1 00 0 10 0

Fig. 1: Comparison of different model compression approaches. (a) Example
of a 4-value group and the weight distribution of a ResNet-50 layer before
and after PTQ. (b) 1 Bit-sparsity enhancement by generating three zero bit
columns using sign-magnitude format, 2 achieving lower KL divergence than
PTQ but still losing many quantization levels. (c) 1 BBS generates three bi-
directional sparse bit columns and is able to preserve all quantization levels
of 8-bit precision, 2 leading to much lower KL divergence.

binary representation of operands, thus is both compatible and

orthogonal to other forms of DNN redundancy. Stripes [19] is

an early bit-serial prototype that uses reduced precision for

DNNs to scale the performance. Pragmatic [1], Laconic [37]

and Bitlet [26] propose to skip zero-bit operations from

different perspectives. However, the distribution of zero bits

is generally random, whether in an individual operand or a

group of operands, leading to significant workload imbalance.

A direct consequence is that these accelerators must still fetch

all data bits from off-chip memory, and use sophisticated

hardware schedulers to skip zero-bit operations as much as

possible during on-chip computation. The latter usually incurs

non-trivial hardware overhead.

To reduce both memory access and scheduling overhead

of bit-serial computing, BitWave [39] employs a bit-column-

serial approach, which examines the sparsity of the same

bit significance across a group of operands. If a bit column

contains all zero-bits, then it does not need to be stored in

memory. Moreover, BitWave proposes a bit-sparsity-enhancing

technique based on sign-magnitude formatted weights to selec-

tively flip bits to zero. With this bit-flip technique, BitWave is

able to further compress a quantized 8-bit DNN by generating

more zero bit columns. As a result, it has demonstrated the

potential to achieve higher performance than other bit-serial

accelerators [1], [19], [26].

Despite these approaches exploring bit sparsity at varying

degrees, they still suffer from one significant drawback: bit

sparsity is only limited to zero bits. To demonstrate this

problem, consider Figure 1(a) that shows a group of four INT8

values, as well as the INT8 weight distribution of a layer in

ResNet-50. If we want to further reduce the bit-width to, e.g.,

5-bit, conventional PTQ needs coarse-grained clipping and

re-scaling so that the quantization mean square error (MSE)

is minimized. Nevertheless, no matter what PTQ algorithm

is used, the resulting distribution can only have 25 = 32

discrete quantization levels, resulting in large KL divergence,

a common metric to quantify the difference between two

distributions [17]. On the other hand, previous bit-sparsity-

aware works [23], [35], [39] leverage sign-magnitude format

to prune bit columns at the group level as shown in Fig. 1(b).

Given that DNN weights are typically small, many inherent

zero bit columns exist (e.g., the third bit columns in Fig. 1(b)),

leading to less sparse columns enforced (e.g., the seventh and

eighth bit columns in Fig. 1(b)) to achieve the effective 5-bit

data width. As a result, they can preserve more quantization

levels and achieve lower KL divergence and better accuracy

than PTQ. However, if there is no inherent sparse bit column

in a group, all lower significant bit columns must be flipped

to zero, leading to reduced quantization levels especially in

intervals with large absolute values (e.g., > |50| in Fig. 1(b)).

Our focus: this work proposes a novel sparsity concept

called bi-directional bit-level sparsity (BBS) and the associate

bit-serial accelerator design named BitVert. The key insight

of BBS is that the bit-level sparsity can be explored in a

symmetrical way, where less zero-bits implies more one-bits,

and vice versa. This ensures that any bit vector can exhibit

at least 50% BBS, which significantly improves the load

balance of bit-serial computing while minimizing the number

of ineffectual bit operations. Due to the balanced workload,

BBS eliminates the expensive bit synchronization mechanism

that is typically associated with prior bit-serial accelerators [1],

[20], [26]. Furthermore, unlike previous bit-sparsity-aware

works that only prune zero bit columns, BBS offers a new

opportunity for model compression—it permits pruning a bit

column with entirely zero-bits or entirely one-bits, which we

call bi-directional sparse bit columns. As shown in Fig. 1(c),

by looking for an optimal way to generate 3 bi-directional

sparse columns, we can achieve much lower MSE compared

to merely pruning zero bit columns with the same compression

ratio. Additionally, since BBS allows any bit significance to

be one, it preserves all quantization levels of the original INT8

weight and yields much lower KL divergence w.r.t. the original

numerical distribution pre-compression. Finally, the balanced

nature of BBS can be exploited in a hardware-friendly manner

to improve the performance and energy efficiency of bit-

serial accelerators. The main contributions of this work are

summarized as follows:

1) We introduce the new BBS concept, and demonstrate

that BBS significantly improves the load balance of bit-

serial accelerators.

2) We propose two bit-level binary pruning strategies to

enhance structured BBS. The binary pruning employs a

new encoding scheme to reduce the memory footprint

of a quantized DNN without the need of retraining.

3) We design BitVert, a bit-serial accelerator to exploit

BBS for DNN acceleration. BitVert adopts an efficient

processing element (PE) with low hardware overhead for

bit skipping, along with a channel-reordering mechanism

to support binary pruning.

2



❷ Ineffectual Ops

Time

w2
1

w2
7

w2
6

w2
5

w2
3

w1
0

w1
3

w0
7

w0
5

w0
2

w1
4

w0
6

Different bit-significance

Time 

w3
3

w3
0

w3
4

w3
1

(a) (b)

A0

A1

A2

A3

<<

<<

<<

<<

8b

1b

A1

A2

A3

+

... 8 lanes ...

A0

A1

A2

A3

Time s3 w3
2

w3
0

w3
3

w3
4

w3
1

w2
0

w2
3

w2
2

w2
1

s1 w1
4

w1
2

w1
1

w0
1

w0
0

Time

Sign-magnitude format 

s2

w1
3

s0 w0
4

w0
3

w0
2

w2
4

Different 
weights

A0

A1

A2

A3

w2
7

w0
7

w2
6

w0
6

w2
5

w0
5

w3
4

w1
4

w3
3

w2
3

w1
3

w0
2

w3
1

w2
1

w3
0

w1
0

(c) (d)

w1
0

A0

A1

A2

A3

8b

1b

+<< 0<< 7

8b

A0

8b

+

w0
3

w0
1

w0
0

w0
7

w0
4

w0
2

w0
6

w0
5

w0

0
w1

5
w1

7
w1

6
w1

4
w1

0
w1

2
w1

3
w1

1

w2
0

w2
4

w2
7

w2
6

w2
5

w2
3

w2
2

w2
1

w3
7

w3
6

w3
2

w3
5

w3
0

w3
3

w3
4

w3
1

× 

× 

× 

× 

× × 

× 

× 

× 

× 

w Weight zero bit

Weight non-zero bitw

Activation value (8b)A

2b

8b

1b

+

× Same weight

❶

❷ Variable Shifter ❷ Multiplexer

❶

❶

❶

❷ Ineffectual Ops

Fig. 2: High-level computation flow of (a) bit-parallel PE, (b) Pragmatic [1], (c) Bitlet [26], (d) BitWave [39].

Through extensive evaluation on seven representative DNN

benchmarks, including both vision and language models, we

demonstrate that BitVert achieves up to 3.03× speedup and

2.44× energy saving compared to prior DNN accelerators,

while having negligible accuracy loss (< 0.5% on average)

together with the preserved statistical characteristics of the

uncompressed model.

II. BACKGROUND AND RELATED WORKS

A. Sparse Bit-serial Accelerators

We first describe the computation flow of bit-parallel pro-

cessing and recent sparse bit-serial accelerators [1], [26], [39]

using a 4-way dot product example between 8-bit operands.

We focus on weight sparsity in our discussion. In Fig. 2(a), a

bit-parallel PE exploits bit-level parallelism by performing the

multiplication between an 8-bit activation and all bits of the

same weight, but leading to many ineffectual bit operations.

Since zero bits do not contribute to the final result, it is

desirable to skip as many zero bits as possible for improved

performance and efficiency.

Pragmatic [1] processes only non-zero bits of every weight

as shown in Fig. 2(b). However, since different bit-significance

can be processed simultaneously, Pragmatic requires a vari-

able shifter after every bit-serial multiplier to synchronize

the significance of essential bits. Bitlet [26] leverages the

sparsity parallelism, motivated by the observation that every bit

significance shows similar sparsity among a group of weights.

As shown in Fig. 2(c), Bitlet digests multiple weights and

activations, and computes every bit-significance independently.

However, since every bit lane can absorb the essential bit from

an arbitrary weight, Bitlet requires a large multiplexer (e.g.,

64:1) to select the correct activation in every lane, leading

to non-trivial hardware overhead (35.9% of the PE area as

revealed by Bitlet’s breakdown report).

Both Pragmatic and Bitlet suffer from load imbalance

issues, where the latency of Pragmatic is dominated by the

weight with the highest number of one bits, and the latency

of Bitlet is dominated by the bit significance with the highest

number of one bits. To address this, BitWave [39] attempts to

skip zero bits at the coarse bit-column granularity, as illustrated

in Fig. 2(d). Because most weight values are typically small

in a DNN, BitWave relies on sign-magnitude format which

inherently generates many zero bit columns. The bit column

sparsity offers balanced workload, but inevitably leads to many

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VGG-16 Resnet-34 Resnet-50 ViT-Small ViT-Base BERT

S
p
a
rs
it
y

Value Bit (2's Comp) Bit (Sign Mag) BBS (2's Comp)

Fig. 3: Comparison of inherent weight value sparsity, bit sparsity and BBS
(with a bit-vector size of 8) in INT8 DNNs.

ineffectual bit operations since only a bit column with all zero

bits can be skipped during computation. On the top of these

three design philosophies, our proposed BitVert tries to balance

the bit-serial workload while skipping as many sparse bits as

possible. By extending bit sparsity to BBS, BitVert skips zero

bits when a bit column contains many zeros, while it switches

to skip one bits when a bit column contains less zero bits.

Section III details our BBS methodology.

B. Rethinking Bit-level Sparsity

While recent advances in PTQ can compress DNNs to 8-bit

with little or no accuracy loss [5], [25], [32], [44], [45], the

resulting weight tensor exhibits extremely low value sparsity.

As shown in Fig. 3, the value-based weight sparsity is less

than 5% in a series of popular 8-bit quantized DNNs. This

is because that a well-designed PTQ algorithm tries to utilize

all available quantization levels to minimize the quantization

MSE compared to original floating-point models. On the other

hand, the bit-level sparsity is inherently more abundant and can

achieve around 50% in 2’s complement format. Owing to the

facts that DNN weight tensors usually exhibit Gaussian-like

distribution and most values tend to be small [16], [34], [46],

the sign-magnitude binary representation yields even higher

bit sparsity [2], [39] due to abundant zero bits at higher bit

significance. However, adopting sign-magnitude arithmetic for

bit-serial computing still has two challenges. First, every bit-

serial multiplier requires a 2’s complementer for partial sum

generation, resulting in large area overhead [18]. Second, the

irregular distribution of zero bits remains, leading to load im-

balance and synchronization overhead. Whereas our proposed

BBS maintains the 2’s complement binary representation, and

treats zero or one that has a higher occurrence as sparse bits.

Hence, BBS ensures that any bit-vector exhibits at least 50%

3



❶ Remove Redundant ColumnsOriginal Weight (2's Comp)

-11 0 0 11 1 11 1-11 0 0 11 1 11 1

20 0 0 00 1 10 020 0 0 00 1 10 0

-57 0 1 11 0 11 0-57 0 1 11 0 11 0

13 1 0 10 0 10 013 1 0 10 0 10 0

= 5

= 4

= 7

= 5

❷ Rounded Column Average

-11 0 0 11 1 11

21 0 0 10 1 10

-59 0 0 11 0 10

13 1 0 10 0 10

= 5

= 5

= 5

= 5

❸ Pruning and Compression

+
0 0 0 1 0 1

0 1

BBS Constant = 5

# Redundant Columns

Metadata

-11 01 11

21 00 10

-59 01 00

13 10 00

-
 
2
7
2
6
2
5
2
4

2
2

2
3

2
1
2
0Significance -

 
2
6
2
5
2
4

2
2

2
3

2
1
2
0

-
 
2
6
2
5
2
4
2
3

Fig. 4: Example of bit-level binary pruning with rounded column averaging to generate 4 sparse bit columns.

bit sparsity, resulting in higher total bit sparsity than sign-

magnitude format while achieving balanced workload across

different PEs.

III. BBS: BI-DIRECTIONAL BIT-LEVEL SPARSITY

In this section, we first introduce the concept of BBS based

on 2’s complement binary representation. Next, we present

binary pruning, a technique that modifies the original weight

tensor to generate more structured BBS, together with a new

encoding scheme that provides an extra opportunity for model

compression. Finally, we propose a hardware-aware strategy to

compress different weight channels of a DNN model based on

the global awareness of pruning sensitivity, which can achieve

favorable accuracy-compression trade-offs.

A. BBS Theorem

Without loss of generality, we describe BBS using a dot

product operation that multiplies a group of N weights (W )

and activations (A) in p-bit precision, where N is referred

to as the group size. In the rest of this paper, we use the

term “group” to refer to multiple weights or activations that

contribute to the same dot product output. The dot product

operation can be formally written as:

N−1∑

i=0

Wi ×Ai =

p−1∑

b=0

2b ×
N−1∑

i=0

W b
i ×Ai (1)

where W b
i is the bth bit of Wi. Since any bit of W can only

be one or zero, the second partial sum on the right-hand side

of Eq. 1 can be re-organized as:

N−1∑

i=0

W b
i ×Ai =

∑

∀ i:W b

i
=1

Ai (2)

=

N−1∑

j=0

Aj −
∑

∀ i:W b

i
=0

Ai (3)

From Eq. 2 and 3, we can infer that instead of adding

the effectual activations associated with non-zero weight bits,

the same result can be obtained by subtracting the activations

indicated by zero weight bits from the sum of all activations,

which is a constant for a given group. Since more zero-bits in

a vector implies less one-bits, Eq. 2 and Eq. 3 always process

no more than half of the bits—when there are more than 50%

zero-bits in a bit-vector, the computation can skip them as in

conventional bit-serial accelerators. But if there is less than

50% bit sparsity, the bit-vector can be inverted so that the

original one-bits become sparse, and subtract the bit-serial dot

product from
∑N−1

i=0
Ai. Since both zero and one can become

sparse bits, we call this bi-directional bit sparsity (BBS).

The idea of BBS can effectively improve the load balance

of bit-serial computing. Although there is ∼50% zero bit

sparsity in 2’s complement format and more than 50% zero

bit sparsity in sign-magnitude format (Fig. 3), the sparsity

within a bit-vector is unpredictable. Moreover, because bit-

serial computing relies on strongly increased parallelism to

simultaneously process many bit-vectors from different weight

groups, any bit-vector with low zero bit sparsity will hamper

the performance of the whole PE array. On the other hand,

BBS ensures at least 50% sparsity in a bit-vector of arbitrary

length, achieving balanced workload during parallel execution

while skipping as many ineffectual bit operations as possible.

B. Bit-level Binary Pruning

In addition to balanced bit sparsity, BBS offers a new

opportunity for model compression through binary pruning—

which can prune a bit column that contains all zero-bits or all

one-bits within a weight group. Specifically, Eq. 2 implies that

if all weight bits at a bit significance are zero, then the bit-

serial dot product at that significance is simply zero. Similarly,

Eq. 3 implies that if all weight bits at a significance are one,

then the bit-serial dot product at that significance is the sum

of activations in the group. As a result, a bi-directional sparse

bit column can be compressed to just one bit that indicates

whether its bit-serial dot product produces zero or sum of

activations. Based on this observation, we propose two BBS-

enhancing strategies to generate more bi-directional sparse bit

columns in the original weight group, which can be effectively

pruned through a new encoding scheme.

BBS with Rounded Averaging Fig. 4 describes the procedure

of the first BBS-enhancing strategy, rounded averaging, using

a group of 4 weights. Given the target number of sparse

bit columns (4 in this example), Step 1 identifies if there

are redundant bit columns that immediately follow the most-

significant column with the same content (e.g., the second bit

column). Removing the redundant columns does not affect the

original weight values as long as the remaining bits are inter-

preted as 2’s complement format. For instance, the decimal

number −57 in 8-bit 2’s complement format is 11000111b,

where the most-significant bit is multiplied by −27. Removing

the second bit leads to a 7-bit number 1000111b, which is

still equal to −57 if the most-significant bit is multiplied by

−26. After pruning the redundant column, the required number

4



Original Weight (2's Comp)

-7 1 0 11 1 01 1

1 0 0 10 0 00 0

-20 1 0 01 0 11 1

81 0 0 10 1 01 0

❶ Add -14 to Weight

-21 1 1 11 0 01 1

-13 0 1 11 1 01 1

-34 1 1 01 1 11 0

67 0 1 10 0 01 0− 14  = 

− 14  = 

− 14  = 

− 14  = 

❸ Actual Weight with BBS Compression

0 0 1 1 1 0

0 0

BBS Constant = 14

# Redundant Columns

Metadata

1 11 1-2 1 1 01

1 11 1-2 1 1 01

1 01 1-18 1 1 01

0 01 078 1 1 01

❷ Generate Zero Columns

-16 0 0 01 1 01 1

-16 0 0 01 1 01 1

-32 0 0 01 0 01 1

64 0 0 00 0 01 0

Fig. 5: An example of bit-level binary pruning with zero-point shifting to generate 4 sparse bit columns.

of bi-directional sparse columns to be generated is 3. These

sparse columns are always generated from the lower significant

bits, since modifying higher bit significance will increase the

MSE exponentially. In Step 2 , this is achieved by calculating

the rounded average of the values represented by the 3 lower

significant bits of original weights. Essentially, this is replacing

the 3 lower significant bits of all weights with a 3-bit constant

while minimizing the MSE. Finally, Step 3 compresses the

original weight group by storing only the remaining 4 bit

columns and an 8-bit encoding metadata.

BBS Compression Encoding The encoding metadata con-

tains 2 bits to specify the number of redundant columns, which

can vary from 0 to 3, and 6 bits to store the BBS constant. The

size of the metadata is chosen empirically. First, although there

may be more than 3 redundant columns in a group, we find that

this probability is extremely low for a large group size (e.g.,

32) which amortizes the cost of metadata. If there are more

than 3 redundant columns, we simply prune the first 3 and

average additional lower significant columns instead. Second,

using more than 6 bits to store the constant is also unnecessary

since pruning 7 columns of an 8-bit tensor leaves only one

effective bit, while pruning 8 columns means replacing all

weights with the same 8-bit constant. Both situations can lead

to unacceptable accuracy loss.

BBS with Zero-point Shifting The rounded column averag-

ing strategy is particularly suitable for pruning a small number

of bit columns, where the lower significant bits within a group

are likely to have similar values. However, for more eager

compression, i.e., pruning many columns, simply taking the

rounded average over many lower significant bits of a group

may lead to large MSE. Here is a simple example: assume we

want to average only the least significant bit within a group of

weights, then some weights will have no error after rounded

averaging. On the other hand, if we average 4 lower significant

bits, then all weights may produce error since any weight can

have a different value in the 4 lower significant bits.

To address this, we propose a second BBS-enhancing strat-

egy called zero-point shifting. The idea is to add an optimal

constant to the original weight group (i.e., shifting its zero-

point), which in turn facilitates the generation of sparse bit

columns in the new weight group while minimizing the MSE.

Fig. 5 exemplifies this procedure for generating 4 sparse bit

columns. In Step 1 , assume a constant −14 is added to

the original weight, which changes the binary content of all

numbers. Fortunately, the change of binary content makes it

easier to generate zero columns in lower significant bits. As

Algorithm 1: Finding the optimal constant for zero-point shifting.

Input : Weight group: W , BBS constant precision: p,

target number of sparse bit columns: N

Output : Compressed weight: WC , metadata: D

1 def Compress(W , N , p) :

2 bestMSE = ∞ ;

3 for constant = −2p−1 to 2p−1 − 1 do

4 Wtmp = Clip (W + constant )
// Get number of redundant columns

5 numRedunCol = GetNumRedunCol(Wtmp)
6 Wtmp = RemoveRedunCol(Wtmp , numRedunCol )

// Generate zero sparse columns

7 numSparseCol = N − numRedunCol

8 Wtmp = GenSparseCol(Wtmp , numSparseCol )
9 newMSE = |Wtmp −W |2

10 if newMSE < bestMSE then

11 bestMSE = newMSE

12 WC = Wtmp

13 D = { numRedunCol , constant }

14 return WC , D

shown in Step 2 , to minimize the MSE when pruning the

4 lower significant bit columns, a number can either directly

zero out the 4 lower bits (e.g., the first number changes from

67 to 64), or round up to the higher bit significance (e.g., the

second number changes from −34 to −32). Finally, Step 3

shows the actual values after binary pruning and stores the

new zero-point in the encoding metadata.

Algo. 1 details the algorithm to find the optimal BBS con-

stant for a weight group. Given the precision of the constant

(6-bit in our proposed BBS encoding), the algorithm iterates

through all possible constants (Line 3). In every iteration,

it adds the current constant to the original weight group,

followed by clipping to avoid overflow (Line 4). Next, similar

to rounded averaging, we calculate the number of redundant

columns, and generate required number of sparse columns

while minimizing MSE (Line 5 – 7). Since the best constant

will be stored in the BBS constant region of the metadata, we

only generate zero sparse bit columns (Line 8) so that no extra

encoding information is needed. Lastly, the algorithm checks

whether the current constant results in lower MSE and updates

the weight group and metadata accordingly (Line 9 – 13).

Although Algo. 1 describes the procedure using a single

weight group, the whole algorithm can be vectorized to find the

optimal constant of all groups within a DNN layer simultane-

ously. During real implementation, the algorithm takes several

milliseconds to several seconds per layer (totally ∼15s to

5



Fig. 6: Normalized KL divergence (lower is better) of different bit-level
pruning techniques with a weight group size of 32.

compress the whole ResNet50) on a single Nvidia RTX 3090

GPU. Hence, the proposed bit-level binary pruning method

exhibits high efficiency and fast compression compared to

prior quantization-oriented algorithms [5], [45], [46].

Rationality of Binary Pruning To demonstrate the rationality

of the proposed two binary pruning strategies compared to

previous zero-bit-only pruning [23], [35], [39], we apply the

three techniques to compress the quantized 8-bit ResNet-34

and ViT-Base. Fig. 6 shows the resulting KL divergence of dif-

ferent methods after pruning 2 and 4 bit columns with a weight

group size of 32. The KL divergence is a common metric to

quantify the difference between two distributions [11], [17].

A lower KL divergence indicates that the compressed weight

tensor can better preserve the information of the original 8-bit

weight, thus achieving better inference accuracy (evaluated in

Section V-B).

Specifically, Fig. 6 shows that when pruning 2 bit columns,

rounded averaging consistently outperforms other approaches.

The reason is that different weights within a group are likely to

have similar values in the lower significant bits. On the other

hand, zero-point shifting yields much lower KL divergence

when pruning 4 bit columns. This is because it can better

exploit the binary characteristics of a weight group to find the

optimal zero point that facilitates the generation of more sparse

bit columns. Furthermore, the proposed binary pruning permits

the existence of both zero and one in any bit significance

after compression, thus are able to preserve all quantization

levels of the original 8-bit weights as opposed to zero-bit-only

pruning. As a result, both of our strategies show significant

improvements when applied to a large number of bit columns.

C. Hardware-aware Global Binary Pruning

So far, we have described binary pruning at the group level.

In order to fully exploit the structured BBS sparsity induced

by binary pruning while mitigating the accuracy loss for the

whole DNN, we propose a hardware-aware global binary

pruning approach at the per-channel granularity. Specifically,

Algorithm 2: Global binary pruning.

Input : Model: M , per-channel scaling factors: S

threshold: β, hardware parameter: CH

Output : Pruned model: MP

1 def GlobalPrune(M , S, β, CH ) :

// Global channel sorting

2 channelSorted = SortChannel(M.channel, S )
3 sensChannel = channelSorted [ 1 : β × Length(S) ]
4 for L in M.layers do

// Ensure every layer has a multiple

of CH sensitive channels

5 layerChannel = SortChannel(L.channel, S[L] )
6 numSens = Count( layerChannel ∩ sensChannel )
7 numSens = Ceiling( numSens / CH )× CH

// Get sensitive channels of layer L

8 topChannel = layerChannel [ 1 : numSens ]
9 sensChannel = sensChannel ∪ topChannel

10 normalChannel = M.channel− sensChannel

11 if eagerCompression then

12 MP = RoundedAveraging(normalChannel)
13 else

14 MP = ZeroPointShifting(normalChannel)

15 return MP

we find that the pruning sensitivity of different weight channels

can be effectively quantified through magnitude-based proxies.

For example, in convolutional neural networks, the sensitive

filters (i.e., weight channels) usually contain many outliers

with large magnitude. More specifically, in per-channel quan-

tized DNNs, the sensitive channels of a weight tensor will have

large scaling factors to accommodate these outliers [27], [44].

The per-channel weight quantization has been widely adopted

to achieve high accuracy in state-of-the-art DNN accelerators

[3], [16] and acceleration frameworks such as TensorRT [33].

Therefore, we consider per-channel quantized 8-bit DNNs as

the baseline for global binary pruning 1.

To apply global binary pruning, we define a hyperparameter

β to specify the minimum percentage of sensitive weight

channels. Also, we define a hardware-aware parameter CH ,

which specifies the number of weight channels processed

in parallel during hardware acceleration (e.g., CH = 32 in

our BitVert accelerator). Algo. 2 details the procedure of

global binary pruning. The algorithm starts with global channel

sorting to identify β sensitive channels based on the scaling

factors (Line 1 – 2). For every layer, we force the number of

sensitive channels to be a multiple of CH (Line 4 – 9). For

example, in the convolution layer, if the number of sensitive

filters is less than CH after global channel sorting, then we

simply select CH filters with the highest scaling factors as

new sensitive channels. Finally, we apply binary pruning to

the remaining channels (Line 10 – 14), which can either prune

a different number of bit columns for different layers [39] or

prune the same number of bit columns for all layers.

1For 8-bit DNNs that do not use per-channel quantization, other channel
importance proxies such as the standard deviation of a weight channel can
also be used to identify sensitive channels.

6



A0

A1

A15

.
.
.

+

-

psum_sel

sel7

sel0

❷ Bit-serial Multiplier

12

neg

is_msb

<<

col_idx

❸ Single Shift

bbs_const

❹ BBS Multiplier

× 

6

19

18

+

out_prev

+

❺ Accumulation

out

24

4

1
6

 -
 1

 
1

6
 -

 1
 

4

-

psum_sel0

❶ Term Select

11

bbs_const

❹ BBS Multiplier

sel0 3

A0...A4

sel7
3

A11...A15 5
 -

 1
 

∑Ai
8

15

.
.
.

sel1

∑Ai
0

7

-

psum_sel1

11

11

prod

psum
psum

12

prod
+

(a) (b)

18
<<× 

3

.
.
.

×8

.
.
.

12
∑Ai
0

15

11

8

val0 ... val7

1

1

8
val0 ... val7

8

1

8

8

+

8
1

8

1

.
.
. ×4

.
.
. ×4

.
.
. ×4

.
.
. ×4

.
.
. ×8

5
 -

 1
 

5
 -

 1
 

A3...A7

+

+

❷ Bit-serial Multiplier

8

❶ Act Select

3

Fig. 7: BitVert PE: (a) baseline design, (b) modified design.

The identification of sensitive channels further reduces the

MSE and KL divergence while eliminating the need for

resource-intensive and time-consuming retraining. In most of

our DNN benchmarks (Section V-A), we are able to set

β = 10% or 20% while pruning a large number of bit columns

in the remaining channels. However, since the locations of

sensitive channels are random within a layer, two challenges

arise for efficient hardware acceleration. First, identifying the

location of sensitive channels requires significant indexing

overhead. Second, different precision will cause unaligned

memory access to the weight tensor in DRAM. The pro-

posed BitVert accelerator addresses these challenges through

a channel-reordering mechanism as will be discussed shortly.

IV. BITVERT HARDWARE ARCHITECTURE

To fully exploit the potential of BBS and binary pruning,

we design a bit-serial accelerator, named BitVert, which in-

cludes an efficient PE and scheduler to support BBS with

compression, along with the channel reordering mechanism

for hardware-aware global binary pruning.

A. BitVert Processing Element

The BitVert PE performs bit-serial multiplication between

a group of 16 weights and activations, where weights are

processed bit-serially. Fig. 7(a) shows a baseline BitVert PE

that performs the computation in 5 steps. Step 1 receives

16 activations A0, ..., A15 and selects 8 of them based on

sel0, ..., sel7 that indicates the position of effectual bits in the

weight bit-vector. Step 2 performs bit-serial multiplication

using valid signals val0, ..., val7 in case there are less than 8

effectual bits (i.e., more than 50% sparsity in the weight bit-

column). A subtractor subtracts the adder tree result from the

sum of activations (Eq. 2), followed by a mux to select the

partial sum. Step 3 then shifts the partial sum based on the

column index col idx that specifies the significance of current

weight bits. The col idx can vary across different groups

according to the number of redundant columns during binary

pruning (Section III-B). Recall that BBS compression stores

a constant, whose “0” bit indicates a bit-column of all zero-

bits and “1” bit indicates a bit-column of all one-bits. Hence,

Step 4 multiples this constant with the sum of activations.

Finally, the product and bit-serial partial sum are accumulated

in Step 5 . The activations are reused for multiple clock cycles

PopCount > 4

w0

w1

w2

w3

w4

w5

w6

w7 1

1

0

1

1

0

1

0

2
 -

 1
 

Bit Column Selection Activation Index Generation

0

0

1

0

0

1

1

0

0

0

1

1

0

3

sel0

1

val0

P
ri
o

ri
ty

 E
n

c
o

d
e

r

1

0

0

1

0

3

sel1

1

val1

...

0

1

0

0

0

3

sel2

1

val2

0

0

0

0

0

3

sel3

1

val3 = 0

P
ri
o

ri
ty

 E
n

c
o

d
e

r

P
ri
o

ri
ty

 E
n

c
o

d
e

r

P
ri
o

ri
ty

 E
n

c
o

d
e

r

psum_sel

0111b -

mux

-1

# RedunCol

col_idx

Shift Ctrl

Fig. 8: BitVert scheduler.

until all bit-columns belonging to the same weight group are

processed. The control signals such as sel, val, and col idx

are updated by the BitVert scheduler in every cycle (described

in Section IV-B).

Due to the random distribution of effectual bits within a

weight bit-column, the baseline PE accounts for the worst case

by using a 16:1 mux for every activation term. Since BBS

guarantees at least 50% sparsity in a bit-vector of arbitrary

length, it is possible to reduce the mux cost with a smaller

group size. Based on this observation, we propose a modified

PE that computes bit-serial multiplication within a smaller sub-

group as shown in Fig. 7(b). The sub-group size is a design

parameter that offers a trade-off between area and power.

A smaller sub-group can reduce the mux cost but requires

more subtractors. Therefore, we conduct a PE design space

exploration (Section V-E) and choose a sub-group size of 8

in our design. Furthermore, because the PE supports 50% bit

sparsity, at most 4 activations will be selected within a sub-

group. In the worst case, the selected activations within the

sub-group {A0, ..., A7} will be {A4, A5, A6, A7}. Hence, we

only need four 5:1 muxes to locate all effectual activations,

where the first mux selects among {A0, ..., A4}, the second

mux selects among {A1, ..., A5}, and so on. Using 5:1 muxes

further reduces the PE area compared to 8:1 muxes.

It is also possible to reduce the cost of the BBS multiplier

in Step 4 . Since BBS can prune a maximum of 6 bit columns

in a weight group (Section III-B), it requires at least 2 cycles

to process the remaining columns when the weight precision

is 8 bits. This allows time-multiplexing the BBS multiplier by

multiplying 3 bits per cycle, followed by a shifter to align the

significance. Section V-E evaluates the reduction in PE area

overhead achieved by the proposed optimization.

7



6-bit Channel

8-bit Channel

Chunk 1 

Chunk 2 

(a)

Weight 

Order 1

Weight 

Order 2 ×

× =

=

+

Wrong

(b)

InputK

Correct

Output 1

Output 2

Original 
Channel

Reordered 
Channel

× =

Output
Restored 

Output

(c)

Input
Original 
Channel 

Index

Buffer

Fig. 9: Channel reordering: (a) Store channels with the same precision in the
same memory chunk. (b) Two weight tensors in a residual block with different
channel orders can lead to the wrong result when processing the same input.
(c) Unshuffle the output to restore the original channel order.

B. BitVert Scheduler

BitVert adopts a low-cost scheduler to control the operation

within a PE, as illustrated in Fig. 8. To control the bit-serial

dot product, the scheduler first identifies whether there are

more zero bits in a bit column. It then sends the original or

inverted bit column to a series of 4 priority encoders. Every

priority encoder receives 5 consecutive bits from the weight

bit column. For example, the first priority encoder receives

{w0, .., w4}, the second receives {w1, .., w5}, and so on. The

encoder detects the location of the first “1” bit in the received

5-bit vector. If exists, it will mask the detected “1” bit and

sends the remaining bits to the next encoder. On the other

hand, if the received 5-bit vector contains all zero-bits, the

encoder will signal val = 0 to disable the corresponding bit-

serial multiplier in the PE.

The scheduler also generates the col idx signal to control

the shifting of bit-serial multiplier in every PE. When a

new dot product begins, the scheduler receives the BBS

metadata which contains the number of redundant columns,

#RedunCol, in a weight group. The highest bit significance

of the compressed weight group indicates the initial col idx

and is obtained by subtracting the number of redundant

columns from 7 (i.e., the highest bit significance of uncom-

pressed weight). The col idx is updated in every cycle by

subtracting one until the bit-serial bot product completes.

C. Channel Reordering

With per-channel global binary pruning, the sensitive and

normal channels will have different precision, resulting in

unaligned memory layout. To address this issue, we adopt a

channel reordering mechanism as shown in Fig. 9(a). There

are 6 weight channels in this example, and channels with the

same precision are grouped together and stored in a memory

chunk to avoid unaligned access. Recall from Section III-C

that the proposed global binary pruning is hardware-aware,

which forces the number of sensitive channels in every layer to

be a multiple of the number of channels processed in parallel.

Therefore, the grouped channels can be efficiently accessed

by BitVert to ensure full hardware utilization.

The channel reordering mechanism has also been explored

in SparTen’s greedy balancing [13]. However, the reordering

val bbs_constsel

BitVert Scheduler

Weight Buffer

Channel  

Idx Buffer

PE 
(0, 0)

PE 
(1, 0)

PE 
(0, 1)

PE 
(1, 1)

PE 
(0, 31)

PE 
(1, 31)

PE 
(15, 0)

PE 
(15, 1)

PE 
(15, 31)

16 × 32

Input 

Buffer

Metadata 
Buffer

Group ∑A 

Generator

Output 

Buffer

Fig. 10: BitVert accelerator.

criteria is completely different. SparTen is a value-based sparse

DNN accelerator that reorders weight channels based on

their sparsity, while BitVert groups channels based on their

sensitivity to binary pruning. Furthermore, SparTen statically

unshuffles the next layer’s weights in software, which may not

guarantee the correctness when different weight tensors need

to process the same input. Consider the example shown in

Fig. 9(b), where two weight tensors multiply the same input

and generate two output tensors that require element-wise

addition (e.g., as in the residual block of ResNet). SparTen

statically unshuffles the two weight tensors along the K-

dimension to align with the channel order of the previous layer,

but the different channel order between the two weight tensors

remains, which produce two output tensors with different

orders. In this example, the second element of output 2 is

supposed to be added with the third element of output 1, while

a conventional design like SparTen will add the same position

of two output tensors, leading to the wrong result.

To solve the above issue, we propose to unshuffle the output

tensor when writing back to memory. As shown in Fig. 9(c),

after completing the whole dot product between the input

tensor and reordered weight, the outputs are directly restored

to the original channel order. This restoring only needs to know

the original index of every weight channel to calculate the

corresponding memory address for storing the final outputs.

Fortunately, since a weight channel usually contains hundreds

to thousands of values, the overhead of storing one index per

channel is trivial. Moreover, because the same weight channel

can process many inputs (3 in this example) to compute

many outputs simultaneously, these outputs can be unshuffled

together to amortize the cost of channel reordering.

D. BitVert Accelerator

Fig. 10 shows the overall architecture of the BitVert ac-

celerator. The 16 × 32 PE array adopts an output-stationary

dataflow, and exploits both weight-sharing and input-sharing

by processing 32 weight channels and 16 input windows in

parallel. The weight and input buffers are banked to provide

adequate bandwidth for the access from PEs. Outputs are read

out of the PE array and written to the output buffer, one column

at a time. Additionally, BitVert incorporates a metadata buffer

to store BBS compression metadata, and a channel index buffer

to store the original index of weight channels being processed.

The ΣA generator calculates the sum of input activations for

8



BBS-based bit-serial multiplication inside the PE. Since the

same input group is multiplied by 32 weight channels, the

ΣA generator incurs practically no overhead.

V. EVALUATION

A. Experimental Methodology

DNN Benchmarks We evaluate seven representative DNN

models, including CNNs and transformer networks as summa-

rized in Table I. For CNNs, we evaluate VGG-16, ResNet-34

and ResNet-50 on the ImageNet-1K dataset. For transformers,

we choose two vision transformers, ViT-Small and ViT-Base,

as well as BERT on MRPC and SST2 tasks from the GLUE

dataset [41]. We obtain pre-trained CNNs and transformers

from PyTorch Library and HuggingFace, respectively. We then

conduct post-training per-channel quantization to obtain the

baseline 8-bit models, which shows negligible accuracy loss

compared to FP32 models. The 8-bit models are used to evalu-

ate the proposed binary pruning technique and BitVert acceler-

ator. For every model, we apply two levels of binary pruning,

conservative (cons) and moderate (mod), with a weight group

size of 32. For conservative pruning, 10% sensitive channels

are maintained at 8 bits and the remaining channels have 2

bit-columns pruned using the rounded averaging strategy. For

moderate pruning, 20% sensitive channels are maintained at

8 bits and the remaining channels have 4 bit-columns pruned

using the zero-point shifting strategy.

Accelerator Baselines We compare BitVert against six DNN

accelerators, including four bit-serial accelerators: Stripes [19],

Pragmatic [1], Bitlet [26], BitWave [39], and two value-based

accelerators: SparTen [13], ANT [16]. Stripes is an early bit-

serial accelerator that exploits reduced precision for DNN

computation, yet it mainly relies on 16-bit models and does not

consider below-8-bit compression. Therefore, we treat Stripes

as a dense bit-serial accelerator and use our baseline 8-bit

models to evaluate its performance. Pragmatic and Bitlet target

zero-bit skipping during on-chip computation only, while

BitWave enhances structured bit-column sparsity to save both

computation and memory access. SparTen exploits two-sided

value sparsity for DNN acceleration. ANT combines different

datatypes in a unified manner for low-bit DNN acceleration.

We use 6-bit precision to evaluate ANT, a configuration

demonstrated by ANT to maintain acceptable accuracy without

the need of retraining.

Implementation We implement the proposed binary pruning

algotirhm in Pytorch. We design the BitVert accelerator at

RTL-level using SystemVerilog and synthesize it with Syn-

opsys Design Compiler in TSMC 28nm technology to find

Type CNN Transformer

Model VGG-16 ResNet-34 / 50 ViT-S / B BERT

Dataset ImageNet MRPC SST2

FP32 Acc % 73.36 73.31 / 76.13 80.16 / 84.54 90.7 91.8

INT8 Acc % 73.35 73.39 / 76.17 80.05 / 84.52 90.4 91.63

TABLE I. Summary of evaluated models and datasets.

Fig. 11: Comparison of accuracy loss between PTQ, BitWave and BBS under
conservative (cons) and moderate (mod) compression.

area. We use Synopsys VCS to generate data-driven activity

factors at 800 MHz for power estimation. The area and power

of on-chip SRAM buffer are modelled with CACTI [4]. To

estimate the DRAM power, we use the DDR3 model from

DRAMSim3 [22]. For the end-to-end performance evaluation

of BitVert and other baseline accelerators, we develop cycle-

accurate simulators to model the execution time. To ensure a

fair comparison, all accelerators are scaled to contain the same

number of multipliers, where an 8-bit multiplier is equivalent

to eight bit-serial multipliers. For on-chip SRAM, we equip

ANT and all bit-serial accelerators with 256 KB activation

buffer and 256 KB weight buffer. For SparTen, we reduce the

size of its on-chip buffer due to the existence of the local

buffer inside every PE.

B. Accuracy Comparison

We first evaluate the accuracy impact of BBS binary pruning

compared to naive PTQ and BitWave’s bit-flip strategy [39] for

compression below 8-bit. When using PTQ for compression,

we follow the widely-used calibration [10] by calibrating the

quantization parameters based on a subset (1024 images) of

the ImageNet dataset. In particular, conventional PTQ relies

on the calibration dataset to ensure the optimized quantization

parameters and accuracy, while the naive data-free quantiza-

tion leads to significant accuracy degradation (> 10%). On the

contrary, the proposed BBS compresses the model to lower

precision without any calibration dataset. For both PTQ and

BitWave, we use the same setting as BBS by maintaining 20%

and 10% sensitive channels for moderate and conservative

pruning, respectively. This ensures that our accuracy benefits

purely come from the proposed binary pruning.

Fig. 11 shows the accuracy impact of applying different

approaches on the baseline DNNs. On average, the conserva-

tive and moderate binary pruning can compress the memory

footprint of the baseline 8-bit DNNs by 1.29× and 1.66×,

while incurring an accuracy loss of only 0.25% and 0.45%,

respectively. Both BitWave and BBS with moderate pruning

can attain higher accuracy than PTQ. These accuracy im-

provements stem from their ability to exploit fine-grained bit-

level redundancy, thereby preserving more information from

the original 8-bit models. Additionally, the proposed binary

pruning consistently outperforms BitWave. This is because

BBS allows any bit significance to be zero or one, thus

retaining all quantization levels of the 8-bit precision.

9



1
.4
9
×

×

1
.5
2
×

1
.2
0
×

1
.3
3
× 1
.8
3
×

2
.4

8
× 3

.0
3
×

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

VGG-16 Resnet-34 Resnet-50 ViT-Small ViT-Base Bert-MRPC Bert-SST2 Geomean

S
p

e
e

d
u

p
SparTen ANT Stripes Pragmatic Bitlet BitWave BitVert (cons) BitVert (mod)

Fig. 12: Speedup results normalized to Stripes (higher is better).

0
.4

5
× 0
.5

7
×

0
.5

9
×

0
.6

3
×

0
.5

2
×

0
.4

7
×

0
.4

1
×

0.0

0.2

0.4

0.6

0.8

1.0

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

S
p

a
rT

e
n

A
N

T

S
tr

ip
e

s

P
ra

g
m

a
ti
c

B
it
le

t

B
it
W

a
v
e

B
it
V

e
rt

 (
c
o

n
s
)

B
it
V

e
rt

 (
m

o
d

)

VGG-16 ResNet-34 ResNet-50 ViT-Small ViT-Base Bert-MRPC Bert-SST2 Geomean

N
o

rm
. 
E

n
e

rg
y

Off-chip Memory On-chip Compute

Fig. 13: Energy consumption breakdown normalized to SparTen (lower is better).

Comparison against ANT We compare the accuracy between

moderate binary pruning and ANT [16]. As shown in Table II,

BBS outperforms ANT in terms of both accuracy and effective

weight bit width. While ANT uses adaptive datatypes for low-

bit quantization, it cannot take the advantage of inherent bit-

level redundancy. On the other hand, the binary pruning fully

exploits the bit-level sparsity to best preserve the original 8-bit

weight distribution, resulting in minimal accuracy degradation.

Comparison against PTQ Works We compare the accuracy

loss between BBS and state-of-the-art PTQ works, including

Microscaling [36] and NoisyQuant [24], on vision transform-

ers. We apply 6-bit weight quantization using the two PTQ

methods while maintaining activation to 8-bit. Table III shows

that the moderate binary pruning outperforms NoisyQuant

with lower memory footprint. Moreover, the conservative

binary pruning has much better accuracy than Microscaling

at similar bit width. Miscroscaling also has an 8-bit meta-

data, which represents the shared exponent for a group of

32 weights. However, the exponent is determined by the

largest value in every group, which forces small values to

become zero due to insufficient operand precision to store the

aligned mantissa. On the other hand, BBS exploits bit-level

redundancy to better preserve the statistical characteristics of

Model BBS (mod) ANT [16]

VGG-16 0.2% (4.32 bits) 0.68% (6 bits)

ResNet-50 0.23% (4.79 bits) 0.89% (6 bits)

TABLE II. Comparison of accuracy loss and weight bit width between
BBS and 6-bit ANT without fine-tuning.

uncompressed weight, thereby achieving higher accuracy.

C. Accelerator Performance and Energy

Performance Fig. 12 presents the accelerator performance

normalized to that of Stripes. On average, BitVert with conser-

vative and moderate binary pruning achieves 2.48× and 3.03×

speedup compared to Stripes, respectively. These speedups are

attributed to exploiting both balanced BBS and binary pruning

for abundant bit skipping and reduced memory access. Despite

leveraging two-sided value sparsity, SparTen demonstrates

limited performance on transformer-based models due to the

lack of weight value sparsity in 8-bit models and nearly-dense

activations from non-ReLU functions. ANT only explores

reduced value precision but not fine-grained bit-level sparsity,

leading to 1.63× and 1.97× lower speedup than BitVert at

conservative and moderate pruning, respectively. While Prag-

matic and Bitlet utilize variable degrees of bit-level sparsity,

they suffer from workload imbalance and lack of exploration

in further compressing DNNs below 8-bit. This explains why

BitVert outperforms Pragmatic and Bitlet by 1.86 – 2.53×

across all benchmarks. Although BitWave exploits structured

ViT-Small ViT-Base

∆Acc ↓ Bits ∆Acc ↓ Bits

Microscaling [36] 2.49% 6.25 0.33% 6.25

NoisyQuant [24] 2.08% 6 0.64% 6

BBS (cons) 0.75% 6.33 0.05% 6.25

BBS (mod) 0.96% 5.19 0.39% 5.07

TABLE III. Comparison of accuracy loss and weight bit width
between BBS, Microscaling and NoisyQuant.

10



Fig. 14: Normalized speedup on ResNet-50 and Bert-MRPC with increasing
number of PE columns (i.e., processing more weight groups in parallel).

bit-column pruning to achieve better performance, its moderate

pruning results in unacceptable accuracy loss (> 1%) on many

DNNs such as ViT-small and Bert-MRPC. Therefore, it has to

reduce the degree of pruning for improved accuracy while

sacrificing performance. Overall, BitVert provides the best

accuracy-performance trade-offs, with up to 1.98× speedup

over BitWave.

Energy Consumption Fig. 13 presents the normalized energy

breakdown of different accelerators. where the on-chip com-

pute energy includes both buffer and core energy. SparTen

demonstrates the poorest energy efficiency primarily due to

its substantial overhead from the sparse bitmask encoding

(12.5% at 8-bit precision) and the expensive hardware required

to exploit sparsity. This overhead is particularly pronounced

in 8-bit DNNs, where value sparsity is inherently scarce.

As a result, SparTen consumes 2.13× and 2.44× higher

energy than BitVert with conservative and moderate pruning,

respectively. Although ANT is able to quantize both activa-

tions and weights, it dissipates higher energy than BitVert

with moderate pruning due to the complicated hardware to

support custom data types. Owing to the balanced BBS-

skipping and substantial reduction in model size, BitVert with

moderate pruning achieves an average energy reduction of

1.39×, 1.43×, 1.54×, and 1.27× over Stripes, Pragmatic,

Bitlet, and BitWave, respectively.

D. Analysis of Load Imbalance

BitVert can leverage the structured BBS for improved load

balance. Fig. 14 demonstrates this with the performance on

ResNet-50 and Bert-MRPC with respect to different number

of PE columns, where every PE column processes a different

weight group. When there are more PE columns, Pragmatic

and Bitlet exhibit a noticeable drop in speedup over Stripes that

does not exploit bit sparsity. For instance, when the number

of PE columns increases from 2 to 32, the speedup of Bitlet

on Bert-MRPC drops from 1.63× to 1.35×. This is because

that processing more weight groups in parallel exacerbates the

load imbalance across PE columns, and the performance is

bottlenecked by the weight group with the lowest bit sparsity.

In contrast, the structured bit sparsity allow BitWave and

BitVert to efficiently scale the performance, thus maintaining

nearly constant speedup over Stripes. Moreover, BitVert always

Fig. 15: Breakdown of execution cycles w.r.t. the number of PE columns.

achieves the highest performance thanks to the binary pruning

that can induce higher BBS with negligible accuracy loss.

Fig. 15 further details the breakdown of execution time

with respect to the number of PE columns to highlight its

impact on load balance. Since one PE contains many bit-serial

multipliers, intra-PE stall can be caused by a multiplier that

needs to process more effectual bits. On the other hand, the

inter-PE stall arises from variance in bit sparsity across differ-

ent weight groups. As the number of PE columns increases,

Pragmatic and Bitlet experience higher intra-PE and inter-PE

loss, which explains their lower resulting speedup. BitWave

only exploits coarse-grained bit-column sparsity that has much

lower occurrence than fine-grained BBS. Therefore, it shows

lower PE utilization than BitVert. Furthermore, BitVert has

minimal inter-PE stall due to the more balanced distribution

of BBS across different weight groups, thereby achieving

superior performance over other bit-serial accelerators.

E. PE Design Space Exploration

Recall from Section IV-A that the sub-group size within

the BitVert PE offers a trade-off between area and power.

A smaller sub-group has lower mux cost, but increases the

number of subtractors. Furthermore, by exploiting the struc-

tured nature of BBS and its encoding scheme, we are able

to further reduce the PE area by using compact mux and a

smaller BBS multiplier. Hence, we conduct a PE design space

exploration to evaluate the optimal group size and the proposed

optimizations. As shown in Table IV, a sub-group size of

16 without optimization incurs a significant area overhead

of 38.2% compared to the optimized design. In the end, a

sub-group size of 8 with the proposed PE optimization offers

the best trade-off between area and power, which is therefore

adopted in our BitVert accelerator.

Sub-group Without Optimization With Optimization

Size Area (um2) Power (mW ) Area (um2) Power (mW )

16 1342.3 0.61 971.5 0.53

8 896.6 0.49 739.6 0.45

4 878.7 0.51 786.5 0.47

TABLE IV. PE area and power of BitVert with different sub-group
sizes before and after applying our circuit optimizations.

11



better

ResNet-50 Normalized EDP

A
c

c
u

ra
c

y
 l
o

s
s

 (
%

)

Bitlet PTQ ANT BitWave BitVert

1.0

0.8

0.6

0

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Fig. 16: EDP-acccuracy loss pareto frontier for ResNet50.

F. PE Area and Power Comparison

The BitVert accelerator adopts an area- and energy-efficient

PE with low overhead to support BBS. We compare the PE

design of BitVert and other bit-serial accelerators, with all PEs

containing 8 bit-serial multipliers at 800 MHz target frequency.

Table V summarizes the area and power of different PEs. Bitlet

experiences the highest area and power consumption due to

significant overhead (e.g., a 64-1 mux before every bit-serial

multiplier) for zero bit skipping. Pragmatic needs a variable

shifter to align the bit significance, leading to a larger bit-

serial multiplier and non-trivial overhead. BitWave requires 2’s

complementer to support sign-magnitude arithmetic, resulting

in 1.32× larger area and 1.4× power than Stripes. Moreover,

since BitWave can only leverage coarse-grained bit-column

sparsity, the potential performance improvement is limited.

The proposed BitVert enjoys the optimal trade-off between

performance and hardware cost. Its PE occupies 1.39× area

and consumes 1.22× power compared to Stripes, yet is able

to exploit 50% balanced BBS and binary pruning for efficient

bit skipping and model compression, respectively. Since BBS

naturally exists in a bit-vector with arbitrary length and does

not depend on the operand precision, it provides a promising

solution for future bit-serial computing paradigm.

G. Accuracy-Efficiency Trade-offs

The proposed binary pruning and BitVert can offer good

trade-offs between accuracy and efficiency. To demonstrate

this, we conduct design-space exploration on ResNet-50 with

different pruning ratios. We compare the relationship between

energy-delay product (EDP) and accuracy loss of BitVert and

previous works, including Bitlet, BitWave, ANT and conven-

Accelerator
PE Area (um2) PE Power

Multiplier Others Total Ratio (mW )

Stripes [19] 286.3 246.5 532.8 1× 0.37

Pragmatic [1] 319.2 603.9 923.1 1.73× 0.51

Bitlet [26] 223.2 1442.4 1665.6 3.13× 0.57

BitWave [39] 286.3 416.1 702.4 1.32× 0.49

BitVert (ours) 332.4 407.2 739.6 1.39× 0.45

TABLE V. PE area and power of BitVert and prior bit-serial accel-
erators under 28 nm technology and 800 MHz frequency.

Fig. 17: Comparison between BBS and Olive on compressing Llama-3-8B
weights. The accuracy metric is perplexity, lower is better.

Accelerator
Area Power Norm. Norm.

(um2) (mW ) Perf Perf / Area

Olive [15] 291.6 0.18 1× 1×

BitVert (mod) 739.6 0.45 4× 1.58×

TABLE VI. Comparison between Olive and BitVert PEs.

tional PTQ. As shown in Fig. 16, the lower left region indi-

cates a good trade-off between accuracy and EDP. Although

BitWave and ANT propose different algorithm-hardware co-

design approaches for DNN compression and acceleration,

they fail to preserve the original value distribution of the

baseline model and do not efficiently leverage the balanced

bit sparsity that inherently appears in DNNs. In contrast,

binary pruning is able to preserve all quantization levels of

the original DNN. Combining with BBS and efficient hardware

design, BitVert is able to always sit on the Pareto frontier.

H. Applicability to Large Language Models

Large language models (LLMs) have achieved great success

in generative tasks [40], [47]. We compare BBS with a recent

PTQ work Olive [15] for LLM weight compression. We eval-

uate a state-of-the-art LLM, Llama-3-8B [29] on Wikitext [28]

and C4 [8] datasets. For BBS, we apply conservative and

moderate binary pruning to all weight channels with a group

size of 32, resulting in an effective weight precision of 6.25

and 4.25 bits, respectively. Fig. 17 shows the accuracy impact

of different compression methods. The moderate BBS pruning

achieves better perplexity than Olive with a similar memory

footprint (4.25 vs. 4 bits), while the conservative BBS pruning

has little perplexity loss compared to the FP32 baseline. To

compare the hardware efficiency, we synthesize the Olive

PE for 4-bit weight and 8-bit activation. Table VI shows

that the proposed BitVert PE with moderate binary pruning

can achieve 1.58× better performance per area compared

to Olive. The benefits of BitVert are twofold. First, Olive

adopts separate datatypes for normal and outlier values, where

the latter has a much wider numerical range. Therefore, the

Olive PE requires a larger multiplier than fixed-point PE to

accommodate outliers. Second, the BitVert PE exploits BBS

to efficiently compute 16 multiplications in 4 cycles under

moderate pruning, while the Olive PE does not leverage bit

sparsity and only computes one multiplication per cycle.

12



VI. CONCLUSION

In this paper, we introduce BBS, a new concept to exploit

bit-level sparsity in a symmetrical way to prune either zero-

bits or one-bits. BBS pushes the limit of post-training DNN

compression to a new state-of-the-art through binary pruning,

a data-free optimization that generates bi-directional sparse bit

columns inside DNN weights while maximally preserving the

statistical characteristics of the original uncompressed model.

As a result, the proposed binary pruning technique achieves

much higher accuracy compared to previous bit-sparsity-aware

pruning methods. On top of the algorithmic innovation, we

design a bit-serial accelerators named BitVert with an area-

and power-efficient PE to fully mine the potential of BBS.

Compared to prior DNN accelerators, BitVert achieves up

to 3.03× speedup and 2.44× energy saving, while having

negligible accuracy degradation on both vision and language

models with large-scale benchmark datasets.

ACKNOWLEDGMENT

This project is supported in part by Intel Corporation and

the Center for the Co-Design of Cognitive Systems (CoCoSys)

in JUMP 2.0, an SRC Program sponsored by DARPA. We

would like to thank Mahesh Iyer, Grace Zgheib, Sergey Gri-

bok, Ahmed AbouElhamayed, Zhewen Yu, Marta Andronic,

and the anonymous reviewers for their constructive feedback.

We also thank Man Shi for the helpful discussion about

BitWave. The code for BBS binary pruning can be found at

https://github.com/yc2367/BBS-MICRO.git.

REFERENCES

[1] J. Albericio, A. Delmas, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-Pragmatic deep neural network computing,”
50th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2017.

[2] H. An, Y. Chen, Z. Fan, Q. Zhang, P. Abillama, H.-S. Kim, D. Blaauw,
and D. Sylvester, “An 8.09tops/w neural engine leveraging bit-sparsified
sign-magnitude multiplications and dual adder trees,” IEEE International

Solid- State Circuits Conference (ISSCC), pp. 422–424, 2023.

[3] T. Andrulis, J. S. Emer, and V. Sze, “RAELLA: Reforming the arithmetic
for efficient, low-resolution, and low-loss analog pim: No retraining
required!” Proceedings of the 50th Annual International Symposium on

Computer Architecture (ISCA), 2023.

[4] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14,
no. 2, June 2017.

[5] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer,
“Zeroq: A novel zero shot quantization framework,” arXiv preprint

arXiv:2001.00281, 2020.

[6] C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan, “GoSPA: An energy-
efficient high-performance globally optimized sparse convolutional neu-
ral network accelerator,” 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA), 2021.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” North

American Chapter of the Association for Computational Linguistics,
2019.

[8] J. Dodge, A. Marasovic, G. Ilharco, D. Groeneveld, M. Mitchell, and
M. Gardner, “Documenting large webtext corpora: A case study on the
colossal clean crawled corpus,” in Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2021.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” arXiv preprint abs/2010.11929,
2020.

[10] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” arXiv preprint

arXiv:1902.08153, 2019.

[11] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.

[12] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and
K. Keutzer, “AI and memory wall,” IEEE Micro, 2024.

[13] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural net-
works,” Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2019.

[14] A. Gondimalla, M. Thottethodi, and T. N. Vijaykumar, “Eureka: Efficient
tensor cores for one-sided unstructured sparsity in dnn inference,”
2023 56th IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2023.

[15] C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y.-B. Liu, M. Guo,
and Y. Zhu, “OliVe: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” 50th ACM/IEEE International

Symposium on Computer Architecture (ISCA), 2023.

[16] C. Guo, C. Zhang, J. Leng, Z. Liu, F. Yang, Y.-B. Liu, M. Guo, and
Y. Zhu, “ANT: Exploiting adaptive numerical data type for low-bit deep
neural network quantization,” 55th IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2022.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[18] D. Im, G. Park, Z. Li, J. Ryu, and H.-J. Yoo, “Sibia: Signed bit-slice
architecture for dense dnn acceleration with slice-level sparsity exploita-
tion,” IEEE International Symposium on High-Performance Computer

Architecture (HPCA), 2023.

[19] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep neural
network computing,” 49th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2016.

[20] A. D. Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-Tactical: A
software/hardware approach to exploiting value and bit sparsity in neural
networks,” Proceedings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2019.

[21] N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot network prun-
ing based on connection sensitivity,” arXiv preprint arXiv:1810.02340,
2019.

[22] S.-J. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3:
A cycle-accurate, thermal-capable dram simulator,” IEEE Computer

Architecture Letters, vol. 19, pp. 106–109, 2020.

[23] F. Liu, W. Zhao, Z. He, Z. Wang, Y. Zhao, Y. Chen, and L. Jiang, “Bit-
Transformer: Transforming bit-level sparsity into higher preformance
in reram-based accelerator,” IEEE/ACM International Conference On

Computer Aided Design (ICCAD), 2021.

[24] Y. Liu, H. Yang, Z. Dong, K. Keutzer, L. Du, and S. Zhang,
“NoisyQuant: Noisy bias-enhanced post-training activation quantization
for vision transformers,” arXiv preprint arXiv:2211.16056, 2023.

[25] Z. Liu, Y. Wang, K. Han, S. Ma, and W. Gao, “Post-training quantization
for vision transformer,” arXiv preprint arXiv:2106.14156, 2021.

[26] H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, and M. Zhang,
“Distilling bit-level sparsity parallelism for general purpose deep learn-
ing acceleration,” 54th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2021.

[27] E. Meller, A. Finkelstein, U. Almog, and M. Grobman, “Same, same but
different - recovering neural network quantization error through weight
factorization,” arXiv preprint arXiv:1902.01917, 2019.

[28] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[29] Meta, “Meta llama 3.” [Online]. Available: https://github.com/meta-
llama/llama3

[30] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh,
C. Yu, and P. Micikevicius, “Accelerating sparse deep neural networks,”
arXiv preprint arXiv:2104.08378, 2021.

13



[31] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
International Conference on Learning Representations,, 2017.

[32] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling, “Data-free
quantization through weight equalization and bias correction,” arXiv

preprint arXiv:1906.04721, 2019.
[33] NVIDIA, “Tensorrt: A c++ library for high performance inference

on nvidia gpus and deep learning accelerators.” [Online]. Available:
https://github.com/NVIDIA/TensorRT

[34] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accel-
erator based on outlier-aware low-precision computation,” ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA),
2018.

[35] S. Qu, B. Li, Y. Wang, and L. Zhang, “ASBP: Automatic structured
bit-pruning for rram-based nn accelerator,” 58th ACM/IEEE Design

Automation Conference (DAC), 2021.
[36] B. D. Rouhani, R. Zhao, V. Elango, R. Shafipour, M. Hall, M. Mes-

makhosroshahi, A. More, L. Melnick, M. Golub, G. Varatkar, L. Shao,
G. Kolhe, D. Melts, J. Klar, R. L’Heureux, M. Perry, D. Burger, E. S.
Chung, Z. Deng, S. Naghshineh, J. Park, and M. Naumov, “With
shared microexponents, a little shifting goes a long way,” ACM/IEEE

50th Annual International Symposium on Computer Architecture (ISCA),
2023.

[37] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M.
Stuart, Z. Poulos, and A. Moshovos, “Laconic deep learning inference
acceleration,” ACM/IEEE 46th Annual International Symposium on

Computer Architecture (ISCA), 2019.
[38] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra,

and H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Network,” in 45th ACM/IEEE

International Symposium on Computer Architecture (ISCA), 2018.
[39] M. Shi, V. Jain, A. Joseph, M. Meijer, and M. Verhelst, “BitWave:

Exploiting column-based bit-level sparsity for deep learning accelera-
tion,” Proceedings of the 30th IEEE International Symposium on High-

Performance Computer Architecture (HPCA), 2024.
[40] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,

T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[41] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” arXiv preprint arXiv:1804.07461, 2018.

[42] Y. Wang, C. Zhang, Z. Xie, C. Guo, Y. Liu, and J. Leng, “Dual-
side sparse tensor core,” 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA), 2021.
[43] Y. N. Wu, P.-A. Tsai, S. Muralidharan, A. Parashar, V. Sze, and J. S.

Emer, “HighLight: Efficient and flexible dnn acceleration with hierar-
chical structured sparsity,” 56th IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2023.
[44] G. Xiao, J. Lin, M. Seznec, J. Demouth, and S. Han, “SmoothQuant:

Accurate and efficient post-training quantization for large language
models,” arXiv preprint arXiv:2211.10438, 2022.

[45] Z. Yuan, C. Xue, Y. Chen, Q. Wu, and G. Sun, “PTQ4ViT: Post-training
quantization framework for vision transformers with twin uniform
quantization,” arXiv preprint arXiv:2111.12293, 2022.

[46] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “GOBO:
Quantizing attention-based nlp models for low latency and energy
efficient inference,” 53rd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2020.
[47] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,

M. T. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,
D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer,
“OPT: Open pre-trained transformer language models,” arXiv preprint

arXiv:2205.01068, 2022.

14


	Introduction
	Background and Related Works
	Sparse Bit-serial Accelerators
	Rethinking Bit-level Sparsity

	BBS: Bi-directional Bit-level Sparsity
	BBS Theorem
	Bit-level Binary Pruning
	Hardware-aware Global Binary Pruning

	BitVert Hardware Architecture
	BitVert Processing Element
	BitVert Scheduler
	Channel Reordering
	BitVert Accelerator

	Evaluation
	Experimental Methodology
	Accuracy Comparison
	Accelerator Performance and Energy
	Analysis of Load Imbalance
	PE Design Space Exploration
	PE Area and Power Comparison
	Accuracy-Efficiency Trade-offs
	Applicability to Large Language Models

	Conclusion
	References

