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Abstract—Bit-level sparsity methods skip ineffectual zero-bit
operations and are typically applicable within bit-serial deep
learning accelerators. This type of sparsity at the bit-level is
especially interesting because it is both orthogonal and compat-
ible with other deep neural network (DNN) efficiency methods
such as quantization and pruning. Furthermore, it comes at little
or no accuracy degradation and can be performed completely
post-training. However, current bit-sparsity approaches lack
practicality because of (1) load imbalance from the random
distribution of zero bits, (2) unoptimized external memory access
because all bits are fetched from off-chip memory, and (3) high
hardware implementation overhead, including large multiplexers
and shifters to support sparsity at the bit level.

In this work, we improve the practicality and efficiency of bit-
level sparsity through a novel algorithmic bit-pruning, averaging,
and compression method, and a co-designed efficient bit-serial
hardware accelerator. On the algorithmic side, we introduce bi-
directional bit sparsity (BBS). The key insight of BBS is that we
can leverage bit sparsity in a symmetrical way to prune either
zero-bits or one-bits. This significantly improves the load balance
of bit-serial computing and guarantees the level of sparsity to
be more than 50%. On top of BBS, we further propose two
bit-level binary pruning methods that require no retraining, and
can be seamlessly applied to quantized DNNs. Combining binary
pruning with a new tensor encoding scheme, BBS can both
skip computation and reduce the memory footprint associated
with bi-directional sparse bit columns. On the hardware side,
we demonstrate the potential of BBS through BitVert, a bit-
serial architecture with an efficient PE design to accelerate DNNs
with low overhead, exploiting our proposed binary pruning.
Evaluation on seven representative DNN models shows that our
approach achieves: (1) on average 1.66x reduction in model size
with negligible accuracy loss of < 0.5%; (2) up to 3.03x speedup
and 2.44x energy saving compared to prior DNN accelerators.

Index Terms—Deep learning accelerator, bit-serial computing,
hardware-software co-design, sparsity, model compression

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated remark-
able accomplishments in many important fields such as com-
puter vision and natural language processing. However, the
growth of DNN model size and complexity continues to
outpace the scaling of compute performance in existing hard-
ware platforms [12]. Bridging this performance gap is very
desirable for wider adoption of DNNSs, particularly in edge
scenarios that demand both high performance and energy
efficiency. Codesigning novel DNN compression algorithms,
together with accelerators for the efficient deployment of the
compressed models, is a promising way to achieve this goal.
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Numerous efficiency algorithms [21], [30], [31] and hard-
ware prototypes [6], [13], [14], [42], [43] have been proposed
to leverage value-based sparsity in DNNs to reduce the cost
of storing and deploying DNNs. Yet the degree of such value
sparsity, which depends on the underlying model architecture,
can strongly limit the resulting hardware performance. For
instance, recent transformer-based DNNs show limited or no
activation sparsity with GeLU and sigmoid activation func-
tions [7], [9]. Even for single-sided sparse accelerators that
target weight sparsity, plenty of time and cost are spent on
retraining the model to balance the degree of sparsity and accu-
racy loss. Unfortunately, in many real-world cases, retraining
may become impractical for end users due to cost constraints
and lack of access to the original training dataset [3], [39]. This
challenge is particularly pronounced in recent large language
models [40], [47] that contain billions of parameters, making
retraining even more resource and data intensive. Hence, there
is a strong need to further enhance the efficiency of DNN
accelerators without imposing retraining.

Another line of DNN compression research focuses on post-
training quantization (PTQ), which represents DNN operands
in lower precision without retraining the model [15], [24],
[25], [32], [36], [44], [45]. For example, researchers have
designed new quantization data types such as the Microscaling
format [36], where a group of low-precision operands can
share an 8-bit exponent to balance the accuracy and memory
footprint. However, Microscaling still requires a floating-point
pipeline to handle the shared 8-bit exponent, resulting in
higher hardware cost than integer quantization. On the other
hand, state-of-the-art PTQ algorithms can already reduce the
operand precision to 8-bit integer with negligible accuracy
loss [24], [32], [44]. Unfortunately, a quantized 8-bit DNN
shows extremely low value sparsity (less than 5% as will
be shown in the next section), since it tries to utilize all
quantization levels as much as possible to reduce the quan-
tization error. This fundamental quantization-sparsity tension
poses a big performance bottleneck in existing value-based
DNN accelerators [16], [38].

In order to jointly exploit the efficiency of quantization and
sparsity, a series of bit-serial DNN accelerators exploit bit-
level sparsity [1], [19], [20], [26], [37], [39]. Unlike coarse-
grained value sparsity that is incompatible with quantization,
the bit-level sparsity targets the abundant zero bits in the
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Fig. 1: Comparison of different model compression approaches. (a) Example
of a 4-value group and the weight distribution of a ResNet-50 layer before
and after PTQ. (b) @ Bit-sparsity enhancement by generating three zero bit
columns using sign-magnitude format, @ achieving lower KL divergence than
PTQ but still losing many quantization levels. (c) @ BBS generates three bi-
directional sparse bit columns and is able to preserve all quantization levels
of 8-bit precision, @ leading to much lower KL divergence.
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binary representation of operands, thus is both compatible and
orthogonal to other forms of DNN redundancy. Stripes [19] is
an early bit-serial prototype that uses reduced precision for
DNNs to scale the performance. Pragmatic [1], Laconic [37]
and Bitlet [26] propose to skip zero-bit operations from
different perspectives. However, the distribution of zero bits
is generally random, whether in an individual operand or a
group of operands, leading to significant workload imbalance.
A direct consequence is that these accelerators must still fetch
all data bits from off-chip memory, and use sophisticated
hardware schedulers to skip zero-bit operations as much as
possible during on-chip computation. The latter usually incurs
non-trivial hardware overhead.

To reduce both memory access and scheduling overhead
of bit-serial computing, BitWave [39] employs a bit-column-
serial approach, which examines the sparsity of the same
bit significance across a group of operands. If a bit column
contains all zero-bits, then it does not need to be stored in
memory. Moreover, BitWave proposes a bit-sparsity-enhancing
technique based on sign-magnitude formatted weights to selec-
tively flip bits to zero. With this bit-flip technique, BitWave is
able to further compress a quantized 8-bit DNN by generating
more zero bit columns. As a result, it has demonstrated the
potential to achieve higher performance than other bit-serial
accelerators [1], [19], [26].

Despite these approaches exploring bit sparsity at varying
degrees, they still suffer from one significant drawback: bit
sparsity is only limited to zero bits. To demonstrate this
problem, consider Figure 1(a) that shows a group of four INT8
values, as well as the INT8 weight distribution of a layer in
ResNet-50. If we want to further reduce the bit-width to, e.g.,
5-bit, conventional PTQ needs coarse-grained clipping and
re-scaling so that the quantization mean square error (MSE)
is minimized. Nevertheless, no matter what PTQ algorithm

is used, the resulting distribution can only have 2° = 32
discrete quantization levels, resulting in large KL divergence,
a common metric to quantify the difference between two
distributions [17]. On the other hand, previous bit-sparsity-
aware works [23], [35], [39] leverage sign-magnitude format
to prune bit columns at the group level as shown in Fig. 1(b).
Given that DNN weights are typically small, many inherent
zero bit columns exist (e.g., the third bit columns in Fig. 1(b)),
leading to less sparse columns enforced (e.g., the seventh and
eighth bit columns in Fig. 1(b)) to achieve the effective 5-bit
data width. As a result, they can preserve more quantization
levels and achieve lower KL divergence and better accuracy
than PTQ. However, if there is no inherent sparse bit column
in a group, all lower significant bit columns must be flipped
to zero, leading to reduced quantization levels especially in
intervals with large absolute values (e.g., > |50] in Fig. 1(b)).

Our focus: this work proposes a novel sparsity concept
called bi-directional bit-level sparsity (BBS) and the associate
bit-serial accelerator design named BitVert. The key insight
of BBS is that the bit-level sparsity can be explored in a
symmetrical way, where less zero-bits implies more one-bits,
and vice versa. This ensures that any bit vector can exhibit
at least 50% BBS, which significantly improves the load
balance of bit-serial computing while minimizing the number
of ineffectual bit operations. Due to the balanced workload,
BBS eliminates the expensive bit synchronization mechanism
that is typically associated with prior bit-serial accelerators [1],
[20], [26]. Furthermore, unlike previous bit-sparsity-aware
works that only prune zero bit columns, BBS offers a new
opportunity for model compression—it permits pruning a bit
column with entirely zero-bits or entirely one-bits, which we
call bi-directional sparse bit columns. As shown in Fig. 1(c),
by looking for an optimal way to generate 3 bi-directional
sparse columns, we can achieve much lower MSE compared
to merely pruning zero bit columns with the same compression
ratio. Additionally, since BBS allows any bit significance to
be one, it preserves all quantization levels of the original INTS8
weight and yields much lower KL divergence w.r.t. the original
numerical distribution pre-compression. Finally, the balanced
nature of BBS can be exploited in a hardware-friendly manner
to improve the performance and energy efficiency of bit-
serial accelerators. The main contributions of this work are
summarized as follows:

1) We introduce the new BBS concept, and demonstrate
that BBS significantly improves the load balance of bit-
serial accelerators.

2) We propose two bit-level binary pruning strategies to
enhance structured BBS. The binary pruning employs a
new encoding scheme to reduce the memory footprint
of a quantized DNN without the need of retraining.

3) We design BitVert, a bit-serial accelerator to exploit
BBS for DNN acceleration. BitVert adopts an efficient
processing element (PE) with low hardware overhead for
bit skipping, along with a channel-reordering mechanism
to support binary pruning.
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Fig. 2: High-level computation flow of (a) bit-parallel PE, (b) Pragmatic [1], (c) Bitlet [26], (d) BitWave [39].

Through extensive evaluation on seven representative DNN
benchmarks, including both vision and language models, we
demonstrate that BitVert achieves up to 3.03x speedup and
2.44x energy saving compared to prior DNN accelerators,
while having negligible accuracy loss (<0.5% on average)
together with the preserved statistical characteristics of the
uncompressed model.

II. BACKGROUND AND RELATED WORKS
A. Sparse Bit-serial Accelerators

We first describe the computation flow of bit-parallel pro-
cessing and recent sparse bit-serial accelerators [1], [26], [39]
using a 4-way dot product example between 8-bit operands.
We focus on weight sparsity in our discussion. In Fig. 2(a), a
bit-parallel PE exploits bit-level parallelism by performing the
multiplication between an 8-bit activation and all bits of the
same weight, but leading to many ineffectual bit operations.
Since zero bits do not contribute to the final result, it is
desirable to skip as many zero bits as possible for improved
performance and efficiency.

Pragmatic [1] processes only non-zero bits of every weight
as shown in Fig. 2(b). However, since different bit-significance
can be processed simultaneously, Pragmatic requires a vari-
able shifter after every bit-serial multiplier to synchronize
the significance of essential bits. Bitlet [26] leverages the
sparsity parallelism, motivated by the observation that every bit
significance shows similar sparsity among a group of weights.
As shown in Fig. 2(c), Bitlet digests multiple weights and
activations, and computes every bit-significance independently.
However, since every bit lane can absorb the essential bit from
an arbitrary weight, Bitlet requires a large multiplexer (e.g.,
64:1) to select the correct activation in every lane, leading
to non-trivial hardware overhead (35.9% of the PE area as
revealed by Bitlet’s breakdown report).

Both Pragmatic and Bitlet suffer from load imbalance
issues, where the latency of Pragmatic is dominated by the
weight with the highest number of one bits, and the latency
of Bitlet is dominated by the bit significance with the highest
number of one bits. To address this, BitWave [39] attempts to
skip zero bits at the coarse bit-column granularity, as illustrated
in Fig. 2(d). Because most weight values are typically small
in a DNN, BitWave relies on sign-magnitude format which
inherently generates many zero bit columns. The bit column
sparsity offers balanced workload, but inevitably leads to many
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Fig. 3: Comparison of inherent weight value sparsity, bit sparsity and BBS
(with a bit-vector size of 8) in INT8 DNNs.

ineffectual bit operations since only a bit column with all zero
bits can be skipped during computation. On the top of these
three design philosophies, our proposed BitVert tries to balance
the bit-serial workload while skipping as many sparse bits as
possible. By extending bit sparsity to BBS, BirVert skips zero
bits when a bit column contains many zeros, while it switches
to skip one bits when a bit column contains less zero bits.
Section III details our BBS methodology.

B. Rethinking Bit-level Sparsity

While recent advances in PTQ can compress DNNSs to 8-bit
with little or no accuracy loss [5], [25], [32], [44], [45], the
resulting weight tensor exhibits extremely low value sparsity.
As shown in Fig. 3, the value-based weight sparsity is less
than 5% in a series of popular 8-bit quantized DNNs. This
is because that a well-designed PTQ algorithm tries to utilize
all available quantization levels to minimize the quantization
MSE compared to original floating-point models. On the other
hand, the bit-level sparsity is inherently more abundant and can
achieve around 50% in 2’s complement format. Owing to the
facts that DNN weight tensors usually exhibit Gaussian-like
distribution and most values tend to be small [16], [34], [46],
the sign-magnitude binary representation yields even higher
bit sparsity [2], [39] due to abundant zero bits at higher bit
significance. However, adopting sign-magnitude arithmetic for
bit-serial computing still has two challenges. First, every bit-
serial multiplier requires a 2’s complementer for partial sum
generation, resulting in large area overhead [18]. Second, the
irregular distribution of zero bits remains, leading to load im-
balance and synchronization overhead. Whereas our proposed
BBS maintains the 2’s complement binary representation, and
treats zero or one that has a higher occurrence as sparse bits.
Hence, BBS ensures that any bit-vector exhibits at least 50%
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Fig. 4: Example of bit-level binary pruning with rounded column averaging to generate 4 sparse bit columns.

bit sparsity, resulting in higher total bit sparsity than sign-
magnitude format while achieving balanced workload across
different PEs.

III. BBS: BI-DIRECTIONAL BIT-LEVEL SPARSITY

In this section, we first introduce the concept of BBS based
on 2’s complement binary representation. Next, we present
binary pruning, a technique that modifies the original weight
tensor to generate more structured BBS, together with a new
encoding scheme that provides an extra opportunity for model
compression. Finally, we propose a hardware-aware strategy to
compress different weight channels of a DNN model based on
the global awareness of pruning sensitivity, which can achieve
favorable accuracy-compression trade-offs.

A. BBS Theorem

Without loss of generality, we describe BBS using a dot
product operation that multiplies a group of N weights (W)
and activations (A) in p-bit precision, where N is referred
to as the group size. In the rest of this paper, we use the
term “group” to refer to multiple weights or activations that
contribute to the same dot product output. The dot product
operation can be formally written as:

N-1 p—1 N-1
ZW1XA1 :ZZbXZWibXAi
=0 b=0 i=0

where W} is the b bit of W;. Since any bit of W can only
be one or zero, the second partial sum on the right-hand side
of Eq. 1 can be re-organized as:

(D

N—-1
ZfoAi = ZAi )
=0 Vi WP=1
N-1
= > A=) A 3)
J=0 Vi: W=0

From Eq. 2 and 3, we can infer that instead of adding
the effectual activations associated with non-zero weight bits,
the same result can be obtained by subtracting the activations
indicated by zero weight bits from the sum of all activations,
which is a constant for a given group. Since more zero-bits in
a vector implies less one-bits, Eq. 2 and Eq. 3 always process
no more than half of the bits—when there are more than 50%
zero-bits in a bit-vector, the computation can skip them as in
conventional bit-serial accelerators. But if there is less than
50% bit sparsity, the bit-vector can be inverted so that the

original one-bits become sparse, and subtract the bit-serial dot
product from Zil\:()l A;. Since both zero and one can become
sparse bits, we call this bi-directional bit sparsity (BBS).
The idea of BBS can effectively improve the load balance
of bit-serial computing. Although there is ~50% zero bit
sparsity in 2’s complement format and more than 50% zero
bit sparsity in sign-magnitude format (Fig. 3), the sparsity
within a bit-vector is unpredictable. Moreover, because bit-
serial computing relies on strongly increased parallelism to
simultaneously process many bit-vectors from different weight
groups, any bit-vector with low zero bit sparsity will hamper
the performance of the whole PE array. On the other hand,
BBS ensures at least 50% sparsity in a bit-vector of arbitrary
length, achieving balanced workload during parallel execution
while skipping as many ineffectual bit operations as possible.

B. Bit-level Binary Pruning

In addition to balanced bit sparsity, BBS offers a new
opportunity for model compression through binary pruning—
which can prune a bit column that contains all zero-bits or all
one-bits within a weight group. Specifically, Eq. 2 implies that
if all weight bits at a bit significance are zero, then the bit-
serial dot product at that significance is simply zero. Similarly,
Eq. 3 implies that if all weight bits at a significance are one,
then the bit-serial dot product at that significance is the sum
of activations in the group. As a result, a bi-directional sparse
bit column can be compressed to just one bit that indicates
whether its bit-serial dot product produces zero or sum of
activations. Based on this observation, we propose two BBS-
enhancing strategies to generate more bi-directional sparse bit
columns in the original weight group, which can be effectively
pruned through a new encoding scheme.

BBS with Rounded Averaging Fig. 4 describes the procedure
of the first BBS-enhancing strategy, rounded averaging, using
a group of 4 weights. Given the target number of sparse
bit columns (4 in this example), Step @ identifies if there
are redundant bit columns that immediately follow the most-
significant column with the same content (e.g., the second bit
column). Removing the redundant columns does not affect the
original weight values as long as the remaining bits are inter-
preted as 2’s complement format. For instance, the decimal
number —57 in 8-bit 2’s complement format is 110001114,
where the most-significant bit is multiplied by —27. Removing
the second bit leads to a 7-bit number 1000111;, which is
still equal to —57 if the most-significant bit is multiplied by
—26. After pruning the redundant column, the required number
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Fig. 5: An example of bit-level binary pruning with zero-point shifting to generate 4 sparse bit columns.

of bi-directional sparse columns to be generated is 3. These
sparse columns are always generated from the lower significant
bits, since modifying higher bit significance will increase the
MSE exponentially. In Step @, this is achieved by calculating
the rounded average of the values represented by the 3 lower
significant bits of original weights. Essentially, this is replacing
the 3 lower significant bits of all weights with a 3-bit constant
while minimizing the MSE. Finally, Step €@ compresses the
original weight group by storing only the remaining 4 bit
columns and an 8-bit encoding metadata.

BBS Compression Encoding The encoding metadata con-
tains 2 bits to specify the number of redundant columns, which
can vary from 0O to 3, and 6 bits to store the BBS constant. The
size of the metadata is chosen empirically. First, although there
may be more than 3 redundant columns in a group, we find that
this probability is extremely low for a large group size (e.g.,
32) which amortizes the cost of metadata. If there are more
than 3 redundant columns, we simply prune the first 3 and
average additional lower significant columns instead. Second,
using more than 6 bits to store the constant is also unnecessary
since pruning 7 columns of an 8-bit tensor leaves only one
effective bit, while pruning 8 columns means replacing all
weights with the same 8-bit constant. Both situations can lead
to unacceptable accuracy loss.

BBS with Zero-point Shifting The rounded column averag-
ing strategy is particularly suitable for pruning a small number
of bit columns, where the lower significant bits within a group
are likely to have similar values. However, for more eager
compression, i.e., pruning many columns, simply taking the
rounded average over many lower significant bits of a group
may lead to large MSE. Here is a simple example: assume we
want to average only the least significant bit within a group of
weights, then some weights will have no error after rounded
averaging. On the other hand, if we average 4 lower significant
bits, then all weights may produce error since any weight can
have a different value in the 4 lower significant bits.

To address this, we propose a second BBS-enhancing strat-
egy called zero-point shifting. The idea is to add an optimal
constant to the original weight group (i.e., shifting its zero-
point), which in turn facilitates the generation of sparse bit
columns in the new weight group while minimizing the MSE.
Fig. 5 exemplifies this procedure for generating 4 sparse bit
columns. In Step @, assume a constant —14 is added to
the original weight, which changes the binary content of all
numbers. Fortunately, the change of binary content makes it
easier to generate zero columns in lower significant bits. As

Algorithm 1: Finding the optimal constant for zero-point shifting.

Input : Weight group: W, BBS constant precision: p,
target number of sparse bit columns: N
Output : Compressed weight: W, metadata: D

1 def Compress(W, N, p):

2 bestMSE = oo ;
3 for constant = —2P~1 to 2~ — 1 do
4 Wimp = Clip (W + constant )
// Get number of redundant columns
5 numRedunCol = GetNumRedunCol(Wpmp)
6 Wimp = RemoveRedunCol(Wiyy,, , numRedunCol )
// Generate zero sparse columns
7 numSparseCol = N — numRedunCol
8 Wimp = GenSparseCol(Wimp , numSparseCol )
9 newMSE = |Wip, — W|?
10 if newMSE < bestMSE then
11 bestMSE = newMSE
12 WC = thp
13 D = {numRedunCol, constant }
14 return W¢, D

shown in Step @, to minimize the MSE when pruning the
4 lower significant bit columns, a number can either directly
zero out the 4 lower bits (e.g., the first number changes from
67 to 64), or round up to the higher bit significance (e.g., the
second number changes from —34 to —32). Finally, Step @
shows the actual values after binary pruning and stores the
new zero-point in the encoding metadata.

Algo. 1 details the algorithm to find the optimal BBS con-
stant for a weight group. Given the precision of the constant
(6-bit in our proposed BBS encoding), the algorithm iterates
through all possible constants (Line 3). In every iteration,
it adds the current constant to the original weight group,
followed by clipping to avoid overflow (Line 4). Next, similar
to rounded averaging, we calculate the number of redundant
columns, and generate required number of sparse columns
while minimizing MSE (Line 5 — 7). Since the best constant
will be stored in the BBS constant region of the metadata, we
only generate zero sparse bit columns (Line 8) so that no extra
encoding information is needed. Lastly, the algorithm checks
whether the current constant results in lower MSE and updates
the weight group and metadata accordingly (Line 9 — 13).

Although Algo. 1 describes the procedure using a single
weight group, the whole algorithm can be vectorized to find the
optimal constant of all groups within a DNN layer simultane-
ously. During real implementation, the algorithm takes several
milliseconds to several seconds per layer (totally ~15s to
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Fig. 6: Normalized KL divergence (lower is better) of different bit-level
pruning techniques with a weight group size of 32.

compress the whole ResNet50) on a single Nvidia RTX 3090
GPU. Hence, the proposed bit-level binary pruning method
exhibits high efficiency and fast compression compared to
prior quantization-oriented algorithms [5], [45], [46].

Rationality of Binary Pruning To demonstrate the rationality
of the proposed two binary pruning strategies compared to
previous zero-bit-only pruning [23], [35], [39], we apply the
three techniques to compress the quantized 8-bit ResNet-34
and ViT-Base. Fig. 6 shows the resulting KL divergence of dif-
ferent methods after pruning 2 and 4 bit columns with a weight
group size of 32. The KL divergence is a common metric to
quantify the difference between two distributions [11], [17].
A lower KL divergence indicates that the compressed weight
tensor can better preserve the information of the original 8-bit
weight, thus achieving better inference accuracy (evaluated in
Section V-B).

Specifically, Fig. 6 shows that when pruning 2 bit columns,
rounded averaging consistently outperforms other approaches.
The reason is that different weights within a group are likely to
have similar values in the lower significant bits. On the other
hand, zero-point shifting yields much lower KL divergence
when pruning 4 bit columns. This is because it can better
exploit the binary characteristics of a weight group to find the
optimal zero point that facilitates the generation of more sparse
bit columns. Furthermore, the proposed binary pruning permits
the existence of both zero and one in any bit significance
after compression, thus are able to preserve all quantization
levels of the original 8-bit weights as opposed to zero-bit-only
pruning. As a result, both of our strategies show significant
improvements when applied to a large number of bit columns.

C. Hardware-aware Global Binary Pruning

So far, we have described binary pruning at the group level.
In order to fully exploit the structured BBS sparsity induced
by binary pruning while mitigating the accuracy loss for the
whole DNN, we propose a hardware-aware global binary
pruning approach at the per-channel granularity. Specifically,

Algorithm 2: Global binary pruning.

Input : Model: M, per-channel scaling factors: S
threshold: 3, hardware parameter: Cg
Output : Pruned model: Mp

1 def GlobalPrune(M, S, 8, Cu):

// Global channel sorting
2 channelSorted = SortChannel(M.channel, S')
3 sensChannel = channelSorted [1 : 3 X Length(S)]
4 for L in M.layers do
// Ensure every layer has a multiple
of Cy sensitive channels
5 layerChannel = SortChannel(L.channel, S[L])
6 numSens = Count( layerChannel N sensChannel )
7 numSens = Ceiling( numSens / C ) X Cy
// Get sensitive channels of layer L
8 topChannel = layerChannel [ 1 : numSens |
9 sensChannel = sensChannel U topChannel
10 normalChannel = M.channel — sensChannel
11 if eagerCompression then
12 | Mp = RoundedAveraging(normalChannel)
13 else
14 L Mp = ZeroPointShifting(normalChannel )
15 return Mp

we find that the pruning sensitivity of different weight channels
can be effectively quantified through magnitude-based proxies.
For example, in convolutional neural networks, the sensitive
filters (i.e., weight channels) usually contain many outliers
with large magnitude. More specifically, in per-channel quan-
tized DNNGs, the sensitive channels of a weight tensor will have
large scaling factors to accommodate these outliers [27], [44].
The per-channel weight quantization has been widely adopted
to achieve high accuracy in state-of-the-art DNN accelerators
[3], [16] and acceleration frameworks such as TensorRT [33].
Therefore, we consider per-channel quantized 8-bit DNNs as
the baseline for global binary pruning '.

To apply global binary pruning, we define a hyperparameter
B to specify the minimum percentage of sensitive weight
channels. Also, we define a hardware-aware parameter C'y,
which specifies the number of weight channels processed
in parallel during hardware acceleration (e.g., Cy = 32 in
our BitVert accelerator). Algo. 2 details the procedure of
global binary pruning. The algorithm starts with global channel
sorting to identify [ sensitive channels based on the scaling
factors (Line 1 — 2). For every layer, we force the number of
sensitive channels to be a multiple of C'y (Line 4 — 9). For
example, in the convolution layer, if the number of sensitive
filters is less than C'y after global channel sorting, then we
simply select C'y filters with the highest scaling factors as
new sensitive channels. Finally, we apply binary pruning to
the remaining channels (Line 10 — 14), which can either prune
a different number of bit columns for different layers [39] or
prune the same number of bit columns for all layers.

!For 8-bit DNNs that do not use per-channel quantization, other channel
importance proxies such as the standard deviation of a weight channel can
also be used to identify sensitive channels.
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Fig. 7: BitVert PE: (a) baseline design, (b) modified design.

The identification of sensitive channels further reduces the
MSE and KL divergence while eliminating the need for
resource-intensive and time-consuming retraining. In most of
our DNN benchmarks (Section V-A), we are able to set
B = 10% or 20% while pruning a large number of bit columns
in the remaining channels. However, since the locations of
sensitive channels are random within a layer, two challenges
arise for efficient hardware acceleration. First, identifying the
location of sensitive channels requires significant indexing
overhead. Second, different precision will cause unaligned
memory access to the weight tensor in DRAM. The pro-
posed BitVert accelerator addresses these challenges through
a channel-reordering mechanism as will be discussed shortly.

IV. BITVERT HARDWARE ARCHITECTURE

To fully exploit the potential of BBS and binary pruning,
we design a bit-serial accelerator, named BitVert, which in-
cludes an efficient PE and scheduler to support BBS with
compression, along with the channel reordering mechanism
for hardware-aware global binary pruning.

A. BitVert Processing Element

The BitVert PE performs bit-serial multiplication between
a group of 16 weights and activations, where weights are
processed bit-serially. Fig. 7(a) shows a baseline BitVert PE
that performs the computation in 5 steps. Step @ receives
16 activations Ay, ..., A15 and selects 8 of them based on
selg, ..., sely that indicates the position of effectual bits in the
weight bit-vector. Step @ performs bit-serial multiplication
using valid signals valy, ..., valy in case there are less than 8
effectual bits (i.e., more than 50% sparsity in the weight bit-
column). A subtractor subtracts the adder tree result from the
sum of activations (Eq. 2), followed by a mux to select the
partial sum. Step @ then shifts the partial sum based on the
column index col_idx that specifies the significance of current
weight bits. The col_idxz can vary across different groups
according to the number of redundant columns during binary
pruning (Section III-B). Recall that BBS compression stores
a constant, whose “0” bit indicates a bit-column of all zero-
bits and “1” bit indicates a bit-column of all one-bits. Hence,
Step @ multiples this constant with the sum of activations.
Finally, the product and bit-serial partial sum are accumulated
in Step @. The activations are reused for multiple clock cycles

selp valp  sel; val;  sel, val,  sels valz=0

' P#RedunCol

m_sel
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Priority Encoder
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Fig. 8: BitVert scheduler.

until all bit-columns belonging to the same weight group are
processed. The control signals such as sel, val, and col_idx
are updated by the BitVert scheduler in every cycle (described
in Section IV-B).

Due to the random distribution of effectual bits within a
weight bit-column, the baseline PE accounts for the worst case
by using a 16:1 mux for every activation term. Since BBS
guarantees at least 50% sparsity in a bit-vector of arbitrary
length, it is possible to reduce the mux cost with a smaller
group size. Based on this observation, we propose a modified
PE that computes bit-serial multiplication within a smaller sub-
group as shown in Fig. 7(b). The sub-group size is a design
parameter that offers a trade-off between area and power.
A smaller sub-group can reduce the mux cost but requires
more subtractors. Therefore, we conduct a PE design space
exploration (Section V-E) and choose a sub-group size of 8
in our design. Furthermore, because the PE supports 50% bit
sparsity, at most 4 activations will be selected within a sub-
group. In the worst case, the selected activations within the
sub-group { Ay, ..., A7} will be {Ay4, A5, Ag, A7}. Hence, we
only need four 5:1 muxes to locate all effectual activations,
where the first mux selects among {Ay, ..., A4}, the second
mux selects among {Aq, ..., A5}, and so on. Using 5:1 muxes
further reduces the PE area compared to 8:1 muxes.

It is also possible to reduce the cost of the BBS multiplier
in Step @. Since BBS can prune a maximum of 6 bit columns
in a weight group (Section III-B), it requires at least 2 cycles
to process the remaining columns when the weight precision
is 8 bits. This allows time-multiplexing the BBS multiplier by
multiplying 3 bits per cycle, followed by a shifter to align the
significance. Section V-E evaluates the reduction in PE area
overhead achieved by the proposed optimization.
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B. BitVert Scheduler

BitVert adopts a low-cost scheduler to control the operation
within a PE, as illustrated in Fig. 8. To control the bit-serial
dot product, the scheduler first identifies whether there are
more zero bits in a bit column. It then sends the original or
inverted bit column to a series of 4 priority encoders. Every
priority encoder receives 5 consecutive bits from the weight
bit column. For example, the first priority encoder receives
{wo, .., wy }, the second receives {ws, .., ws}, and so on. The
encoder detects the location of the first “1” bit in the received
5-bit vector. If exists, it will mask the detected “1” bit and
sends the remaining bits to the next encoder. On the other
hand, if the received 5-bit vector contains all zero-bits, the
encoder will signal val = 0 to disable the corresponding bit-
serial multiplier in the PE.

The scheduler also generates the col_idx signal to control
the shifting of bit-serial multiplier in every PE. When a
new dot product begins, the scheduler receives the BBS
metadata which contains the number of redundant columns,
# RedunCol, in a weight group. The highest bit significance
of the compressed weight group indicates the initial col_idx
and is obtained by subtracting the number of redundant
columns from 7 (i.e., the highest bit significance of uncom-
pressed weight). The col_idx is updated in every cycle by
subtracting one until the bit-serial bot product completes.

C. Channel Reordering

With per-channel global binary pruning, the sensitive and
normal channels will have different precision, resulting in
unaligned memory layout. To address this issue, we adopt a
channel reordering mechanism as shown in Fig. 9(a). There
are 6 weight channels in this example, and channels with the
same precision are grouped together and stored in a memory
chunk to avoid unaligned access. Recall from Section III-C
that the proposed global binary pruning is hardware-aware,
which forces the number of sensitive channels in every layer to
be a multiple of the number of channels processed in parallel.
Therefore, the grouped channels can be efficiently accessed
by BitVert to ensure full hardware utilization.

The channel reordering mechanism has also been explored
in SparTen’s greedy balancing [13]. However, the reordering
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Fig. 10: BitVert accelerator.

criteria is completely different. SparTen is a value-based sparse
DNN accelerator that reorders weight channels based on
their sparsity, while BitVert groups channels based on their
sensitivity to binary pruning. Furthermore, SparTen statically
unshuffles the next layer’s weights in software, which may not
guarantee the correctness when different weight tensors need
to process the same input. Consider the example shown in
Fig. 9(b), where two weight tensors multiply the same input
and generate two output tensors that require element-wise
addition (e.g., as in the residual block of ResNet). SparTen
statically unshuffles the two weight tensors along the K-
dimension to align with the channel order of the previous layer,
but the different channel order between the two weight tensors
remains, which produce two output tensors with different
orders. In this example, the second element of output 2 is
supposed to be added with the third element of output 1, while
a conventional design like SparTen will add the same position
of two output tensors, leading to the wrong result.

To solve the above issue, we propose to unshuffle the output
tensor when writing back to memory. As shown in Fig. 9(c),
after completing the whole dot product between the input
tensor and reordered weight, the outputs are directly restored
to the original channel order. This restoring only needs to know
the original index of every weight channel to calculate the
corresponding memory address for storing the final outputs.
Fortunately, since a weight channel usually contains hundreds
to thousands of values, the overhead of storing one index per
channel is trivial. Moreover, because the same weight channel
can process many inputs (3 in this example) to compute
many outputs simultaneously, these outputs can be unshuffled
together to amortize the cost of channel reordering.

D. BitVert Accelerator

Fig. 10 shows the overall architecture of the BitVert ac-
celerator. The 16 x 32 PE array adopts an output-stationary
dataflow, and exploits both weight-sharing and input-sharing
by processing 32 weight channels and 16 input windows in
parallel. The weight and input buffers are banked to provide
adequate bandwidth for the access from PEs. Outputs are read
out of the PE array and written to the output buffer, one column
at a time. Additionally, BitVert incorporates a metadata buffer
to store BBS compression metadata, and a channel index buffer
to store the original index of weight channels being processed.
The 3 A generator calculates the sum of input activations for



BBS-based bit-serial multiplication inside the PE. Since the
same input group is multiplied by 32 weight channels, the
3 A generator incurs practically no overhead.

V. EVALUATION
A. Experimental Methodology

DNN Benchmarks We evaluate seven representative DNN
models, including CNNs and transformer networks as summa-
rized in Table I. For CNNs, we evaluate VGG-16, ResNet-34
and ResNet-50 on the ImageNet-1K dataset. For transformers,
we choose two vision transformers, ViT-Small and ViT-Base,
as well as BERT on MRPC and SST2 tasks from the GLUE
dataset [41]. We obtain pre-trained CNNs and transformers
from PyTorch Library and HuggingFace, respectively. We then
conduct post-training per-channel quantization to obtain the
baseline 8-bit models, which shows negligible accuracy loss
compared to FP32 models. The 8-bit models are used to evalu-
ate the proposed binary pruning technique and BitVert acceler-
ator. For every model, we apply two levels of binary pruning,
conservative (cons) and moderate (mod), with a weight group
size of 32. For conservative pruning, 10% sensitive channels
are maintained at 8 bits and the remaining channels have 2
bit-columns pruned using the rounded averaging strategy. For
moderate pruning, 20% sensitive channels are maintained at
8 bits and the remaining channels have 4 bit-columns pruned
using the zero-point shifting strategy.

Accelerator Baselines We compare BitVert against six DNN
accelerators, including four bit-serial accelerators: Stripes [19],
Pragmatic [1], Bitlet [26], BitWave [39], and two value-based
accelerators: SparTen [13], ANT [16]. Stripes is an early bit-
serial accelerator that exploits reduced precision for DNN
computation, yet it mainly relies on 16-bit models and does not
consider below-8-bit compression. Therefore, we treat Stripes
as a dense bit-serial accelerator and use our baseline 8-bit
models to evaluate its performance. Pragmatic and Bitlet target
zero-bit skipping during on-chip computation only, while
BitWave enhances structured bit-column sparsity to save both
computation and memory access. SparTen exploits two-sided
value sparsity for DNN acceleration. ANT combines different
datatypes in a unified manner for low-bit DNN acceleration.
We use 6-bit precision to evaluate ANT, a configuration
demonstrated by ANT to maintain acceptable accuracy without
the need of retraining.

Implementation We implement the proposed binary pruning
algotirhm in Pytorch. We design the BitVert accelerator at
RTL-level using SystemVerilog and synthesize it with Syn-
opsys Design Compiler in TSMC 28nm technology to find

Type CNN Transformer
Model VGG-16 ‘ ResNet-34/50 ViT-S/B BERT
Dataset ImageNet MRPC | SST2
FP32 Acc % | 73.36 73.31/76.13 | 80.16 / 84.54 | 90.7 | 91.8
INT8 Acc % | 73.35 73.39/76.17 | 80.05/84.52 | 904 | 91.63

TABLE 1. Summary of evaluated models and datasets.
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Fig. 11: Comparison of accuracy loss between PTQ, BitWave and BBS under
conservative (cons) and moderate (mod) compression.

area. We use Synopsys VCS to generate data-driven activity
factors at 800 MHz for power estimation. The area and power
of on-chip SRAM buffer are modelled with CACTI [4]. To
estimate the DRAM power, we use the DDR3 model from
DRAMSim3 [22]. For the end-to-end performance evaluation
of BitVert and other baseline accelerators, we develop cycle-
accurate simulators to model the execution time. To ensure a
fair comparison, all accelerators are scaled to contain the same
number of multipliers, where an 8-bit multiplier is equivalent
to eight bit-serial multipliers. For on-chip SRAM, we equip
ANT and all bit-serial accelerators with 256 KB activation
buffer and 256 KB weight buffer. For SparTen, we reduce the
size of its on-chip buffer due to the existence of the local
buffer inside every PE.

B. Accuracy Comparison

We first evaluate the accuracy impact of BBS binary pruning
compared to naive PTQ and BitWave’s bit-flip strategy [39] for
compression below 8-bit. When using PTQ for compression,
we follow the widely-used calibration [10] by calibrating the
quantization parameters based on a subset (1024 images) of
the ITmageNet dataset. In particular, conventional PTQ relies
on the calibration dataset to ensure the optimized quantization
parameters and accuracy, while the naive data-free quantiza-
tion leads to significant accuracy degradation (> 10%). On the
contrary, the proposed BBS compresses the model to lower
precision without any calibration dataset. For both PTQ and
BitWave, we use the same setting as BBS by maintaining 20%
and 10% sensitive channels for moderate and conservative
pruning, respectively. This ensures that our accuracy benefits
purely come from the proposed binary pruning.

Fig. 11 shows the accuracy impact of applying different
approaches on the baseline DNNs. On average, the conserva-
tive and moderate binary pruning can compress the memory
footprint of the baseline 8-bit DNNs by 1.29x and 1.66X,
while incurring an accuracy loss of only 0.25% and 0.45%,
respectively. Both BitWave and BBS with moderate pruning
can attain higher accuracy than PTQ. These accuracy im-
provements stem from their ability to exploit fine-grained bit-
level redundancy, thereby preserving more information from
the original 8-bit models. Additionally, the proposed binary
pruning consistently outperforms BitWave. This is because
BBS allows any bit significance to be zero or one, thus
retaining all quantization levels of the 8-bit precision.
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Comparison against ANT We compare the accuracy between
moderate binary pruning and ANT [16]. As shown in Table II,
BBS outperforms ANT in terms of both accuracy and effective
weight bit width. While ANT uses adaptive datatypes for low-
bit quantization, it cannot take the advantage of inherent bit-
level redundancy. On the other hand, the binary pruning fully
exploits the bit-level sparsity to best preserve the original 8-bit
weight distribution, resulting in minimal accuracy degradation.

Comparison against PTQ Works We compare the accuracy
loss between BBS and state-of-the-art PTQ works, including
Microscaling [36] and NoisyQuant [24], on vision transform-
ers. We apply 6-bit weight quantization using the two PTQ
methods while maintaining activation to 8-bit. Table III shows
that the moderate binary pruning outperforms NoisyQuant
with lower memory footprint. Moreover, the conservative
binary pruning has much better accuracy than Microscaling
at similar bit width. Miscroscaling also has an 8-bit meta-
data, which represents the shared exponent for a group of
32 weights. However, the exponent is determined by the
largest value in every group, which forces small values to
become zero due to insufficient operand precision to store the
aligned mantissa. On the other hand, BBS exploits bit-level
redundancy to better preserve the statistical characteristics of

Model BBS (mod) ANT [16]
VGG-16 0.2% (4.32 bits) 0.68% (6 bits)
ResNet-50 0.23% (4.79 bits) 0.89% (6 bits)

TABLE II. Comparison of accuracy loss and weight bit width between
BBS and 6-bit ANT without fine-tuning.
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uncompressed weight, thereby achieving higher accuracy.

C. Accelerator Performance and Energy

Performance Fig. 12 presents the accelerator performance
normalized to that of Stripes. On average, BitVert with conser-
vative and moderate binary pruning achieves 2.48x and 3.03x
speedup compared to Stripes, respectively. These speedups are
attributed to exploiting both balanced BBS and binary pruning
for abundant bit skipping and reduced memory access. Despite
leveraging two-sided value sparsity, SparTen demonstrates
limited performance on transformer-based models due to the
lack of weight value sparsity in 8-bit models and nearly-dense
activations from non-ReLU functions. ANT only explores
reduced value precision but not fine-grained bit-level sparsity,
leading to 1.63x and 1.97x lower speedup than BitVert at
conservative and moderate pruning, respectively. While Prag-
matic and Bitlet utilize variable degrees of bit-level sparsity,
they suffer from workload imbalance and lack of exploration
in further compressing DNNs below 8-bit. This explains why
BitVert outperforms Pragmatic and Bitlet by 1.86 — 2.53x
across all benchmarks. Although BitWave exploits structured

ViT-Small ViT-Base
A Acc | Bits A Acc | Bits
Microscaling [36] 2.49% 6.25 0.33% 6.25
NoisyQuant [24] 2.08% 6 0.64% 6
BBS (cons) 0.75% 6.33 0.05% 6.25
BBS (mod) 0.96% 5.19 0.39% 5.07

TABLE III. Comparison of accuracy loss and weight bit width
between BBS, Microscaling and NoisyQuant.
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number of PE columns (i.e., processing more weight groups in parallel).

bit-column pruning to achieve better performance, its moderate
pruning results in unacceptable accuracy loss (> 1%) on many
DNNs such as ViT-small and Bert-MRPC. Therefore, it has to
reduce the degree of pruning for improved accuracy while
sacrificing performance. Overall, BitVert provides the best
accuracy-performance trade-offs, with up to 1.98x speedup
over BitWave.

Energy Consumption Fig. 13 presents the normalized energy
breakdown of different accelerators. where the on-chip com-
pute energy includes both buffer and core energy. SparTen
demonstrates the poorest energy efficiency primarily due to
its substantial overhead from the sparse bitmask encoding
(12.5% at 8-bit precision) and the expensive hardware required
to exploit sparsity. This overhead is particularly pronounced
in 8-bit DNNs, where value sparsity is inherently scarce.
As a result, SparTen consumes 2.13x and 2.44x higher
energy than BitVert with conservative and moderate pruning,
respectively. Although ANT is able to quantize both activa-
tions and weights, it dissipates higher energy than BitVert
with moderate pruning due to the complicated hardware to
support custom data types. Owing to the balanced BBS-
skipping and substantial reduction in model size, BitVert with
moderate pruning achieves an average energy reduction of
1.39x, 1.43x, 1.54x, and 1.27x over Stripes, Pragmatic,
Bitlet, and BitWave, respectively.

D. Analysis of Load Imbalance

BitVert can leverage the structured BBS for improved load
balance. Fig. 14 demonstrates this with the performance on
ResNet-50 and Bert-MRPC with respect to different number
of PE columns, where every PE column processes a different
weight group. When there are more PE columns, Pragmatic
and Bitlet exhibit a noticeable drop in speedup over Stripes that
does not exploit bit sparsity. For instance, when the number
of PE columns increases from 2 to 32, the speedup of Bitlet
on Bert-MRPC drops from 1.63x to 1.35x. This is because
that processing more weight groups in parallel exacerbates the
load imbalance across PE columns, and the performance is
bottlenecked by the weight group with the lowest bit sparsity.
In contrast, the structured bit sparsity allow BitWave and
BitVert to efficiently scale the performance, thus maintaining
nearly constant speedup over Stripes. Moreover, BitVert always
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Fig. 15: Breakdown of execution cycles w.r.t. the number of PE columns.

achieves the highest performance thanks to the binary pruning
that can induce higher BBS with negligible accuracy loss.
Fig. 15 further details the breakdown of execution time
with respect to the number of PE columns to highlight its
impact on load balance. Since one PE contains many bit-serial
multipliers, intra-PE stall can be caused by a multiplier that
needs to process more effectual bits. On the other hand, the
inter-PE stall arises from variance in bit sparsity across differ-
ent weight groups. As the number of PE columns increases,
Pragmatic and Bitlet experience higher intra-PE and inter-PE
loss, which explains their lower resulting speedup. BitWave
only exploits coarse-grained bit-column sparsity that has much
lower occurrence than fine-grained BBS. Therefore, it shows
lower PE utilization than BitVert. Furthermore, BitVert has
minimal inter-PE stall due to the more balanced distribution
of BBS across different weight groups, thereby achieving
superior performance over other bit-serial accelerators.

E. PE Design Space Exploration

Recall from Section IV-A that the sub-group size within
the BitVert PE offers a trade-off between area and power.
A smaller sub-group has lower mux cost, but increases the
number of subtractors. Furthermore, by exploiting the struc-
tured nature of BBS and its encoding scheme, we are able
to further reduce the PE area by using compact mux and a
smaller BBS multiplier. Hence, we conduct a PE design space
exploration to evaluate the optimal group size and the proposed
optimizations. As shown in Table IV, a sub-group size of
16 without optimization incurs a significant area overhead
of 38.2% compared to the optimized design. In the end, a
sub-group size of 8 with the proposed PE optimization offers
the best trade-off between area and power, which is therefore
adopted in our BitVert accelerator.

Sub-group Without Optimization With Optimization
Size Area (um?) Power (mW) | Area (um?) Power (mW)

16 13423 0.61 971.5 0.53

8 896.6 0.49 739.6 0.45

4 878.7 0.51 786.5 0.47

TABLE IV. PE area and power of BitVert with different sub-group
sizes before and after applying our circuit optimizations.
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F. PE Area and Power Comparison

The BitVert accelerator adopts an area- and energy-efficient
PE with low overhead to support BBS. We compare the PE
design of BitVert and other bit-serial accelerators, with all PEs
containing 8 bit-serial multipliers at 800 MHz target frequency.
Table V summarizes the area and power of different PEs. Bitlet
experiences the highest area and power consumption due to
significant overhead (e.g., a 64-1 mux before every bit-serial
multiplier) for zero bit skipping. Pragmatic needs a variable
shifter to align the bit significance, leading to a larger bit-
serial multiplier and non-trivial overhead. BitWave requires 2’s
complementer to support sign-magnitude arithmetic, resulting
in 1.32x larger area and 1.4x power than Stripes. Moreover,
since BitWave can only leverage coarse-grained bit-column
sparsity, the potential performance improvement is limited.
The proposed BitVert enjoys the optimal trade-off between
performance and hardware cost. Its PE occupies 1.39x area
and consumes 1.22x power compared to Stripes, yet is able
to exploit 50% balanced BBS and binary pruning for efficient
bit skipping and model compression, respectively. Since BBS
naturally exists in a bit-vector with arbitrary length and does
not depend on the operand precision, it provides a promising
solution for future bit-serial computing paradigm.

G. Accuracy-Efficiency Trade-offs

The proposed binary pruning and BitVert can offer good
trade-offs between accuracy and efficiency. To demonstrate
this, we conduct design-space exploration on ResNet-50 with
different pruning ratios. We compare the relationship between
energy-delay product (EDP) and accuracy loss of BitVert and
previous works, including Bitlet, BitWave, ANT and conven-

PE Area (um?) PE Power
Accelerator — -
Multiplier ~ Others Total Ratio (mW)

Stripes [19] 286.3 246.5 532.8 1x 0.37
Pragmatic [1] 319.2 603.9 923.1 1.73x 0.51

Bitlet [26] 223.2 14424  1665.6 3.13X 0.57
BitWave [39] 286.3 416.1 702.4  1.32x 0.49
BitVert (ours) 3324 407.2  739.6 1.39x 0.45

TABLE V. PE area and power of BitVert and prior bit-serial accel-
erators under 28 nm technology and 800 MHz frequency.
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Fig. 17: Comparison between BBS and Olive on compressing Llama-3-8B
weights. The accuracy metric is perplexity, lower is better.

Area Power Norm. Norm.
Accelerator
(um?) (mW) Perf Perf / Area
Olive [15] 291.6 0.18 1x 1x
BitVert (mod) 739.6 0.45 4x 1.58x

TABLE VI. Comparison between Olive and BitVert PEs.

tional PTQ. As shown in Fig. 16, the lower left region indi-
cates a good trade-off between accuracy and EDP. Although
BitWave and ANT propose different algorithm-hardware co-
design approaches for DNN compression and acceleration,
they fail to preserve the original value distribution of the
baseline model and do not efficiently leverage the balanced
bit sparsity that inherently appears in DNNs. In contrast,
binary pruning is able to preserve all quantization levels of
the original DNN. Combining with BBS and efficient hardware
design, BitVert is able to always sit on the Pareto frontier.

H. Applicability to Large Language Models

Large language models (LLMs) have achieved great success
in generative tasks [40], [47]. We compare BBS with a recent
PTQ work Olive [15] for LLM weight compression. We eval-
uate a state-of-the-art LLM, Llama-3-8B [29] on Wikitext [28]
and C4 [8] datasets. For BBS, we apply conservative and
moderate binary pruning to al/l weight channels with a group
size of 32, resulting in an effective weight precision of 6.25
and 4.25 bits, respectively. Fig. 17 shows the accuracy impact
of different compression methods. The moderate BBS pruning
achieves better perplexity than Olive with a similar memory
footprint (4.25 vs. 4 bits), while the conservative BBS pruning
has little perplexity loss compared to the FP32 baseline. To
compare the hardware efficiency, we synthesize the Olive
PE for 4-bit weight and 8-bit activation. Table VI shows
that the proposed BitVert PE with moderate binary pruning
can achieve 1.58x better performance per area compared
to Olive. The benefits of BitVert are twofold. First, Olive
adopts separate datatypes for normal and outlier values, where
the latter has a much wider numerical range. Therefore, the
Olive PE requires a larger multiplier than fixed-point PE to
accommodate outliers. Second, the BitVert PE exploits BBS
to efficiently compute 16 multiplications in 4 cycles under
moderate pruning, while the Olive PE does not leverage bit
sparsity and only computes one multiplication per cycle.



VI. CONCLUSION

In this paper, we introduce BBS, a new concept to exploit
bit-level sparsity in a symmetrical way to prune either zero-
bits or one-bits. BBS pushes the limit of post-training DNN
compression to a new state-of-the-art through binary pruning,
a data-free optimization that generates bi-directional sparse bit
columns inside DNN weights while maximally preserving the
statistical characteristics of the original uncompressed model.
As a result, the proposed binary pruning technique achieves
much higher accuracy compared to previous bit-sparsity-aware
pruning methods. On top of the algorithmic innovation, we
design a bit-serial accelerators named BitVert with an area-
and power-efficient PE to fully mine the potential of BBS.
Compared to prior DNN accelerators, BitVert achieves up
to 3.03x speedup and 2.44x energy saving, while having
negligible accuracy degradation on both vision and language
models with large-scale benchmark datasets.
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