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Abstract

The high power consumption and latency-

sensitive deployments of large language mod-

els (LLMs) have motivated efficiency tech-

niques like quantization and sparsity. Contex-

tual sparsity, where the sparsity pattern is input-

dependent, is crucial in LLMs because the per-

manent removal of attention heads or neurons

from LLMs can significantly degrade accuracy.

Prior work has attempted to model contextual

sparsity using neural networks trained to pre-

dict activation magnitudes, which can be used

to dynamically prune structures with low pre-

dicted activation magnitude. In this paper, we

look beyond magnitude-based pruning criteria

to assess attention head and neuron importance

in LLMs. We develop a novel predictor called

ShadowLLM, which can shadow the LLM be-

havior and enforce better sparsity patterns, re-

sulting in over 15% improvement in end-to-end

accuracy compared to prior methods. In addi-

tion, ShadowLLM achieves up to a 20% speed-

up over the state-of-the-art DejaVu framework.

These enhancements are validated on Llama-2

and OPT models with up to 30 billion parame-

ters. Our code is available at ShadowLLM.

1 Introduction

Large language models (LLMs) are emerging as a

core component of many computing applications.

Their ability to perform in-context learning, i.e., to

perform a task by conditioning on examples with-

out any gradient updates (Brown et al., 2020; Liang

et al., 2022; Min et al., 2022), make them broadly

applicable to numerous applications. Yet, their

large size combined with the latency-sensitivity of

LLM-based applications make them expensive to

deploy (Hoffmann et al., 2022).

A key optimization in LLM deployment is sparsi-

fication, where weights or activations are pruned to

reduce the computation and memory requirements

at run time. Sparsification can either be static,

2000 2250 2500 2750 3000 3250
Latency (ms)

47.5

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

Accuracy vs. Latency on OPT-13B

ShadowLLM
DejaVu-Style

30

40

50

60

70

Sp
ar

sit
y 

(%
)

Figure 1: ShadowLLM uses more accurate pruning cri-

teria and a simpler sparsity predictor compared to De-

jaVu. Its pruning criteria results in a stronger accuracy-

sparsity trade-off (geomean) across seven downstream

evaluation tasks, and its unified predictor improves the

execution latency compared to the layerwise predictor

of DejaVu.

which permanently removes an attention head or

neuron, or contextual, which prunes based on the

current input and context. While some works inves-

tigate task-specific static pruning methods (Bansal

et al., 2022; Michel et al., 2019), they typically

have a large impact on in-context learning, reduc-

ing downstream task accuracy compared to contex-

tual sparsity.

Contextual sparsity can be leveraged at run time

to dynamically prune LLMs, yet it requires making

fast and accurate predictions based on predeter-

mined pruning criteria. These criteria can have

large effects on the overall accuracy and perfor-

mance of the model, as shown in Figure 1. Our

method ShadowLLM uses more accurate pruning

criteria and a unified predictor at the beginning

of the model, which leads to a stronger accuracy-

performance tradeoff compared to the recent work

DejaVu (Liu et al., 2023).

Both of these methods dynamically vary their
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Figure 2: Contextual sparsity prunes neurons and atten-

tion heads based on the context (input) itself. Training a

predictor to dynamically predict the sparsity pattern de-

pendent on the input tokens can improve model quality.
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Figure 3: Heads with higher rank variance, calculated

using GradNorm, indicate greater context dependence.

This context dependence, or contextual sparsity, is most

noticeable in the early and later layers of the OPT-1.3B

model. We measured the variance in rank for each head

across 5000 inputs in seven five-shot evaluation tasks.

sparsity patterns given different inputs using spar-

sity predictors, as shown in Figure 2. The inputs are

passed into a sparsity predictor, which then outputs

the corresponding per-layer masks on the attention

and MLP layers. For DejaVu, the sparsity pattern

is generated with neural-network predictors at each

layer. This gives access to more local information,

but layerwise predictors come with an expensive

run-time cost.

On the model quality side, contextual sparsity

exists if there is a significant variance on head and

neuron importance as the input changes. Figure 3

quantifies this variance on the importance (ranks)

of attention heads on OPT-1.3B across different

inputs. It demonstrates the relative importance

changes significantly, especially in the earlier and

the later layers. Naturally, this variance across

inputs necessitates a dynamic pruning strategy to

ensure an appropriate quality–latency trade-off.

In this work, we explore the effects of different

pruning criteria and predictor design on LLM accu-

racy and latency. Our contributions are summarized

below:

1. Pruning Criteria: We evaluate approaches

from prior pruning research to find head

and neuron pruning criteria that can improve

downstream zero-shot accuracy by 15% with-

out affecting performance.

2. Early Prediction: We use a single predic-

tor at the first layer of the LLM to model the

entire LLM sparsity pattern, improving perfor-

mance by 20.6% without affecting accuracy.

2 Related Work

2.1 Pruning Criteria

Research in the area of designing criteria for prun-

ing neurons has focused on using the activations,

weights, and gradients of neural networks to assess

the relative importance of neurons. Several pruning

criteria have been designed to utilize light-weight

computations, such as a single forward-backward

pass through the network. For instance, some

works use parameter magnitudes as a proxy for

parameter saliency (Frankle and Carbin, 2018; Han

et al., 2015), whereas others use gradient-based

information (LeCun et al., 1989; Hassibi and Stork,

1992; Molchanov et al., 2016; Bansal et al., 2022).

Further, research in Neural Architecture Search

(NAS) adapts these pruning criteria to assess and

compare entire architectures. Such initialization-

based measures like NASWOT (Mellor et al., 2021)

aim to study other properties of the architecture,

and can be used to study neuron importance as

well.

In this work, we adapt several neuron importance

criteria from research in pruning and NAS (Ab-

delfattah et al., 2021; Lopes et al., 2021; Mellor

et al., 2021; Turner et al., 2019) to evaluate which

methods work well for dynamic pruning of large

language models at run time.

2.2 LLM Inference Optimization

Given the recent exponential increase in model

size, significant research has been dedicated to op-

timizing NN inference to decrease compute, power,

and latency. Quantization reduces the precision
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Figure 4: (1) A single predictor to model the entire

LLM improves model performance, while (2) utilizing

gradient based information when evaluating pruning

criteria for neurons improves model quality.

of model parameters, embeddings, and key-value

caches (Zhang et al., 2023; Dotzel et al., 2024;

Zhao et al., 2024). Orthogonal to quantization,

there has been research on accelerating sparse lan-

guage models, which either statically or dynam-

ically trim portions of compute throughout the

model (Hua et al., 2019; Schuster et al., 2022; El-

bayad et al., 2020).

Within these works, DejaVu (Liu et al., 2023)

leverages dynamic sparsity by building predictors

to estimate sparsity patterns. In this paper, we

investigate how the predictor can be improved, both

in terms of performance and model quality.

3 Pruning Criteria

Contextual sparsity requires dynamically under-

standing which neurons to prune (i.e. assessing

the neurons importance relative to an input) and

ranking the neurons relative to each other. Figure

4 depicts how we can use information about the

activations and gradients to prune a LLM for this

contextual sparsity.

Consider a model M and dataset D, containing

prompts (inputs) along with the target output se-

quence. We then wish to define performance on the

dataset as PM(D). Now suppose a subset of the

model C ⊂ M is pruned out. Ideally, we would

like to be able to estimate PM(D) − PM\C(D)
(Bansal et al., 2022).

The optimal pruning strategy is found in Equa-

tion 1. If we look at aggressive attention head prun-

ing of even small transformers (prune 56 out of

64 heads in each layer), exhaustive search in a sin-

gle layer would require 64C8 evaluations, and this

would have to be repeated for every layer, making

the problem intractable.

arg min
C⊂M

PM(D)− PM\C(D) (1)

We can feed a subset of the dataset d ∈ D to

the model M, and calculate the loss L. Further,

we can also get access to the activations (A), as

well as the parameters of the up-projection FFN of

transformer at layer l as θl. The activation at layer

l for the kth head or neuron is denoted as Al,k. The

gradients for these activations are denoted as ∂L
∂Al,k

.

The gradient for the weight parameters of the kth

neuron in the up-projection FFN at layer l is given

as ∂L
∂θl,k

.

Current predictor-based sparsity research investi-

gates the impact of magnitude-based criteria, such

as the L2Norm of the head and neuron activation on

a subset of data d. The intuition is that the heads

that are more activated should be more important.

There is significant research on other criteria for

pruning weights and activations (Molchanov et al.,

2016). Beyond activation magnitude being a cri-

terion for importance, the process of pruning can

also be framed as an optimization problem, with

the goal of approximating the change in loss from

removing parameters. Methods such as optimal

brain damage (OBD) (LeCun et al., 1989) rely on

the gradient of the loss with respect to the feature

maps. While OBD evaluates the second-order term

(Hessian), works such as (Figurnov et al., 2016;

Molchanov et al., 2016) come up with similar met-

rics based on the Taylor expansion of the change

in loss.

In this paper, we evaluate pruning criteria of

varying complexity, that use (1) Activation Meth-

ods, (2) First-Order Gradient (Jacobian) Methods,

(3) Activation + Jacobian Methods, (4) OBD-style

Hessian Methods and (5) Sensitivity-Based Meth-

ods for pruning LLMs.

Among these methods, we find that a gradient-

based sensitivity method we call plainact out-

performs activation-based magnitude methods

adapted in prior dynamic pruning research (Liu

et al., 2023). The L2Norm activation-magnitude

based criterion assesses the importance of neurons

by simply taking the L2 Norm of the head and neu-

ron activation as ||Al,k||2. The plainact criterion

measures the expected sensitivity of the model on

the loss if a head or neuron is removed. For the

head and neuron, this can be described simply as

||Al,k ·
∂L

∂Al,k
||1 and ||θl,k ·

∂L
∂θl,k

||1 respectively. We
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Figure 6: Global pruning outperforms local (per-layer)

pruning strategies using ShadowLLM trained on the

plainact criteria (OPT-1.3B). Global pruning accommo-

dates the varying importance of different layers, allowing

for unbalanced pruning across layers.

perform in-depth ablations across several pruning

criteria in Section 6, and find that plainact empir-

ically performs well as a pruning criteria.

4 Predictors For Neuron Ranking

When deploying a large language model, for a

given input, we will not have access to the activa-

tions or the gradients. Thus, calculating the L2Norm

or plainact criterion is not possible. However, it

is possible to create a calibration dataset of inputs

and their corresponding L2Norm or plainact for

each head and neuron. Such a dataset can be used

to train a predictor, which can take the input and

predict the sparsity pattern of the model at deploy-

ment. Sparsity prediction can reduce the end-to-

end latency of transformer inference by predicting

which operations can be skipped.

We propose a method called ShadowLLM that

uses the first layer’s attention output to predict the

sparsity pattern for the entire model. This reduces

the overhead of repeatedly calling the predictor at

each layer and cuts the total FLOPs of the predictor

by 20%, as shown in Table 1. ShadowLLM uses

the activation of the first layer, which is not pruned,

to predict the sparsity pattern for subsequent layers.

We also explore a Full Sequence ShadowLLM,

which uses a small transformer to take in the entire

input token embedding and predict the sparsity pat-

tern, allowing pruning of the first transformer layer

as well. However, the Full Sequence ShadowLLM

requires an additional 2(2E2+EL2) FLOPs, mak-

ing it as costly as running an entire dense attention

layer and impractical due to the high computational

cost.

DejaVu employs a two-layer MLP, taking the

Predictor FLOPs Equation

DejaVu N (Ep1 + p1(H + F ))
ShadowLLM (Ep1 + p1(N(H + F )))

Model ShadowLLM FLOPs Reduction

OPT-1.3B 19.11%

OPT-30B 19.55%

OPT-175B 19.76%

Table 1: For a transformer with E embedding dimen-

sion, N layers, H heads, F FFN neurons per layer, Shad-

owLLM uses (N-1)Ep1 fewer FLOPs, where p1 is the

predictor hidden dimension. The table also shows the

percentage improvement in predictor FLOPs for Shad-

owLLM vs. DejaVu for different models.

activation from the final token at every alternat-

ing layer and predicting the sparsity of the next

layer. A significant portion of the complexity of

the DejaVu system arises from its asynchronous

look-ahead predictor which can be expensive in

wall clock time despite aggressive optimizations

within DejaVu. The predictor itself only takes 2%

of the total FLOPs for OPT-1.3B, but having a per-

layer predictor adds significant overhead due to

additional GPU kernel launches and memory band-

width constraints, leading to an end-to-end latency

increase of 25% over static sparsity (same sparsity

but fixed, without a predictor).

DejaVu’s per-layer approach to pruning, where

a fixed sparsity is enforced per layer, can be sub-

optimal as true contextual sparsity should be inde-

pendent of layers. To study our proposed predic-

tor designs in a contextual-sparsification setting,

we evaluate the Spearman-ρ (rank correlation co-

efficient) between the relative importance order
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Figure 7: Comparison of the DejaVu-style predictor

trained on a magnitude-based metric (L2Norm) with

ShadowLLM on the best pruning criteria (plainact)

on WikiText2. In both local and global settings, Shad-

owLLM performs well due to better pruning criteria.

of neurons and heads given by the predictor, and

the relative importance order given by the pruning

criterion. Additionally, this is done on a global

head-ranking task. From Figure 5, we see that

DejaVu-style layer-wise predictors are not trained

for global pruning. We find that Full Seq. Shad-

owLLM performs similarly to ShadowLLM, but

with a significant increase in overall FLOPs.

To analyze the ability of ShadowLLM predictors

to assess neuron importance in a global and local

(per-layer) setting, we train ShadowLLM predic-

tors for plainact across all seven down-stream

tasks in the 5-shot setting, with a per-layer (local)

output normalization scheme. We then evaluate the

WikiText2 perplexity 1 of the OPT-1.3B model as

we increase sparsity for both the global and local

(per-layer) pruning strategies. For local pruning,

every layer achieves the target sparsity, and relative

importance are only compared intra-layer. In Fig-

ure 6, we find that ShadowLLM is able to preserve

perplexity in both global and local cases. However,

we find that global pruning generally performs bet-

ter than per-layer pruning. This can be attributed to

the fact that some layer heads are more important

than others, and forcing equal pruning ratios for

all layers may cause over-parameterization in some

1For effective context-sparsity evaluation, perplexity calcu-
lations are performed on a per-document basis, differing from
standard concatenation methods; see Section B for details.
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Figure 8: Consistent accuracy improvement of Shad-

owLLM over DejaVu across seven downstream eval

tasks in the zero-shot shot setting.

Method Latency (ms) Accuracy (%)

Static 2014 55.34

Dense 2609 58.32

DejaVu 2981 59.28

ShadowLLM 2562 61.19

Table 2: Latency and accuracy comparison of different

methods at 50% sparsity. Average zero-shot accuracy

across 7 downstream tasks reported on OPT-13B.

layers and more important head to be pruned out

from an under-parameterized layer.

5 Evaluation

We find that the activation-gradient based pruning

criteria that we use in ShadowLLM are effective

for downstream evaluation tasks as well as perplex-

ity. Further, we demonstrated in Section 4 that

ShadowLLM can predict the sparsity pattern for

the entire LLM given just the input to the first layer.

We find that the accuracy and predictability trade-

off is excellent for the plainact criterion, whereas

other criteria were harder to learn due to outliers

and high variance. In this section, we evaluate the

effectiveness of combining ShadowLLM predictor

design with the plainact criterion, compared to

our implementation of DejaVu-style2 predictors,

trained on a magnitude based pruning criteria.

5.1 Experimental Setup

We evaluate the perplexity for the WikiText2

(Merity et al., 2016) language modeling dataset,

and accuracy on 7 few-shot downstream tasks:

2To enable comparisons across pruning criteria, we have
implemented our own DejaVu-style predictor in ShadowLLM.
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Figure 9: Gradient-informed criteria (Plainact) im-

proves global pruning on Llama-2-7b, resulting in an

end-to-end perplexity improvement on WikiText2.
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Figure 10: Average time per-inference with prompt

length = 128 and generation length = 128 across model

sizes. Sparsity is around 50%.
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Figure 11: Average generation time on OPT-30B with

prompt length = 128 as generation length increases. Spar-

sity is around 50%.
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Figure 12: Per-token latency of OPT-30b with prompt

length = 128 and generation length = 128 as sparsity

increases.

PIQA (Bisk et al., 2020), COPA (Gordon et al.,

2012), OpenBookQA (Mihaylov et al., 2018),

Winogrande (Sakaguchi et al., 2019), RTE (Gi-

ampiccolo et al., 2007), HellaSwag (Zellers et al.,

2019), and ARC-Easy (Clark et al., 2018) with

lm-eval-harness (Gao et al., 2023).

Our ablation studies to identify good pruning

criteria, as well as test the efficacy of predictors is

conducted on OPT-1.3B. Further, local and global

pruning strategies are tested on OPT-13B and OPT-

30B, and global pruning on Llama-2-7b (Touvron

et al., 2023). Our downstream evaluation across

seven tasks is reported on OPT-13B.

5.2 Model Quality

In Figure 7, we train the DejaVu-style and Shad-

owLLM predictors on their respective pruning crite-

rion (L2Norm and plainact respectively) on 2720

input-output examples across 7 downstream tasks

in the five-shot setting. The perplexity is evaluated

in a local and global pruning setting on WikiText2.

Global pruning enables better model quality

- sparsity trade-off. Figure 9 compares the

perplexity-sparsity trade-off on Llama-2-7b model,

with Plainact significantly improving perplexity.

Further, in Figure 8 we evaluate OPT-13B by train-

ing the ShadowLLM and DejaVu-style predictors

in the same setting, and doing downstream eval-

uation in the zero-shot setting across seven tasks.

We show that there is a consistent accuracy im-

provement across tasks, attributed to better pruning

criteria.

We also validate these findings on OPT-13B in

Figure 17 in the global pruning setting. These im-

provements are largely due to an improved pruning

criterion, emphasizing the importance of pruning

criteria that go beyond magnitude based strategies.

From Table 2 we see that ShadowLLM with the

plainact metric delivers 14% lower latency with

1.91% higher accuracy than DejaVu-style predictor.

5.3 Performance

DejaVu-style predictors can also be trained on bet-

ter pruning criteria (plainact), giving improve-

ments in accuracy. However, a single predictor can

model these criteria and also offer improved end-
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setting improves its ability to identify important heads

and neurons.
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Figure 14: plainact is a good pruning criterion, and

is also easy to learn. grasp has ≈ 4× more outliers in

proxy scores, making prediction more difficult.

to-end latency due to early prediction. It is also

easier to integrate, without concerns for continuous

pipelining and scheduling of a layer-wise predic-

tor. In this section, we investigate the performance

improvement ShadowLLM delivers by simplifying

the DejaVu sparsity predictor implementation, and

compare with DejaVu (Liu et al., 2023)

DejaVu implements hardware-efficient sparsity

acceleration, which employs kernel fusion and

memory coalescing to reduce overhead of the

sparse matrix-vector multiply. These techniques

already yield a 2× speed-up over prior SoTA Faster-

Transformer implementations. However, the inter-

leaved sparsity predictors have a significant over-

head, leading to a performance degradation of over

25% with only a 2% increase in total FLOPs.

We implement the ShadowLLM predictor along

with the prior enhancements introduced by DejaVu

and conduct our performance experiments on up

to 4 A100 GPUs. In Figure 10, we measure the

end-to-end time taken for a generation length of

128 tokens at 50% sparsity and observe an average

16.2% improvement over DejaVu. Figure 11 shows

a consistent improvement in generation time as

output tokens increase. Further, Figure 12 shows

that ShadowLLM is on average 21.25% faster than

DejaVu in the decode phase specifically. Finally,

we profile model sizes from 1.3B to 66B, observing

up to a 21.3% improvement in time per-inference.

6 Analysis

Overview of Pruning Criteria

In Section 3, we categorize pruning criteria into

five primary methods: Activation Methods, First-

Order Gradient (Jacobian) Methods, Activation +

Jacobian Methods, OBD-style Hessian Methods,

and Sensitivity-Based Methods.

We begin by looking at activation magnitude

based pruning methods akin to (Frankle and Carbin,

2018; Han et al., 2015). One such criterion, the

L2Norm of the kth attention head and FFN neu-

ron is simply ||Al,k||2. More advanced methods

that use gradients may provide better information

about neuron importance. GradNorm of the kth at-

tention head and FFN neuron is defined simply as

|| ∂L
∂Al,k

||2 and || ∂L
∂θl,k

||2 respectively. In our anal-

ysis, we found that methods that combine both

the activation and Jacobian (Gradient) information

perform the best. The plainact criterion adapted

from (Bansal et al., 2022; Molchanov et al., 2016)

can be defined as ||Al,k ·
∂L

∂Al,k
||1 and ||θl,k ·

∂L
∂θl,k

||1
respectively. Similar to plainact the fisher

criterion can be defined as ï(Al,k · ∂L
∂Al,k

)2ð and

ï(θl,k ·
∂L
∂θl,k

)2ð respectively, denoting a similar cri-

terion but aggregated in a different manner.

The grasp criterion approximates the change in

gradient norm, which requires the Hessian H and

is calculated as || − (Hl,k ·
∂L

∂Al,k
) » Al,k||1. This

OBD-style Hessian method (Wang et al., 2020)

worked well in downstream-evaluation tasks, but

did not deliver good perplexity.

NASWOT (Mellor et al., 2021) introduces a sen-

sitivity based method called jacov. The jacov cri-

terion measures the covariance of the Jacobian ma-

trices across a mini-batch of data. epenas (Lopes

et al., 2021) follows the same principles as jacov.

Naturally, as jacov rely on aggregated Jacobian

matrices over a batch of data, this criterion cannot

trivially exist for input-dependent (contextual spar-

sity) use-case. To test these criteria, we register

the activations for the heads and neurons across

the entire downstream task dataset, and generate a
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Figure 15: For every criterion, the corresponding aggre-

gated neuron importance is used to conduct static pruning

of the LLM at test time, and the average accuracy is re-

ported.
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Figure 16: The aggregate importance score per neuron

is used to conduct static pruning of the LLM. fisher

and plainact preserve model quality better than other

criteria. Dashed black line is dense baseline.

single aggregate head importance.

We evaluate the effectiveness of several pruning

criteria by using them as metrics for removing less

important heads/neurons. Our analysis includes

evaluating the perplexity for the WikiText2 (Merity

et al., 2016) language modeling dataset and accu-

racy on 7 few-shot downstream tasks.

Enhancing Pruning with Few-Shot Examples

In Figure 13, we calculate the fisher criteria for

every neuron and head on 2720 input-output ex-

amples from the downstream tasks for the 0-shot,

3-shot, and 5-shot settings. We average the criteria

for each neuron and head across these examples

and evaluate WikiText2 perplexity as model spar-

sity is increased. The results indicate that providing

more in-context examples when registering the cri-

teria improves model quality during pruning.

Advantages of Gradient-Informed Criteria

In Figure 15, we use the task pruning criterion aver-

aged over their respective examples for each head

and neuron to do a static sparsification of the OPT-

1.3B model and test it in the 0-shot setting. We

report the mean accuracy across the downstream

tasks for each pruning criteria. We find that jacov

is a stable criteria to preserve model performance

in the static case. However, jacov does not have

a context-dependent equivalent, as it relies on the

covariance of Jacobian matrices across examples.

We evaluate these proxies in Figure 16, and find

that fisher and plainact preserve model quality

well, with jacov performing worse. jacov might

have higher task-dependence for static pruning, and

does not translate to better general model quality.

Learning Pruning Criteria with Predictors

While we can shadow activation magnitudes with

a predictor, we need to balance finding the best

pruning criteria for assessing neuron importance,

ensuring the criteria is easy to learn. To identify

such a criteria, we measure each criteria for each

head and neuron on 2720 input-output examples

across the 7 downstream tasks in a 5-shot setting.

We train our predictor to use the output of the first

attention layer’s last sequence index to predict per-

head and neuron importance. Figure 14 reports

the average Spearman-ρ rank correlation on 680

input-output examples. From Figure 16, we see

that fisher delivers the best perplexity for up to

50% sparsity, but delivers a Spearman-ρ of under

0.7. Similarly, grasp is difficult to predict due to

its high range and outliers. In contrast, we find

that the plainact criterion is easy to predict and

performs well in a contextual setting.

7 Conclusion

In this paper, we present ShadowLLM, a novel ap-

proach that realizes contextual sparsity in large lan-

guage models by using a gradient-informed prun-

ing criterion. We demonstrate that these criteria

can be effectively modeled by a single predictor

at the first layer of the LLM, eliminating the need

for per-layer prediction. Our findings, validated on

models with up to 30 billion parameters, show that

relatively small predictors can model contextual

sparsity in LLMs. This approach, combining an

improved pruning criterion with an early predictor,

enables over 15% improvement in accuracy with-

out a latency trade-off and a 20% improvement in

performance across different model sizes.
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Limitations

In this paper, we work towards significantly sim-

plifying the predictor design, and study several

pruning criteria. However, our study is limited

to smaller models, up to 30B parameters on only

OPT style models. Further, criteria like nwot are

designed for the ReLU activation function, which

may not be directly applicable to attention maps.

We profile these for completeness regardless, how-

ever, more research in pruning criteria is needed. Fi-

nally, we train predictors on less than 10000 input-

output examples, more examples may enable better

sparsity pattern modeling.
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A Appendix

A.1 Predictor Design

Hyper-parameter Value

Hidden Layers 1

Hidden Layer Neurons 2048

Activation Function ReLU

Input Dimension Model Embedding

Output Dimension Number Of Neurons

Number of Epochs 100

Batch Size 32

Optimizer AdamW

Learning Rate 0.001

Scheduler CosineAnnealingLR

Criterion MSELoss

Table 3: Hyperparameters for DejaVu-style and Shad-

owLLM predictor training.

A.2 Additional Pruning Criteria

In this section, we provide a more complete view

of the proxies we investigate and their results.

While some criteria were designed for activa-

tions (Fisher), whereas others for weights (snip),

we extend the pruning criteria to both activations

for attention heads and weights for FFN neurons. A

side-effect of this is that criteria such as plainact

and fisher look similar, but are aggregated in dif-

ferent ways (L1 Norm versus Mean). We maintain

both variants in our analysis for completeness.

Similar to jacov, epenas is also a viable method

for non-contextual sparsity. epenas measures the

intra- and inter-class correlations of the Jacobian

matrices. We modify epenas by treating next-

tokens as the class that the Jacobians are registered

as.
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Figure 17: A better criteria (plainact) with the Shad-

owLLM predictor improves perplexity-sparsity trade-off

on WikiText2.

Model Ours Reported

(Lin et al., 2024)

Llama2-7B 8.82 5.47

OPT-1.3B 16.4 14.6

OPT-13B 11.5 10.1

OPT-30B 10.7 9.56

Table 4: Comparison of our perplexity and reported

perplexity for various models. Following (Bansal et al.,

2022), we calculate per-document perplexity, which

increases model perplexity.

We also investigate sensitivity-based methods,

such as snip (Lee et al., 2018), defined in Equation

2, which investigates how removing a single neuron

in isolation will impact the loss.

snip = lim
ε→0

∣

∣

∣

∣

Lθ − Lθ+εδq

ε

∣

∣

∣

∣

(2)

Further, we adapt proxies from neural architec-

ture search for neuron saliency. The NASWOT

(Mellor et al., 2021) paper introduces two criteria,

the first we refer to as nwot. nwot calculates the

determinant of a Hamming distance-based kernel

matrix, which measures the similarity of binary

codes that result after the ReLU, given an input in

the neural network. This uses the intuition that if

two similar inputs lie within the same linear region

of the network, they will be difficult to disentangle.

nwot is defined in Equation 3.

nwotl,k = log

(

1

seqlen

seqlen
∑

i=1

(1−Ai
l,k)

2

)

(3)

B On Perplexity Calculation

In our experiments, we evaluate the perplexity of

language models on the WikiText-2 dataset by com-

puting the log-likelihood of each document in-

dividually, rather than concatenating all doc-

uments into a single continuous text stream.

Specifically, we process each document separately,

calculating perplexity within the that document’s

context. This approach limits the context to within

individual documents, without leveraging cross-

document dependencies that the standard concate-

nation method from reference works provide (e.g.

"\n\n".join(wikitext_docs[’text’])). As a

result, our perplexity scores reflect the model’s per-

formance on isolated text segments, which may
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Figure 18: Each pruning criterion is measured and aver-

aged per neuron and head over 3500 training examples

in a 5-shot setting across 7 downstream tasks. For every

criterion, the corresponding aggregated neuron and head

importance is used to conduct static pruning of the LLM

at test time. For each criterion, mean of accuracy is re-

ported as sparsity is increased.
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Figure 19: Each pruning criterion is measured and aver-

aged per neuron and head over 2720 training examples

in a 5-shot setting from all downstream tasks. This ag-

gregate importance score per neuron and head is used to

conduct static pruning of the LLM when testing perplex-

ity on WikiText2. fisher and plainact preserve model

quality better than other criteria.

differ from scores obtained using the more conven-

tional concatenated approach. While this method-

ology deviates from standard practice, it offers a

consistent evaluation of the model’s capabilities

within document-level context, aligning with the

setting considered in our study as well as the in-

context learning literature we build our study on

(Bansal et al., 2022). We quantify this difference

in perplexities in Table 4.
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Figure 20: Aggregated pruning criteria scores per-head for the OPT-1.3B model, over the ARC-Easy training task in

a five-shot setting.
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Figure 21: Aggregated pruning criteria scores per-head for the OPT-1.3B model, over the ARC-Easy training task in

a five-shot setting.
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