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Abstract

The high power consumption and latency-
sensitive deployments of large language mod-
els (LLMs) have motivated efficiency tech-
niques like quantization and sparsity. Contex-
tual sparsity, where the sparsity pattern is input-
dependent, is crucial in LLMs because the per-
manent removal of attention heads or neurons
from LLMs can significantly degrade accuracy.
Prior work has attempted to model contextual
sparsity using neural networks trained to pre-
dict activation magnitudes, which can be used
to dynamically prune structures with low pre-
dicted activation magnitude. In this paper, we
look beyond magnitude-based pruning criteria
to assess attention head and neuron importance
in LLMs. We develop a novel predictor called
ShadowLLM, which can shadow the LLM be-
havior and enforce better sparsity patterns, re-
sulting in over 15% improvement in end-to-end
accuracy compared to prior methods. In addi-
tion, ShadowLLLM achieves up to a 20% speed-
up over the state-of-the-art DejaVu framework.
These enhancements are validated on Llama-2
and OPT models with up to 30 billion parame-
ters. Our code is available at ShadowLLM.

1 Introduction

Large language models (LLMs) are emerging as a
core component of many computing applications.
Their ability to perform in-context learning, i.e., to
perform a task by conditioning on examples with-
out any gradient updates (Brown et al., 2020; Liang
et al., 2022; Min et al., 2022), make them broadly
applicable to numerous applications. Yet, their
large size combined with the latency-sensitivity of
LLM-based applications make them expensive to
deploy (Hoffmann et al., 2022).

A key optimization in LLM deployment is sparsi-
fication, where weights or activations are pruned to
reduce the computation and memory requirements
at run time. Sparsification can either be static,
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Figure 1: ShadowLLM uses more accurate pruning cri-
teria and a simpler sparsity predictor compared to De-
jaVu. Its pruning criteria results in a stronger accuracy-
sparsity trade-off (geomean) across seven downstream
evaluation tasks, and its unified predictor improves the
execution latency compared to the layerwise predictor
of DejaVu.

which permanently removes an attention head or
neuron, or contextual, which prunes based on the
current input and context. While some works inves-
tigate task-specific static pruning methods (Bansal
et al., 2022; Michel et al., 2019), they typically
have a large impact on in-context learning, reduc-
ing downstream task accuracy compared to contex-
tual sparsity.

Contextual sparsity can be leveraged at run time
to dynamically prune LLMs, yet it requires making
fast and accurate predictions based on predeter-
mined pruning criteria. These criteria can have
large effects on the overall accuracy and perfor-
mance of the model, as shown in Figure 1. Our
method ShadowLLLM uses more accurate pruning
criteria and a unified predictor at the beginning
of the model, which leads to a stronger accuracy-
performance tradeoff compared to the recent work
DejaVu (Liu et al., 2023).

Both of these methods dynamically vary their
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Figure 2: Contextual sparsity prunes neurons and atten-
tion heads based on the context (input) itself. Training a
predictor to dynamically predict the sparsity pattern de-
pendent on the input tokens can improve model quality.

sparsity patterns given different inputs using spar-
sity predictors, as shown in Figure 2. The inputs are
passed into a sparsity predictor, which then outputs
the corresponding per-layer masks on the attention
and MLP layers. For DejaVu, the sparsity pattern
is generated with neural-network predictors at each
layer. This gives access to more local information,
but layerwise predictors come with an expensive
run-time cost.

On the model quality side, contextual sparsity
exists if there is a significant variance on head and
neuron importance as the input changes. Figure 3
quantifies this variance on the importance (ranks)
of attention heads on OPT-1.3B across different
inputs. It demonstrates the relative importance
changes significantly, especially in the earlier and
the later layers. Naturally, this variance across
inputs necessitates a dynamic pruning strategy to
ensure an appropriate quality—latency trade-off.

In this work, we explore the effects of different
pruning criteria and predictor design on LLM accu-
racy and latency. Our contributions are summarized
below:

1. Pruning Criteria: We evaluate approaches
from prior pruning research to find head
and neuron pruning criteria that can improve
downstream zero-shot accuracy by 15% with-
out affecting performance.

2. Early Prediction: We use a single predic-
tor at the first layer of the LLM to model the
entire LLM sparsity pattern, improving perfor-
mance by 20.6% without affecting accuracy.

Head Activation Rank Variance of OPT-1.3B
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Figure 3: Heads with higher rank variance, calculated
using GradNorm, indicate greater context dependence.
This context dependence, or contextual sparsity, is most
noticeable in the early and later layers of the OPT-1.3B
model. We measured the variance in rank for each head
across 5000 inputs in seven five-shot evaluation tasks.

2 Related Work

2.1 Pruning Criteria

Research in the area of designing criteria for prun-
ing neurons has focused on using the activations,
weights, and gradients of neural networks to assess
the relative importance of neurons. Several pruning
criteria have been designed to utilize light-weight
computations, such as a single forward-backward
pass through the network. For instance, some
works use parameter magnitudes as a proxy for
parameter saliency (Frankle and Carbin, 2018; Han
et al., 2015), whereas others use gradient-based
information (LeCun et al., 1989; Hassibi and Stork,
1992; Molchanov et al., 2016; Bansal et al., 2022).
Further, research in Neural Architecture Search
(NAS) adapts these pruning criteria to assess and
compare entire architectures. Such initialization-
based measures like NASWOT (Mellor et al., 2021)
aim to study other properties of the architecture,
and can be used to study neuron importance as
well.

In this work, we adapt several neuron importance
criteria from research in pruning and NAS (Ab-
delfattah et al., 2021; Lopes et al., 2021; Mellor
et al., 2021; Turner et al., 2019) to evaluate which
methods work well for dynamic pruning of large
language models at run time.

2.2 LLM Inference Optimization

Given the recent exponential increase in model
size, significant research has been dedicated to op-
timizing NN inference to decrease compute, power,
and latency. Quantization reduces the precision

19155



ShadowlLLM DejaVu
Attention
:il_jA ; ) IC']( HAHQ Predictor
2 MLP,
o [e)e} O (e}
o ] .
Lo ] e
-_;é %Aﬁ oooo D HAH2 Predictor
e ] ]
Z_jA oo MEPo HAH2 Predictor
2 Attention,
o o

A Quantitative Approach......

Figure 4: (1) A single predictor to model the entire
LLM improves model performance, while (2) utilizing
gradient based information when evaluating pruning
criteria for neurons improves model quality.

of model parameters, embeddings, and key-value
caches (Zhang et al., 2023; Dotzel et al., 2024;
Zhao et al., 2024). Orthogonal to quantization,
there has been research on accelerating sparse lan-
guage models, which either statically or dynam-
ically trim portions of compute throughout the
model (Hua et al., 2019; Schuster et al., 2022; El-
bayad et al., 2020).

Within these works, DejaVu (Liu et al., 2023)
leverages dynamic sparsity by building predictors
to estimate sparsity patterns. In this paper, we
investigate how the predictor can be improved, both
in terms of performance and model quality.

3 Pruning Criteria

Contextual sparsity requires dynamically under-
standing which neurons to prune (i.e. assessing
the neurons importance relative to an input) and
ranking the neurons relative to each other. Figure
4 depicts how we can use information about the
activations and gradients to prune a LLM for this
contextual sparsity.

Consider a model M and dataset D, containing
prompts (inputs) along with the target output se-
quence. We then wish to define performance on the
dataset as Prq(D). Now suppose a subset of the
model C C M is pruned out. Ideally, we would
like to be able to estimate Prq(D) — Pagpc(D)
(Bansal et al., 2022).

The optimal pruning strategy is found in Equa-
tion 1. If we look at aggressive attention head prun-
ing of even small transformers (prune 56 out of
64 heads in each layer), exhaustive search in a sin-
gle layer would require 4Cy evaluations, and this

would have to be repeated for every layer, making
the problem intractable.

arg min - Pag(D) = Prne(D) (0

We can feed a subset of the dataset d € D to
the model M, and calculate the loss £. Further,
we can also get access to the activations (A), as
well as the parameters of the up-projection FFN of
transformer at layer [ as ;. The activation at layer
[ for the k™ head or neuron is denoted as Ap .. The

gradients for these activations are denoted as az—fk.

The gradient for the weight parameters of the k™

neuron in the up-projection FFN at layer [ is given
oL
as g5
I,k

Current predictor-based sparsity research investi-
gates the impact of magnitude-based criteria, such
as the L2Norm of the head and neuron activation on
a subset of data d. The intuition is that the heads
that are more activated should be more important.
There is significant research on other criteria for
pruning weights and activations (Molchanov et al.,
2016). Beyond activation magnitude being a cri-
terion for importance, the process of pruning can
also be framed as an optimization problem, with
the goal of approximating the change in loss from
removing parameters. Methods such as optimal
brain damage (OBD) (LeCun et al., 1989) rely on
the gradient of the loss with respect to the feature
maps. While OBD evaluates the second-order term
(Hessian), works such as (Figurnov et al., 2016;
Molchanov et al., 2016) come up with similar met-
rics based on the Taylor expansion of the change
in loss.

In this paper, we evaluate pruning criteria of
varying complexity, that use (1) Activation Meth-
ods, (2) First-Order Gradient (Jacobian) Methods,
(3) Activation + Jacobian Methods, (4) OBD-style
Hessian Methods and (5) Sensitivity-Based Meth-
ods for pruning LLMs.

Among these methods, we find that a gradient-
based sensitivity method we call plainact out-
performs activation-based magnitude methods
adapted in prior dynamic pruning research (Liu
et al., 2023). The L2Norm activation-magnitude
based criterion assesses the importance of neurons
by simply taking the L2 Norm of the head and neu-
ron activation as ||A; x||2. The plainact criterion
measures the expected sensitivity of the model on
the loss if a head or neuron is removed. For the
head and neuron, this can be described simply as
|| Apk - ai—ﬁkﬂl and |6, - %Hl respectively. We
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Figure 5: Head importance ranking ability of different
sparsity predictors on 500 queries across 7 downstream
tasks. A single predictor at the start of the transformer
can accurately model the global relative head and neuron
importance.

perform in-depth ablations across several pruning
criteria in Section 6, and find that plainact empir-
ically performs well as a pruning criteria.

4 Predictors For Neuron Ranking

When deploying a large language model, for a
given input, we will not have access to the activa-
tions or the gradients. Thus, calculating the L2Norm
or plainact criterion is not possible. However, it
is possible to create a calibration dataset of inputs
and their corresponding L2Norm or plainact for
each head and neuron. Such a dataset can be used
to train a predictor, which can take the input and
predict the sparsity pattern of the model at deploy-
ment. Sparsity prediction can reduce the end-to-
end latency of transformer inference by predicting
which operations can be skipped.

We propose a method called ShadowLLLM that
uses the first layer’s attention output to predict the
sparsity pattern for the entire model. This reduces
the overhead of repeatedly calling the predictor at
each layer and cuts the total FLOPs of the predictor
by 20%, as shown in Table 1. ShadowLLM uses
the activation of the first layer, which is not pruned,
to predict the sparsity pattern for subsequent layers.

We also explore a Full Sequence ShadowLLM,
which uses a small transformer to take in the entire
input token embedding and predict the sparsity pat-
tern, allowing pruning of the first transformer layer
as well. However, the Full Sequence ShadowLLM
requires an additional 2(2E2 + E'L?) FLOPs, mak-
ing it as costly as running an entire dense attention
layer and impractical due to the high computational
cost.

DejaVu employs a two-layer MLP, taking the

Perplexity vs Sparsity on WikiText2
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Figure 6: Global pruning outperforms local (per-layer)
pruning strategies using ShadowLLM trained on the
plainact criteria (OPT-1.3B). Global pruning accommo-
dates the varying importance of different layers, allowing
for unbalanced pruning across layers.

Predictor | FLOPs Equation
DejaVu N (Ep1+pi(H+F))
ShadowLLM (Ep1 + m(N(H + F)))
Model ‘ ShadowLLM FLOPs Reduction
OPT-1.3B 19.11%
OPT-30B 19.55%
OPT-175B 19.76%

Table 1: For a transformer with E embedding dimen-
sion, N layers, H heads, F FFN neurons per layer, Shad-
owLLM uses (N-1)Ep; fewer FLOPs, where p; is the
predictor hidden dimension. The table also shows the
percentage improvement in predictor FLOPs for Shad-
owLLM vs. DejaVu for different models.

activation from the final token at every alternat-
ing layer and predicting the sparsity of the next
layer. A significant portion of the complexity of
the DejaVu system arises from its asynchronous
look-ahead predictor which can be expensive in
wall clock time despite aggressive optimizations
within DejaVu. The predictor itself only takes 2%
of the total FLOPs for OPT-1.3B, but having a per-
layer predictor adds significant overhead due to
additional GPU kernel launches and memory band-
width constraints, leading to an end-to-end latency
increase of 25% over static sparsity (same sparsity
but fixed, without a predictor).

DejaVu’s per-layer approach to pruning, where
a fixed sparsity is enforced per layer, can be sub-
optimal as true contextual sparsity should be inde-
pendent of layers. To study our proposed predic-
tor designs in a contextual-sparsification setting,
we evaluate the Spearman-p (rank correlation co-
efficient) between the relative importance order
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Figure 7: Comparison of the DejaVu-style predictor
trained on a magnitude-based metric (L2Norm) with
ShadowLLLM on the best pruning criteria (plainact)
on WikiText2. In both local and global settings, Shad-
owLLM performs well due to better pruning criteria.

of neurons and heads given by the predictor, and
the relative importance order given by the pruning
criterion. Additionally, this is done on a global
head-ranking task. From Figure 5, we see that
DejaVu-style layer-wise predictors are not trained
for global pruning. We find that Full Seq. Shad-
owLLM performs similarly to ShadowLLM, but
with a significant increase in overall FLOPs.

To analyze the ability of ShadowLLM predictors
to assess neuron importance in a global and local
(per-layer) setting, we train ShadowLLM predic-
tors for plainact across all seven down-stream
tasks in the 5-shot setting, with a per-layer (local)
output normalization scheme. We then evaluate the
WikiText2 perplexity ! of the OPT-1.3B model as
we increase sparsity for both the global and local
(per-layer) pruning strategies. For local pruning,
every layer achieves the target sparsity, and relative
importance are only compared intra-layer. In Fig-
ure 6, we find that ShadowLLM is able to preserve
perplexity in both global and local cases. However,
we find that global pruning generally performs bet-
ter than per-layer pruning. This can be attributed to
the fact that some layer heads are more important
than others, and forcing equal pruning ratios for
all layers may cause over-parameterization in some

"For effective context-sparsity evaluation, perplexity calcu-
lations are performed on a per-document basis, differing from
standard concatenation methods; see Section B for details.
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Figure 8: Consistent accuracy improvement of Shad-
owLLM over DejaVu across seven downstream eval
tasks in the zero-shot shot setting.

Method Latency (ms) ‘ Accuracy (%)
Static 2014 55.34
Dense 2609 58.32
DejaVu 2981 59.28
ShadowLLM 2562 61.19

Table 2: Latency and accuracy comparison of different
methods at 50% sparsity. Average zero-shot accuracy
across 7 downstream tasks reported on OPT-13B.

layers and more important head to be pruned out
from an under-parameterized layer.

5 Evaluation

We find that the activation-gradient based pruning
criteria that we use in ShadowLLM are effective
for downstream evaluation tasks as well as perplex-
ity. Further, we demonstrated in Section 4 that
ShadowLLM can predict the sparsity pattern for
the entire LLM given just the input to the first layer.
We find that the accuracy and predictability trade-
off is excellent for the plainact criterion, whereas
other criteria were harder to learn due to outliers
and high variance. In this section, we evaluate the
effectiveness of combining ShadowLLLM predictor
design with the plainact criterion, compared to
our implementation of DejaVu-style? predictors,
trained on a magnitude based pruning criteria.

5.1 Experimental Setup

We evaluate the perplexity for the WikiText2
(Merity et al., 2016) language modeling dataset,
and accuracy on 7 few-shot downstream tasks:

’To enable comparisons across pruning criteria, we have
implemented our own DejaVu-style predictor in ShadowLLM.
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Figure 9: Gradient-informed criteria (Plainact) im- Figure 10: Average time per-inference with prompt
proves global pruning on Llama-2-7b, resulting in an length = 128 and generation length = 128 across model

end-to-end perplexity improvement on WikiText2.
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Sparsity vs Per-Token Latency for OPT-30B
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Figure 11: Average generation time on OPT-30B with Figure 12: Per-token latency of OPT-30b with prompt
prompt length = 128 as generation length increases. Spar- length = 128 and generation length = 128 as sparsity

sity is around 50%.

PIQA (Bisk et al., 2020), COPA (Gordon et al.,
2012), OpenBookQA (Mihaylov et al., 2018),
Winogrande (Sakaguchi et al., 2019), RTE (Gi-
ampiccolo et al., 2007), HellaSwag (Zellers et al.,
2019), and ARC-Easy (Clark et al., 2018) with
Im-eval-harness (Gao et al., 2023).

Our ablation studies to identify good pruning
criteria, as well as test the efficacy of predictors is
conducted on OPT-1.3B. Further, local and global
pruning strategies are tested on OPT-13B and OPT-
30B, and global pruning on Llama-2-7b (Touvron
et al., 2023). Our downstream evaluation across
seven tasks is reported on OPT-13B.

5.2 Model Quality

In Figure 7, we train the DejaVu-style and Shad-
owLLM predictors on their respective pruning crite-
rion (L2Norm and plainact respectively) on 2720
input-output examples across 7 downstream tasks
in the five-shot setting. The perplexity is evaluated
in a local and global pruning setting on WikiText2.

Global pruning enables better model quality
- sparsity trade-off. Figure 9 compares the

increases.

perplexity-sparsity trade-off on Llama-2-7b model,
with Plainact significantly improving perplexity.
Further, in Figure 8 we evaluate OPT-13B by train-
ing the ShadowLLLM and DejaVu-style predictors
in the same setting, and doing downstream eval-
uation in the zero-shot setting across seven tasks.
We show that there is a consistent accuracy im-
provement across tasks, attributed to better pruning
criteria.

We also validate these findings on OPT-13B in
Figure 17 in the global pruning setting. These im-
provements are largely due to an improved pruning
criterion, emphasizing the importance of pruning
criteria that go beyond magnitude based strategies.
From Table 2 we see that ShadowLLLM with the
plainact metric delivers 14% lower latency with
1.91% higher accuracy than DejaVu-style predictor.

5.3 Performance

DejaVu-style predictors can also be trained on bet-
ter pruning criteria (plainact), giving improve-
ments in accuracy. However, a single predictor can
model these criteria and also offer improved end-
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Figure 13: Calculating pruning criteria in a few-shot Figure 14: plainact is a good pruning criterion, and

setting improves its ability to identify important heads

and neurons.

to-end latency due to early prediction. It is also
easier to integrate, without concerns for continuous
pipelining and scheduling of a layer-wise predic-
tor. In this section, we investigate the performance
improvement ShadowLLLM delivers by simplifying
the DejaVu sparsity predictor implementation, and
compare with DejaVu (Liu et al., 2023)

DejaVu implements hardware-efficient sparsity
acceleration, which employs kernel fusion and
memory coalescing to reduce overhead of the
sparse matrix-vector multiply. These techniques
already yield a 2x speed-up over prior SOTA Faster-
Transformer implementations. However, the inter-
leaved sparsity predictors have a significant over-
head, leading to a performance degradation of over
25% with only a 2% increase in total FLOPs.

We implement the ShadowLLM predictor along
with the prior enhancements introduced by DejaVu
and conduct our performance experiments on up
to 4 A100 GPUs. In Figure 10, we measure the
end-to-end time taken for a generation length of
128 tokens at 50% sparsity and observe an average
16.2% improvement over DejaVu. Figure 11 shows
a consistent improvement in generation time as
output tokens increase. Further, Figure 12 shows
that ShadowLLM is on average 21.25% faster than
DejaVu in the decode phase specifically. Finally,
we profile model sizes from 1.3B to 66B, observing
up to a 21.3% improvement in time per-inference.

6 Analysis

Overview of Pruning Criteria

In Section 3, we categorize pruning criteria into
five primary methods: Activation Methods, First-
Order Gradient (Jacobian) Methods, Activation +
Jacobian Methods, OBD-style Hessian Methods,

is also easy to learn. grasp has ~ 4x more outliers in
proxy scores, making prediction more difficult.

and Sensitivity-Based Methods.

We begin by looking at activation magnitude
based pruning methods akin to (Frankle and Carbin,
2018; Han et al., 2015). One such criterion, the
L2Norm of the k™ attention head and FFN neu-
ron is simply ||A; x||2. More advanced methods
that use gradients may provide better information
about neuron importance. GradNorm of the k" at-
tention head and FFN neuron is defined simply as
1B A[l:k |2 and |55~ £ —||2 respectively. In our anal-
ysis, we found that methods that combine both
the activation and Jacobian (Gradient) information
perform the best. The plainact criterion adapted
from (Bansal et al., 2022; Molchanov et al., 2016)
can be defined as || A; j - 8 ||1 and ||6; 1, - 69

respectively. Similar to plalnact the Flsher
criterion can be defined as ((A; - m) ) and

(O - %)2) respectively, denoting a similar cri-
terion but éggregated in a different manner.

The grasp criterion approximates the change in
gradient norm, which requires the Hessian H and
is calculated as || — (H;, - 8 ) . This
OBD-style Hessian method (Wang et al., 2020)
worked well in downstream-evaluation tasks, but
did not deliver good perplexity.

NASWOT (Mellor et al., 2021) introduces a sen-
sitivity based method called jacov. The jacov cri-
terion measures the covariance of the Jacobian ma-
trices across a mini-batch of data. epenas (Lopes
et al., 2021) follows the same principles as jacov.
Naturally, as jacov rely on aggregated Jacobian
matrices over a batch of data, this criterion cannot
trivially exist for input-dependent (contextual spar-
sity) use-case. To test these criteria, we register
the activations for the heads and neurons across
the entire downstream task dataset, and generate a
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Figure 15: For every criterion, the corresponding aggre-
gated neuron importance is used to conduct static pruning
of the LLM at test time, and the average accuracy is re-
ported.

single aggregate head importance.

We evaluate the effectiveness of several pruning
criteria by using them as metrics for removing less
important heads/neurons. Our analysis includes
evaluating the perplexity for the WikiText2 (Merity
et al., 2016) language modeling dataset and accu-
racy on 7 few-shot downstream tasks.

Enhancing Pruning with Few-Shot Examples

In Figure 13, we calculate the fisher criteria for
every neuron and head on 2720 input-output ex-
amples from the downstream tasks for the O-shot,
3-shot, and 5-shot settings. We average the criteria
for each neuron and head across these examples
and evaluate WikiText2 perplexity as model spar-
sity is increased. The results indicate that providing
more in-context examples when registering the cri-
teria improves model quality during pruning.

Advantages of Gradient-Informed Criteria

In Figure 15, we use the task pruning criterion aver-
aged over their respective examples for each head
and neuron to do a static sparsification of the OPT-
1.3B model and test it in the O-shot setting. We
report the mean accuracy across the downstream
tasks for each pruning criteria. We find that jacov
is a stable criteria to preserve model performance
in the static case. However, jacov does not have
a context-dependent equivalent, as it relies on the
covariance of Jacobian matrices across examples.
We evaluate these proxies in Figure 16, and find
that fisher and plainact preserve model quality
well, with jacov performing worse. jacov might
have higher task-dependence for static pruning, and
does not translate to better general model quality.

Perplexity On WikiText2
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Figure 16: The aggregate importance score per neuron
is used to conduct static pruning of the LLM. fisher
and plainact preserve model quality better than other
criteria. Dashed black line is dense baseline.

Learning Pruning Criteria with Predictors

While we can shadow activation magnitudes with
a predictor, we need to balance finding the best
pruning criteria for assessing neuron importance,
ensuring the criteria is easy to learn. To identify
such a criteria, we measure each criteria for each
head and neuron on 2720 input-output examples
across the 7 downstream tasks in a 5-shot setting.
We train our predictor to use the output of the first
attention layer’s last sequence index to predict per-
head and neuron importance. Figure 14 reports
the average Spearman-p rank correlation on 680
input-output examples. From Figure 16, we see
that fisher delivers the best perplexity for up to
50% sparsity, but delivers a Spearman-p of under
0.7. Similarly, grasp is difficult to predict due to
its high range and outliers. In contrast, we find
that the plainact criterion is easy to predict and
performs well in a contextual setting.

7 Conclusion

In this paper, we present ShadowLLLM, a novel ap-
proach that realizes contextual sparsity in large lan-
guage models by using a gradient-informed prun-
ing criterion. We demonstrate that these criteria
can be effectively modeled by a single predictor
at the first layer of the LLM, eliminating the need
for per-layer prediction. Our findings, validated on
models with up to 30 billion parameters, show that
relatively small predictors can model contextual
sparsity in LLMs. This approach, combining an
improved pruning criterion with an early predictor,
enables over 15% improvement in accuracy with-
out a latency trade-off and a 20% improvement in
performance across different model sizes.
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Limitations

In this paper, we work towards significantly sim-
plifying the predictor design, and study several
pruning criteria. However, our study is limited
to smaller models, up to 30B parameters on only
OPT style models. Further, criteria like nwot are
designed for the ReLLU activation function, which
may not be directly applicable to attention maps.
We profile these for completeness regardless, how-
ever, more research in pruning criteria is needed. Fi-
nally, we train predictors on less than 10000 input-
output examples, more examples may enable better
sparsity pattern modeling.
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A Appendix
A.1 Predictor Design

Hyper-parameter Value

Hidden Layers 1

Hidden Layer Neurons 2048

Activation Function ReLU

Input Dimension Model Embedding
Output Dimension Number Of Neurons
Number of Epochs 100

Batch Size 32

Optimizer AdamW

Learning Rate 0.001

Scheduler CosineAnnealinglL.R
Criterion MSELoss

Table 3: Hyperparameters for DejaVu-style and Shad-
owLLM predictor training.

A.2 Additional Pruning Criteria

In this section, we provide a more complete view
of the proxies we investigate and their results.

While some criteria were designed for activa-
tions (Fisher), whereas others for weights (snip),
we extend the pruning criteria to both activations
for attention heads and weights for FFN neurons. A
side-effect of this is that criteria such as plainact
and fisher look similar, but are aggregated in dif-
ferent ways (L1 Norm versus Mean). We maintain
both variants in our analysis for completeness.

Similar to jacov, epenas is also a viable method
for non-contextual sparsity. epenas measures the
intra- and inter-class correlations of the Jacobian
matrices. We modify epenas by treating next-
tokens as the class that the Jacobians are registered
as.

Global Pruning On OPT-13B
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Figure 17: A better criteria (plainact) with the Shad-
owLLM predictor improves perplexity-sparsity trade-off
on WikiText2.

Model Ours Reported

(Lin et al., 2024)
Llama2-7B  8.82 5.47
OPT-1.3B 16.4 14.6
OPT-13B 11.5 10.1
OPT-30B 10.7 9.56

Table 4: Comparison of our perplexity and reported
perplexity for various models. Following (Bansal et al.,
2022), we calculate per-document perplexity, which
increases model perplexity.

We also investigate sensitivity-based methods,
such as snip (Lee et al., 2018), defined in Equation
2, which investigates how removing a single neuron
in isolation will impact the loss.

Lo — Loyes,
S

2

snip = lin%
E—>

Further, we adapt proxies from neural architec-
ture search for neuron saliency. The NASWOT
(Mellor et al., 2021) paper introduces two criteria,
the first we refer to as nwot. nwot calculates the
determinant of a Hamming distance-based kernel
matrix, which measures the similarity of binary
codes that result after the ReLU, given an input in
the neural network. This uses the intuition that if
two similar inputs lie within the same linear region
of the network, they will be difficult to disentangle.
nwot is defined in Equation 3.

seqlen

1 .
nwot; ; = log (seqlen Z (1- A;,k)2> (3)

B On Perplexity Calculation

In our experiments, we evaluate the perplexity of
language models on the WikiText-2 dataset by com-
puting the log-likelihood of each document in-
dividually, rather than concatenating all doc-
uments into a single continuous text stream.
Specifically, we process each document separately,
calculating perplexity within the that document’s
context. This approach limits the context to within
individual documents, without leveraging cross-
document dependencies that the standard concate-
nation method from reference works provide (e.g.
"\n\n".join(wikitext_docs[’text’])). Asa
result, our perplexity scores reflect the model’s per-
formance on isolated text segments, which may
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OPT-1.3b Pruning (5-shot)
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Figure 18: Each pruning criterion is measured and aver-
aged per neuron and head over 3500 training examples
in a 5-shot setting across 7 downstream tasks. For every
criterion, the corresponding aggregated neuron and head
importance is used to conduct static pruning of the LLM
at test time. For each criterion, mean of accuracy is re-
ported as sparsity is increased.

differ from scores obtained using the more conven-
tional concatenated approach. While this method-
ology deviates from standard practice, it offers a
consistent evaluation of the model’s capabilities
within document-level context, aligning with the
setting considered in our study as well as the in-
context learning literature we build our study on
(Bansal et al., 2022). We quantify this difference
in perplexities in Table 4.

0 40
Sparsity (%)

Figure 19: Each pruning criterion is measured and aver-
aged per neuron and head over 2720 training examples
in a 5-shot setting from all downstream tasks. This ag-
gregate importance score per neuron and head is used to
conduct static pruning of the LLM when testing perplex-
ity on WikiText2. fisher and plainact preserve model
quality better than other criteria.
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Figure 20: Aggregated pruning criteria scores per-head for the OPT-1.3B model, over the ARC-Easy training task in
a five-shot setting.
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Figure 21: Aggregated pruning criteria scores per-head for the OPT-1.3B model, over the ARC-Easy training task in
a five-shot setting.
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