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Abstract
A functional time series approach is proposed for investigating spatial correlation 
in daily maximum temperature forecast errors for 111 cities spread across the U.S. 
The modelling of spatial correlation is most fruitful for longer forecast horizons, and 
becomes less relevant as the forecast horizon shrinks towards zero. For 6-day-ahead 
forecasts, the functional approach uncovers interpretable regional spatial effects, 
and captures the higher variance observed in inland cities versus coastal cities, as 
well as the higher variance observed in mountain and midwest states. The functional 
approach also naturally handles missing data through modelling a continuum, and 
can be implemented efficiently by exploiting the sparsity induced by a B-spline 
basis. The temporal dependence in the data is modeled through temporal depend-
ence in functional basis coefficients. Independent first order autoregressions with 
generalized autoregressive conditional heteroskedasticity [AR(1)+GARCH(1,1)] 
and Student-t innovations work well to capture the persistence of basis coefficients 
over time and the seasonal heteroskedasticity reflecting higher variance in winter. 
Through exploiting autocorrelation in the basis coefficients, the functional time 
series approach also yields a method for improving weather forecasts and uncer-
tainty quantification. The resulting method corrects for bias in the weather forecasts, 
while reducing the error variance.
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1  Introduction

A functional time series is a time-indexed sequence of stochastic processes {ft(�)}∞t=1 
where each ft(⋅) is a random function on the domain T  . By unifying functional data 
analysis with time series analysis, it presents an approach to modelling randomness 
on curves, surfaces, and other phenomena varying over a spatial continuum where 
these functional data are observed regularly over time and exhibit serial dependence. 
Ramsay and Silverman (2005) and Tsay (2010) provide background for functional 
data analysis and time series analysis respectively, while (Hörmann and Kokoszka 
2012) provides background for functional time series.

Hyndman and Shahid Ullah (2007) and Hyndman and Booth (2008) propose a 
forecasting approach for functional time series and apply it to demographic data. 
Hyndman and Shang (2009) proposes a weighted functional approach which assigns 
more weight to recent observations and yields an improvement in forecast accuracy. 
Further developments in functional forecasting with applications to demographic 
data are found in Shang et al. (2011), Hyndman et al. (2013), and Dokumentov et al. 
(2018). Aue et al. (2017) develops the theory for functional GARCH models. Kowal 
et al. (2017) introduces a Bayesian framework for functional time series, and Kowal 
et al. (2019) develops functional autoregression for sparsely and irregularly sampled 
data.

The most common examples of functional data are samples of 1-dimensional 
curves, and a contribution of this paper is the analysis of a model for 2-dimensional 
surface data. In this application, the spatial domain T  is a rectangle in ℝ2 contain-
ing the range of longitudes and latitudes covering the lower 48 states. The data set 
is taken from the 2018 American Statistical Association Data Expo,1 consisting of 
daily maximum temperature forecasts from the National Weather Service for 111 
cities spread across the US (excluding Alaska and Hawaii) over the period from July 
2014 to September 2017. The locations of the cities are illustrated in Fig. 1. Fore-
casts range from same-day to six-days-ahead and are compared to actual tempera-
ture recorded at city airports.

A functional time series approach is applied to investigate and extract the struc-
ture of the spatial correlation in forecast errors. Through modelling the entire con-
tinuum instead of individual points, the proposed functional data approach also 
naturally handles missing data. This is a vital benefit, as data records are frequently 
incomplete and forecasts are not always available at every location. This paper also 
extends the methodology of Hyndman and Shahid Ullah (2007) with the incorpora-
tion of a heteroskedastic time series model to account for the higher unpredictability 
of weather in winters compared to summers.

Through exploiting both the spatial and temporal dependence in weather forecast 
errors, one can estimate the next day’s expected forecast error and correct the fore-
cast accordingly.

1  http://​ww2.​amstat.​org/​secti​ons/​graph​ics/​datas​ets/​DataE​xpo20​18.​zip.

http://ww2.amstat.org/sections/graphics/datasets/DataExpo2018.zip
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In this paper, a four-step procedure is used to facilitate this estimation. Sec-
tion  2.1 describes the initial pre-processing step, where we first construct con-
tinuous surface data from the discrete observations using manually selected 
B-splines. The resolution of the chosen B-splines are set so that cities are able 
to be grouped into regions of interest. Once these surfaces are built, the second 
step is to reduce dimension to a smaller spatial basis which describes the most 
important modes of variation, and this is described in Sect. 2.2. After the spatial 
basis is chosen, the next step is to model the temporal dependence in the random 
coefficients which scale the basis functions, and this is described in Sect. 2.3. The 
time series model facilitates the final step, the prediction of forecast errors, and 
this is described in Sect. 3.1.

2 � Methodology

We first fix a forecast horizon h of interest, in this case between 0 to 6 days ahead. 
For the given forecast horizon, let Yt(�) be the forecast error of maximum temper-
ature on day t for the city located at spatial coordinates � ≡ (longitude, latitude) . 
Spatial correlation is captured through the following spatio-temporal random 
effect model:

Fig. 1   Locations of cities included in weather forecast data shown in blue. The grey grid lines indicate 
the locations of the knots chosen for the B-spline bases
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Here, �(�) represents the mean forecast error and is assumed fixed over time. Esti-
mation of the mean function is described in Sect.  2.1. The spatial basis functions 
�1(�),… ,�K(�) describe the main modes of variation in the forecast errors, captur-
ing spatial dependence across different regions of the U.S. The construction of the 
basis functions is described in Sects. 2.1 and 2.2. The random coefficients �kt capture 
temporal correlation. They are modelled using independent AR(1)+GARCH(1,1) 
processes, as described in Sect. 2.3. Lastly, �t(�) is a white noise process independ-
ent of the random coefficients, and is assumed i.i.d. N(0, �2) for all t and � . It is used 
to capture, including any measurement errors, the remaining variation not explained 
by the spatio-temporal random effect.

Writing Φ(�) = [�1(�)⋯�K(�)]
T and � t = [�1t ⋯ �Kt]

T , this model implies the 
following spatio-temporal covariance function:

where the indicator function 1{t=t�,�=��} is 1 when both t = t� and � = �� , and 0 
otherwise.

2.1 � Pre‑processing with spline smoothing

A two-step procedure is employed to construct the spatial basis functions �k . As an ini-
tial pre-processing step, we first need to construct continuous surface data from the dis-
cretely observed values using manually selected B-splines, where the knot sequence is 
at the right level of tightness to capture regional groupings of the cities. Once these sur-
faces are built, the singular value decomposition (SVD) is used in Sect. 2.2 to reduce 
dimension and identify the �k which describe the most important modes of variation.

For simplicity, we consider the spatial domain as a subset of ℝ2 . Specifically, we 
define a 2-D cubic B-spline basis over the rectangle [−124,−66] × [24, 49] , which 
contains the range of longitudes and latitudes covering the lower 48 states. The 2-D 
splines are built from the tensor product of 1-D cubic B-splines on longitude and lati-
tude individually. Refer to de Boor (2001) for further background on B-splines. The 
MATLAB package ‘bspline’ by Hunyadi (2020) is used to implement the splines.

For this particular dataset, knot sequences with 13 equally spaced interior knots were 
able to capture interesting regional groupings of the cities, and the knots are visualized 
against the cities by the grey grid lines in Fig. 1. This results in 17 cubic B-splines 
in each dimension, and 289 2-D splines in the resulting tensor product, denoted by 
S1(�),… , S289(�) , with

(1)Yt(�) = �(�) +

K∑
k=1

�kt�k(�) + �t(�).

(2)Cov(Yt(�), Yt� (�
�)) = Φ(�)T�[� t�

T
t�
]Φ(��) + �2

1{t=t�,�=��},

K
Lon = [−124,−124,−124,−124,−119.86,−115.71,… ,−66,−66,−66,−66],

K
Lat = [24, 24, 24, 24, 25.79, 27.57,… , 49, 49, 49, 49], and
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For each day t = 1,… ,m , we fit splines such that the coefficients ĉt,1,… , ĉt,289 solve 
the following optimization problem:

where �t,1,… , �t,nt are the observation locations available on day t. This handles 
(moderate amounts of) missing data naturally since missing observations Yt(�) are 
simply omitted from the objective function. Also, since B-splines have compact sup-
port, the resulting system is sparse and can be solved efficiently.

As the number of coefficients exceeds the number of observation locations, a 
truncated singular value decomposition is used to solve for the coefficients. The 
truncated SVD acts as a form of regularization similar to ridge regression, and fur-
ther details can be found in Hansen (1987). In Fig. 1, there is a lack of observations 
in regions of the rectangle outside the borders of the United States. The truncated 
SVD yields stable results by imposing zero coefficients for the splines that lie in 
these data-free regions.

We denote the resulting coefficient matrix by C = [ĉt,j] . We use the column means 
C̄ =

[
c̄1,… , c̄289

]
 to estimate the mean function �(�) as:

where ̄̄Y =
�∑m

t=1
nt
�−1 ∑m

t=1

∑nt
i=1

Yt(𝜏t,i) is the sample mean of all observed forecast 
errors.

2.2 � Constructing spatial basis functions '
k

As each spline function captures variation specific to a sub-rectangle of the domain, 
the amount of information in each region of the domain is encoded through the 
coefficients of its corresponding splines. Through studying the covariance of the 
B-spline coefficients, we are able to piece together variation across multiple sub-
rectangles to study the important regional effects in the weather forecast errors. A 
principal component analysis yields a ranked order of groupings through the eigen-
decomposition of the covariance matrix, or equivalently, the singular value decom-
position of the mean-centered data matrix. The eigenvectors of the covariance 
matrix identify weightings of the spline coefficients which contribute the most varia-
tion, with said variation quantified by the size of the eigenvalue.

After mean-centering the columns of C, the singular value decomposition 
C − C̄ = UΣVT provides principal component loadings as the columns of V, allow-
ing for dimension reduction that is mean-square optimal in the coefficient space 

⎡
⎢⎢⎣

S1(lon, lat)

⋮

S289(lon, lat)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

B1,K
Lon(lon)

⋮

B17,K
Lon(lon)

⎤
⎥⎥⎦
⊗

⎡
⎢⎢⎣

B1,K
Lat(lat)

⋮

B17,K
Lat(lat)

⎤
⎥⎥⎦
.

(3)min
ct,1,…,ct,289

nt∑
i=1

[
Yt(�t,i) −

289∑
j=1

ct,jSj(�t,i)

]2

,

(4)𝜇̂(𝜏) = ̄̄Y +

289∑
j=1

c̄jSj(𝜏)
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Col(C − C̄) . Refer to Jolliffe (2002) for further background on principal compo-
nent analysis and singular value decomposition. Assuming the SVD is written in 
descending order of singular values, the spatial basis functions �k(�) are built using 
the first K columns of V, representing the K most important principal components:

The first four basis functions are shown in Fig. 2 for the 6-day-ahead forecast hori-
zon. The first basis function represents an inland versus coastal effect, as cities fur-
ther inland had greater variance in their forecast errors compared to coastal cities. 
The second basis function represents an east versus west effect, with the opposing 
signs of the regions allowing for a differentiation between the regions. The third 
and fourth basis functions represent mountain state and midwest state effects respec-
tively, as these regions have the most unpredictable weather.

This structure of spatial correlation is most prevalent in 6-day-ahead forecasts, 
but vanishes as the forecast horizon shrinks to zero. For example, Fig. 3 shows the 
first four basis functions for same-day forecasts, and these basis functions lack any 
coherent spatial structure.

For the 6-day-ahead forecasts, a cutoff of K = 20 basis functions is used. Each 
of the 20 selected basis functions ranged from 9 to 1.4% of explained variance, 
while the basis functions after the 20th each contribute less than 1.4% of explained 

(5)𝜑k(𝜏) =

289∑
j=1

VjkSj(𝜏) for k = 1,… ,K ≪ 289.

Fig. 2   First 4 basis functions for 6-day-ahead forecasts
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variance and revealed no interesting spatial structure. The results of Table 2 were 
stable above K = 20 basis functions, justified by Fig. 7.

2.3 � Modelling random coefficients

Once the spatial basis functions are defined as above, coefficients �1t,… , �Kt for 
each day t are estimated on this reduced K-dimensional basis as solutions to the fol-
lowing optimization problem:

Temporal dependence in forecast errors is then modelled through these coefficients. 
Empirically, an AR(1)+GARCH(1,1) model with Student-t innovations was found 
to provide a good description of the observed coefficients. Specifically,

(6)min
𝛽1t ,…,𝛽Kt

nt∑
i=1

[
Yt(𝜏t,i) − 𝜇̂(𝜏t,i) −

K∑
k=1

𝛽kt𝜑k(𝜏t,i)

]2

.

(7)�kt = �k�k,t−1 + ukt, ukt|Ft−1 ∼ t�k (0, �
2

kt
)

(8)�2
kt
= �k + �ku

2

k,t−1
+ �k�

2

k,t−1

Fig. 3   First 4 basis functions for same-day (0-day-ahead) forecasts
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where Ft−1 is the information set up to time t − 1 (the �-field generated by 
uk,t−1, uk,t−2,… for all k). The u1t,… , uKt are assumed conditionally independent 
given Ft−1 . The proposed model implies the following conditional mean and covari-
ance functions:

The resulting innovations for the first basis function u1t are shown in Fig. 4 on the 
top left. Notably, the innovations exhibit a seasonal heteroskedasticity with winter 
weather being the most unpredictable. The GARCH process characterizes the het-
eroskedasticity well, as the standardized innovations u1t∕�1t exhibit approximately 
constant variance, and the squared standardized innovations show no significant 
autocorrelation.

For the 6-day-ahead weather forecasts, the AR+GARCH parameter estimates 
for the first four basis functions are shown in Table  1. All fitted models were 
stationary with similar amounts of autocorrelation based on the similar values of 
�k . Furthermore, all exhibit a high persistence in variance, indicated by the large 
values of �k . The earlier basis functions had conditional distributions with heavier 
tails, indicated by lower values of �k.

3 � Empirical performance

For each pair of cities (i,  j), sample spatial correlation for the 6-day-ahead fore-
casts is computed before and after accounting for the spatial basis functions. 
More specifically, given a pair of cities located at �i and �j , the top of Fig. 5 shows

and the bottom of Fig. 5 shows

(9)�[Yt(�)|Ft−1] = �(�) +

K∑
k=1

�k�k,t−1�k(�)

(10)
Cov(Yt(�), Yt(�

�)|Ft−1) =

K∑
k=1

�k

�k − 2

[
�k + �ku

2

k,t−1
+ �k�

2

k,t−1

]
�k(�)�k(�

�)

+ �2
1{�=��}.

(11)𝜌before
i,j

=

∑
t[Yt(𝜏i) − Ȳ

⋅
(𝜏i)][Yt(𝜏j) − Ȳ

⋅
(𝜏j)]�∑

t[Yt(𝜏i) − Ȳ
⋅
(𝜏i)]

2
∑

t[Yt(𝜏j) − Ȳ
⋅
(𝜏j)]

2

,

(12)𝜌after
i,j

=

∑
t[𝜀̂t(𝜏i) −

̄̂𝜀
⋅
(𝜏i)][𝜀̂t(𝜏j) −

̄̂𝜀
⋅
(𝜏j)]�∑

t[𝜀̂t(𝜏i) −
̄̂𝜀
⋅
(𝜏i)]

2
∑

t[𝜀̂t(𝜏j) −
̄̂𝜀
⋅
(𝜏j)]

2

,
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for the residuals 𝜀̂t(𝜏) = Yt(𝜏) − 𝜇̂(𝜏) −
∑K

k=1
𝛽kt𝜑k(𝜏) . Above, the sums are over 

the days t with no missing observations, and Ȳ
⋅
(𝜏i) and ̄̂𝜀

⋅
(𝜏i) are sample averages of 

Yt(�i) and 𝜀̂t(𝜏) respectively over such t.
The cities are numbered from 1 to 111 (shown on the x- and y-axes), and cit-

ies are ordered from east to west, resulting in a concentration of high correlation 
along the main diagonal in the first figure. After accounting for K = 20 spatial 
basis functions, the second figure indicates the lack of spatial correlation in the 
residuals and provides evidence that the proposed model provides an adequate 
approximation of the observed spatial correlation in forecast errors.

The correlograms before and after accounting for the basis functions are shown 
in Fig.  6, visualizing the sample spatial correlations against city distance. The 
cutoff of K = 20 is justified in Fig. 7, where the squared Frobenius norm of the 
residual spatial correlation matrix ( 

∑
i,j(�

after

i,j
)2 ) is computed for different values of 

Fig. 4   Estimated innovations u1t (top left) and standardized innovations u1t∕�1t (top right) for basis func-
tion 1 at forecast horizon 6-days-ahead, and their respective sample autocorrelation functions (bottom, 
left and right, respectively). Approximate 95% pointwise confidence intervals are drawn as horizontal 
lines in the autocorrelation plots
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K. The Frobenius norm stops significantly decreasing after K = 20 indicating that 
additional basis functions do not explain any more spatial correlation, and cap-
ture individual city variation rather than regional variation.

3.1 � Predicting forecast errors to improve forecast accuracy

Through exploiting autocorrelation in the coefficients, the AR+GARCH param-
eter estimates can be used to predict the next day’s basis coefficients, as

Substituting the parameter estimates 𝜓̂k , 𝜔̂k , 𝛼̂k , 𝛾̂k , and 𝜈̂k in place of the true param-
eters yields an approximate distribution which can be used for prediction and uncer-
tainty quantification.

By setting the predicted coefficient to 𝛽k,t+1 = 𝜓̂k𝛽kt , this can then be used to 
predict next day’s weather forecast errors by setting

(13)�k,t+1|Ft ∼ t�k (�k�kt, �
2

k,t+1
), and

(14)�2
k,t+1

= �k + �ku
2

kt
+ �k�

2

kt
.

Table 1   AR(1)+GARCH(1,1) parameter estimates for first four basis functions for 6-day-ahead forecasts

Basis Function 1 �
1

�
1

�
1

�
1

�
1

Estimate 0.65 13.50 0.09 0.89 8.33
Approx. Std. Error 0.02 6.91 0.02 0.02 2.05
t-ratio 26.91 1.95 4.25 37.14 4.06
p-value <0.0001 0.0507 <0.0001 <0.0001 <0.0001
Basis Function 2 �

2
�
2

�
2

�
2

�
2

Estimate 0.57 18.67 0.05 0.92 10.90
Approx. Std. Error 0.03 11.43 0.02 0.03 3.95
t-ratio 21.08 1.63 3.00 34.18 2.76
p-value <0.0001 0.1024 0.0027 <0.0001 0.0057
Basis Function 3 �

3
�
3

�
3

�
3

�
3

Estimate 0.53 7.11 0.03 0.96 13.31
Approx. Std. Error 0.03 6.46 0.01 0.02 4.87
t-ratio 19.95 1.10 2.32 47.14 2.73
p-value <0.0001 0.2709 0.0203 <0.0001 0.0063
Basis Function 4 �

4
�
4

�
4

�
4

�
4

Estimate 0.57 13.01 0.06 0.91 14.75
Approx. Std. Error 0.03 7.56 0.02 0.03 6.97
t-ratio 21.21 1.72 3.50 31.04 2.11
p-value <0.0001 0.0853 0.0005 <0.0001 0.0344
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These predicted errors Ŷt+1(𝜏) can then be used to adjust the next day’s weather fore-
cast (of the same horizon). More explicitly, for forecast horizon h and location � , 
if Ft,t+h(�) is the forecast on day t of the maximum temperature on day t + h and 
At+h(�) is the actual temperature on day t + h so that Yt(�) = Ft,t+h(�) − At+h(�) , we 
can define an adjusted forecast for day t + 1 as

(15)Ŷt+1(𝜏) = 𝜇̂(𝜏) +

K∑
k=1

𝛽k,t+1𝜑k(𝜏).

(16)F
adj

t+1,t+1+h
(𝜏) = Ft+1,t+1+h(𝜏) − Ŷt+1(𝜏).

Fig. 5   Spatial correlation in 6-day-ahead forecast errors for before (top) and after (bottom) accounting 
for basis functions
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The improvement on weather forecasts can then be assessed by comparing the 
adjusted errors

to the unadjusted errors Yt+1(�).
The mean and variance of Y and Z across all t and � is shown in Table 2.
The change in mean error indicates that the proposed method eliminates bias in 

the weather forecasts, while the reduction of standard deviation by 12% indicates a 
significant average improvement in forecast accuracy. The shift in error distribution 
is illustrated in Fig. 8, with the adjusted distribution centered at 0 and with smaller 
variance.

(17)Zt+1(�) = F
adj

t+1,t+1+h
(�) − At+1+h(�)

Fig. 6   Correlogram of 6-day-ahead forecast errors for before (top) and after (bottom) accounting for 
basis functions



1227

1 3

Spatial correlation in weather forecast accuracy: a functional…

4 � Code

For reproducing our analysis and figures, MATLAB code is available at: https://​
github.​com/​pjang​23/​datae​xpo20​18-​funct​ional​times​eries.

To accomodate those without the MATLAB Econometrics Toolbox™, the MAT-
LAB package ‘ARMAX-GARCH-K-SK’ by Gabrielsen (2021) is included as an 
alternative for fitting the AR+GARCH models.

5 � Conclusions

We have introduced a functional time series approach to investigating spatial cor-
relation in weather forecast accuracy. The modelling of spatial correlation is most 
fruitful for the longer forecast horizons, and becomes less relevant as the forecast 

Fig. 7   Sum of squared residual correlogram 
∑

i,j(�
after

i,j
)2 (blue) for a changing number of basis func-

tions K. After K = 20 basis functions, the Frobenius norm of the residual spatial correlation matrix stops 
decreasing, indicating the remaining basis functions capture local variation rather than regional variation

https://github.com/pjang23/dataexpo2018-functionaltimeseries
https://github.com/pjang23/dataexpo2018-functionaltimeseries
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horizon shrinks towards zero. For 6-day-ahead weather forecasts, the functional 
approach uncovers interpretable regional spatial effects, and captures the higher var-
iance observed in inland cities versus coastal cities, as well as the higher variance 
observed in mountain and midwest states. The functional approach also naturally 
handles missing data and can be implemented efficiently by exploiting the sparsity 
induced by using a B-spline basis.

Independent first order autoregressions with generalized autoregressive condi-
tional heteroskedasticity [AR(1)+GARCH(1,1)] and Student-t innovations worked 
well to capture the persistence of coefficients over time and the seasonal heteroske-
dasticity reflecting higher variance in winter. Autocorrelation in the basis coef-
ficients can further be exploited to improve weather forecasts, especially at longer 
horizons, and the resulting approach eliminates bias while reducing error variance.

Acknowledgements  This work is supported in part by the Natural Sciences and Engineering Research 
Council of Canada (PGS-D 502888), the National Science Foundation (DMS-1455172), a Xerox PARC 

Table 2   Comparison of 6-day 
ahead weather forecast errors 
before and after adjustment 
using K = 20 basis functions

Y
t
(�) Z

t
(�)

Mean −1.17 0.00
Standard deviation 6.61 5.82

Fig. 8   Comparison of distributions of 6-day ahead weather forecast errors before and after adjustment 
using K = 20 basis functions
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