

1 **Title:** Integrative analysis of angiogenic signaling in obesity: capillary features and VEGF binding
2 kinetics

3
4 Yunjeong Lee¹, Keith Lionel Tukei¹, Yingye Fang¹, Shobhan Kuila¹, Xinming Liu¹, Princess I.
5 Imoukhuede^{1*}

6
7 ¹Department of Bioengineering, University of Washington, Seattle, WA, USA

8 *Corresponding author: pii@uw.edu; +1 (206) 685-2002

9
10 **ORCID**

11
12 Yunjeong Lee: <https://orcid.org/0000-0001-7824-1339>
13 Keith Lionel Tukei: <https://orcid.org/0000-0003-2249-3347>
14 Yingye Fang: <https://orcid.org/0000-0003-4137-866X>
15 Shobhan Kuila: <https://orcid.org/0000-0001-5679-2105>
16 Xinming Liu: <https://orcid.org/0000-0002-4683-8779>
17 Princess I Imoukhuede: <https://orcid.org/0000-0002-4257-1085>

18
19
20 **Abstract (Should be less than 250 words)**

21
22 Obesity is a global health crisis, with its prevalence particularly severe in the United States, where over
23 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms
24 that remain poorly understood. Among these, angiogenesis—primarily mediated by vascular endothelial
25 growth factor (VEGF-A)—is critical for adipose tissue expansion but presents unique challenges for
26 therapeutic targeting due to its intricate regulation. Systems biology approaches have advanced our
27 understanding of VEGF-A signaling in vascular diseases, but their application to obesity is limited by
28 scattered and sometimes contradictory data. To address this gap, we performed a comprehensive analysis
29 of the existing literature to synthesize key findings, standardize data, and provide a holistic perspective on
30 the adipose vascular microenvironment. The data mining revealed five key findings: (1) obesity increases
31 adipocyte size by 78%; (2) vessel density in adipose tissue decreases by 51% in obese mice, with vessels
32 being 47–58% smaller and 4–9 times denser in comparison with tumor vessels; (3) capillary basement
33 membrane thickness remains similar regardless of obesity; (4) VEGF-A shows the strongest binding affinity
34 for VEGFR1, with four times stronger affinity for VEGFR2 than for NRP1; and (5) binding affinities measured
35 by radioligand binding assay and surface plasmon resonance (SPR) are significantly different. These
36 consolidated findings provide essential parameters for systems biology modeling, new insights into
37 obesity-induced changes in adipose tissue, and a foundation for developing angiogenesis-targeting
38 therapies for obesity.

39
40
41
42 **Keywords**

43
44 Data mining, data analysis, obesity, adipose tissue, vascular endothelial growth factor

45
46

47 **Introduction**

48

49 Angiogenesis, primarily driven by vascular endothelial growth factor-A (VEGF-A, i.e., VEGF-A165), is
50 essential for healthy adipose tissue expansion and remodeling¹. Insufficient vascularization causes
51 unhealthy white adipose tissue expansion in obesity, leading to fibrosis, inflammation, and systemic insulin
52 resistance in preclinical models²⁻⁵. Therapeutic modulation of angiogenesis remains controversial because
53 targeting the primary molecular drivers of vascularization, the VEGF family, does not fully control obesity^{6,7}.
54 This is despite the numerous studies establishing the relationship between VEGF signaling and adipose
55 tissue development, which have found that (1) VEGF-A mRNA expression is upregulated during adipocyte
56 differentiation in vitro⁸, (2) overexpression of VEGF-A in adipose tissue not only promotes angiogenesis
57 but also improves the metabolic system⁹, and (3) anti-VEGF suppresses both angiogenesis and the
58 formation of differentiating adipocytes¹⁰. Despite these discoveries, how to control adipogenesis via VEGF-
59 A signaling is still unclear. This knowledge gap can be addressed by using systems biology to describe the
60 fundamental processes governing vascularization in obesity with mathematical models and experimental
61 data, simulating them with computational approaches, and analyzing the system to identify the best
62 approaches to addressing insufficient vascularization in obesity.

63

64 Although several mathematical models have been developed to explain VEGF-A signaling in cancer or
65 peripheral arterial disease, they are hard to employ in developing obesity-specific models because of the
66 following distinctive features of adipose tissue: (1) an extremely high proportion of adipocytes in adipose
67 tissue volume¹¹ that is not present in the established muscle¹² or tumor models¹³⁻¹⁵ (Figure 1A), (2)
68 phenotypically different capillaries in adipose tissue compared with unorganized tumor capillaries, and (3)
69 different levels of the molecular drivers of angiogenesis, VEGFRs, in adipose tissue (Figure 1B)^{13,16}. Thus,
70 there is a need to develop adipose tissue-specific computational models, and these require adipose
71 tissue-specific data and mathematical representations.

72

73 To address these needs for adipose tissue-specific data on vascular and adipocyte properties, we
74 performed an in-depth analysis of the experimental literature, identifying data governing adipocyte and
75 vascular morphology and data that standardize VEGFR binding kinetics. These data offer new insights into
76 the adipose-tissue vascular microenvironment, reflecting the differential changes occurring as a result of
77 obesity. They will accelerate the use of systems biology to mathematically represent, model, and predict
78 approaches for treating obesity.

79

80 **Methods**

81

82 **Search Strategy**

83

84 We mined the literature using PubMed, Google Scholar, and the University of Washington Libraries. Search
85 keywords included adipocyte size, high-fat diet mice, gonadal adipose tissue, vessel size, vessel diameter,
86 capillary diameter, vessel density, tumor, retina capillary basement membrane thickness, muscle capillary
87 basement membrane thickness, brain capillary basement membrane thickness, thickness of renal
88 glomerular capillary basement membrane, VEGF, VEGF-A, VEGF165, VEGF-A165, VEGFR1, Flt-1, VEGFR2,
89 KDR, NRP1, surface plasmon resonance, SPR, radioligand, radioactivity, ¹²³I, ¹²⁵I, binding affinity, and K_d.

90

91 **Study selection and eligibility criteria**

92

93 We included *ex vivo* studies that measured adipocyte diameter or the cross-sectional area of an adipocyte,
94 the cross-sectional area of vessels (vessel size), and vessel densities per mm² in gonadal adipose tissue of
95 lean and obese mice. Since most computational models for VEGF signaling have been developed in tumors,
96 identifying potential differences between tumors and adipose tissue is an important goal. Thus, data for
97 vessel size and vessel density in mouse tumors were included in our analysis. We also included *ex vivo*
98 studies reporting the capillary basement membrane thickness in retina, muscle, heart, brain, and kidney
99 from mice and rats. To analyze the binding kinetics of VEGF-A to its receptors, we included *in vitro* studies
100 that measured binding affinities (K_d), association rate constants (k_{on}), and dissociation rate constants (k_{off})
101 using radioligand assays and surface plasmon resonance. We excluded papers if they (1) did not provide
102 enough information to extract average values and standard errors (e.g., the standard deviation was
103 reported without sample size or only the average value was reported) or (2) reported very large values
104 considered as outliers (e.g., the vessel size in tumors reported by Koyama *et al.*¹⁷ is 8–21 times larger than
105 values in other studies). We did not include non-English papers.
106 We did not analyze VEGF-B and VEGF-C, although they influence lipid metabolism and lymphangiogenesis,
107 which are important mechanisms in obesity, because of a lack of information about their binding affinities.
108 Instead, we gathered and reported a list of binding data for VEGF-B and VEGF-C to VEGFRs regardless of
109 measurement method.

110
111 **Data extraction**
112

113 The data were extracted from the full text or supplementary materials of the selected papers. We used
114 minor data extraction techniques in the following cases. (1) When information about average values and
115 standard errors was provided by an image, we used ImageJ V1.53k (<https://imagej.net/>) to extract that
116 information¹⁸. (2) When papers provided a graph showing association and dissociation phases of VEGF-A
117 binding without providing values, we estimated kinetic data by fitting 1:1 Langmuir equations to the
118 provided graph. This data extraction process was performed by using an in-house code written in Python
119 Programming Language V3.11.0 (<http://www.python.org/>). The detailed approaches for data extraction,
120 data fitting, and ImageJ analysis are provided in the *Supplementary information*.

121 All data sets include the following information: the first author's name, year published, data collection
122 techniques, measurements (i.e., means), and standard errors. For geometric data, we additionally
123 extracted the following: species, strain, sample size, sex, age, diet or status (e.g., healthy or diabetic mice),
124 duration of diet, body weight, and location of tissue. For tumor data, we included tumor cell lines, the
125 location in the mouse body where the tumors were injected, and antibodies used for vessel staining. For
126 binding affinity data, we extracted the ligands used, the receptors, and their sources. The data extraction
127 was done independently by two authors (Yunjeong Lee and Keith Lionel Tukei), and any disagreement was
128 resolved by discussion among three authors (Yunjeong Lee, Keith Lionel Tukei, and Shobhan Kuila).

129
130 **Data analysis**
131

132 The weighted average and standard deviation of each group were calculated with a random-effects model.
133 We assumed that the analyzed data followed normal distributions. The weight of the *i*th study was defined
134 by $1/(SE_i^2 + T^2)$, where SE_i is the standard error of the *i*th study and T^2 is the between-study variance.
135 Cochran's Q-test, the most common way to assess the presence of heterogeneity between studies, was
136 performed. Two statistics evaluated the level of heterogeneity: (1) I^2 , which represents the proportion of
137 variation between studies among the total variation, and (2) prediction intervals, which show the amount
138 of dispersion of the observed measurements¹⁹.

139

140 After calculating the weighted average and standard deviations of groups, we used Welch's t-test to
141 compare a pair of two groups because (1) the groups are unpaired, (2) the groups have unequal variances,
142 and (3) the analyzed data were assumed to follow the normal distribution. When we performed a one-
143 tailed test to identify inequality between more than two groups, we used a one-tailed Welch's t-test with
144 the Benjamini-Hochberg method for multiple testing. The Benjamini-Hochberg method was chosen since
145 it is balanced between Type I and Type II errors and its statistical power is stronger than that of the
146 Bonferroni method, a commonly used multiple-testing correction. The Bonferroni method is more
147 conservative because it divides the p-value by the number of tests, and it is recommended when the cost
148 of Type I errors is more expensive than Type II errors²⁰. Since the cost of Type I errors in our analysis is
149 similar to that of Type II errors, we chose the Benjamini-Hochberg method. When we compared more than
150 two groups, the homogeneity of variances was assessed by Bartlett's test since it (1) is appropriate when
151 the sample sizes are unequal, and (2) is generally powerful for various variance ratios between groups.
152 After testing the homogeneity of variance, Welch's ANOVA followed by Dunnett's T3 test was used to
153 compare means of multiple groups. Dunnett's T3 test was chosen because it is appropriate for a small
154 sample dataset. All statistical analysis was performed using the "metafor", "weights", "stats", and
155 "PMCMRplus" libraries in R Project for Statistical Computing, RStudio V4.3.0 (<http://www.r-project.org/>).
156

157 ***Surface Plasmon Resonance (In Vitro)***

158
159 Surface plasmon resonance (SPR) experiments were performed at 25°C using the Reichert 4SPR system
160 (Reichert, Inc., USA) with PEG-coated gold sensor chips containing 10% COOH (Reichert, Inc., USA
161 #13206061). The chip was divided into four flow cells: growth factors were immobilized in channels 1 or
162 3, leaving channels 2 or 4 blank as references. The running buffer was 1x HBS-EP pH 7.4 (10 mM HEPES,
163 3 mM EDTA, 150 mM NaCl, 0.005% Tween-20). The ligands NRP1 (Cat. #3870-N1-025/CF, R&D Systems)
164 and VEGFR2 (Cat. #357-KD-050/CF, R&D Systems) were immobilized using an amine coupling method. EDC
165 (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide, 40 mg/mL), and NHS (N-hydroxysuccinimide, 10 mg/mL)
166 were dissolved in water, mixed, and injected at 10 µL/min for 7 minutes to activate the surface. Proteins
167 were diluted to 30 µg/mL in 10 mM acetate buffer (pH 4.0) and injected at 10 µL/min until the
168 immobilization level reached ≥2000 RU, based on an Rmax target of less than 200 RU to minimize mass
169 transfer effects. The surface was deactivated by injecting 1M ethanolamine hydrochloride-NaOH (pH 8.5)
170 for 7 minutes at 10 µL/min.

171
172 For kinetic analysis, analyte VEGF-A (Cat. #293-VE-010, R&D Systems) was injected at concentrations of 50,
173 25, 12.5, 6.25, and 3.12 nM, and the association and dissociation curves were fitted using a 1:1 Langmuir
174 binding model in TraceDrawer ver.1.8.1. Sensorgrams were visually inspected, and the fitting was validated
175 by the χ^2 -to-Rmax ratio (<0.10), ensuring a reliable 1:1 interaction model. Raw sensorgrams (3.12–50 nM)
176 were aligned, and nonspecific binding was subtracted using reference channel sensorgrams. Global fitting,
177 considered more accurate than single-curve fitting, was applied using nonlinear least-squares analysis in
178 TraceDrawer to determine association (k_{on}) and dissociation (k_{off}) rates across multiple response curves.
179 The results are presented as mean ± standard error.
180

181 **Results**

182 183 ***Study selection***

184
185 A total of 76 studies were analyzed (Figure 2; n = the number of studies): n = 10 for adipocyte size; n = 11
186 for vessel size; n = 12 for vessel density; n = 34 for capillary basement membrane thickness; n = 8 for VEGF-
187 A binding affinity to VEGFR1; n = 12 for VEGF-A binding affinity to VEGFR2; n = 10 for VEGF-A binding

188 affinity NRP1; $n = 3$ for VEGF-A to VEGFR1 association and disassociation rates; $n = 6$ for VEGF-A to VEGFR2
189 association and disassociation rates; and $n = 3$ for VEGF-A to NRP1 association and dissociation rates. After
190 assessing full-text articles, we included only studies that provided information enabling the extraction of
191 average values and standard errors, since those values were essential in the analysis. A total of 21 studies
192 were excluded from the final selection. The rationales for their exclusion were as follows:
193

- 194 1) *Lack of data to extract mean \pm standard error (15 studies)*: Lang *et al.*²¹, Sletta *et al.*²², Cai *et al.*²³,
195 Bloodworth *et al.*²⁴, Welt *et al.*²⁵, Colotti *et al.*²⁶, Geretti *et al.*²⁷, Guerrin *et al.*²⁸, Mamluk *et al.*²⁹,
196 Papo *et al.*³⁰, Shibuya *et al.*³¹, Soker *et al.*³², Tillo *et al.*³³, Pan *et al.*³⁴, and Vintonenko *et al.*³⁵ were
197 excluded because the mean or standard error could not be extracted.
- 198 2) *Outliers (3 studies)*: Koyama *et al.*¹⁷ was excluded because the reported vessel size was 8–21 times
199 larger than those in other studies. Fuh *et al.*³⁶ and Teran and Nugent³⁷ were also excluded because
200 their surface plasmon resonance analysis reported too large VEGF-A binding affinities (about 50
201 times and 30–140 times larger than other studies, respectively). In Teran and Nugent, especially,
202 the rationale for this discrepancy was not reasonable. They claimed two possibilities as the reason
203 for this discrepancy: (1) experimental settings different from those in the cell-based binding assay,
204 and (2) the properties of the Fc-receptor chimeras used for surface plasmon resonance. However,
205 we could not find such a noticeable difference in binding affinities across other studies using
206 surface plasmon resonance and cell-based assays (please refer to the supplementary tables). Also,
207 studies using surface plasmon resonance (e.g., Mamer *et al.*³⁸ and Papadopoulos *et al.*³⁹) used Fc-
208 receptors from the same source (R&D systems) as Teran and Nugent and yielded binding affinities
209 similar to those reported in other studies. The discrepancy might be caused by the use of fibroblast
210 growth factor receptors for nonspecific binding.
- 211 3) *Non-murine geometrical data (1 study)*: Belligoli *et al.*⁴⁰ was excluded because they reported
212 human capillary basement membrane thickness and we focused on murine tissues.
- 213 4) *Lack of tissue data (2 studies)*: Fraselle-Jacobs *et al.*⁴¹, which measured capillary basement
214 membrane thickness in adipose tissue, was excluded from the analysis because we found only one
215 paper that provided data for capillary basement membrane thickness in adipose tissue. Smith *et*
216 *al.*⁴², which measured capillary basement membrane thickness in the inner ear, was excluded for
217 the same reason.

218 219 220 ***Adipocyte diameter is larger in the adipose tissue of diet-induced obese mice than in lean mice***

221 After selecting papers on the basis of eligibility criteria and extracting data, we first investigated adipocyte
222 size in the most well-studied adipose tissue, the gonadal adipose tissue of lean and diet-induced obese
223 mice. We analyzed this data because of the exceptionally large occupation of intracellular space in adipose
224 tissue compared with tumors. Indeed, while tumor cells occupy about 40% of tumor^{13–15} volume, the
225 adipocytes' volume is about 90% of the total adipose tissue volume¹¹ (Figure 1A). The large diameter of
226 adipocytes contributes to their large volume percentage and the smaller interstitial space available for
227 VEGF. This is a distinctive feature of adipose tissue compared with tumors. We analyzed 22 measurements
228 from 10 studies (Table S1 and Figure 3). The main result is that adipocytes of obese mice were significantly
229 larger than those of lean mice: the adipocytes of diet-induced obese mice were about 78% larger than
230 those of lean mice (Table 1; $71 \pm 5.3 \mu\text{m}$ vs. $40 \pm 4.3 \mu\text{m}$, $p < 0.001$).
231

232

233 ***Smaller vessel size and higher vessel density in adipose tissue compared with tumors***

234

235 Adipose tissue is known to be highly vascularized¹. As vessel size and vessel density are useful measures
236 of vascular morphology, we compared vessel size and vessel density between obese and lean mice (Table
237 1, Figure 4, Tables S2, S4, Figures S1, S2, S4, and S5). We found that obese mice, in comparison with lean
238 mice, had half the vessel density but similar vessel size (vessel density: $350 \pm 68 \text{ /mm}^2$ vs. $720 \pm 120 \text{ /mm}^2$,
239 $p = 0.011 < 0.05$; vessel size: $64 \pm 10 \mu\text{m}^2$ vs. $51 \pm 6.2 \mu\text{m}^2$, $p = 0.159 > 0.05$).

240 Tumor tissue is also known for its high vascularity⁴³, and tumor vessels in lean mice were two times larger
241 than in lean and obese adipose tissue (Figures 4A and S3, and Table S3; lean adipose vs. tumor: 51 ± 6.2
242 μm^2 vs. $120 \pm 18 \mu\text{m}^2$, $p = 0.006 < 0.01$; obese adipose vs. tumor: $64 \pm 10 \mu\text{m}^2$ vs. $120 \pm 18 \mu\text{m}^2$, $p = 0.012$
243 < 0.05). However, the tumor was four and nine times less vascularized than were lean and obese adipose
244 tissue, respectively (Figures 4B and S6, and Table S5; lean adipose vs. tumor: $720 \pm 120 \text{ /mm}^2$ vs. 84 ± 26
245 /mm^2 , $p = 0.002 < 0.01$; obese adipose vs. tumor: $350 \pm 68 \text{ /mm}^2$ vs. $84 \pm 26 \text{ /mm}^2$, $p = 0.003 < 0.01$).
246 Overall, our data show that obesity reduces vascular density but not vessel size in adipose tissue and that
247 adipose tissue has higher vascular density but smaller vessel size than tumors.

248

249 **Table 1. Analysis of adipocyte size, vessel size, and vessel densities in adipose tissues and tumors**

	Mean \pm Standard Error (no. measurements)	Alternative hypothesis	Difference between means (p-value)
Adipocyte size			
Lean adipose tissue	$40 \pm 4.3 \mu\text{m}$ ($n = 9$)	Lean \leq obese	Significant ($p = 9.02 \times 10^{-5} < 0.01$)
Obese adipose tissue	$71 \pm 5.3 \mu\text{m}$ ($n = 13$)		
Vessel size			
Lean adipose tissue	$51 \pm 6.2 \mu\text{m}^2$ ($n = 6$)	Lean \leq obese	Not significant ($p = 0.159 > 0.05$)
Obese adipose tissue	$64 \pm 10 \mu\text{m}^2$ ($n = 9$)	Lean \leq tumor	Significant ($p = 0.006 < 0.01$)
Tumor	$120 \pm 18 \mu\text{m}^2$ ($n = 9$)	Obese \leq tumor	Significant ($p = 0.012 < 0.05$)
Vessel density			
Lean adipose tissue	$720 \pm 120 \text{ /mm}^2$ ($n = 7$)	Lean \geq obese	Significant ($p = 0.011 < 0.05$)
Obese adipose tissue	$350 \pm 68 \text{ /mm}^2$ ($n = 9$)	Lean \geq tumor	Significant ($p = 0.002 < 0.01$)
Tumor	$84 \pm 26 \text{ /mm}^2$ ($n = 11$)	Obese \geq tumor	Significant ($p = 0.003 < 0.01$)

250

251 ***Effect of obesity on capillary basement membrane thickness***

252

253 The capillary basement membrane is a component of the extracellular matrix in tissue. Since the thicker
254 capillary basement membrane occupies a larger volume fraction in adipose tissue, its thickness affects the
255 interstitial space volume in the tissue. Additionally, it is known that capillary basement membrane
256 thickening is associated with diabetes, and diabetes is one of the common comorbidities of obesity. Thus,
257 to determine the relationship between capillary basement membrane thickness and obesity, we analyzed

258 34 studies that measured capillary basement membrane thickness in lean and fat mice and rats (Table 2,
259 Figure 5, Table S6, and Figures S7–S8). The measurements from the retina, muscle, and heart were
260 examined in both categories of mice and rats since measurements from other tissues (e.g., brain and
261 kidney) were not found for obese mice and rats. Interestingly, capillary basement membrane thickness in
262 tissues of obese mice and rats was similar to that of lean mice and rats, with no significant difference
263 (obese vs. lean: 104 ± 14 nm vs. 94 ± 5 nm, $p = 0.536 > 0.05$). Our result indicates that obesity does not
264 affect capillary basement membrane thickness.

265
266 In order to examine if capillary basement membrane thickness varies across tissues, we examined capillary
267 basement membrane measurements from multiple tissues: retina, muscle, heart, brain, and kidney (Table
268 2, Table S6, Figures S9–S14). These tissues were chosen because they are the most well-studied tissues in
269 the field in regard to capillary basement membrane thickness. The obese mouse and rat data were
270 excluded from the retina, muscle, and heart datasets for fair comparison, since they did not include brain
271 and kidney measurements. The test for homogeneity of variance showed significantly different variances
272 across tissues ($p = 1.30 \times 10^{-5} < 0.001$). From the following Welch's ANOVA and Dunnett's T3 test, the retina
273 had similar capillary basement membrane thickness as muscle (101 ± 6 nm vs. 79 ± 10 nm, $p = 0.555 > 0.05$;
274 Table S10), but the retina had significantly different thickness compared with heart and brain (retina:
275 101 ± 6 nm vs. heart: 69 ± 7 nm, $p = 0.031$; retina vs. brain: 101 ± 6 nm vs. 75 ± 5 nm, $p = 0.019$). Capillary
276 basement membrane thickness in muscle was similar to that in heart and brain (muscle vs. heart: 79 ± 10
277 nm vs. 69 ± 7 nm, $p = 0.990 > 0.05$; muscle vs. brain: 79 ± 10 nm vs. 75 ± 5 nm, $p = 1.000 > 0.05$). We did
278 not analyze this in adipose tissue, because of the single datum (109 ± 11 nm from Fraselle-Jacobs *et al.*⁴¹).
279 Capillary basement membrane thickness was greatest in the kidney (181 ± 17 nm), and it was about 2–3
280 times thicker than in other tissues (retina vs. kidney: $p < 0.01$; muscle vs. kidney: $p < 0.001$; heart vs. kidney:
281 $p < 0.001$; brain vs. kidney: $p < 0.001$). Our result suggests that capillary basement membrane thickness
282 varies across tissues.

283

284 **Table 2. Capillary basement membrane thickness in mouse and rat tissues**

	Mean \pm Standard Error (no. measurements)	Null hypothesis	Difference between means (p-value)
All tissues			
Lean mice	94 ± 5 nm ($n = 51$)	Lean = obese	Not significant ($p = 0.536 > 0.05$)
Obese mice	104 ± 14 nm ($n = 7$)		
Tissue-specific			
Retina	101 ± 6 nm ($n = 38$)	Retina = muscle = heart = brain = kidney	[ANOVA] $F(4, 22) = 10.8$ $p = 5.42 \times 10^{-5} < 0.001$
Muscle	79 ± 10 nm ($n = 7$)		
Heart	69 ± 7 nm ($n = 6$)		
Brain	75 ± 5 nm ($n = 14$)		
Kidney	181 ± 17 nm ($n = 16$)		

285

286

287 **Binding data for VEGF-A:VEGFR2 and VEGF-A:NRP1 measured by surface plasmon resonance**

288

289 We measured the binding rates and affinities for VEGF-A with NRP1 (Figure S15A), as kinetics and affinity
290 studies were lacking. The VEGF-A:VEGFR2 binding rates were also measured as a positive control. The
291 VEGF-A:NRP1 binding affinity (K_d) was measured as 6.36 ± 1.07 nM, with an association rate (k_{on}) of
292 $7.96 \pm 2.15 \times 10^5$ M $^{-1}$ s $^{-1}$ and dissociation rate (k_{off}) of $1.56 \pm 0.55 \times 10^{-3}$ s $^{-1}$. The kinetics rate for VEGF-A

293 and VEGFR2 was determined with binding affinity $K_d = 520 \pm 250$ pM, which is in a pM range similar to
294 those reported in other studies (Figure S15B)⁴⁴⁻⁴⁶. The association rate (k_{on}) for VEGF-A:VEGFR2 was
295 calculated to be $6.24 \pm 0.46 \times 10^5$ M⁻¹s⁻¹, with the dissociation rate (k_{off}) of $3.18 \pm 1.98 \times 10^{-4}$ s⁻¹. These
296 measurements were included in our analysis. We measured a lower binding affinity and slower
297 dissociation rate in VEGF-A's binding to NRP1 in comparison with its binding to VEGFR2.
298

299 ***Stronger binding of VEGF-A to VEGFR1 than to VEGFR2 and NRP1***

300
301 VEGF receptors have distinct functions in angiogenesis; thus, comparing their binding affinities offers
302 receptor-level insights into differential VEGFR signaling in obesity. We analyzed 21 studies that measured
303 VEGF-A binding affinity to VEGFR1, VEGFR2, and the co-receptor NRP1, using either radioligand assays or
304 surface plasmon resonance (Table 3, Figure 6A, Tables S7–S9, Figures S16–S18). As expected, the binding
305 affinity of VEGF-A to VEGFR1 was significantly stronger than to VEGFR2, being about six times stronger
306 (34 ± 12 pM vs. 210 ± 60 pM, p = 0.017 < 0.05). On the other hand, the binding affinity of VEGF-A to NRP1
307 was not significantly weaker than the VEGF-A:VEGFR1 affinity, although it was about 24 times weaker
308 (34 ± 12 pM vs. 820 ± 350 pM, p = 0.065 > 0.05). Similarly, VEGF-A binding affinity to NRP1 was not
309 significantly weaker than to VEGFR2, although it was four times weaker (210 ± 60 pM vs. 820 ± 350 pM,
310 p = 0.088 > 0.05). Overall, our study shows the strongest binding affinity of VEGF-A to VEGFR1 and its
311 weakest binding affinity to NRP1.
312

313 **Table 3. Analytic K_d values for VEGF-A binding to its receptors**

Receptors	Mean ± Standard Error (no. measurements)	Alternative hypothesis	Difference between means (p-value)
VEGFR1	34 ± 12 pM (n = 10)	VEGFR1 ≤ VEGFR2	Statistical difference (p = 0.017 < 0.05)
VEGFR2	210 ± 60 pM (n = 17)	VEGFR1 ≤ NRP1	No difference (p = 0.065 > 0.05)
NRP1	820 ± 350 pM (n = 12)	VEGFR2 ≤ NRP1	No difference (p = 0.088 > 0.05)

314
315 Association (k_{on}) and dissociation (k_{off}) rate constants allow us to predict not only the equilibrium state of
316 a ligand-receptor interaction, but also how fast the system responds to changes in the concentration of
317 the ligand or to another competitor. We analyzed data for VEGFR1, VEGFR2, and NRP1 binding kinetics
318 with VEGF-A. The association rates of VEGF-A and these receptors were not significantly different,
319 although the association rate of VEGFR1 was larger than that of VEGFR2, as expected (Table 4, Figure 6B,
320 Table S7–S9, Figure S19–S21; $11 \pm 9.3 \times 10^6$ M⁻¹s⁻¹ vs. $4.6 \pm 1.7 \times 10^6$ M⁻¹s⁻¹, p = 0.274 > 0.05). The
321 association rate of NRP1 ($1.3 \pm 0.54 \times 10^6$ M⁻¹s⁻¹) was four to eight times smaller than those of VEGFR1
322 and VEGFR2 (p = 0.274 > 0.05 and p = 0.238 > 0.05, respectively). The dissociation rate constants for all
323 receptors were also similar, although the mean for VEGFR1 was eight times smaller than the mean for
324 VEGFR2 (Table 4, Figure 6C, Table S7–S9, Figure S22–S24; $1.0 \pm 0.89 \times 10^{-4}$ s⁻¹ vs. $7.7 \pm 4.3 \times 10^{-4}$ s⁻¹), and
325 that of NRP1 was larger by an order of magnitude ($3.5 \pm 1.6 \times 10^{-3}$ s⁻¹). Overall, our data suggest that
326 association and dissociation rates of VEGF-A with these receptors do not differ significantly, while its
327 binding affinities for VEGFR1 and VEGFR2 do differ significantly.
328

329 **Table 4. Analytic association and dissociation rate values of VEGF-A binding to VEGFR1, VEGFR2, and**
 330 **NRP1**

	Mean \pm Standard Error (no. measurements)	Alternative hypothesis	Difference between means (p-value)
Association rates			
VEGFR1	$11 \pm 9.3 \times 10^6 \text{ M}^{-1}\text{s}^{-1} (n = 3)$	$\text{VEGFR1} \geq \text{VEGFR2}$	No difference (p = 0.274 > 0.05)
VEGFR2	$4.6 \pm 1.7 \times 10^6 \text{ M}^{-1}\text{s}^{-1} (n = 9)$	$\text{VEGFR1} \geq \text{NRP1}$	No difference (p = 0.274 > 0.05)
NRP1	$1.3 \pm 0.54 \times 10^6 \text{ M}^{-1}\text{s}^{-1} (n = 3)$	$\text{VEGFR2} \geq \text{NRP1}$	No difference (p = 0.238 > 0.05)
Dissociation rates			
VEGFR1	$1.0 \pm 0.89 \times 10^{-4} \text{ s}^{-1} (n = 3)$	$\text{VEGFR2} \geq \text{VEGFR1}$	No difference (p = 0.123 > 0.05)
VEGFR2	$7.7 \pm 4.3 \times 10^{-4} \text{ s}^{-1} (n = 9)$	$\text{NRP1} \geq \text{VEGFR1}$	No difference (p = 0.123 > 0.05)
NRP1	$3.5 \pm 1.6 \times 10^{-3} \text{ s}^{-1} (n = 3)$	$\text{NRP1} \geq \text{VEGFR2}$	No difference (p = 0.123 > 0.05)

331
 332 We also examined the binding affinities of VEGF-B and VEGF-C for VEGF receptors (Table 5). VEGF-B binds
 333 to VEGFR1 and NRP1, while VEGF-C binds to VEGFR2 and VEGFR3. VEGF-B includes two isoforms, VEGF-
 334 B167 and VEGF-B186, with VEGF-B167 predominantly expressed in most normal tissues⁴⁷. VEGF-B186
 335 must be proteolytically processed to bind to NRP1, while VEGF-B167 binds to NRP1 without cleavage⁴⁸.
 336 From the data mining, we found that VEGF-B binds to VEGFR1 and the b1 domain of NRP1 with binding
 337 affinities of 114 pM and 36 μ M, respectively. VEGF-B peptides bind to the b1 domain of NRP1 with binding
 338 affinities of 0.39–9.55 μ M. Most studies show that the mature VEGF-C and its mutants bind to VEGFR2
 339 and VEGFR3 with binding affinities in the nM range, while Joukov *et al.*⁴⁹ reported a pM range of K_d for
 340 VEGF-C:VEGFR2 and VEGFR3. These different binding affinities are possibly due to different measurement
 341 methods or cells used to produce recombinant VEGF-C. Due to the lack of data, we did not analyze them
 342 using a random-effects model.
 343

344 **Table 5. Binding affinities of VEGF-B and VEGF-C to VEGFRs and NRP1**

Ligand	Receptor	Method	Measurements	Reference
Mouse VEGF-B186	VEGFR1 [†]	Radioligand assay (Competitive binding with human VEGF-A165)	114 pM	50
Full length human VEGF-B176	Human NRP1-b1 [‡]	Surface plasmon resonance (VEGF-B167 was immobilized)	36 μ M	51
Human VEGF-B167 peptide		Surface plasmon resonance (NRP1-b1 was immobilized)	0.39 μ M	
VEGF-B186 peptide [†]			9.55 μ M	
Human $\triangle N \triangle C^{\$}$	VEGFR2 [†]	Radioligand assay (Saturating binding assay; Scatchard analysis)	410 pM	49
	VEGFR3 [†]		135 pM	

Recombinant human VEGF-C	Human VEGFR2	Surface plasmon resonance	22 nM	52
	Human VEGFR3		4.4 nM	
Human VEGF-C156 [¶]	Human VEGFR3		115 nM	
Human D123A/Q130A double mutant VEGF-C	Human monomeric VEGFR3 ECD (D1–7) ^{††}	Isothermal titration calorimetry	34 nM	53
Human C137A mutant VEGF-C	Human monomeric VEGFR3 ECD (D1–2)		250 nM	
	Human monomeric VEGFR3 ECD (D1–3)		140 nM	
	Human monomeric VEGFR3 ECD (D1–5)		3.7 nM	
	Human monomeric VEGFR3 ECD (D1–7)		5.6 nM	
	Human D5 double mutant 5EA of VEGFR3 (D1–5)		12 nM	

345 [†]Species were not specified.

346 [‡]NRP1-b1: b1 domain of NRP1.

347 [§]△N△C: a VEGF-C mutant mimicking mature VEGF-C. The N- and C-terminal propeptides were deleted at
348 or near the proteolytic processing sites.

349 [¶]VEGF-C156: a mutant generated by replacing the second conserved Cys (Cys¹⁵⁶) residue of the
350 recombinant processed VEGF-C (△N△C) by a Ser residue

351 ^{††}Monomeric VEGFR3 ECD (D1–X): a VEGFR3 extracellular domain that is C-terminal truncated, soluble,
352 and monomeric. It has domains from the membrane proximal domains, D1 to DX, where X is a number
353 from 2 to 7.

354

355 ***Significant difference in binding affinities between radioligand and SPR assays, except for VEGF-A:NRP1***

356

357 The binding affinity is a specific type of equilibrium constant, calculated by dividing the dissociation rate
358 “constant” by the association “constant”. Thus, theoretically, the value should be consistent under similar
359 observation conditions. Nevertheless, different techniques to detect ligand–receptor binding may yield
360 variations in binding kinetic measurements due to different experimental settings. In order to assess
361 variability in VEGF-A binding affinity measurements, we analyzed data from radioligand assays and SPR.
362 The analysis of 21 studies showed that the VEGF-A binding affinity for VEGFR1 measured by radioligand
363 assay was about eight times weaker than that measured by SPR: 46 ± 15 pM vs. 5.9 ± 2.6 pM, respectively
364 (Table 6, Figure S25–S27). Also, the binding affinity of VEGF-A to VEGFR2 measured by radioligand assay
365 was about six times weaker than that measured by SPR (Figure S28 and S29; radioligand assay vs. SPR;
366 310 ± 110 pM vs. 51 ± 15 pM) while radioligand assay showed seven-times stronger binding affinities for

367 NRP1 (Figure S30 and S31; 0.36 ± 0.08 nM vs. 2.69 ± 1.96 nM). We applied Welch's t-test to compare K_d
368 values measured by radioligand assay and SPR for each receptor. All results of t-tests for VEGF receptors
369 except NRP1 were significant ($p = 0.036 < 0.05$ for VEGFR1; $p = 0.048 < 0.05$ for VEGFR2; $p = 0.346 > 0.05$
370 for NRP1). Our results indicate that radioligand assay and SPR report significantly different VEGFR binding
371 affinities.

372

373 **Table 6. Analytic K_d values for VEGF-A binding to its receptors measured by radioligand and SPR (surface**

374 plasmon resonance) assays

Receptors	Mean \pm Standard Error (no. measurements)		Alternative hypothesis	Difference between means (p-value)
VEGFR1	Radioligand	46 ± 15 pM (n = 7)	Radioligand K_d \neq SPR K_d	Significant (p = 0.036 < 0.05)
	SPR	5.9 ± 2.6 pM (n = 3)		Significant (p = 0.048 < 0.05)
VEGFR2	Radioligand	310 ± 110 pM (n = 8)	Radioligand K_d \neq SPR K_d	No difference (p = 0.346 > 0.05)
	SPR	51 ± 15 pM (n = 9)		
NRP1	Radioligand	0.36 ± 0.08 nM (n = 9)	Radioligand K_d \neq SPR K_d	
	SPR	2.69 ± 1.96 nM (n = 3)		

375

376

377 Discussion

378

379 The prevalence of obesity in the United States reached 42% in 2021⁵⁴, and obesity causes severe
380 cardiovascular diseases. Adipose tissue expansion in obesity requires angiogenesis, but how to control
381 angiogenesis in obesity is still unknown. Systems biology can provide new insight into this problem by
382 incorporating biological data and computational models. Several studies have constructed computational
383 models to understand pathological angiogenesis in cancer or peripheral artery diseases^{13,55}. However,
384 applying the same models to adipose tissue requires adaptation to its unique microenvironment,
385 specifically by incorporating adipose tissue-specific data. Thus, prior to developing obesity models, it is
386 important to identify and analyze data affecting angiogenic signaling in the targeted tissue. The work in
387 this paper yielded the following five key findings: (1) obese mice have 78% larger adipocytes than lean
388 mice; (2) obesity reduces vessel density but does not affect vessel size, and adipose tissue has smaller
389 vessel size but higher vessel density than tumors; (3) obesity does not affect capillary basement membrane
390 thickness, as opposed to what has been reported in diabetes; (4) by standardizing the binding rates, we
391 confirmed that VEGF-A's strongest binding is to VEGFR1 rather than to VEGFR2 or NRP1; and (5) the
392 binding affinities measured by radioligand assay and SPR are significantly different. From these key findings,
393 our study will enable the development of adipose tissue-specific computational models.

394

395 ***Obesity increases adipocyte size and reduces vessel density but not vessel size***

396

397 Our analysis determined that in obese mice, adipocyte diameter is increased by 78% and vessel density is
398 reduced by 51%, consistent with findings from a previous meta-analysis of human adipose tissue⁵⁶.
399 However, vessel size may not be affected by obesity, as suggested by our analysis. While we did not identify
400 studies statistically comparing vessel size between lean and obese human subjects, representative
401 histological images with stained vessels appear to show that the vessels in their adipose tissues are of
402 similar size⁵⁷. In obesogenic conditions, adipocytes undergo hypertrophy (cell enlargement), which

403 reduces vascular density and creates hypoxic conditions within the tissue, making these processes crucial
404 for inclusion in a computational model of obesity. Overall, our study confirms the association of obesity
405 with adipocyte size and vessel density and suggests its non-association with vessel size.
406

407 ***Contribution of our study to the successful development of adipose-tissue models; difference between***
408 ***adipose tissue and tumor vasculature***

409
410 Because both tumors and obesity are affected by hypoxia, one may hypothesize that vessels in the two
411 conditions may be similar. Hence, our work aimed to identify (1) any similarities that would enable
412 computational tumor models to be applied to obesity, or (2) any differences that would justify novel
413 obesity-specific computational models. To address this, we examined the differences in vascular
414 morphologies between adipose tissue and tumors, demonstrating that adipose tissues exhibit a higher
415 vessel density but a smaller vessel size than tumors. Specifically, the vessel size in adipose tissue is
416 approximately half that in tumors, while vessel density is four to nine times higher. Consequently, the
417 surface area of vessels per unit volume in adipose tissue may be 3–6 times greater than in tumors.
418

419 These differences that we observed between tumors and obesity may be understood through their
420 differing mechanisms of hypoxia and angiogenesis. In obesity, hypoxia is induced as vessel densities are
421 reduced by the enlargement of adipocytes, while in tumors hypoxia results from poor oxygen diffusion
422 from abnormal vasculature^{58,59}. Tumors exhibit chaotic vessel formation due to their continuous pro-
423 angiogenic state and rapid neovascularization. This rapid angiogenesis limits the development of mature
424 vessel structures and results in larger, irregular vessels often concentrated at the periphery rather than
425 throughout the tissue^{60,61}. In contrast, adipose tissue has unique features. The stromal vascular fraction in
426 the adipose tissue supports a well-organized, hierarchical vasculature where each adipocyte is adjacent to
427 at least one vessel, creating an evenly distributed network across the tissue^{62,63}.
428

429 If a tumor model is adopted for obesity, this significant difference would lead to incorrect predictions of
430 VEGF-A distributions in adipose tissue (e.g., concentrations of free VEGF-A, interstitial matrix-bound VEGF-
431 A, and receptor-bound VEGF-A) and potentially affect predictions of anti-VEGF drug efficacy. Instead, the
432 development of adipose-specific models, with parameters defined here, would enable researchers to
433 identify the most effective obesity treatment.
434

435 ***Why does obesity not affect capillary basement membrane thickness?***
436

437 We sought to understand whether obesity alters capillary basement membrane (CBM) thickness in
438 adipose tissue, but could not because there were no data available. We instead examined three organs
439 from obese mice and rats—retina, muscle, and heart—and compared them with their correlates in lean
440 mice and rats. This analysis showed that CBM thickness is not altered by obesity in non-adipose tissue.
441 Thus, in computational modeling, the CBM thickness could be assumed to have the same value in lean and
442 obese conditions. Experimental studies should clarify whether obese and lean adipose tissue also have
443 similar CBM.
444

445 The insensitivity of CBM thickness to obesity was unexpected, given that 80% of the studies we analyzed
446 used prediabetic and diabetic mice and rats (40% for each group; only 20% used obese, non-diabetic mice)
447 and that diabetes, a common comorbidity of obesity, has been associated with CBM thickening in diabetic
448 models, particularly in the retina, muscles, brain, and kidneys^{64–69}. In fact, CBM thickening has been
449 recognized as a hallmark of diabetic retinopathy, nephropathy, and cardiomyopathy, and in the brain, it is

450 also associated with Alzheimer's disease⁷⁰. This raises the question: what factors might account for the
451 lack of a significant effect of obesity on CBM thickness in our study? We suggest two possible explanations
452 for our findings:

453 1) **Duration of diabetes:** The duration of diabetes rather than diabetes itself may determine the CBM
454 thickness⁷¹. For example, 6–7-month-old Zucker diabetic fatty rats develop diabetes after 3–5 months of
455 age⁷², suggesting that CBM thickening may not have progressed enough to reach significance. Similarly,
456 C57BL/6J mice develop obesity and diabetes after 4 months on a diet high in fat and simple carbohydrate⁷³.
457 However, the mice in Williams *et al.* had undergone only a 4-month high-fat diet and exhibited CBM
458 thickness comparable to that of lean mice⁷⁴.

459 2) **Obese rodent strains:** The strain of obese rats included in our analysis may also explain our findings.
460 Studies by Lash *et al.* and Dosso *et al.* on obese Zucker rats^{75,76}, which are a model for prediabetes⁷⁷,
461 support this possibility. Considering that humans with prediabetes exhibit CBM thickness similar to that
462 of lean, healthy humans (103 nm vs. 117 nm)⁴⁰, it is reasonable to expect that CBM thickness will not differ
463 significantly between the prediabetic Zucker rats and lean rats.

464
465 We sought to determine if CBM thickness varies across tissues, in order to decide whether computational
466 models should consider this aspect of the targeted tissue. Importantly, tissues have phenotypically
467 different capillaries depending on their function. For example, kidneys have continuous fenestrated
468 capillaries, with continuous basement membrane and fenestrated endothelium that allows large
469 molecules to pass across the wall⁷⁸. On the other hand, heart and muscle have continuous basement
470 membranes and non-fenestrated endothelium, which allow only small molecules to pass^{78,79}. The liver has
471 discontinuous capillaries with a fragmented basement membrane, allowing the movement of large
472 molecules for liver metabolism⁸⁰. All tissues we examined in this study have continuous CBMs, so we aimed
473 to identify any differences in CBM thickness between these tissues of lean mice and rats. The retina and
474 kidney have higher CBM thicknesses than other tissues, possibly due to different distributions of molecular
475 components (collagen, nidogen, etc.), cell types, or physical factors (e.g., hydrostatic pressure)^{81,82}. For
476 example, the kidney CBM is composed of two basement membranes: one from the endothelium and
477 another from the epithelium⁸³.

478
479 ***Standardized VEGF-A binding rates accelerate the development of a more feasible computational model***
480

481 Our analysis confirms that VEGF-A binding to VEGFR1 is the strongest and establishes that VEGF-A binding
482 to NRP1 is the weakest of its binding to receptors. This strong VEGF:VEGFR1 binding is attributed to its
483 highest association rate (k_{on}) and lowest dissociation rate (k_{off}), whereas VEGF:NRP1 binding displayed the
484 opposite kinetic profile. The binding affinity (K_d) is calculated by $K_d = k_{off}/k_{on}$. Our standardized values of
485 VEGF-A binding affinities to VEGFR1 and VEGFR2 are consistent with values used in previous
486 computational studies, while VEGF-A binding affinity to NRP1 from our study was three times weaker than
487 the previously used values^{13,84,85}. On the other hand, our association and dissociation rate constants
488 differed by two to four times from the previously used values. This difference might have affected the
489 simulation outcomes of the previous studies^{13,84,85} such as the proportion of VEGF-A among other ligands
490 bound to the same VEGF receptors, because the rate constants are key factors determining how fast VEGF-
491 A binds to its receptors in competing with other ligands. To our best knowledge, ours is the first analysis
492 to standardize the VEGF-A binding rates, because only a few studies have gathered and analyzed VEGF-A
493 binding data⁸⁶. Thus, our analysis enhances the understanding of complex VEGF-A signaling mechanisms
494 and enables the development of more feasible computational models by providing standardized binding
495 affinities.

496

497 ***Variation in measurements from different ligand-binding assays: computational modelers should be***
498 ***aware of this when choosing kinetic values***

499
500 Our analysis revealed that measurement techniques can significantly impact binding affinity values.
501 Specifically, binding affinities are commonly measured using two techniques: the radioligand assay and
502 surface plasmon resonance (SPR). When comparing data from these methods, we found that radioligand
503 assays yield higher binding affinity measurements for VEGF-A:VEGFR1 and VEGF-A:VEGFR2, while no
504 difference was observed for VEGF-A:NRP1. Several factors may explain these notable differences. First,
505 heparin has been shown to reduce the VEGF-A:VEGFR1 binding affinity in porcine aortic endothelial cells⁸⁷.
506 Specifically, K_d was 54 pM in the absence of heparin but increased to 77–118 pM when heparin was
507 present. This suggests that heparan sulfate proteoglycan (HSPG) on the cell membrane likely influences
508 the binding affinity observed in the radioligand assay, which is a cell-based assay. In contrast, SPR is a chip-
509 based assay and may not fully replicate the membrane-associated effects. Second, the different structures
510 of receptors used in the radioligand assay and SPR may also affect the binding affinity. While the
511 radioligand assays that we cited in our analysis used full-length receptors on cells, in SPR reconstituted
512 receptors with no transmembrane and intracellular domains are bound to chips. The absence of these
513 domains and associated membrane stabilization may contribute to differences in VEGF-A binding. For
514 example, previous studies showed that mutation of the transmembrane domain of NRP1 significantly
515 reduced VEGF-A binding⁸⁸. Thus, computational modelers should consider these variations in the
516 measurements of ligand-binding assays to more consciously choose kinetic values and investigate their
517 impact on model outcomes through a sensitivity analysis across the pM to nM range that we identified
518 across these assays.

519
520 ***Study limitations***

521
522 This study has three limitations: (1) **Small sample sizes in datasets**: The small sample size may
523 overestimate the confidence interval or prediction interval and result in questionable standardized values.
524 The overestimated confidence interval also affects the results of statistical tests in which we compare
525 group means. Indeed, one of our datasets, VEGF-A:NRP1 binding affinities measured by SPR, included only
526 three studies, which yielded wide prediction intervals and insignificant differences in measurements
527 between SPR and the radioligand assay. Additional related studies should be accumulated to reduce the
528 possible overestimation of pooled variance. (2) **Lack of moderator analysis**: Moderator analysis is usually
529 performed to identify the moderators that affect heterogeneity in datasets. Our analysis showed high
530 heterogeneity between studies for each dataset. For example, the lower bound of the 95% prediction
531 intervals for some datasets was smaller than 0 (e.g., -4.7 to 10.0 nM for binding affinities of VEGF-A:NRP1
532 measured by SPR). Most values of I^2 , which indicates the proportion of total variability attributed to
533 between-study variability, exceeded 90%, categorizing the standardized values as having high
534 heterogeneity ($I^2 > 75\%$)⁸⁹. However, we lacked the data to perform moderator analysis. We expect that
535 the high heterogeneity between studies in datasets would be caused by different mouse models, cell lines,
536 different ligand–receptor interaction conditions, etc. (3) **Not meta-analysis**: We performed an extensive
537 literature search ($n = 75$ studies) using free-text search-phrase approaches to find targeting measurements.
538 However, we acknowledge that this is not a meta-analysis. A meta-analysis requires an exhaustive
539 literature search using both controlled vocabulary (e.g., MeSH) and text word search. Another best
540 practice for meta-analysis is registration in a database such as PROSPERO⁹⁰. Future studies should build
541 upon the principles that we have established here to elevate the analysis to the level of a meta-analysis.

542

543 **Conclusions**

544

545 Our findings will enable advances in three important areas: (1) **Adipose tissue microenvironment and**
546 **obesity**: Our results show that obesity does not affect capillary basement membrane thickness even
547 though there is increased capillary basement thickness associated with diabetes. Also, obesity decreases
548 vessel density in adipose tissue while vessel size remains the same. These findings help to identify which
549 structures within the vascular microenvironment are affected by obesity. Further, our results align with
550 previous studies reporting that obese mice have larger adipocytes than lean mice^{91,92}. (2) **Understanding**
551 **of vascular dysfunction**: Our observation that adipose tissue has smaller vessels and higher vessel density
552 compared with tumors underlies the importance of investigating tissue-specific vascular phenotypes.
553 These different phenotypes indicate that tumor and adipose tissue angiogenesis may be differently
554 regulated—despite theories to the contrary, which focus on the hypoxia in both environments. Further, by
555 identifying vessel morphology and considering it alongside VEGF-A kinetic parameters, researchers can
556 examine crosstalk between adipose tissue and tumors via VEGF-A signaling. Indeed, there is evidence that
557 adipocyte-induced VEGF-mTOR signaling increases tumor cell growth and that obesity upregulates the
558 signal⁹³. Thus, the enhanced knowledge provided by our analysis should be helpful for the development
559 of angiogenesis-targeting treatment in both tumor and obesity research. 3) **Computational modeling**:
560 With the consolidated data that we provide on adipose tissue and adipose vascular characteristics, systems
561 biology researchers can develop much-needed computational models of obesity. **Therefore, this work has**
562 **broad potential impact on** biological and biomedical research.

563

564 **Acknowledgments**

565

566 We thank Dr. Vincenza Cifarelli for providing invaluable support through discussions. This material is based
567 upon work supported by the National Science Foundation under Grant No. 1923151. Research reported
568 in this publication was also supported by the National Institute of Heart, Lung, and Blood of the National
569 Institutes of Health under Award Number 7R01HL159946-02. Any opinions, findings, and conclusions or
570 recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
571 views of the National Science Foundation or the National Institutes of Health.

572

573 **Data availability statement**

574

575 The data that support the findings of this study are available in the methods and/or supplementary
576 material of this article.

577

578 **Conflict of interests**

579

580 The authors declare no conflicts of interest.

581

582 **Author contribution**

583

584 Yunjeong Lee, Yingye Fang, and Princess I Imoukhuede designed the research. Yunjeong Lee and Keith
585 Lionel Tupei acquired, analyzed, and interpreted the data. Shobhan Kuila acquired and interpreted the SPR
586 data. Ximeng Liu acquired the capillary basement membrane thickness and VEGF-B binding affinity data.
587 Yunjeong Lee, Keith Lionel Tupei, Shobhan Kuila, Yingye Fang, and Princess I Imoukhuede were involved in
588 drafting and revising the manuscript.

589

590 **References**

591

592 1. Herold, J. & Kalucka, J. Angiogenesis in Adipose Tissue: The Interplay Between Adipose
593 and Endothelial Cells. *Frontiers in Physiology* vol. 11 Preprint at
594 <https://doi.org/10.3389/fphys.2020.624903> (2021).

595 2. Rausch, M. E., Weisberg, S., Vardhana, P. & Tortoriello, D. V. Obesity in C57BL/6J mice is
596 characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. *Int J Obes* **32**,
597 (2008).

598 3. Meister, B. M. *et al.* Healthy versus Unhealthy Adipose Tissue Expansion: the Role of
599 Exercise. *Journal of Obesity and Metabolic Syndrome* vol. 31 Preprint at
600 <https://doi.org/10.7570/JOMES21096> (2022).

601 4. Khan, T. *et al.* Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI.
602 *Mol Cell Biol* **29**, (2009).

603 5. Sung, H. K. *et al.* Adipose vascular endothelial growth factor regulates metabolic
604 homeostasis through angiogenesis. *Cell Metab* **17**, (2013).

605 6. Wu, L. E. *et al.* Systemic VEGF-A neutralization ameliorates diet-induced metabolic
606 dysfunction. *Diabetes* **63**, (2014).

607 7. Fang, Y., Kaszuba, T. & Imoukhuede, P. I. Systems Biology Will Direct Vascular-Targeted
608 Therapy for Obesity. *Front Physiol* **11**, (2020).

609 8. Claffey, K. P., Wilkison, W. O. & Spiegelman, B. M. Vascular endothelial growth factor.
610 Regulation by cell differentiation and activated second messenger pathways. *Journal of
611 Biological Chemistry* **267**, (1992).

612 9. Sun, K. *et al.* Dichotomous effects of VEGF-A on adipose tissue dysfunction. *Proc Natl
613 Acad Sci U S A* **109**, (2012).

614 10. Nishimura, S. *et al.* Adipogenesis in obesity requires close interplay between
615 differentiating adipocytes, stromal cells, and blood vessels. *Diabetes* **56**, (2007).

616 11. Arner, P. & Rydén, M. Human white adipose tissue: A highly dynamic metabolic organ. *J
617 Intern Med* **291**, (2022).

618 12. Yen, P., Finley, S. D., Engel-Stefanini, M. O. & Popel, A. S. A two-compartment model of
619 VEGF distribution in the mouse. *PLoS One* **6**, (2011).

620 13. Finley, S. D., Engel-Stefanini, M. O., Imoukhuede, P. I. & Popel, A. S. Pharmacokinetics and
621 pharmacodynamics of VEGF-neutralizing antibodies. *BMC Syst Biol* **5**, (2011).

622 14. Hao, S. J., Wan, Y., Xia, Y. Q., Zou, X. & Zheng, S. Y. Size-based separation methods of
623 circulating tumor cells. *Advanced Drug Delivery Reviews* vol. 125 Preprint at
624 <https://doi.org/10.1016/j.addr.2018.01.002> (2018).

625 15. Del Monte, U. Does the cell number 109 still really fit one gram of tumor tissue? *Cell
626 Cycle* **8**, (2009).

627 16. Fang, Y., Cifarelli, V. & Imoukhuede, P. I. Sex differences in VEGF/PDGF ligand and receptor
628 profiles in adipose tissue during weight gain and weight loss. *Under review*.

629 17. Koyama, S. *et al.* Tumour blood vessel normalisation by prolyl hydroxylase inhibitor
630 repaired sensitivity to chemotherapy in a tumour mouse model. *Sci Rep* **7**, (2017).

631 18. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image
632 analysis. *Nature Methods* vol. 9 Preprint at <https://doi.org/10.1038/nmeth.2089> (2012).

633 19. Borenstein, M. How to understand and report heterogeneity in a meta-analysis: The
634 difference between I-squared and prediction intervals. *Integr Med Res* **12**, (2023).

635 20. Krzywinski, M. & Altman, N. Comparing samples—part II. *Nat Methods* **11**, 355–356
636 (2014).

637 21. Lang, S. *et al.* Three-dimensional quantification of capillary networks in healthy and
638 cancerous tissues of two mice. *Microvasc Res* **84**, (2012).

639 22. Sletta, K. Y. *et al.* Oxygen-dependent regulation of tumor growth and metastasis in human
640 breast cancer xenografts. *PLoS One* **12**, (2017).

641 23. Cai, W. *et al.* PET of vascular endothelial growth factor receptor expression. *Journal of
642 Nuclear Medicine* **47**, (2006).

643 24. Bloodworth, J. M., Engerman, R. L., Camerini-Dávalos, R. A. & Powers, K. L. Variations in
644 capillary basement membrane width produced by aging and diabetes mellitus. *Adv
645 Metab Disord* **1**, (1970).

646 25. Welt, K., Weiss, J., Koch, S. & Fitzl, G. Protective effects of Ginkgo biloba extract EGb 761
647 on the myocardium of experimentally diabetic rats. II. Ultrastructural and
648 immunohistochemical investigation on microvessels and interstitium. *Experimental and
649 Toxicologic Pathology* **51**, (1999).

650 26. Colotti, G. *et al.* Neuropilin-1 is required for endothelial cell adhesion to soluble vascular
651 endothelial growth factor receptor 1. *FEBS Journal* **289**, (2022).

652 27. Geretti, E., Shimizu, A., Kurschat, P. & Klagsbrun, M. Site-directed mutagenesis in the B-
653 neuropilin-2 domain selectively enhances its affinity to VEGF165, but not to semaphorin
654 3F. *Journal of Biological Chemistry* **282**, (2007).

655 28. Guerrin, M. *et al.* Vasculotropin/Vascular endothelial growth factor is an autocrine
656 growth factor for human retinal pigment epithelial cells cultured in vitro. *J Cell Physiol* **164**,
657 (1995).

658 29. Mamluk, R. *et al.* Neuropilin-1 binds vascular endothelial growth factor 165, placenta
659 growth factor-2, and heparin via its b1b2 domain. *Journal of Biological Chemistry* **277**,
660 (2002).

661 30. Papo, N., Silverman, A. P., Lahti, J. L. & Cochran, J. R. Antagonistic VEGF variants
662 engineered to simultaneously bind to and inhibit VEGFR2 and α β 3 integrin. *Proc Natl
663 Acad Sci U S A* **108**, (2011).

664 31. Shibuya, M. *et al.* Nucleotide sequence and expression of a novel human receptor-type
665 tyrosine kinase gene (flt) closely related to the fms family. *Oncogene* **5**, (1990).

666 32. Soker, S., Miao, H. Q., Nomi, M., Takashima, S. & Klagsbrun, M. VEGF165 mediates
667 formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-
668 receptor binding. *J Cell Biochem* **85**, (2002).

669 33. Tillo, M. *et al.* VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal
670 patterning in the developing brain. *Development* **142**, (2015).

671 34. Pan, Q. *et al.* Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and
672 sprouting. *Journal of Biological Chemistry* **282**, (2007).

673 35. Vintonenko, N. *et al.* Overexpression of VEGF189 in breast cancer cells induces apoptosis
674 via NRP1 under stress conditions. *Cell Adh Migr* **5**, (2011).

675 36. Fuh, G., Garcia, K. C. & De Vos, A. M. The interaction of neuropilin-1 with vascular
676 endothelial growth factor and its receptor Flt-1. *Journal of Biological Chemistry* **275**,
677 (2000).

678 37. Teran, M. & Nugent, M. A. Characterization of receptor binding kinetics for vascular
679 endothelial growth factor-A using SPR. *Anal Biochem* **564–565**, (2019).

680 38. Mamer, S. B., Wittenkeller, A. & Imoukhuede, P. I. VEGF-A splice variants bind VEGFRs
681 with differential affinities. *Sci Rep* **10**, (2020).

682 39. Papadopoulos, N. *et al.* Binding and neutralization of vascular endothelial growth factor
683 (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. *Angiogenesis* **15**,
684 (2012).

685 40. Belligoli, A. *et al.* Characterization of subcutaneous and omental adipose tissue in
686 patients with obesity and with different degrees of glucose impairment. *Sci Rep* **9**, (2019).

687 41. Fraselle-Jacobs, A., Jeanjean, M., Hauser, N. & Remacle, C. Effect of aging on the
688 morphology of epididymal adipose tissue in the rat. *Exp Gerontol* **22**, (1987).

689 42. Smith, T. L., Raynor, E., Prazma, J., Buenting, J. E. & Pillsbury, H. C. Insulin-dependent
690 diabetic microangiopathy in the inner ear. *Laryngoscope* **105**, (1995).

691 43. Forster, J., Harriss-Phillips, W., Douglass, M. & Bezak, E. A review of the development of
692 tumor vasculature and its effects on the tumor microenvironment. *Hypoxia Volume* **5**,
693 21–32 (2017).

694 44. Whitaker, G. B., Limberg, B. J. & Rosenbaum, J. S. Vascular Endothelial Growth Factor
695 Receptor-2 and Neuropilin-1 Form a Receptor Complex that is Responsible for the
696 Differential Signaling Potency of VEGF165 and VEGF121. *Journal of Biological Chemistry*
697 **276**, (2001).

698 45. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C. H. Different
699 signal transduction properties of KDR and Flt1, two receptors for vascular endothelial
700 growth factor. *Journal of Biological Chemistry* **269**, (1994).

701 46. Huang, X., Gottstein, C., Brekken, R. A. & Thorpe, P. E. Expression of soluble VEGF
702 receptor 2 and characterization of its binding by surface plasmon resonance. *Biochem
703 Biophys Res Commun* **252**, (1998).

704 47. Li, X., Aase, K., Li, H., Von Euler, G. & Eriksson, U. Isoform-specific expression of VEGF-B in
705 normal tissues and tumors. *Growth Factors* **19**, (2001).

706 48. Makinen, T. *et al.* Differential binding of vascular endothelial growth factor B splice and
707 proteolytic isoforms to Neuropilin-1. *Journal of Biological Chemistry* **274**, (1999).

708 49. Joukov, V. *et al.* Proteolytic processing regulates receptor specificity and activity of VEGF-
709 C. *EMBO Journal* **16**, (1997).

710 50. Olofsson, B. *et al.* Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1
711 and regulates plasminogen activator activity in endothelial cells. *Proc Natl Acad Sci U S A*
712 **95**, (1998).

713 51. Mota, F. *et al.* Peptides Derived from Vascular Endothelial Growth Factor B Show Potent
714 Binding to Neuropilin-1. *ChemBioChem* **23**, (2022).

715 52. Mäkinen, T. *et al.* Isolated lymphatic endothelial cells transduce growth, survival and
716 migratory signals via the VEGF-C/D receptor VEGFR-3. *EMBO Journal* **20**, (2001).

717 53. Leppänen, V. M. *et al.* Structural and mechanistic insights into VEGF receptor 3 ligand
718 binding and activation. *Proc Natl Acad Sci U S A* **110**, (2013).

719 54. Stierman, B. *et al.* National health and nutrition examination survey 2017–march 2020
720 prepandemic data files-development of files and prevalence estimates for selected health
721 outcomes. *Natl Health Stat Report* **2021**, (2021).

722 55. Wu, F. T. H. *et al.* VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral
723 arterial disease: An in silico model. *Am J Physiol Heart Circ Physiol* **298**, (2010).

724 56. Ye, R. Z., Richard, G., Gévry, N., Tchernof, A. & Carpentier, A. C. Fat Cell Size: Measurement
725 Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations.
726 *Endocrine Reviews* vol. 43 Preprint at <https://doi.org/10.1210/endrev/bnab018> (2022).

727 57. Spencer, M. *et al.* Adipose tissue extracellular matrix and vascular abnormalities in
728 obesity and insulin resistance. *Journal of Clinical Endocrinology and Metabolism* **96**,
729 (2011).

730 58. Höckel, M. & Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and
731 molecular aspects. *Journal of the National Cancer Institute* vol. 93 Preprint at
732 <https://doi.org/10.1093/jnci/93.4.266> (2001).

733 59. Sørensen, B. S. & Horsman, M. R. Tumor Hypoxia: Impact on Radiation Therapy and
734 Molecular Pathways. *Frontiers in Oncology* vol. 10 Preprint at
735 <https://doi.org/10.3389/fonc.2020.00562> (2020).

736 60. Lugano, R., Ramachandran, M. & Dimberg, A. Tumor angiogenesis: causes, consequences,
737 challenges and opportunities. *Cellular and Molecular Life Sciences* **77**, 1745–1770 (2020).

738 61. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels
739 abnormal and why is it important to know? *British Journal of Cancer* vol. 100 Preprint at
740 <https://doi.org/10.1038/sj.bjc.6604929> (2009).

741 62. Ramakrishnan, V. M. & Boyd, N. L. The Adipose Stromal Vascular Fraction as a Complex
742 Cellular Source for Tissue Engineering Applications. *Tissue Engineering - Part B: Reviews*
743 vol. 24 Preprint at <https://doi.org/10.1089/ten.teb.2017.0061> (2018).

744 63. Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic
745 diseases. *Nature Reviews Drug Discovery* vol. 9 Preprint at
746 <https://doi.org/10.1038/nrd3055> (2010).

747 64. Carlson, E. C. *et al.* Ultrastructural morphometry of capillary basement membrane
748 thickness in normal and transgenic diabetic mice. *Anatomical Record - Part A Discoveries*
749 in Molecular, Cellular, and Evolutionary Biology

750 65. Rodrigues, M., Currier, C. & Yoon, J. Electron microscopy of renal and ocular changes in
751 virus-induced diabetes mellitus in mice. *Diabetologia* **24**, (1983).

752 66. Cherian, S., Roy, S., Pinheiro, A. & Roy, S. Tight glycemic control regulates fibronectin
753 expression and basement membrane thickening in retinal and glomerular capillaries of
754 diabetic rats. *Invest Ophthalmol Vis Sci* **50**, (2009).

755 67. Gambaro, G. *et al.* Glycosaminoglycans prevent morphological renal alterations and
756 albuminuria in diabetic rats. *Kidney Int* **42**, (1992).

757 68. Yagihashi, S., Goto, Y., Kakizaki, M. & Kaseda, N. Thickening of glomerular basement
758 membrane in spontaneously diabetic rats. *Diabetologia* **15**, (1978).

759 69. Johnson, P. C., Brendel, K. & Meezan, E. Thickened cerebral cortical capillary basement
760 membranes in diabetes. *Arch Pathol Lab Med* **106**, (1982).

761 70. Mancardi, G. L., Perdelli, F., Rivano, C., Leonardi, A. & Bugiani, O. Thickening of the
762 basement membrane of cortical capillaries in Alzheimer's disease. *Acta Neuropathol* **49**,
763 (1980).

764 71. Campbell, M. J. A. The effect of age and the duration of diabetes mellitus on the width of
765 the basement membrane of small vessels. *Aust Dent J* **19**, (1974).

766 72. Yokoi, N. *et al.* A novel rat model of type 2 diabetes: The zucker fatty diabetes mellitus
767 ZFDM rat. *J Diabetes Res* **2013**, (2013).

768 73. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced
769 type II diabetes in C57BL/6J mice. *Diabetes* **37**, (1988).

770 74. Williams, I. M. *et al.* Transendothelial Insulin Transport is Impaired in Skeletal Muscle
771 Capillaries of Obese Male Mice. *Obesity* **28**, (2020).

772 75. Lash, J. M., Sherman, W. M. & Hamlin, R. L. Capillary basement membrane thickness and
773 capillary density in sedentary and trained obese Zucker rats. *Diabetes* **38**, (1989).

774 76. Dosso, A. *et al.* Ocular complications in the old and glucose-intolerant genetically obese
775 (fa/fa) rat. *Diabetologia* **33**, (1990).

776 77. Pinhas-Hamiel, O. & Zeitler, P. Prediabetes among Obese Youth. in *Global Perspectives on
777 Childhood Obesity: Current Status, Consequences and Prevention* (2010).
778 doi:10.1016/B978-0-12-374995-6.10008-8.

779 78. Sarin, H. Physiologic upper limits of pore size of different blood capillary types and
780 another perspective on the dual pore theory of microvascular permeability. *J Angiogenes
781 Res* **2**, (2010).

782 79. Maleszewski, J. J., Lai, C. K., Nair, V. & Veinot, J. P. Anatomic considerations and
783 examination of cardiovascular specimens (excluding devices). in *Cardiovascular Pathology*
784 27–84 (Elsevier, 2022). doi:10.1016/B978-0-12-822224-9.00013-X.

785 80. Griffin, C. T. & Gao, S. Building discontinuous liver sinusoidal vessels. *Journal of Clinical
786 Investigation* vol. 127 Preprint at <https://doi.org/10.1172/JCI92823> (2017).

787 81. Leclech, C., Natale, C. F. & Barakat, A. I. The basement membrane as a structured surface
788 – role in vascular health and disease. *Journal of Cell Science* vol. 133 Preprint at
789 <https://doi.org/10.1242/jcs.239889> (2021).

790 82. Baum, O. & Bigler, M. Pericapillary basement membrane thickening in human skeletal
791 muscles. *American Journal of Physiology - Heart and Circulatory Physiology* vol. 311
792 Preprint at <https://doi.org/10.1152/ajpheart.00048.2016> (2016).

793 83. Scott, R. P. & Quaggin, S. E. The cell biology of renal filtration. *Journal of Cell Biology* vol.
794 209 Preprint at <https://doi.org/10.1083/jcb.201410017> (2015).

795 84. Mac Gabhann, F. & Popel, A. S. Model of competitive binding of vascular endothelial
796 growth factor and placental growth factor to VEGF receptors on endothelial cells. *Am J
797 Physiol Heart Circ Physiol* **286**, (2004).

798 85. Wu, F. T. H., Stefanini, M. O., Mac Gabhann, F. & Popel, A. S. A compartment model of
799 VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand
800 trap. *PLoS One* **4**, (2009).

801 86. Rusnati, M. *et al.* Exploiting surface plasmon resonance (SPR) technology for the
802 identification of fibroblast growth factor-2 (FGF2) antagonists endowed with
803 antiangiogenic activity. *Sensors* **9**, (2009).

804 87. Ito, N. & Claesson-Welsh, L. Dual effects of heparin on VEGF binding to VEGF receptor-1
805 and transduction of biological responses. *Angiogenesis* **3**, (1999).

806 88. Roth, L. *et al.* Transmembrane domain interactions control biological functions of
807 neuropilin-1. *Mol Biol Cell* **19**, (2008).

808 89. Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in
809 meta-analyses. *British Medical Journal* vol. 327 Preprint at
810 <https://doi.org/10.1136/bmj.327.7414.557> (2003).

811 90. Pieper, D. & Rombey, T. Where to prospectively register a systematic review. *Systematic
812 Reviews* vol. 11 Preprint at <https://doi.org/10.1186/s13643-021-01877-1> (2022).

813 91. Murano, I. *et al.* Dead adipocytes, detected as crown-like structures, are prevalent in
814 visceral fat depots of genetically obese mice. *J Lipid Res* **49**, (2008).

815 92. Vangoitsenhoven, R. *et al.* At similar weight loss, dietary composition determines the
816 degree of glycemic improvement in diet-induced obese C57BL/6 mice. *PLoS One* **13**,
817 (2018).

818 93. Sahoo, S. S. *et al.* Adipose-Derived VEGF–mTOR Signaling Promotes Endometrial
819 Hyperplasia and Cancer: Implications for Obese Women. *Molecular Cancer Research* **16**,
820 (2018).

821
822

823 Figure legends

824

825 **Figure 1. Distinctive characteristics of adipose tissue compared with tumor and muscle.** (A)
826 Proportions of tissue volume that are intracellular vs. extracellular in tumor, muscle, and adipose
827 tissue (ref. from Arner & Rydén¹¹, Yen *et al.*¹², Finley *et al.*¹³, Hao *et al.*¹⁴, Del Monte¹⁵). The
828 adipose tissue has a significantly large proportion of intracellular volume compared with other
829 tissues. (B) The number of receptors on endothelial cells (EC) measured in tumor, muscle, and
830 adipose tissue (ref. from Finley *et al.*¹³ and Fang *et al.*¹⁶). Tumor has a high level of VEGFR1, muscle
831 has similar levels of VEGFR1 and VEGFR2, and adipose tissue has a high level of VEGFR2.

832

833 Figure 2. Flow chart of the analysis

834

835 **Figure 3. Adipocyte diameter (μm) in gonadal adipose tissue in lean and diet-induced obese
836 mice.** Forest plots of the analysis of adipocyte diameter (μm) measured in adipose tissue of lean
837 mice (A) and obese mice (B) across studies are shown. The first, third, and last columns represent
838 the list of references, their weights in the analysis, and measurements with a 95% confidence
839 interval, respectively. The size of the blue diamond for each study is the visualization of its
840 statistical weight in the analysis. The two diamonds below the table and the black dashed line
841 show the combined measurements across studies. The upper diamond represents the mean and
842 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
843 The results of the heterogeneity test are represented by the estimate of between-studies variance
844 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
845 proportion of heterogeneity-induced variability among the total variability (I^2). In the scatter plot
846 (C), the error bar shows weighted mean \pm standard error of each group. A one-tailed Welch's t-
847 test was used for the comparison. Abbreviation: week (wk).

848

849 **Figure 4. Characteristics of vessels in gonadal adipose tissue in lean and diet-induced obese**
850 **mice and mouse tumors.** The vessel size (A) and the vessel density (B) in adipose tissues and
851 tumors are plotted by study. The error bar represents a weighted mean \pm standard error of each
852 group. A one-tailed Welch's t-test (p -value < 0.05) with multiple testing correction was used to
853 compare two tissues. The reference names in tumor data include mouse strain and tumor lines.
854 Abbreviation: week (wk), experiment (exp), and dimethyl sulfoxide (DMSO).

855

856 **Figure 5. Capillary basement membrane thickness (nm) in lean and obese mouse and rat tissues.**
857 The capillary basement membranes in retina, muscle, and heart were compared between lean
858 and obese mice and rats. A two-tailed Welch's t-test (p -value < 0.05) was used to compare CBM
859 thicknesses.

860

861 **Figure 6. Binding rates of VEGF to VEGFR1, VEGFR2, and NRP1.** The respective binding affinities
862 (A ; K_d), association rate constants (B ; k_{on} , $M^{-1} s^{-1}$), and dissociation rate constants (C ; k_{off} , s^{-1}) of
863 VEGF for VEGFR1, VEGFR2, and NRP1 are plotted. The error bar represents the weighted
864 mean \pm standard error of the rate for each receptor. A one-tailed Welch's t-test with multiple
865 testing corrections (p -value < 0.05) was used to compare a pair of groups. Abbreviation: surface
866 plasmon resonance (SPR), human umbilical vein endothelial cell (HUVEC), and porcine aortic
867 endothelial (PAE).

868

869 **Figure S1. Forest plots of the analysis of vessel size (μm^2) measured in adipose tissue of lean**
870 **mice across studies.** The first, third, and last columns represent the list of references, their
871 weights in the analysis, and measurements with a 95% confidence interval, respectively. The size
872 of the blue diamond for each study represents its statistical weight in the analysis. The two
873 diamonds below the table and the black dashed line show the combined measurements across
874 studies. The upper diamond represents the mean and 95% confidence interval, and the lower
875 diamond represents the mean and 95% prediction interval. The results of the heterogeneity test
876 are represented by the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for
877 heterogeneity (χ^2), degrees of freedom (df), p -value (p), and proportion of heterogeneity-induced
878 variability among the total variability (I^2). Abbreviation: week (wk).

879

880 **Figure S2. Forest plots of the analysis of vessel size (μm^2) measured in adipose tissue of diet-**
881 **induced obese mice across studies.** The first, third, and last columns represent the list of
882 references, their weights in the analysis, and measurements with a 95% confidence interval,
883 respectively. The size of the blue diamond for each study represents its statistical weight in the
884 analysis. The two diamonds below the table and the black dashed line show the combined
885 measurements across studies. The upper diamond represents the mean and 95% confidence
886 interval, and the lower diamond represents the mean and 95% prediction interval. The results of
887 the heterogeneity test are represented by the estimate of between-studies variance (τ^2),
888 Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p -value (p), and
889 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
890 week (wk).

891

892 **Figure S3. Forest plots of the analysis of vessel size (μm^2) measured in mouse tumors across**
893 **studies.** The first, third, and last columns represent the list of references, their weights in the
894 analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
895 diamond for each study represents its statistical weight in the analysis. The two diamonds below
896 the table and the black dashed line show the combined measurements across studies. The upper
897 diamond represents the mean and 95% confidence interval, and the lower diamond represents
898 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
899 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
900 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
901 the total variability (I^2). The reference names include mouse strain and tumor lines. Abbreviation:
902 experiment (exp).

903
904 **Figure S4. Forest plots of the analysis of vessel density (no./ mm^2) measured in adipose tissue**
905 **of lean mice across studies.** The first, third, and last columns represent the list of references, their
906 weights in the analysis, and measurements with a 95% confidence interval, respectively. The size
907 of the blue diamond for each study represents its statistical weight in the analysis. The two
908 diamonds below the table and the black dashed line show the combined measurements across
909 studies. The upper diamond represents the mean and 95% confidence interval, and the lower
910 diamond represents the mean and 95% prediction interval. The results of the heterogeneity test
911 are represented by the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for
912 heterogeneity (χ^2), degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced
913 variability among the total variability (I^2). Abbreviation: week (wk).

914
915 **Figure S5. Forest plots of the analysis of vessel density (no./ mm^2) measured in adipose tissue**
916 **of diet-induced obese mice across studies.** The first, third, and last columns represent the list of
917 references, their weights in the analysis, and measurements with a 95% confidence interval,
918 respectively. The size of the blue diamond for each study represents its statistical weight in the
919 analysis. The two diamonds below the table and the black dashed line show the combined
920 measurements across studies. The upper diamond represents the mean and 95% confidence
921 interval, and the lower diamond represents the mean and 95% prediction interval. The results of
922 the heterogeneity test are represented by the estimate of between-studies variance (τ^2),
923 Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
924 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
925 week (wk).

926
927 **Figure S6. Forest plots of the analysis of vessel density (no./ mm^2) measured in mouse tumors**
928 **across studies.** The first, third, and last columns represent the list of references, their weights in
929 the analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
930 diamond for each study represents its statistical weight in the analysis. The two diamonds below
931 the table and the black dashed line show the combined measurements across studies. The upper
932 diamond represents the mean and 95% confidence interval, and the lower diamond represents
933 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
934 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
935 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among

936 the total variability (I^2). The reference names include mouse strain and tumor lines. Abbreviation:
937 experiment (exp) and dimethyl sulfoxide (DMSO).

938

939 **Figure S7. Forest plots of the analysis of capillary basement membrane thickness (nm)**
940 **measured in tissues of lean mice and rats across studies.** The first, third, and last columns
941 represent the list of references, their weights in the analysis, and measurements with a 95%
942 confidence interval, respectively. The size of the blue diamond for each study represents its
943 statistical weight in the analysis. The two diamonds below the table and the black dashed line
944 show the combined measurements across studies. The upper diamond represents the mean and
945 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
946 The results of the heterogeneity test are represented by the estimate of between-studies variance
947 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
948 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
949 month (mo), interventricular septal (IVS), and left ventricular (LV).

950

951 **Figure S8. Forest plots of the analysis of capillary basement membrane thickness (nm)**
952 **measured in tissues of obese mice and rats across studies.** The first, third, and last columns
953 represent the list of references, their weights in the analysis, and measurements with a 95%
954 confidence interval, respectively. The size of the blue diamond for each study represents its
955 statistical weight in the analysis. The two diamonds below the table and the black dashed line
956 show the combined measurements across studies. The upper diamond represents the mean and
957 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
958 The results of the heterogeneity test are represented by the estimate of between-studies variance
959 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
960 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
961 month (mo).

962

963 **Figure S9. Capillary basement membrane thickness (nm) in tissues of lean mice and rats.** The
964 capillary basement membrane thickness in retina, muscle, heart, brain, and kidney in lean mice
965 and rats were compared. Welch's ANOVA followed by Dunnett's T3 test was used to compare a
966 pair of tissues. The error bar represents the weighted mean \pm standard error of each group.

967

968 **Figure S10. Forest plots of the analysis of capillary basement membrane thickness (nm)**
969 **measured in retina of lean mice and rats across studies.** The first, third, and last columns
970 represent the list of references, their weights in the analysis, and measurements with a 95%
971 confidence interval, respectively. The size of the blue diamond for each study represents its
972 statistical weight in the analysis. The two diamonds below the table and the black dashed line
973 show the combined measurements across studies. The upper diamond represents the mean and
974 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
975 The results of the heterogeneity test are represented by the estimate of between-studies variance
976 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
977 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
978 month (mo).

979

980 **Figure S11. Forest plots of the analysis of capillary basement membrane thickness (nm)**
981 **measured in muscle of lean mice and rats across studies.** The first, third, and last columns
982 represent the list of references, their weights in the analysis, and measurements with a 95%
983 confidence interval, respectively. The size of the blue diamond for each study represents its
984 statistical weight in the analysis. The two diamonds below the table and the black dashed line
985 show the combined measurements across studies. The upper diamond represents the mean and
986 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
987 The results of the heterogeneity test are represented by the estimate of between-studies variance
988 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
989 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
990 month (mo).

991
992 **Figure S12. Forest plots of the analysis of capillary basement membrane thickness (nm)**
993 **measured in heart of lean mice and rats across studies.** The first, third, and last columns
994 represent the list of references, their weights in the analysis, and measurements with 95%
995 confidence interval, respectively. The size of the blue diamond for each study represents its
996 statistical weight in the analysis. The two diamonds below the table and the black dashed line
997 show the combined measurements across studies. The upper diamond represents the mean and
998 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
999 The results of the heterogeneity test are represented by the estimate of between-studies variance
1000 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
1001 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
1002 month (mo), interventricular septal (IVS), and left ventricular (LV).

1003
1004 **Figure S13. Forest plots of the analysis of capillary basement membrane thickness (nm)**
1005 **measured in brain of lean mice and rats across studies.** The first, third, and last columns
1006 represent the list of references, their weights in the analysis, and measurements with a 95%
1007 confidence interval, respectively. The size of the blue diamond for each study represents its
1008 statistical weight in the analysis. The two diamonds below the table and the black dashed line
1009 show the combined measurements across studies. The upper diamond represents the mean and
1010 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
1011 The results of the heterogeneity test are represented by the estimate of between-studies variance
1012 (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
1013 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
1014 month (mo).

1015
1016 **Figure S14. Forest plots of the analysis of capillary basement membrane thickness (nm)**
1017 **measured in kidney of lean mice and rats across studies.** The first, third, and last columns
1018 represent the list of references, their weights in the analysis, and measurements with a 95%
1019 confidence interval, respectively. The size of the blue diamond for each study represents its
1020 statistical weight in the analysis. The two diamonds below the table and the black dashed line
1021 show the combined measurements across studies. The upper diamond represents the mean and
1022 95% confidence interval, and the lower diamond represents the mean and 95% prediction interval.
1023 The results of the heterogeneity test are represented by the estimate of between-studies variance

1024 (τ^2) , Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
1025 proportion of heterogeneity-induced variability among the total variability (I^2). Abbreviation:
1026 month (mo).

1027

1028 **Figure S15. Interaction kinetics of VEGF-A:NRP1 and VEGF-A:VEGFR2.** NRP1 (A) and VEGFR2 (B)
1029 were immobilized and VEGF-A as analyte was passed over them at different concentrations: 50
1030 nM (yellow), 25 nM (green), 12.5 nM (blue), 6.25 nM (red), and 3.125 nM (black). Note: the thin
1031 black overlapping lines are fitted curves of a 1:1 Langmuir model drawn with TraceDrawer ver.
1032 1.8.1 software.

1033

1034 **Figure S16. Forest plots of the analysis of binding affinity (pM) of VEGF to VEGFR1 across studies.**
1035 The first, third, and last columns represent the list of references, their weights in the analysis, and
1036 measurements with a 95% confidence interval, respectively. The size of the blue diamond for each
1037 study represents its statistical weight in the analysis. The two diamonds below the table and the
1038 black dashed line show the combined measurements across studies. The upper diamond
1039 represents the mean and 95% confidence interval, and the lower diamond represents the mean
1040 and 95% prediction interval. The results of the heterogeneity test are represented by the estimate
1041 of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of
1042 freedom (df), p-value (p), and proportion of heterogeneity-induced variability among the total
1043 variability (I^2). Abbreviation: porcine aortic endothelial (PAE), human umbilical vein endothelial
1044 cell (HUVEC), and surface plasmon resonance (SPR).

1045

1046 **Figure S17. Forest plots of the analysis of binding affinity (nM) of VEGF to VEGFR2 across studies.**
1047 The first, third, and last columns represent the list of references, their weights in the analysis, and
1048 measurements with a 95% confidence interval, respectively. The size of the blue diamond for each
1049 study represents its statistical weight in the analysis. The two diamonds below the table and the
1050 black dashed line show the combined measurements across studies. The upper diamond
1051 represents the mean and 95% confidence interval, and the lower diamond represents the mean
1052 and 95% prediction interval. The results of the heterogeneity test are represented by the estimate
1053 of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of
1054 freedom (df), p-value (p), and proportion of heterogeneity-induced variability among the total
1055 variability (I^2). Abbreviation: porcine aortic endothelial (PAE) and human umbilical vein
1056 endothelial cell (HUVEC).

1057

1058 **Figure S18. Forest plots of the analysis of binding affinity (nM) of VEGF to NRP1 across studies.**
1059 The first, third, and last columns represent the list of references, their weights in the analysis, and
1060 measurements with a 95% confidence interval, respectively. The size of the blue diamond for each
1061 study represents its statistical weight in the analysis. The two diamonds below the table and the
1062 black dashed line show the combined measurements across studies. The upper diamond
1063 represents the mean and 95% confidence interval, and the lower diamond represents the mean
1064 and 95% prediction interval. The results of the heterogeneity test are represented by the estimate
1065 of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2), degrees of
1066 freedom (df), p-value (p), and proportion of heterogeneity-induced variability among the total
1067 variability (I^2). Abbreviation: human umbilical vein endothelial cell (HUVEC).

1068

1069 **Figure S19. Forest plots of the analysis of association rates, k_{on} ($\mu\text{M}^{-1}\text{s}^{-1}$) of VEGF to VEGFR1**
1070 **across studies.** The first, third, and last columns represent the list of references, their weights in
1071 the analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
1072 diamond for each study represents its statistical weight in the analysis. The two diamonds below
1073 the table and the black dashed line show the combined measurements across studies. The upper
1074 diamond represents the mean and 95% confidence interval, and the lower diamond represents
1075 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
1076 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
1077 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
1078 the total variability (I^2).
1079

1080

1081 **Figure S20. Forest plots of the analysis of association rates, k_{on} ($\mu\text{M}^{-1}\text{s}^{-1}$) of VEGF to VEGFR2**
1082 **across studies.** The first, third, and last columns represent the list of references, their weights in
1083 the analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
1084 diamond for each study represents its statistical weight in the analysis. The two diamonds below
1085 the table and the black dashed line show the combined measurements across studies. The upper
1086 diamond represents the mean and 95% confidence interval, and the lower diamond represents
1087 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
1088 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
1089 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
1090 the total variability (I^2).
1091

1092

1093 **Figure S21. Forest plots of the analysis of association rates, k_{on} ($\mu\text{M}^{-1}\text{s}^{-1}$) of VEGF to NRP1 across**
1094 **studies.** The first, third, and last columns represent the list of references, their weights in the
1095 analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
1096 diamond for each study represents its statistical weight in the analysis. The two diamonds below
1097 the table and the black dashed line show the combined measurements across studies. The upper
1098 diamond represents the mean and 95% confidence interval, and the lower diamond represents
1099 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
1100 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
1101 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
1102 the total variability (I^2).
1103

1104

1105 **Figure S22. Forest plots of the analysis of dissociation rates, k_{off} (s^{-1}) of VEGF to VEGFR1 across**
1106 **studies.** The first, third, and last columns represent the list of references, their weights in the
1107 analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
1108 diamond for each study represents its statistical weight in the analysis. The two diamonds below
1109 the table and the black dashed line show the combined measurements across studies. The upper
1110 diamond represents the mean and 95% confidence interval, and the lower diamond represents
1111 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
1112 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
1113 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
1114 the total variability (I^2).
1115

1112

1113 **Figure S23. Forest plots of the analysis of dissociation rates, k_{off} (s^{-1}) of VEGF to VEGFR2 across**
1114 **studies.** The first, third, and last columns represent the list of references, their weights in the
1115 analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
1116 diamond for each study represents its statistical weight in the analysis. The two diamonds below
1117 the table and the black dashed line show the combined measurements across studies. The upper
1118 diamond represents the mean and 95% confidence interval, and the lower diamond represents
1119 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
1120 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
1121 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
1122 the total variability (I^2).
1123

1124

1125 **Figure S24. Forest plots of the analysis of dissociation rates, k_{off} (s^{-1}) of VEGF to NRP1 across**
1126 **studies.** The first, third, and last columns represent the list of references, their weights in the
1127 analysis, and measurements with a 95% confidence interval, respectively. The size of the blue
1128 diamond for each study represents its statistical weight in the analysis. The two diamonds below
1129 the table and the black dashed line show the combined measurements across studies. The upper
1130 diamond represents the mean and 95% confidence interval, and the lower diamond represents
1131 the mean and 95% prediction interval. The results of the heterogeneity test are represented by
1132 the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for heterogeneity (χ^2),
1133 degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced variability among
1134 the total variability (I^2).
1135

1136

1137 **Figure S25. Binding affinities of VEGF to VEGFR1, VEGFR2, and NRP1 measured by cell-based**
1138 **(radioligand) assay and chip-based (surface plasmon resonance) assay.** The error bar represents
1139 the weighted mean \pm standard error of VEGF binding affinities for VEGFR1, VEGFR2, and NRP1. A
1140 one-tailed Welch's t-test (p-value < 0.05) was used to compare a pair of groups.
1141

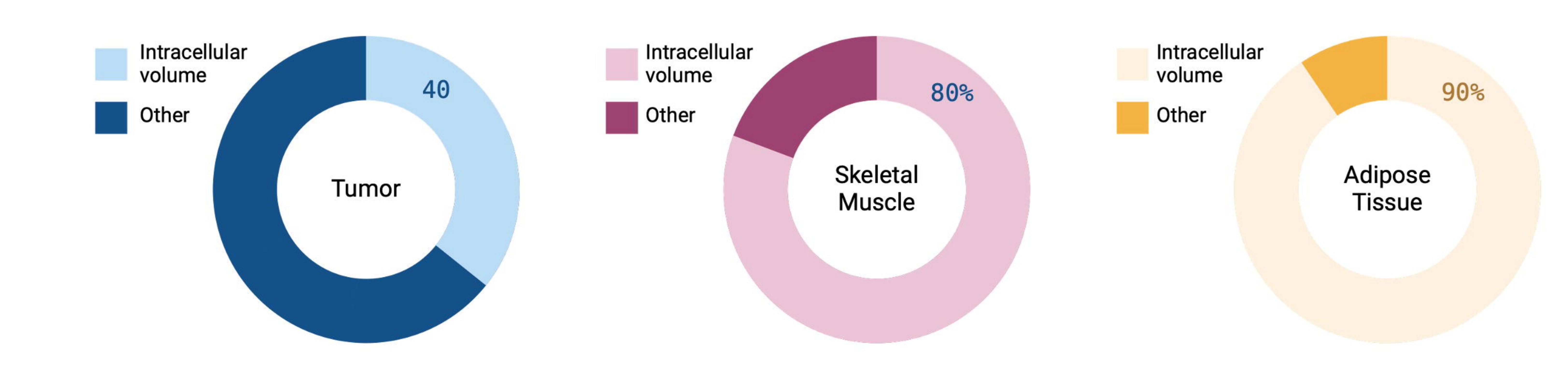
1142

1143 **Figure S26. Forest plots of the analysis of binding affinity (pM) of VEGF to VEGFR1 measured by**
1144 **radioligand assay across studies.** The first, third, and last columns represent the list of references,
1145 their weights in the analysis, and measurements with a 95% confidence interval, respectively. The
1146 size of the blue diamond for each study represents its statistical weight in the analysis. The two
1147 diamonds below the table and the black dashed line show the combined measurements across
1148 studies. The upper diamond represents the mean and 95% confidence interval, and the lower
1149 diamond represents the mean and 95% prediction interval. The results of the heterogeneity test
1150 are represented by the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for
1151 heterogeneity (χ^2), degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced
1152 variability among the total variability (I^2). Abbreviation: porcine aortic endothelial (PAE) and
1153 human umbilical vein endothelial cell (HUVEC).
1154

1155

1156 **Figure S27. Forest plots of the analysis of binding affinity (pM) of VEGF to VEGFR1 measured by**
1157 **surface plasmon resonance across studies.** The first, third, and last columns represent the list of
1158 references, their weights in the analysis, and measurements with a 95% confidence interval,
1159 respectively. The size of the blue diamond for each study represents its statistical weight in the
1160

1156 analysis. The two diamonds below the table and the black dashed line show the combined
1157 measurements across studies. The upper diamond represents the mean and 95% confidence
1158 interval, and the lower diamond represents the mean and 95% prediction interval. The results of
1159 the heterogeneity test are represented by the estimate of between-studies variance (τ^2),
1160 Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
1161 proportion of heterogeneity-induced variability among the total variability (I^2).
1162


1163 **Figure S28. Forest plots of the analysis of binding affinity (pM) of VEGF to VEGFR2 measured by**
1164 **radioligand assay across studies.** The first, third, and last columns represent the list of references,
1165 their weights in the analysis, and measurements with a 95% confidence interval, respectively. The
1166 size of the blue diamond for each study represents its statistical weight in the analysis. The two
1167 diamonds below the table and the black dashed line show the combined measurements across
1168 studies. The upper diamond represents the mean and 95% confidence interval, and the lower
1169 diamond represents the mean and 95% prediction interval. The results of the heterogeneity test
1170 are represented by the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for
1171 heterogeneity (χ^2), degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced
1172 variability among the total variability (I^2). Abbreviation: porcine aortic endothelial (PAE) and
1173 human umbilical vein endothelial cell (HUVEC).
1174

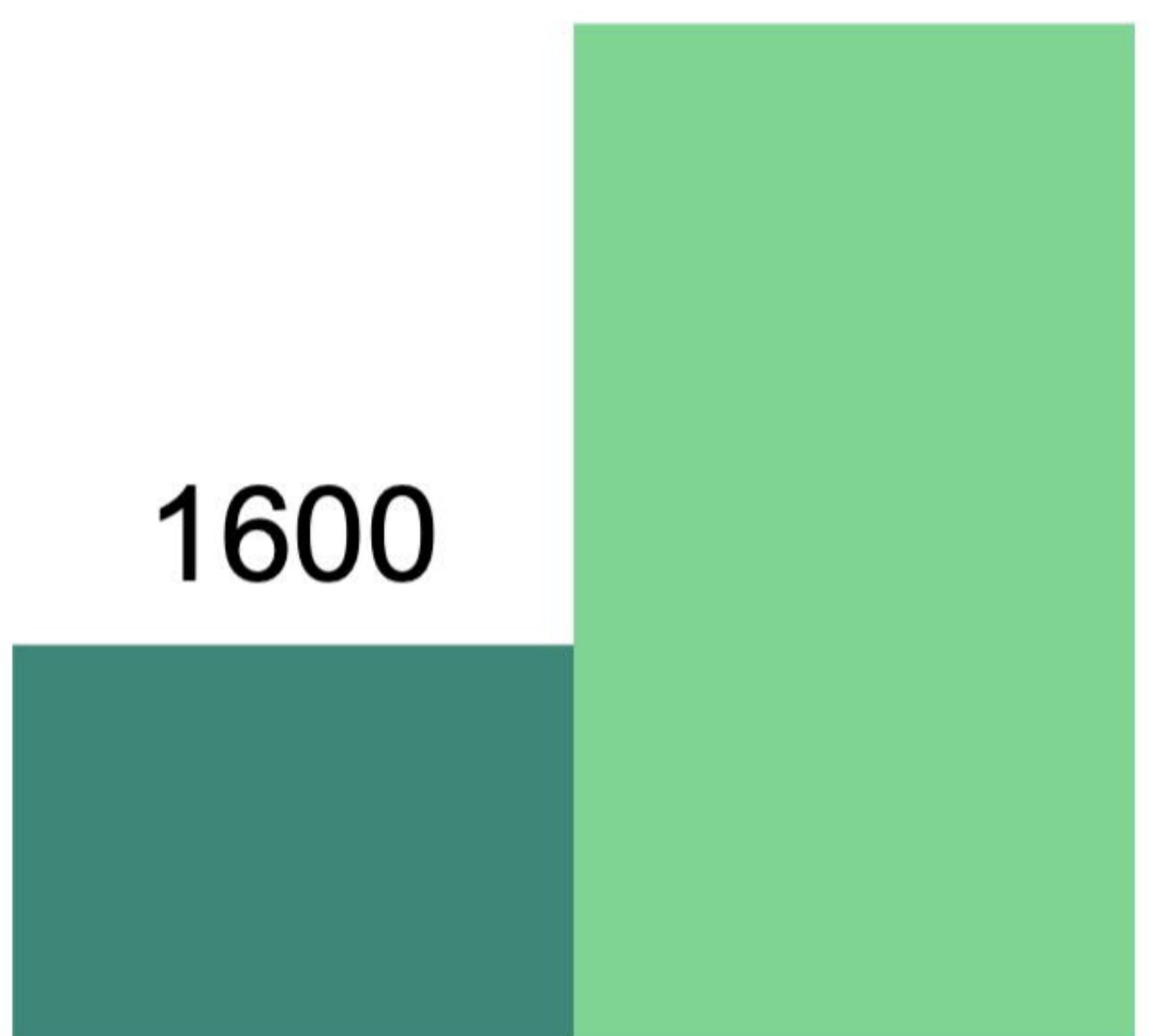
1175 **Figure S29. Forest plots of the analysis of binding affinity (pM) of VEGF to VEGFR2 measured by**
1176 **surface plasmon resonance across studies.** The first, third, and last columns represent the list of
1177 references, their weights in the analysis, and measurements with a 95% confidence interval,
1178 respectively. The size of the blue diamond for each study represents its statistical weight in the
1179 analysis. The two diamonds below the table and the black dashed line show the combined
1180 measurements across studies. The upper diamond represents the mean and 95% confidence
1181 interval, and the lower diamond represents the mean and 95% prediction interval. The results of
1182 the heterogeneity test are represented by the estimate of between-studies variance (τ^2),
1183 Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
1184 proportion of heterogeneity-induced variability among the total variability (I^2).
1185

1186 **Figure S30. Forest plots of the analysis of binding affinity (nM) of VEGF to NRP1 measured by**
1187 **radioligand assay across studies.** The first, third, and last columns represent the list of references,
1188 their weights in the analysis, and measurements with a 95% confidence interval, respectively. The
1189 size of the blue diamond for each study represents its statistical weight in the analysis. The two
1190 diamonds below the table and the black dashed line show the combined measurements across
1191 studies. The upper diamond represents the mean and 95% confidence interval, and the lower
1192 diamond represents the mean and 95% prediction interval. The results of the heterogeneity test
1193 are represented by the estimate of between-studies variance (τ^2), Cochran's Q -test statistic for
1194 heterogeneity (χ^2), degrees of freedom (df), p-value (p), and proportion of heterogeneity-induced
1195 variability among the total variability (I^2). Inside the parentheses of reference names, the cell lines
1196 used in the assay are included. Abbreviation: human umbilical vein endothelial cell (HUVEC).
1197

1198 **Figure S31. Forest plots of the analysis of binding affinity (nM) of VEGF to NRP1 measured by**
1199 **surface plasmon resonance across studies.** The first, third, and last columns represent the list of

1200 references, their weights in the analysis, and measurements with a 95% confidence interval,
1201 respectively. The size of the blue diamond for each study represents its statistical weight in the
1202 analysis. The two diamonds below the table and the black dashed line show the combined
1203 measurements across studies. The upper diamond represents the mean and 95% confidence
1204 interval, and the lower diamond represents the mean and 95% prediction interval. The results of
1205 the heterogeneity test are represented by the estimate of between-studies variance (τ^2),
1206 Cochran's Q -test statistic for heterogeneity (χ^2), degrees of freedom (df), p-value (p), and
1207 proportion of heterogeneity-induced variability among the total variability (I^2).
1208

7500


Tumor EC

1100

Muscle EC

1600

Adipose EC

■ VEGFR1 ■ VEGFR2

Identification

Screening

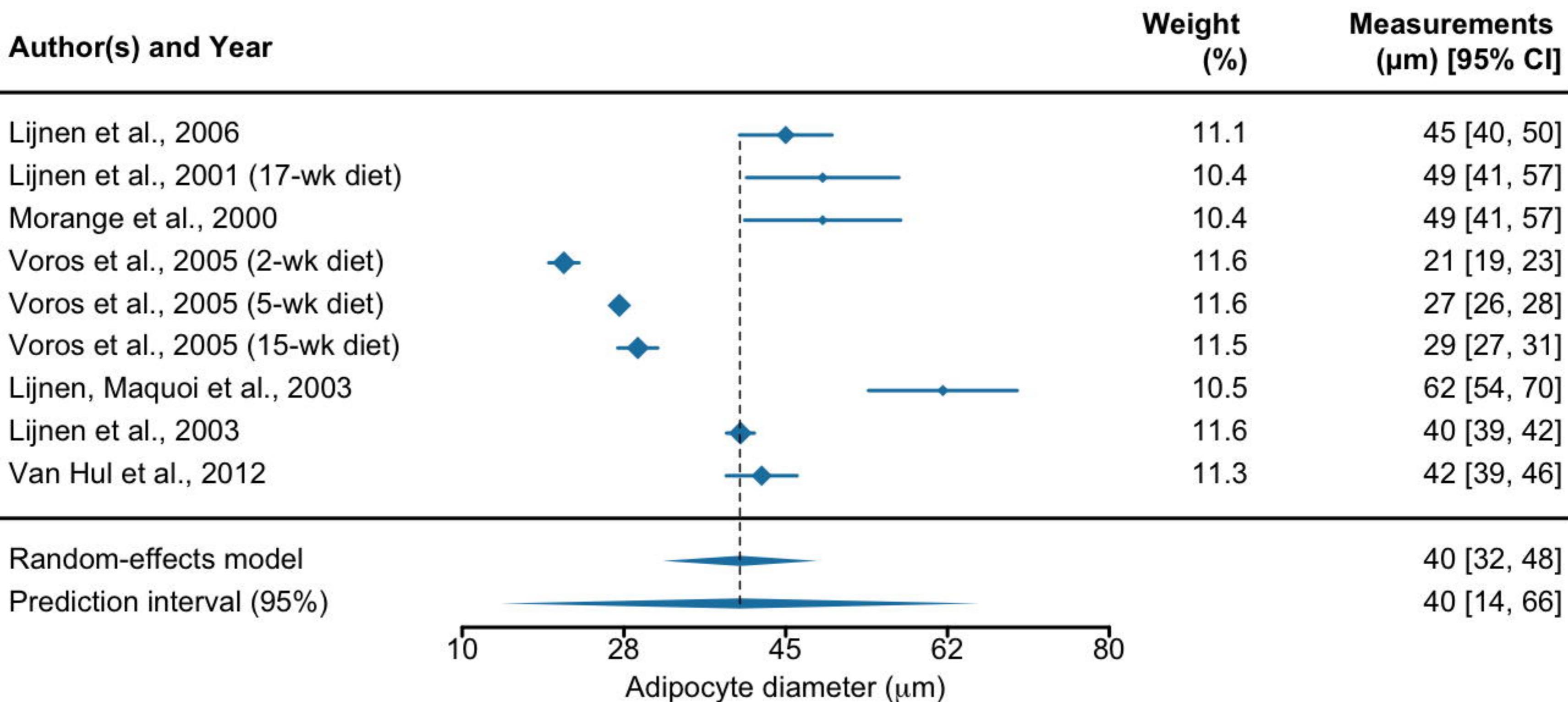
Eligibility

Included

Potentially relevant papers identified through database searching
(n = 882)

Papers after removing duplicates
(n = 852)

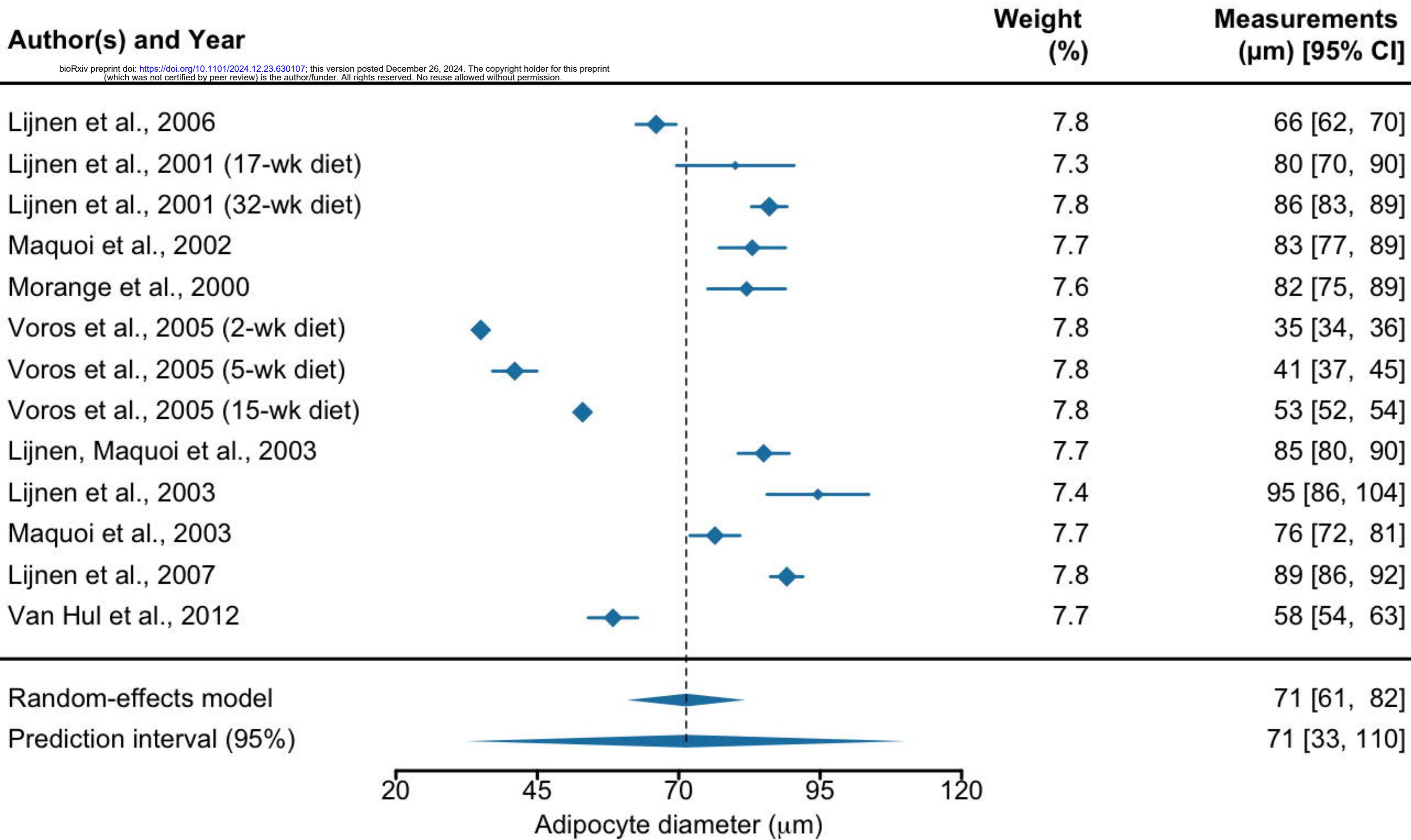
Papers included for title and abstract examination
(n = 852)

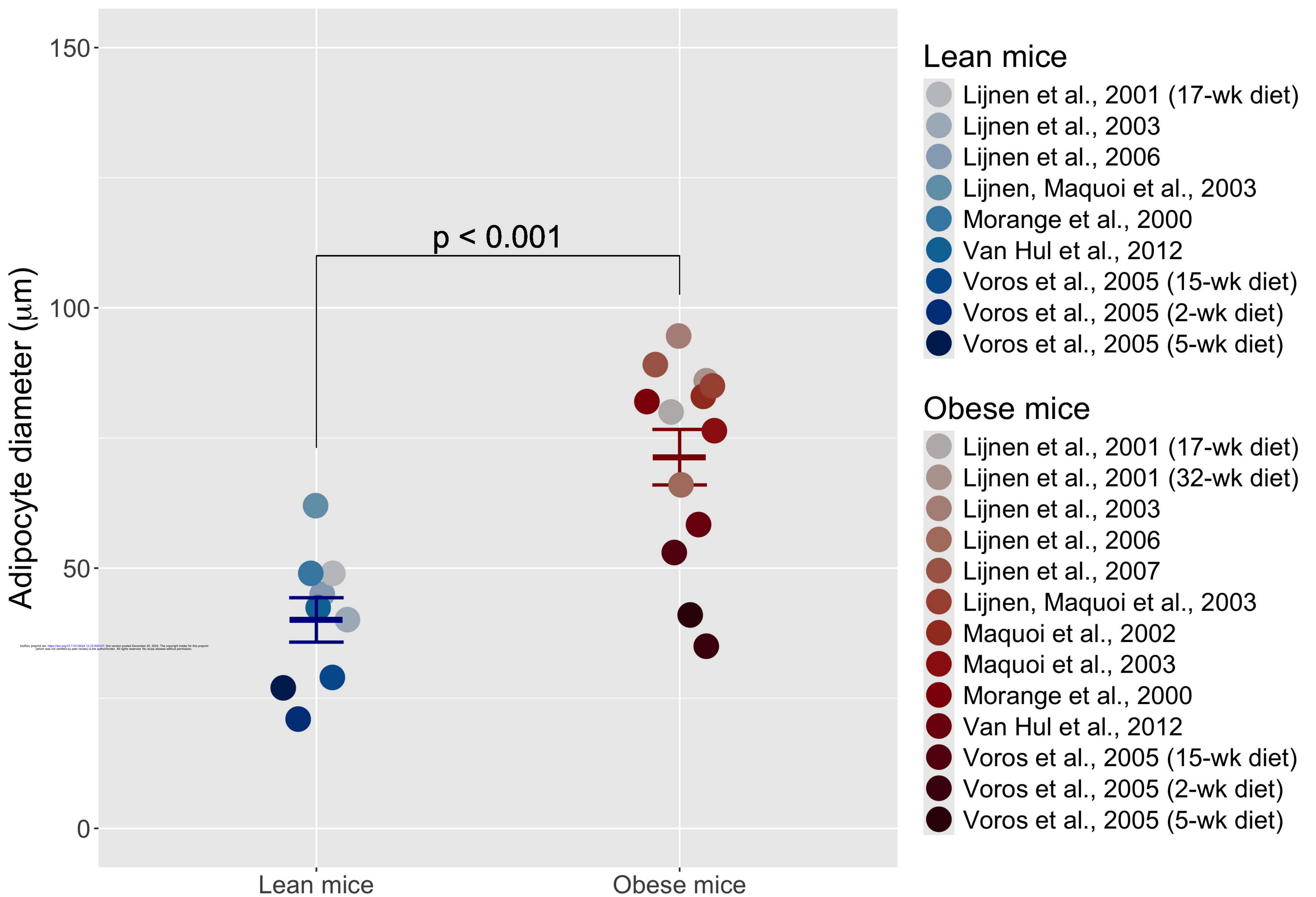

Papers excluded by inspecting titles and abstracts
(n = 756)

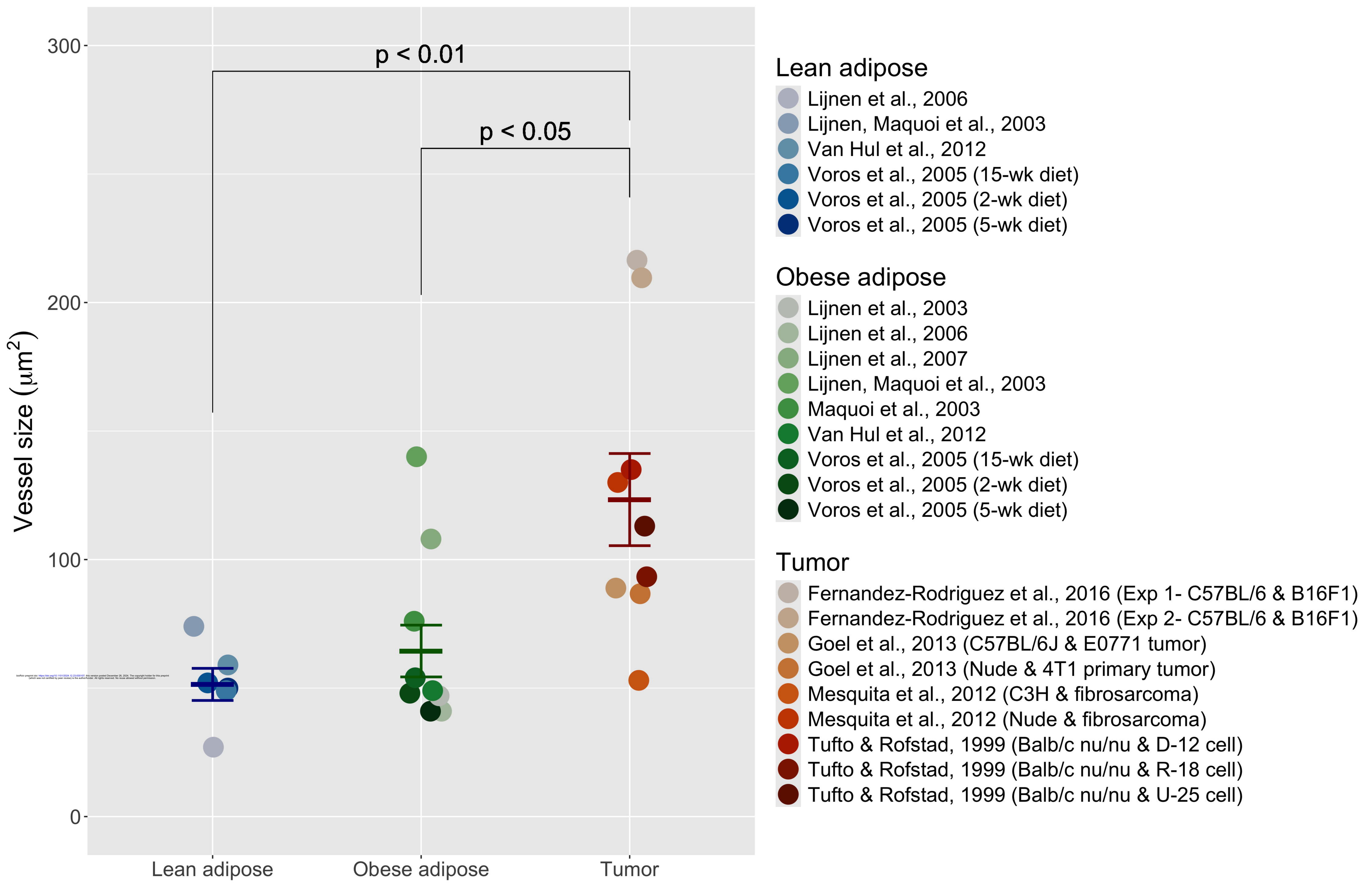
Papers included for full-text examination
(n = 96)

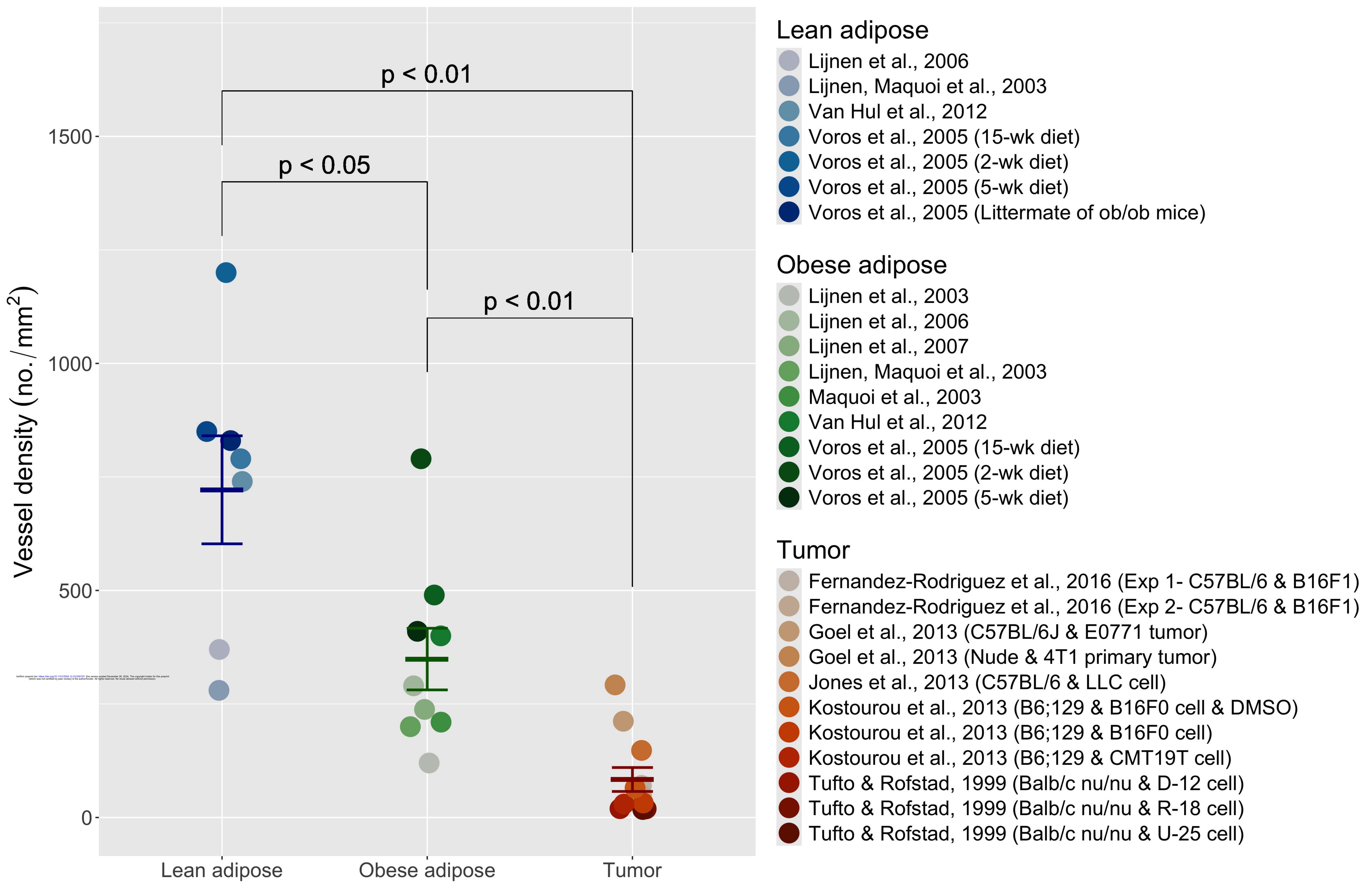
In-house data measuring the VEGF binding affinity to VEGFR2 and NRP1
(n = 1)

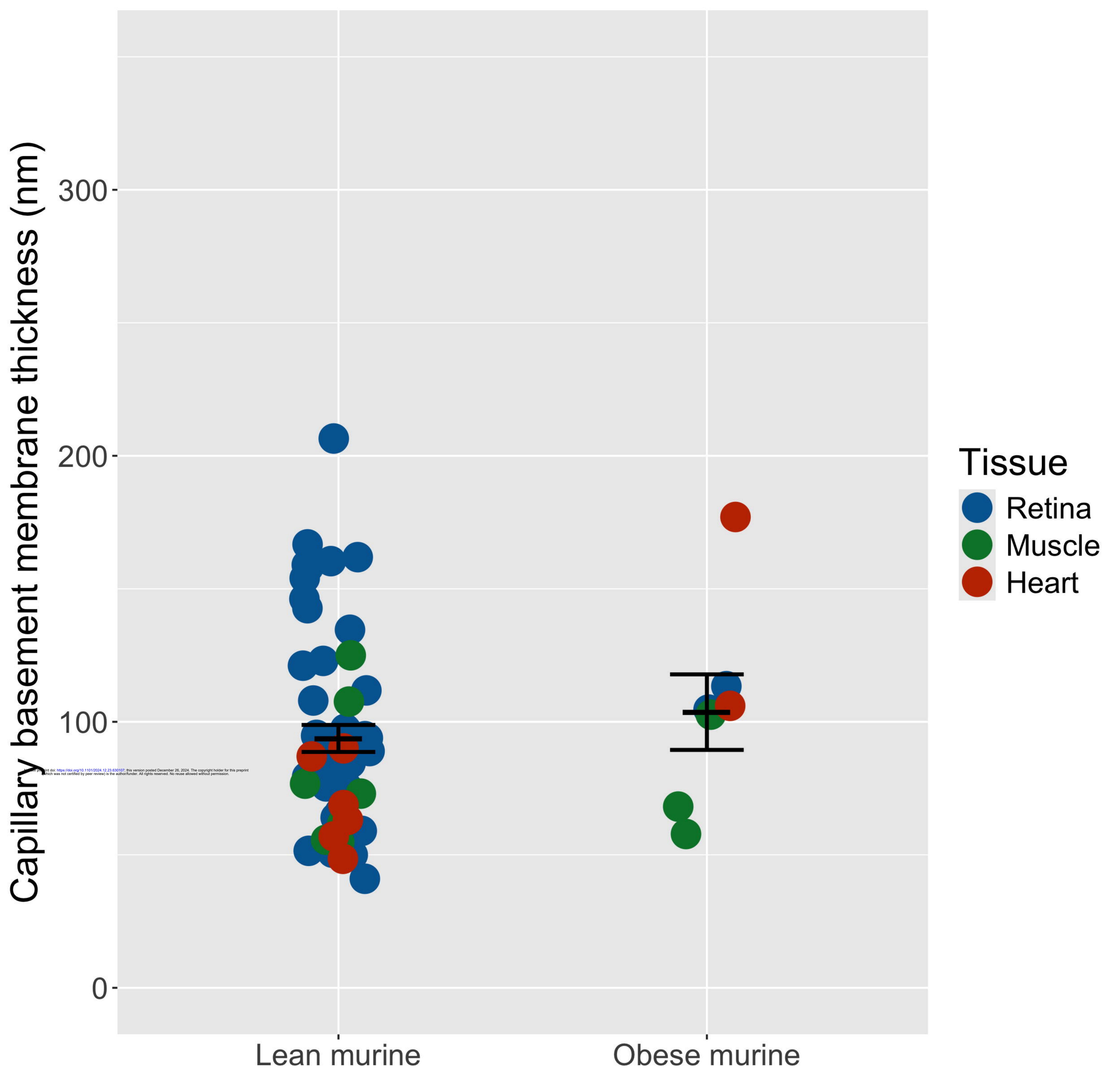
Papers included in the analysis
(n = 76)

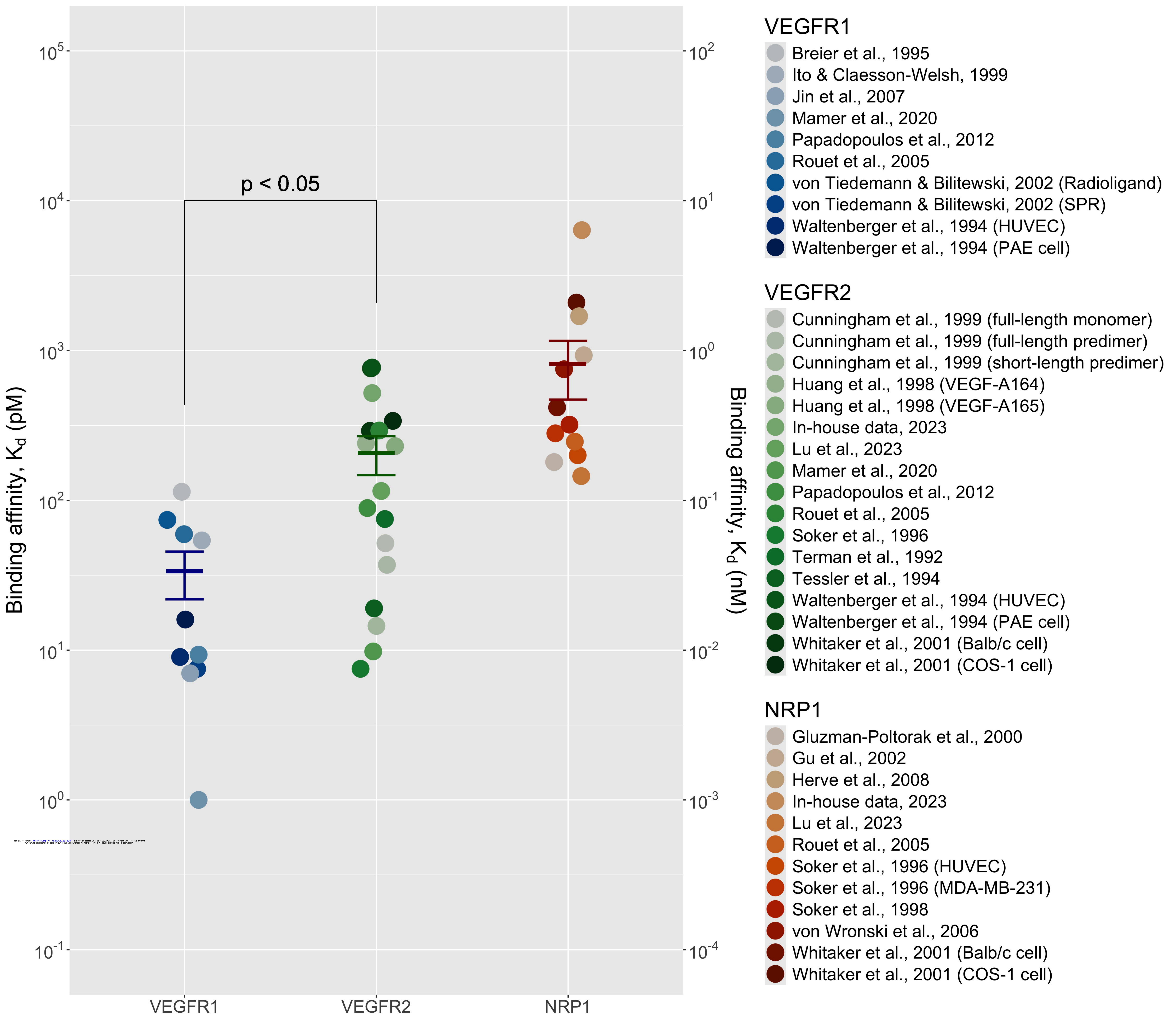

Papers excluded Reasons (n = 21)
1. The mean \pm standard error cannot be extracted. (n = 15)
2. The value is an outlier. (n = 3)
3. Non-murine data was reported. (n = 1)
4. Lack of tissue data. (n = 2)

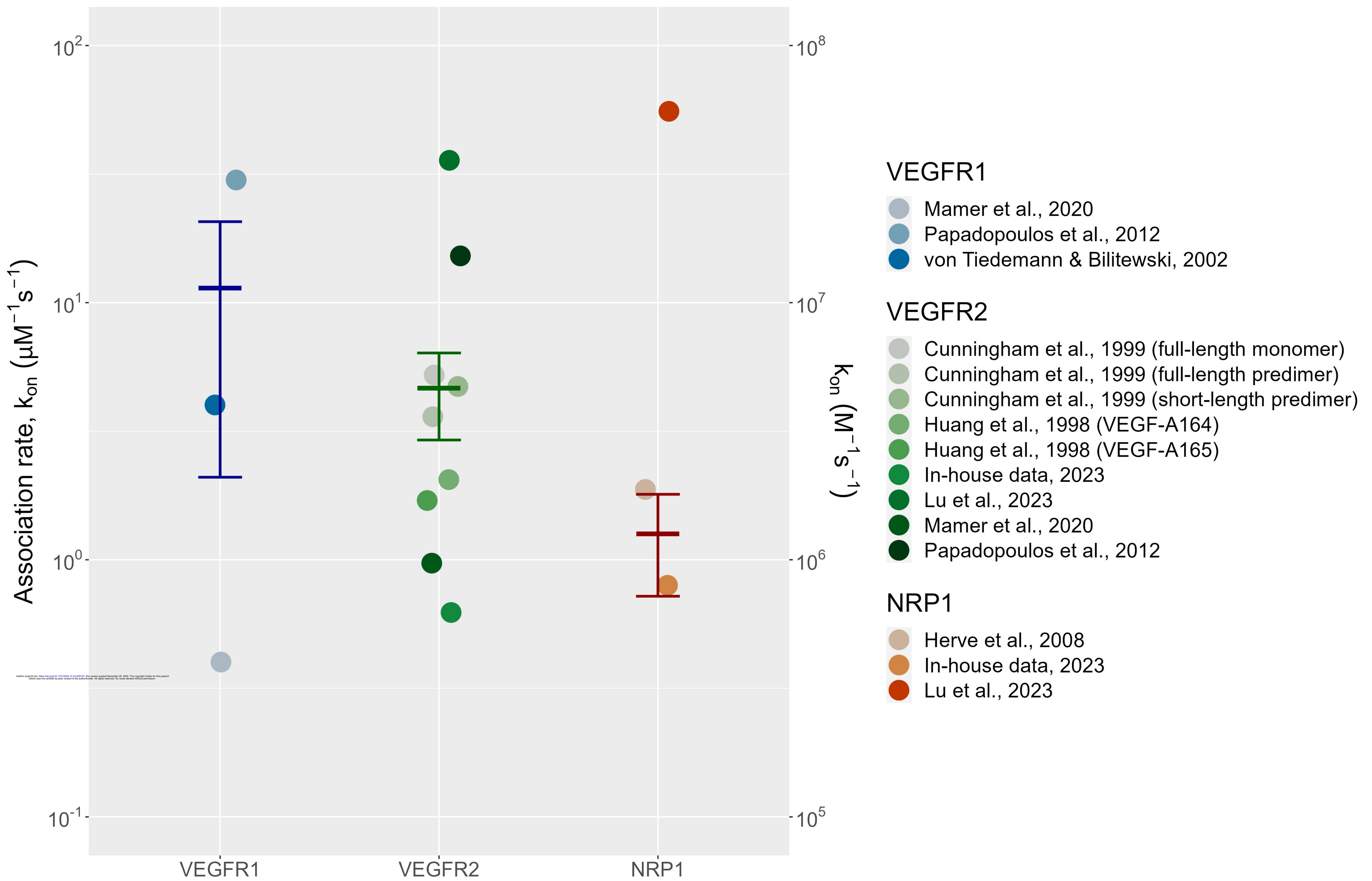

Test for heterogeneity: $\tau^2 = 156.65$; $\chi^2 = 510.20$, df = 8, $p < 0.001$; $I^2 = 99\%$

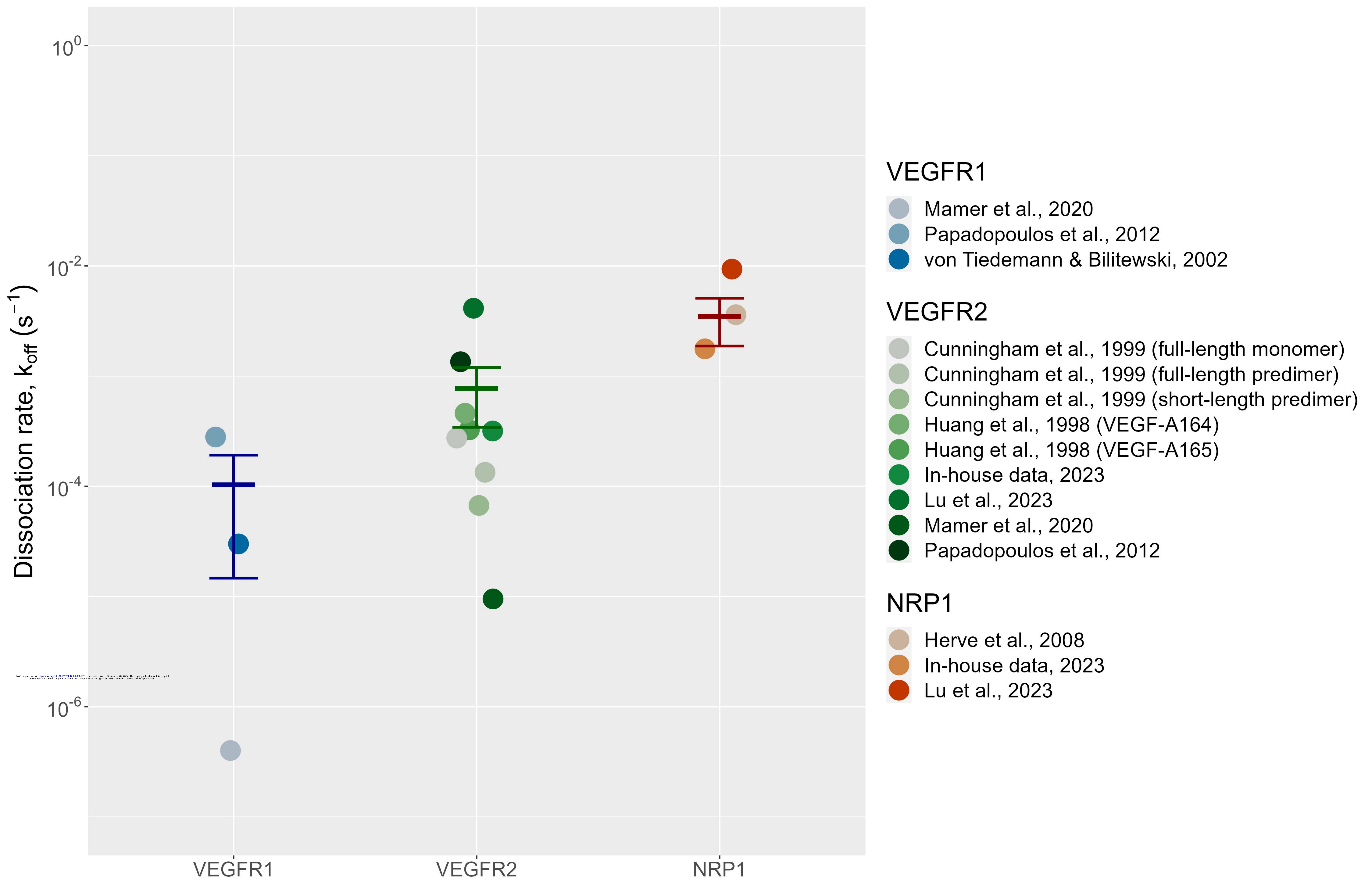

Author(s) and Year

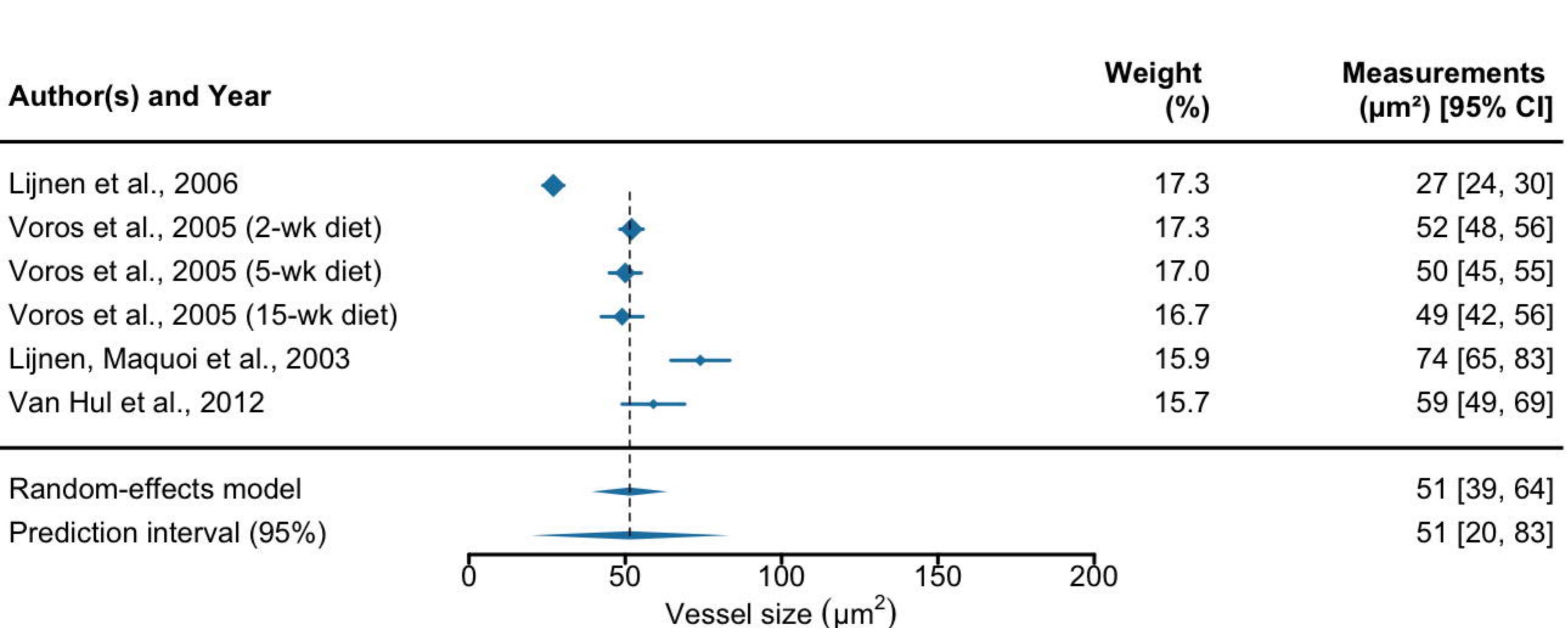

bioRxiv preprint doi: <https://doi.org/10.1101/2024.12.23.630107>; this version posted December 26, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

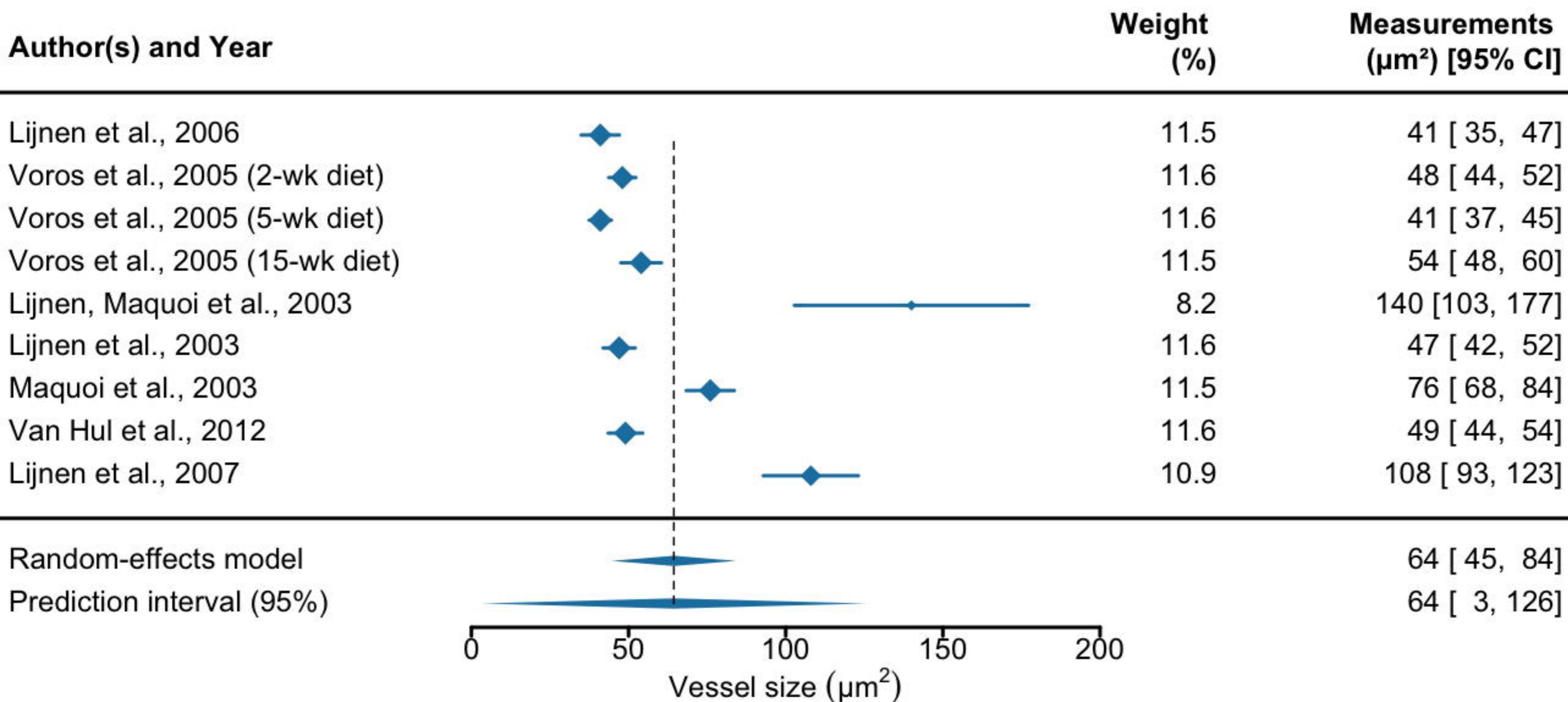


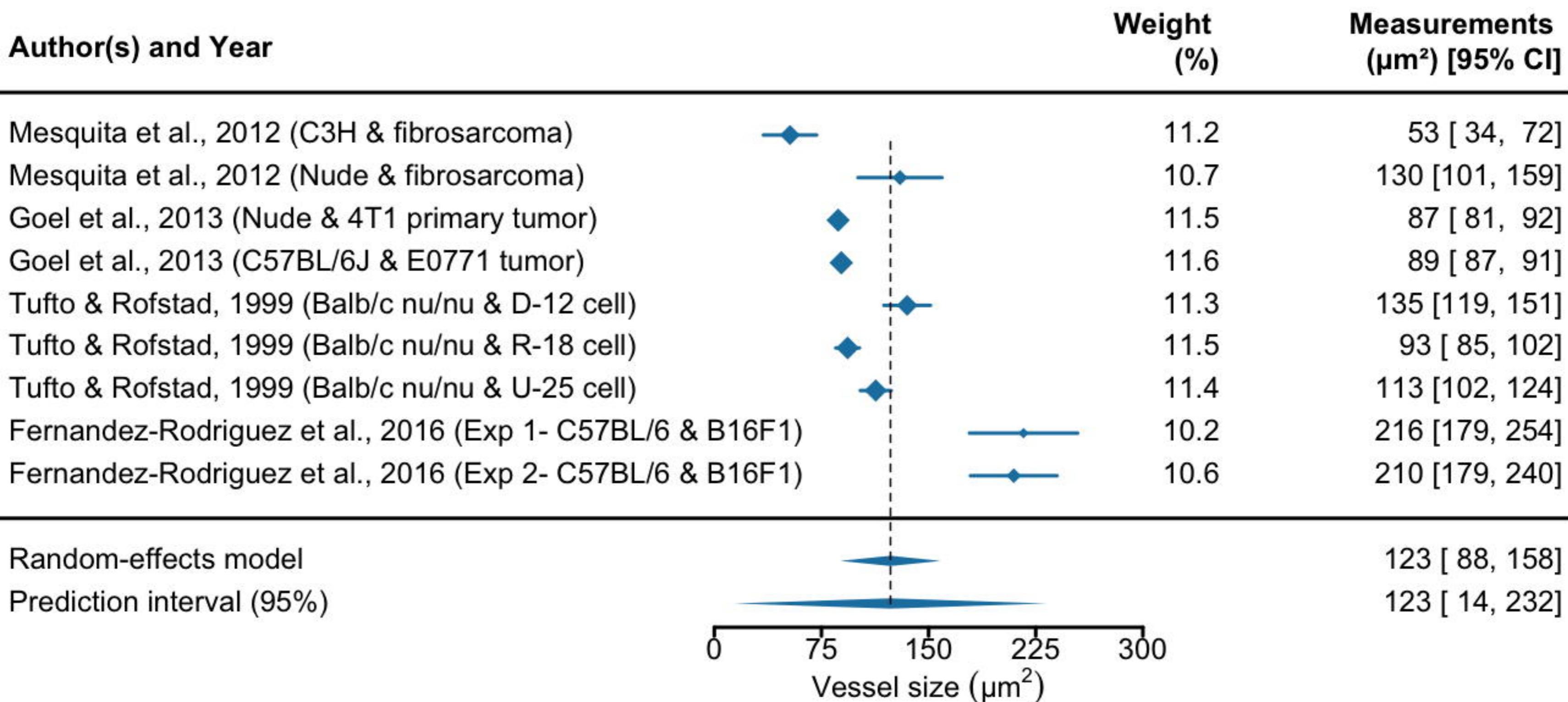

Test for heterogeneity: $\tau^2 = 362.13$; $\chi^2 = 2304.07$, df = 12 , p < 0.001 ; $I^2 = 99\%$

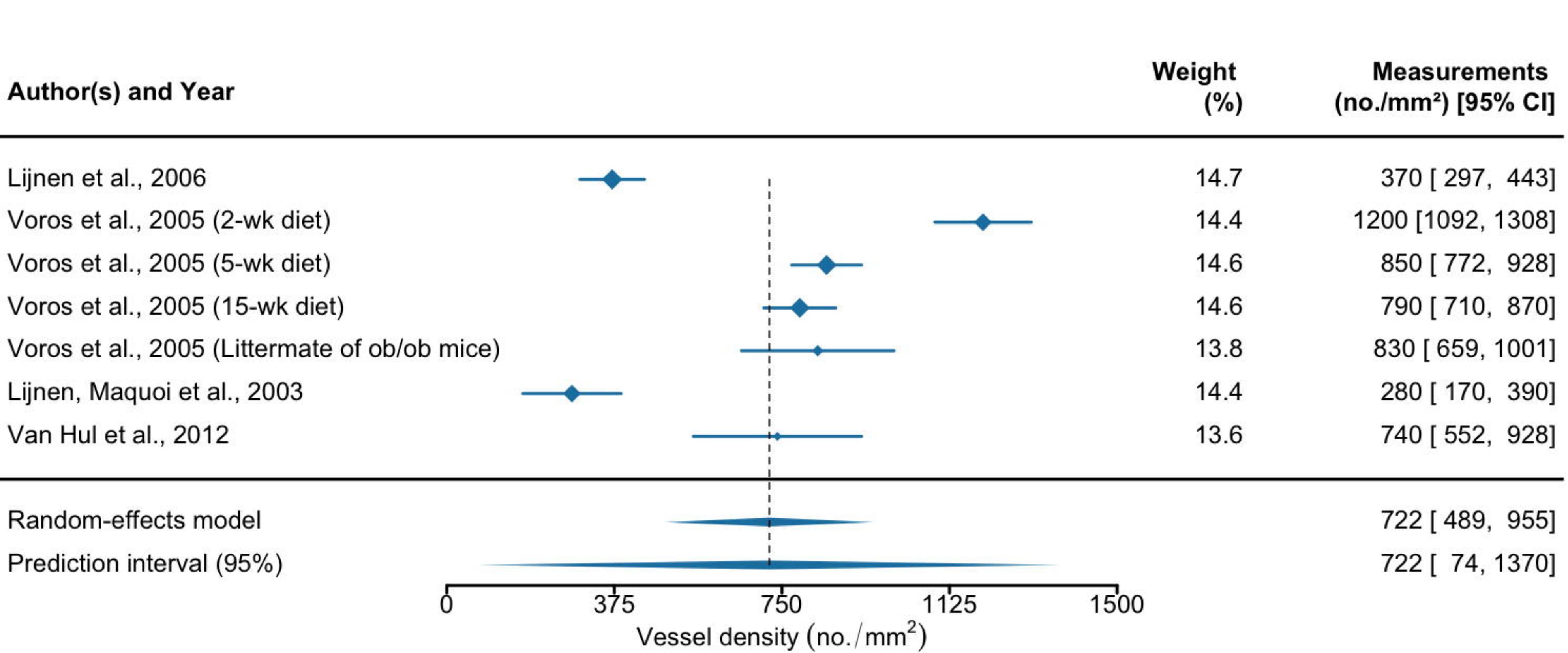


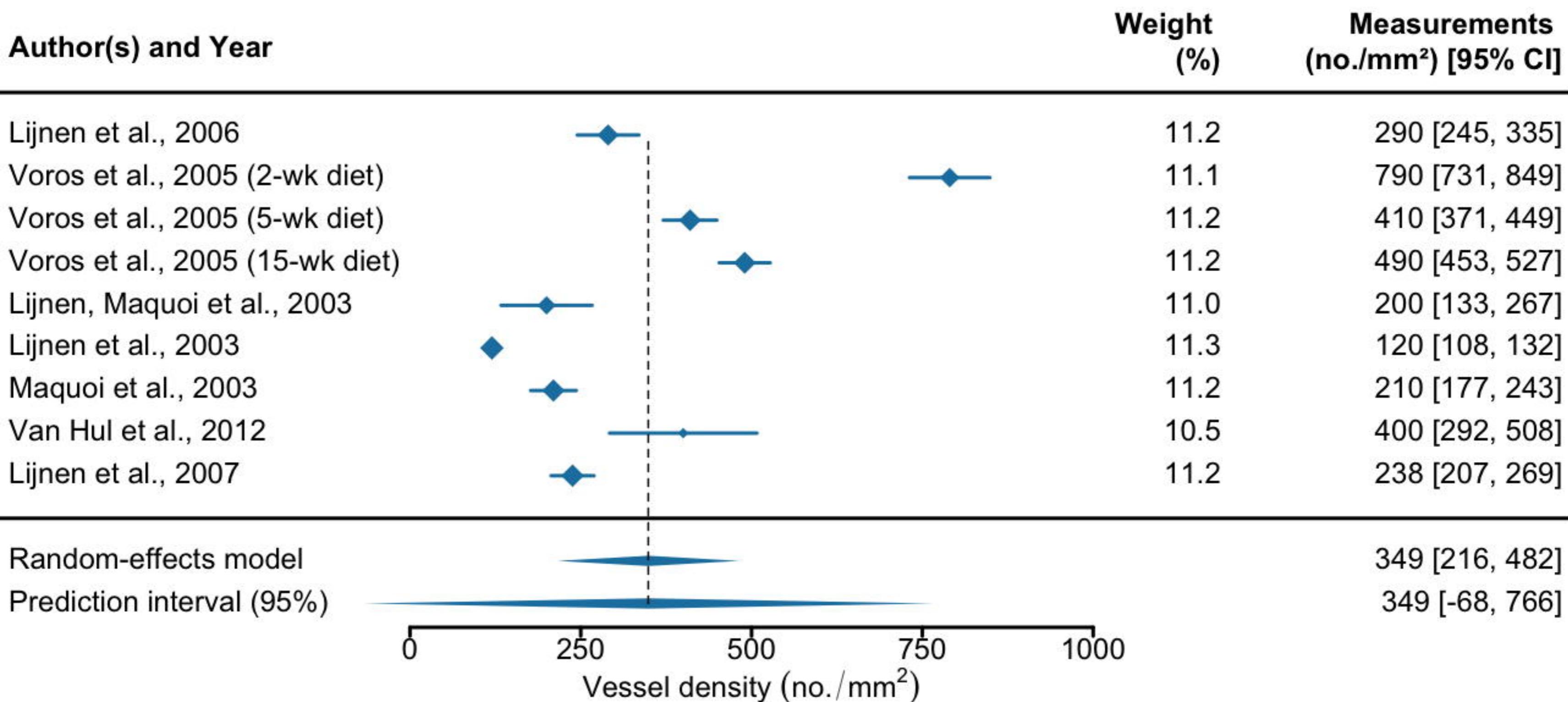


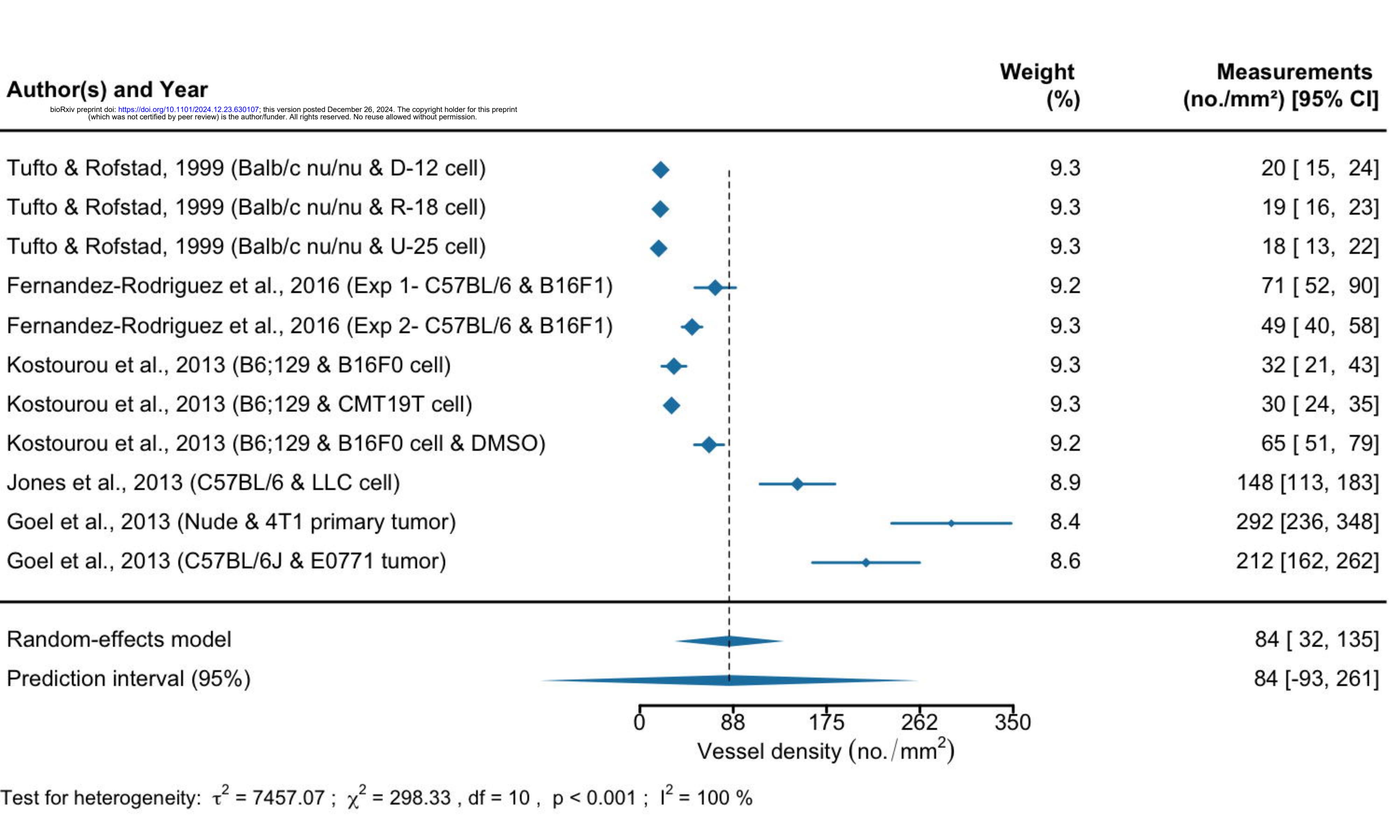


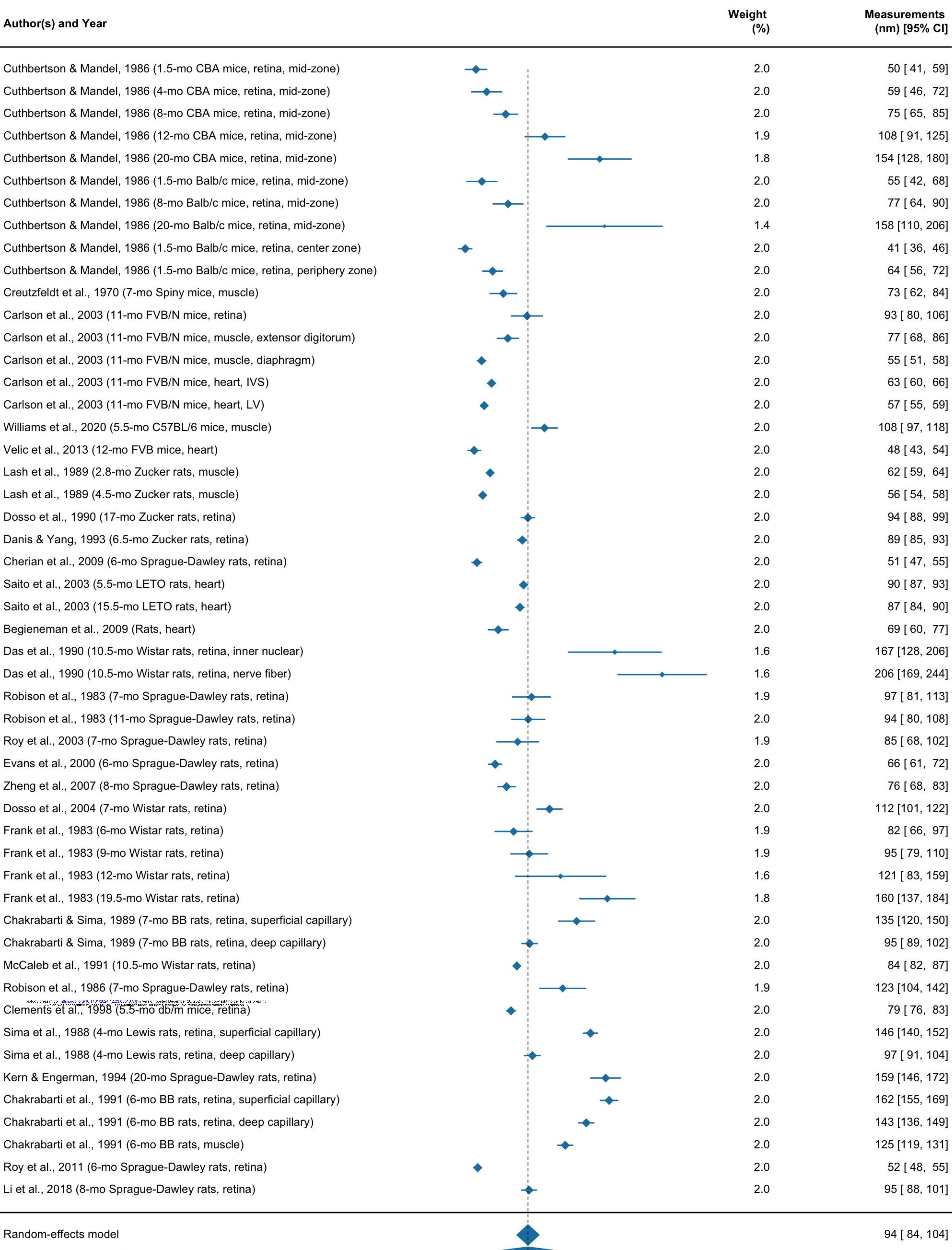


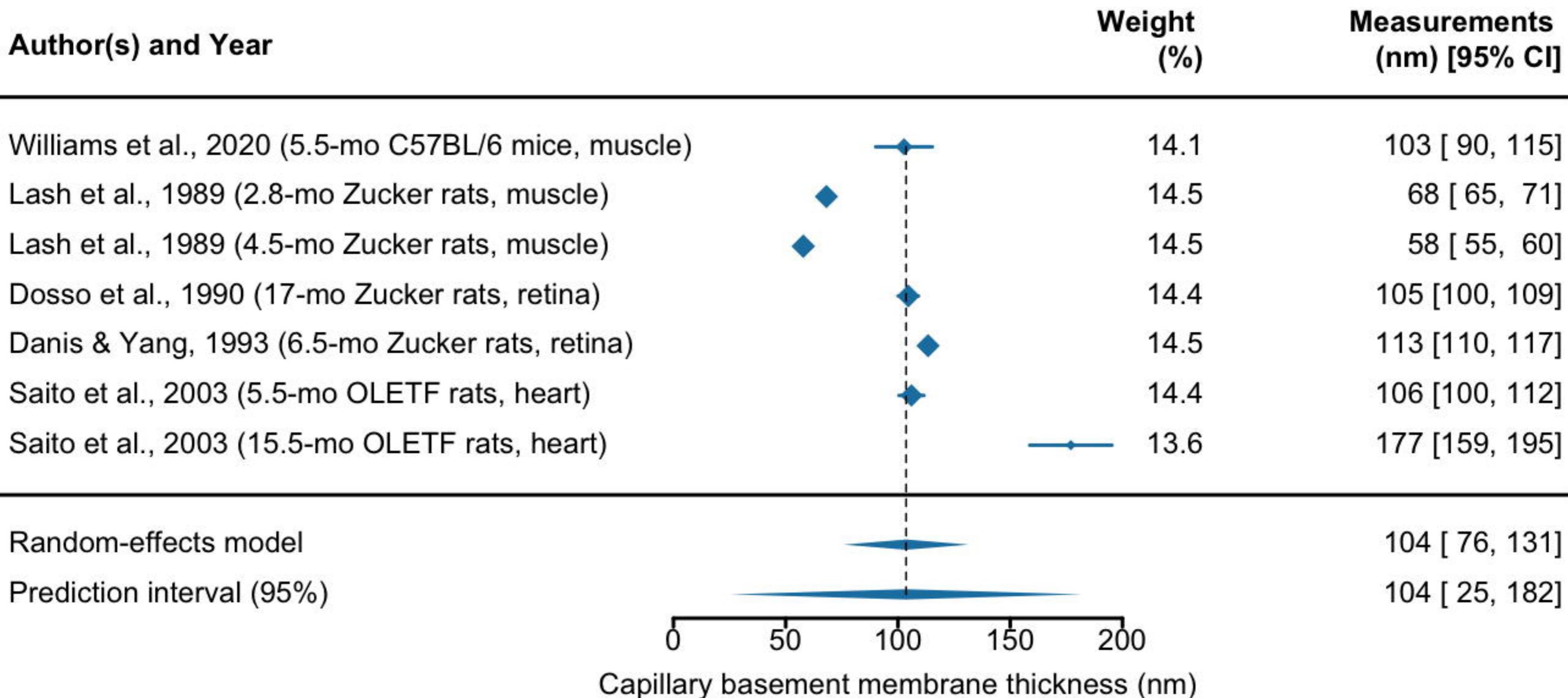


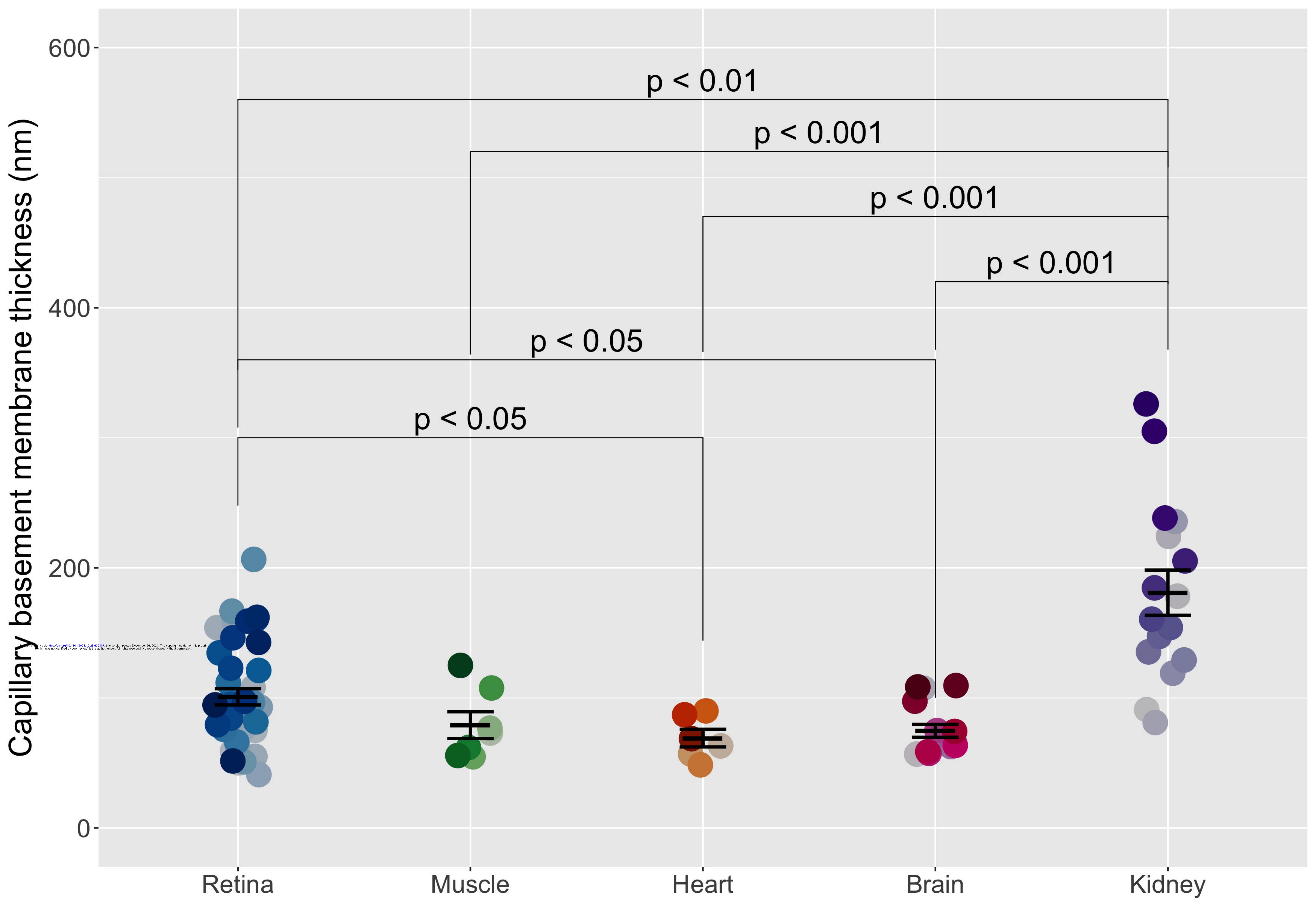

Test for heterogeneity: $\tau^2 = 222.05$; $\chi^2 = 172.70$, df = 5, $p < 0.001$; $I^2 = 97\%$

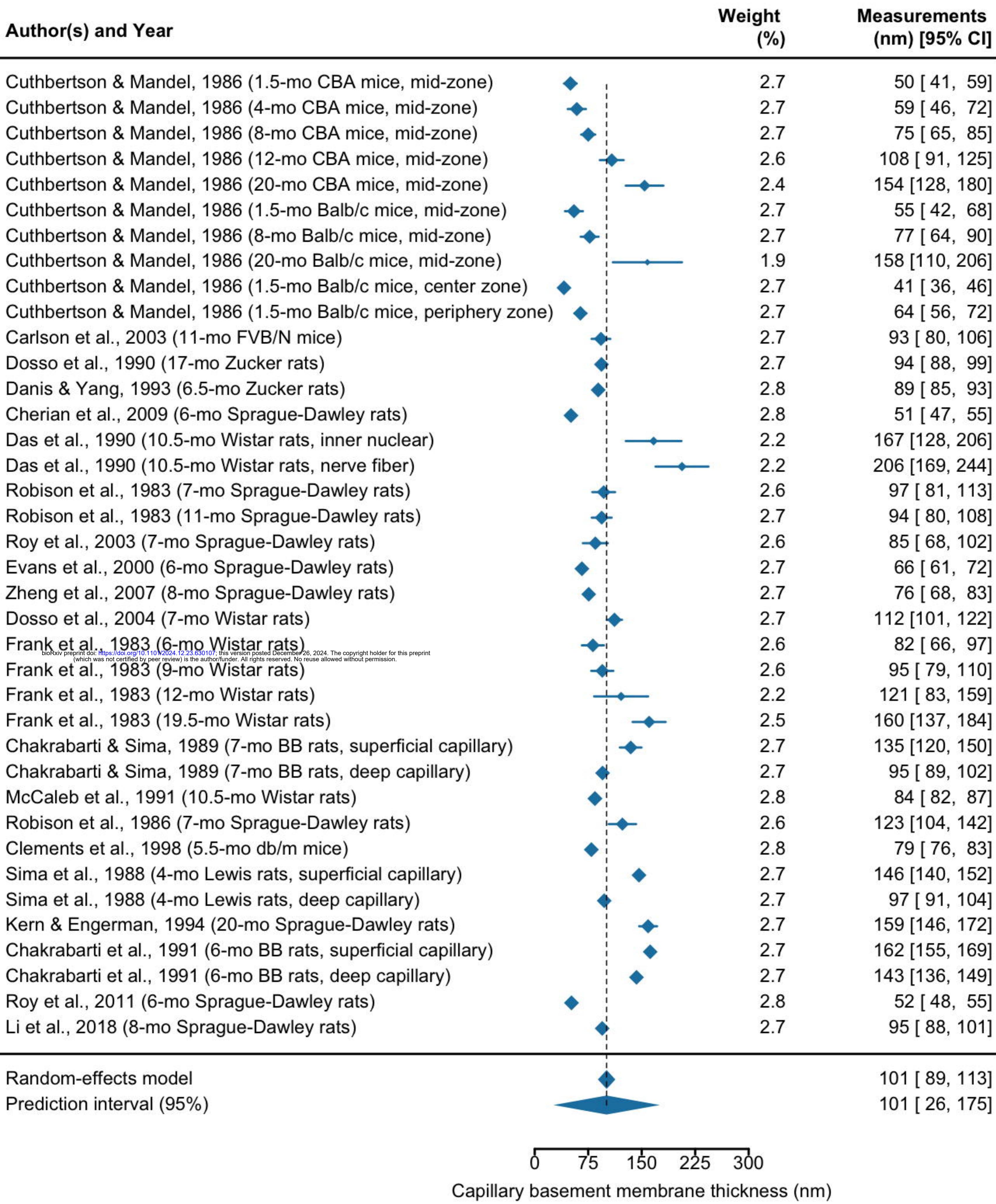

Test for heterogeneity: $\tau^2 = 871.34$; $\chi^2 = 158.99$, df = 8 , $p < 0.001$; $I^2 = 99\%$

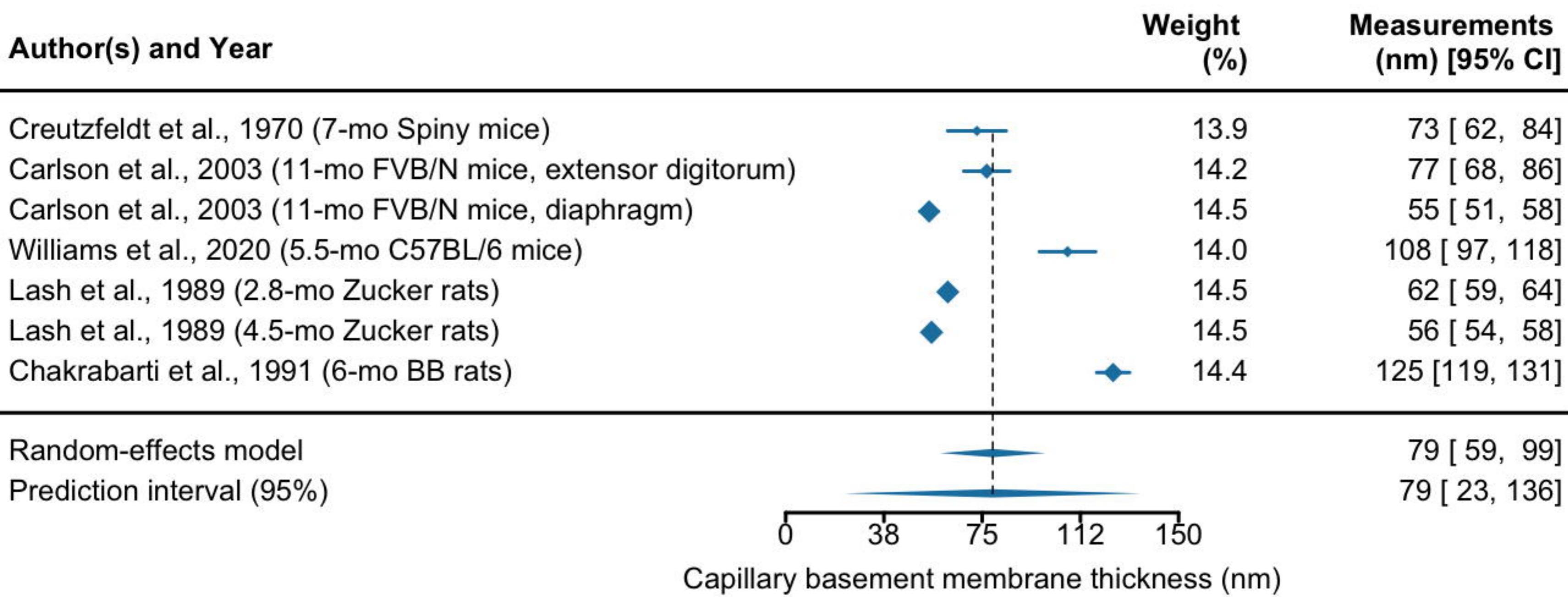

Test for heterogeneity: $\tau^2 = 2780.53$; $\chi^2 = 174.02$, df = 8 , $p < 0.001$; $I^2 = 99\%$



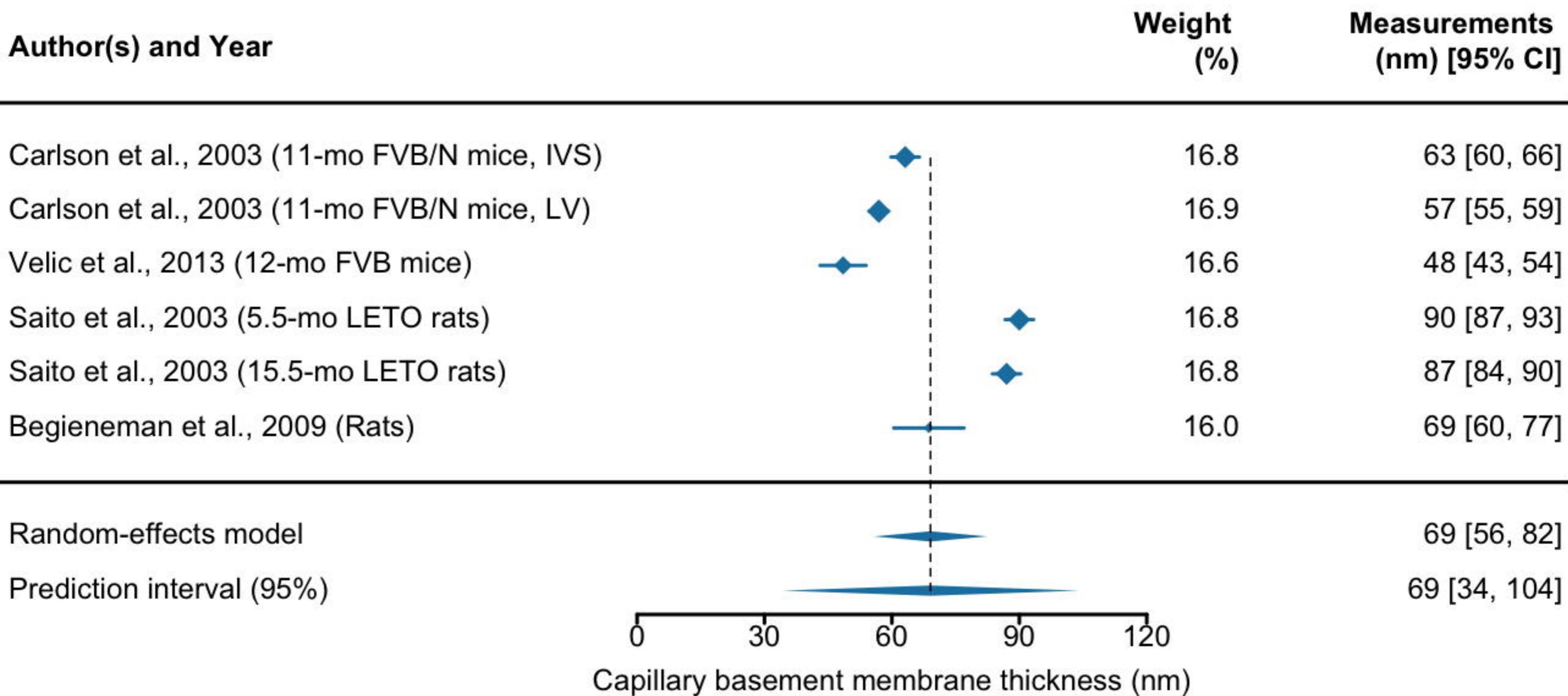

Test for heterogeneity: $\tau^2 = 95174.15$; $\chi^2 = 239.14$, df = 6 , $p < 0.001$; $I^2 = 97\%$

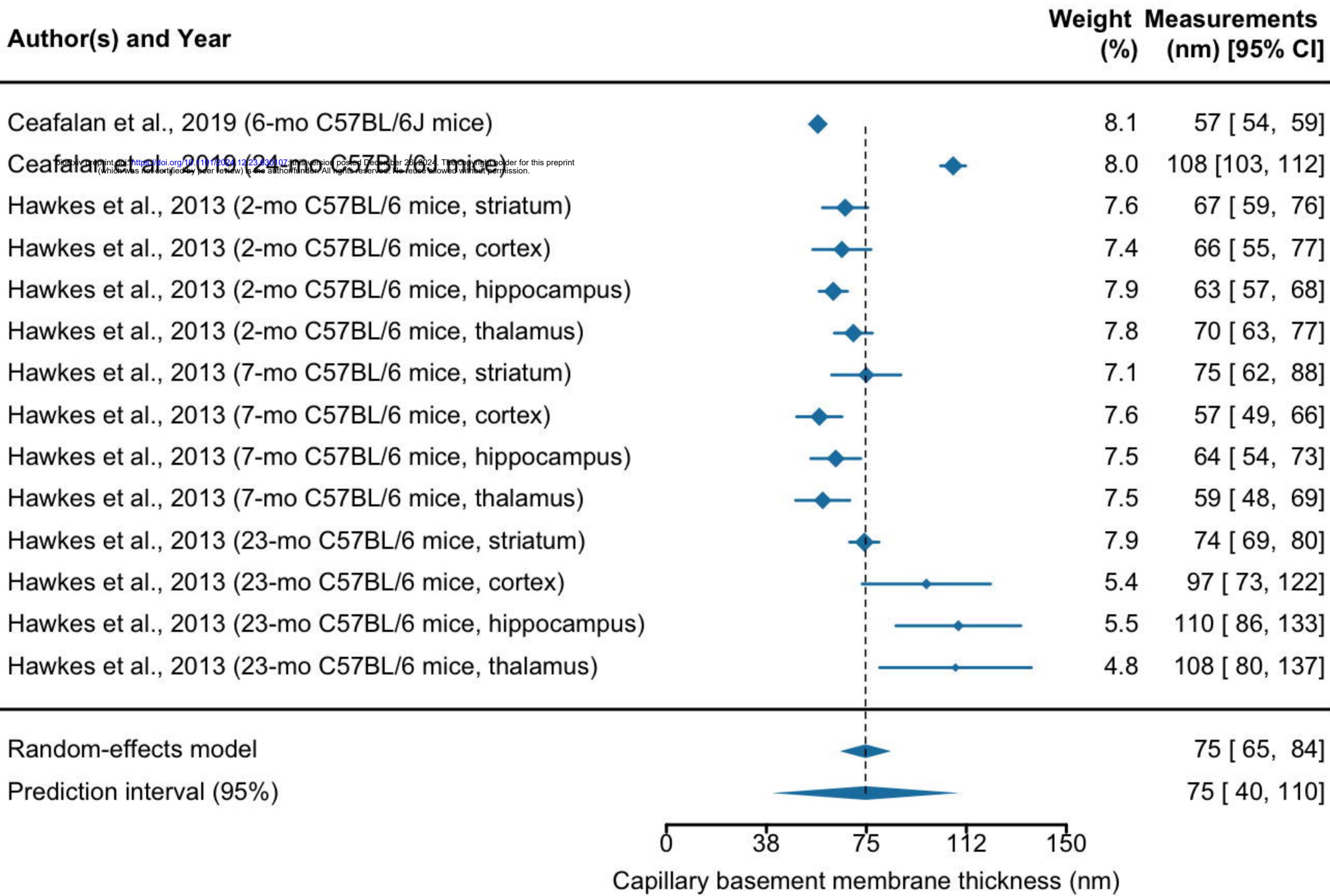

Test for heterogeneity: $\tau^2 = 40684.94$; $\chi^2 = 928.59$, df = 8 , $p < 0.001$; $I^2 = 99\%$

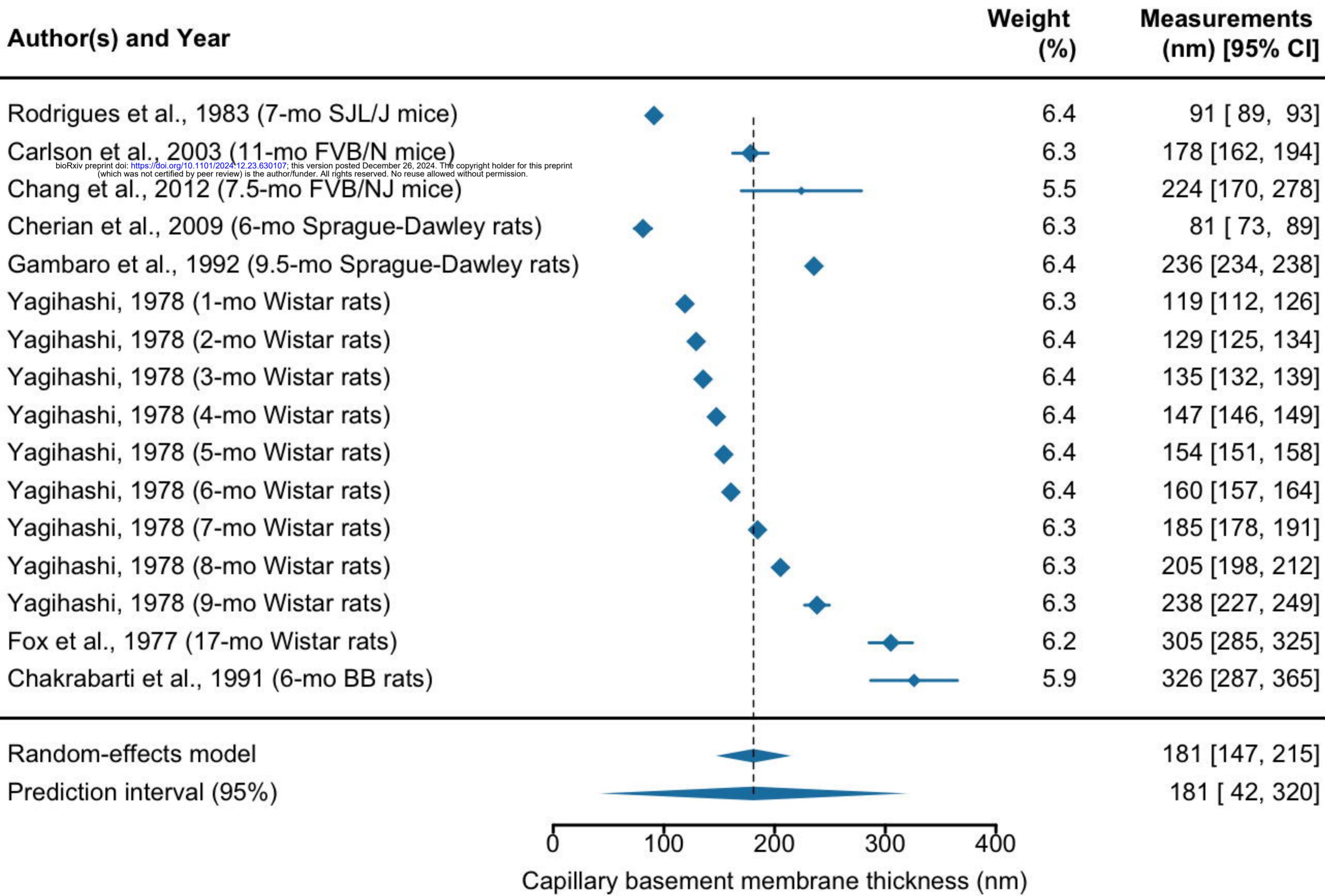




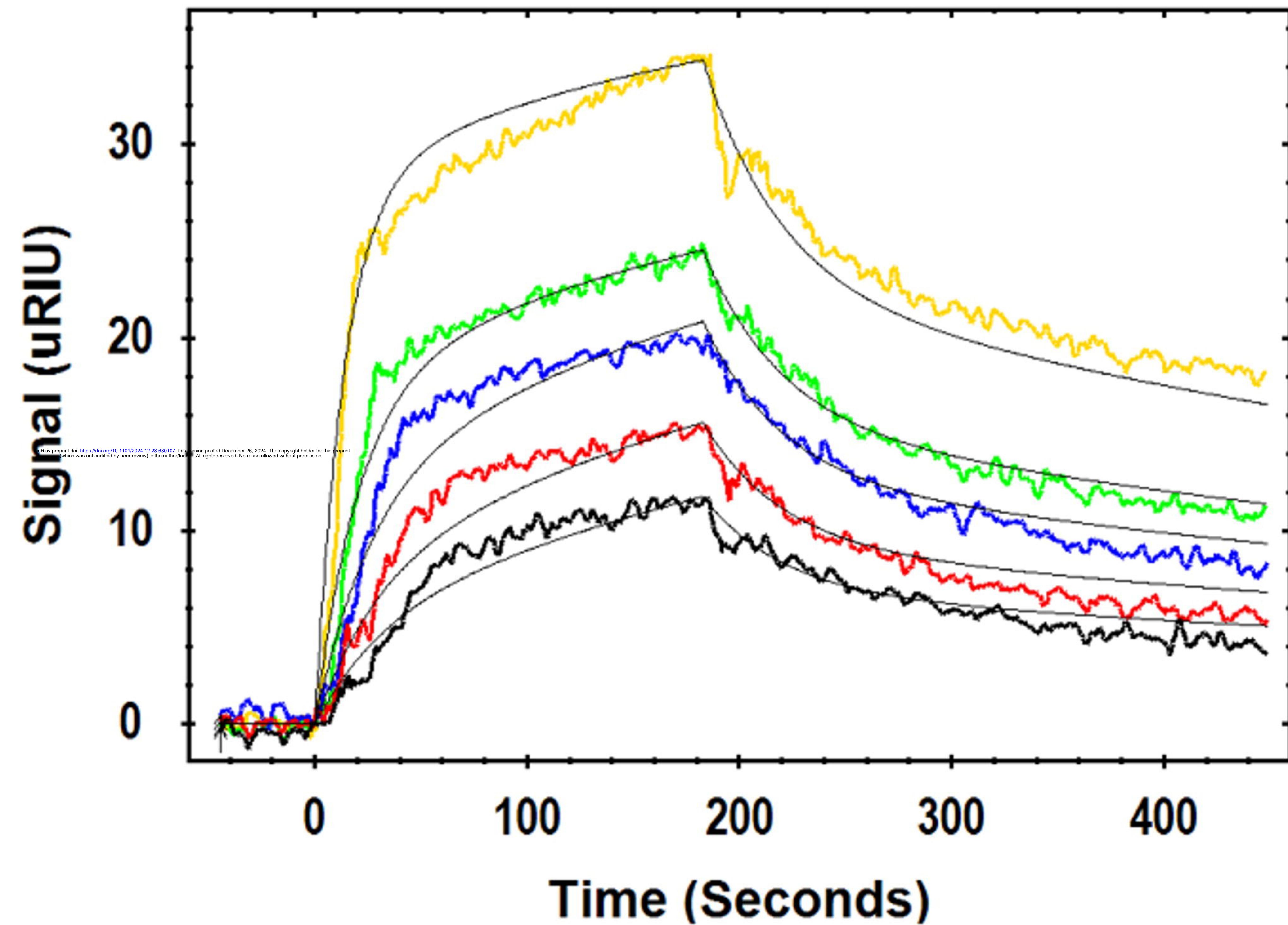
Test for heterogeneity: $\tau^2 = 1390.34$; $\chi^2 = 1042.31$, df = 6 , $p < 0.001$; $I^2 = 100\%$



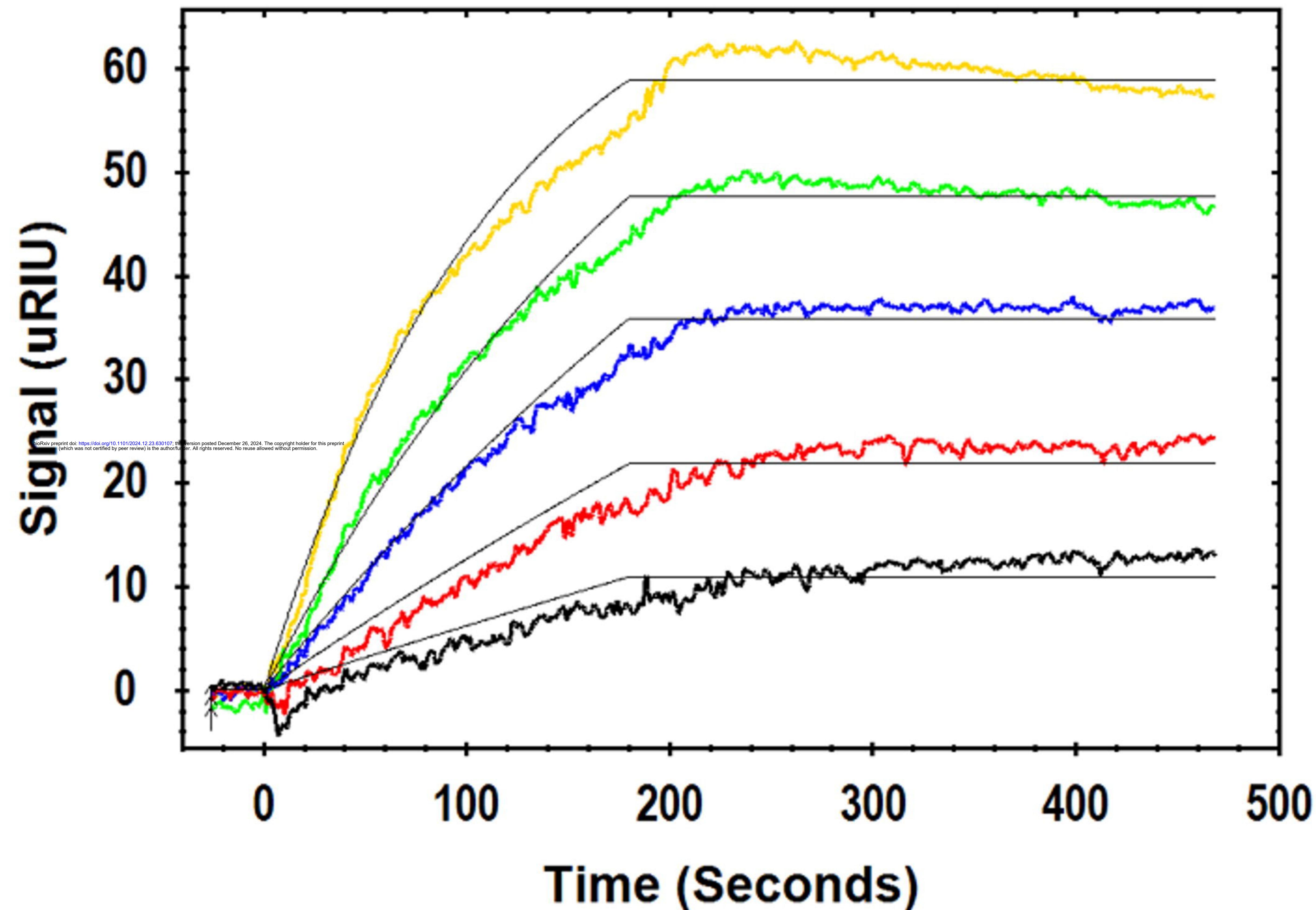

Test for heterogeneity: $\tau^2 = 1408.02$; $\chi^2 = 2656.05$, df = 37 , $p < 0.001$; $I^2 = 99\%$

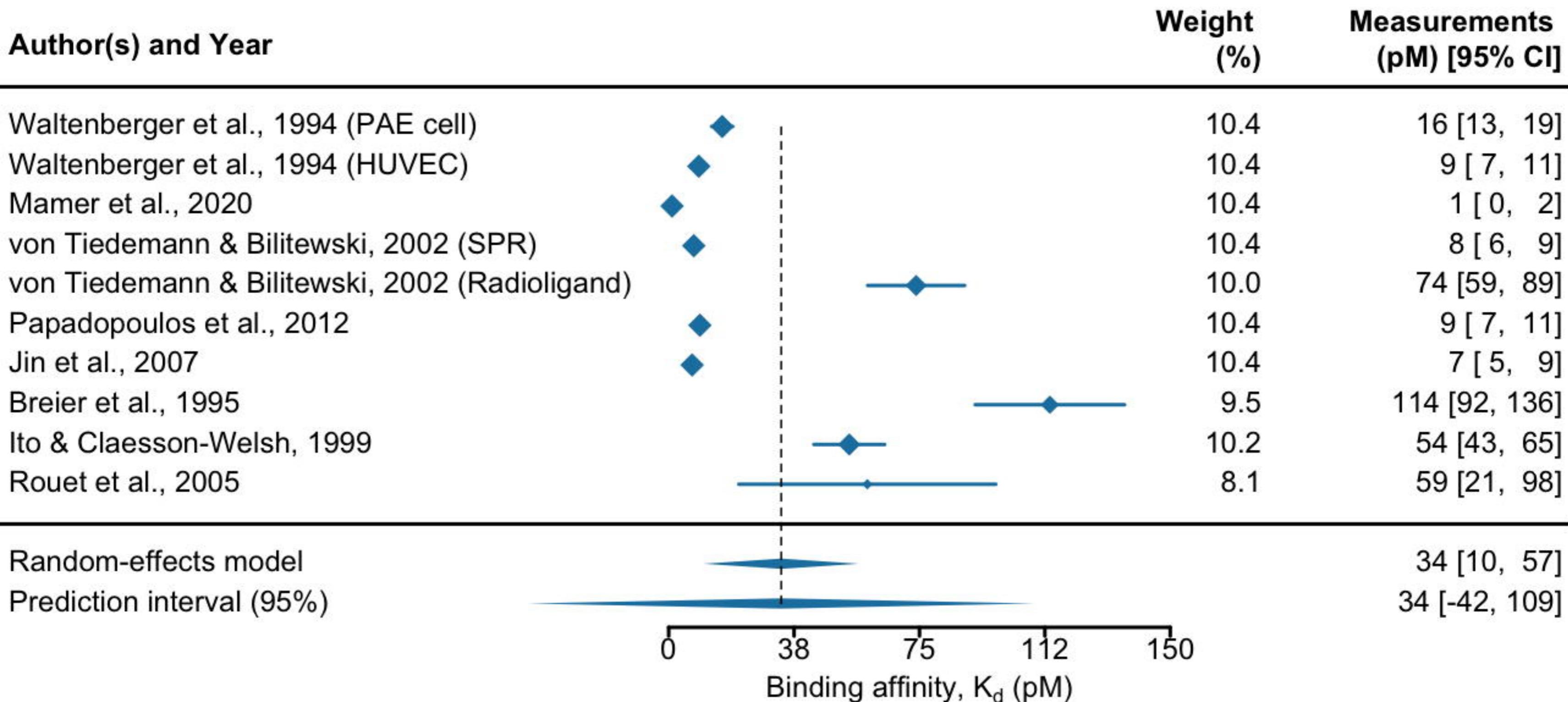

Test for heterogeneity: $\tau^2 = 724.88$; $\chi^2 = 525.10$, df = 6 , p < 0.001 ; $I^2 = 99\%$

Test for heterogeneity: $\tau^2 = 270.62$; $\chi^2 = 440.02$, df = 5, $p < 0.001$; $I^2 = 99\%$

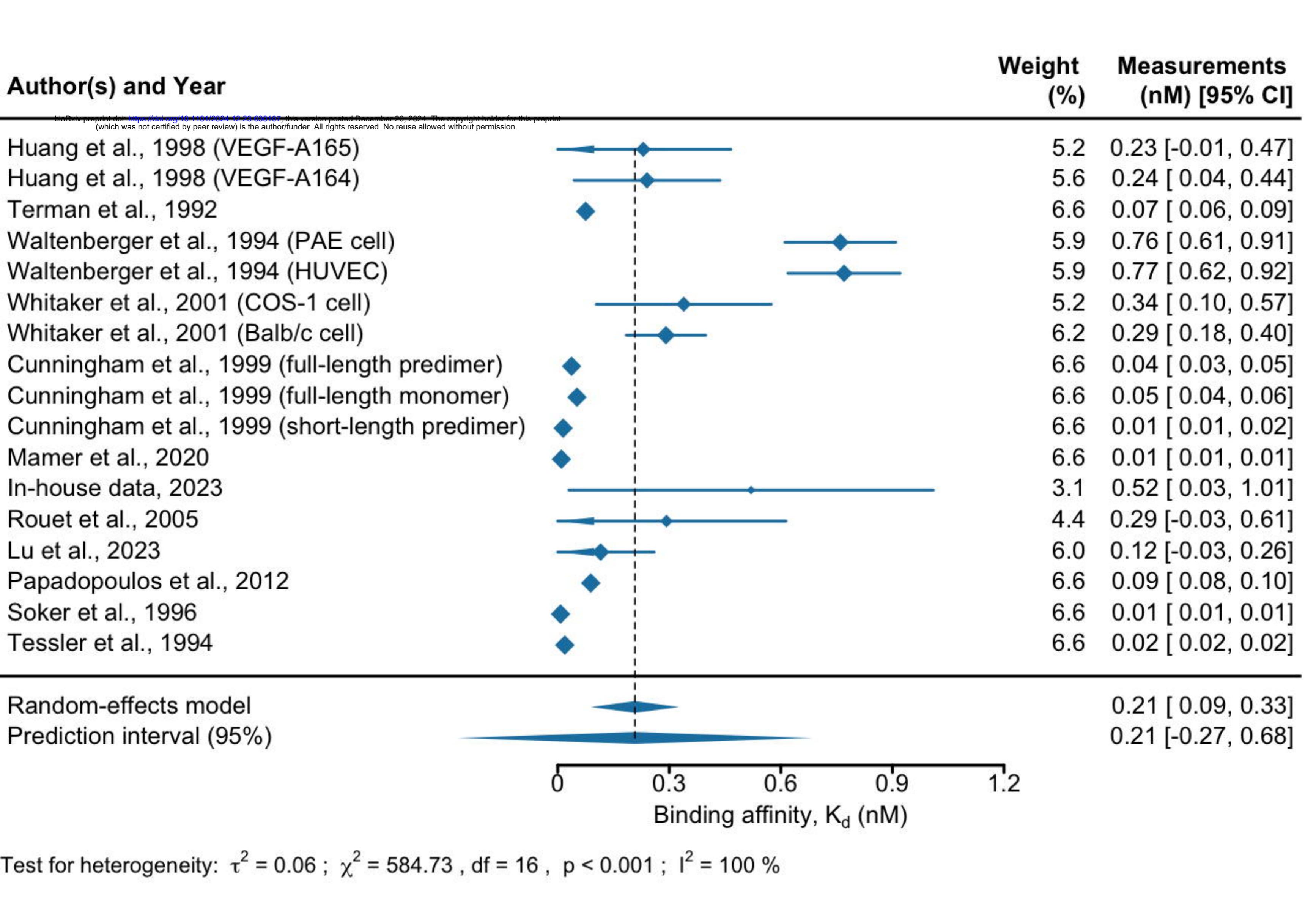


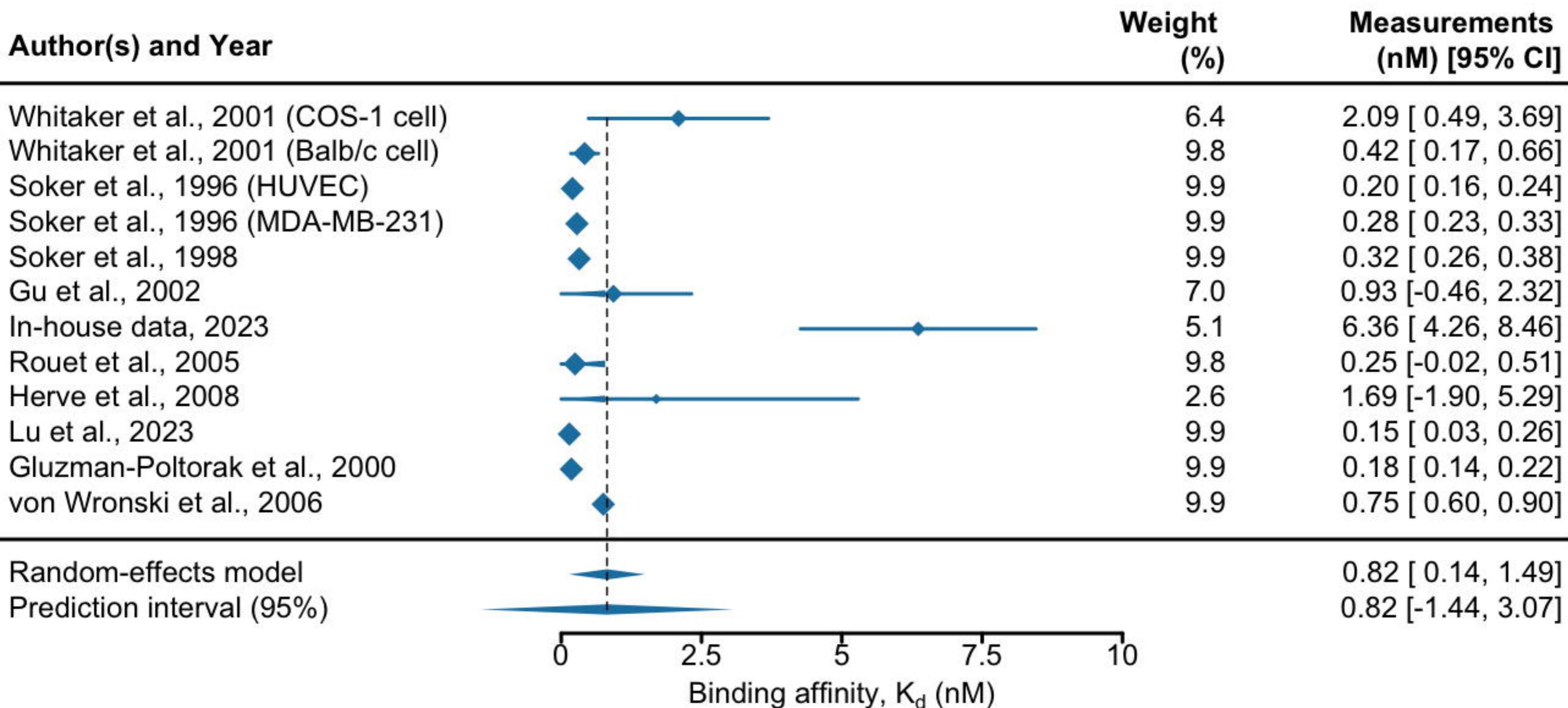
Test for heterogeneity: $\tau^2 = 297.55$; $\chi^2 = 403.76$, df = 13 , $p < 0.001$; $I^2 = 96\%$

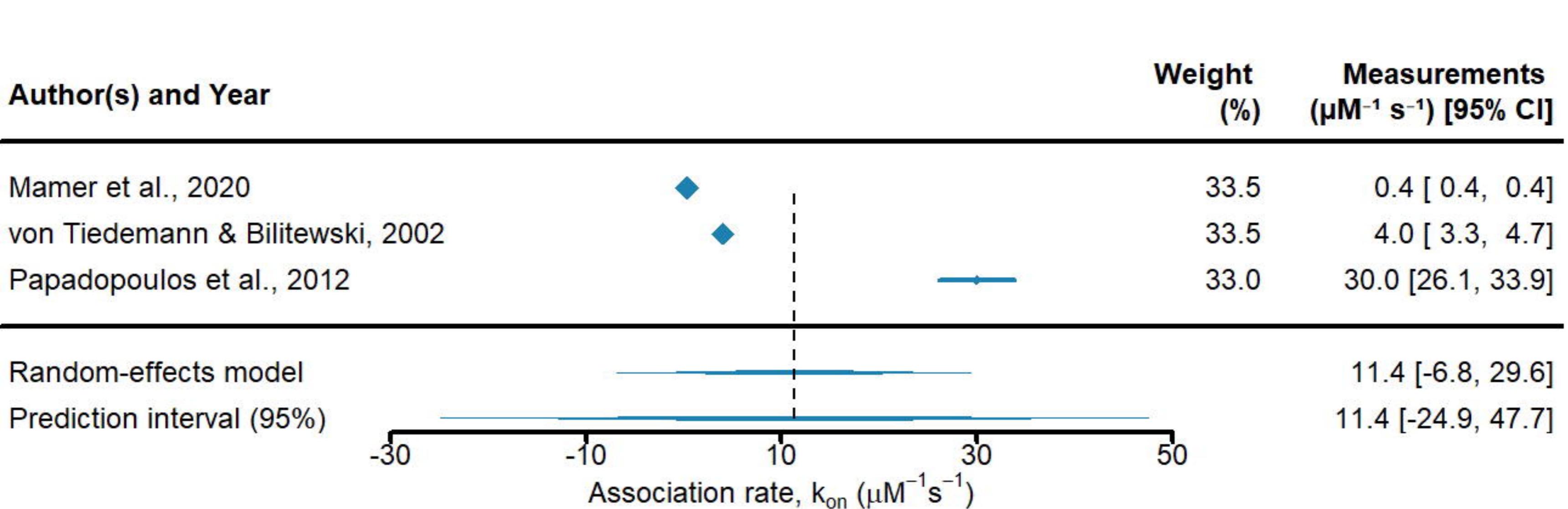



Test for heterogeneity: $\tau^2 = 4729.17$; $\chi^2 = 12747.86$, df = 15 , p < 0.001 ; $I^2 = 100\%$

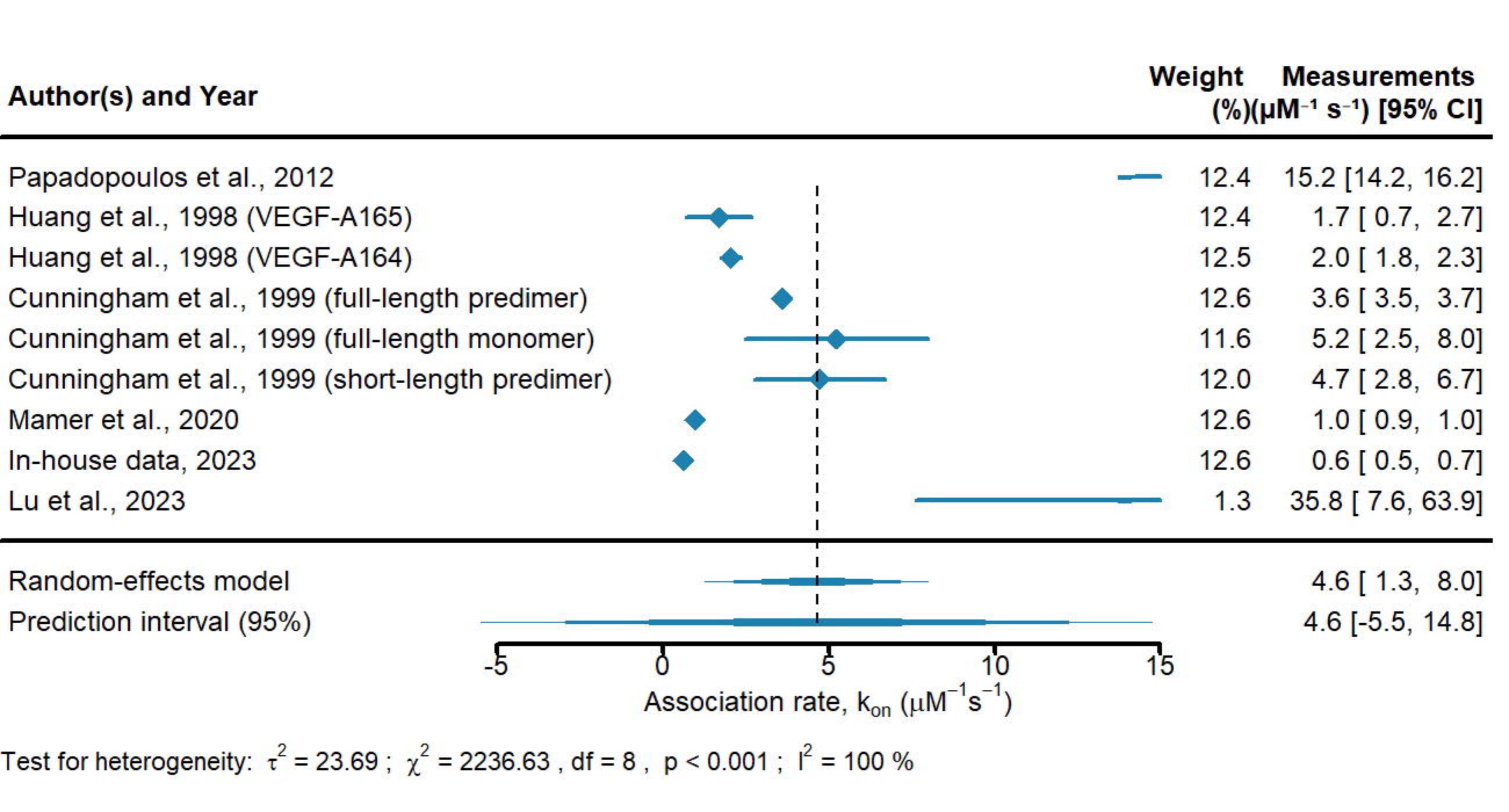
VEGFA vs NRP1

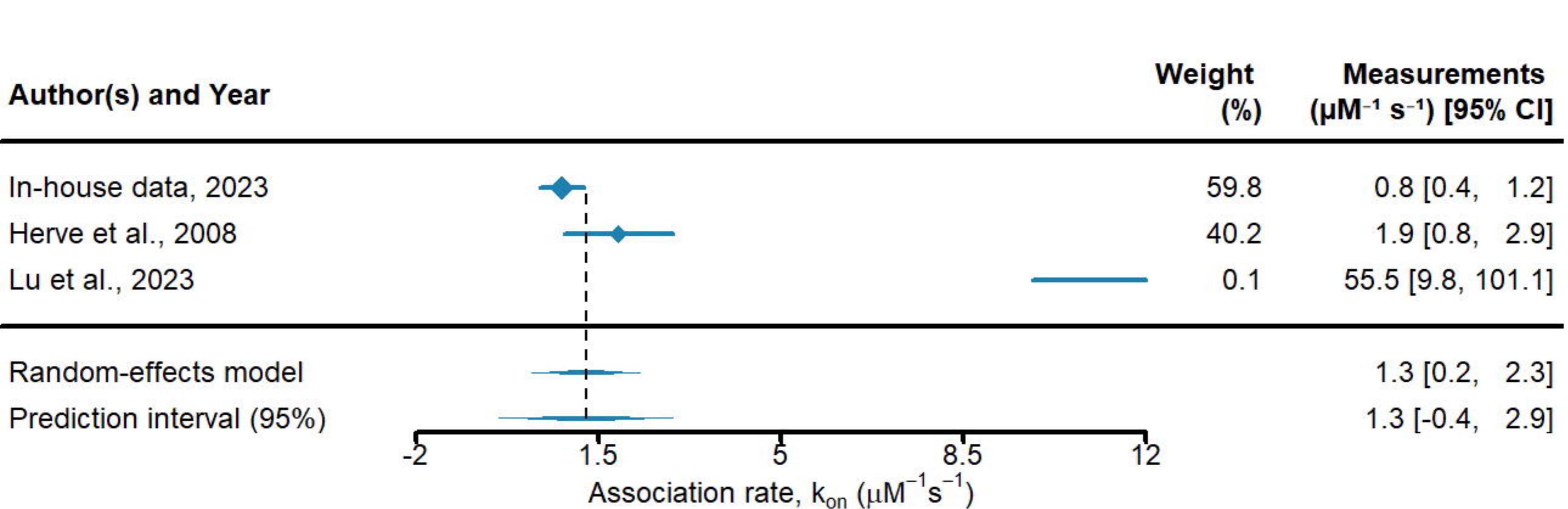



VEGFA vs VEGFR2

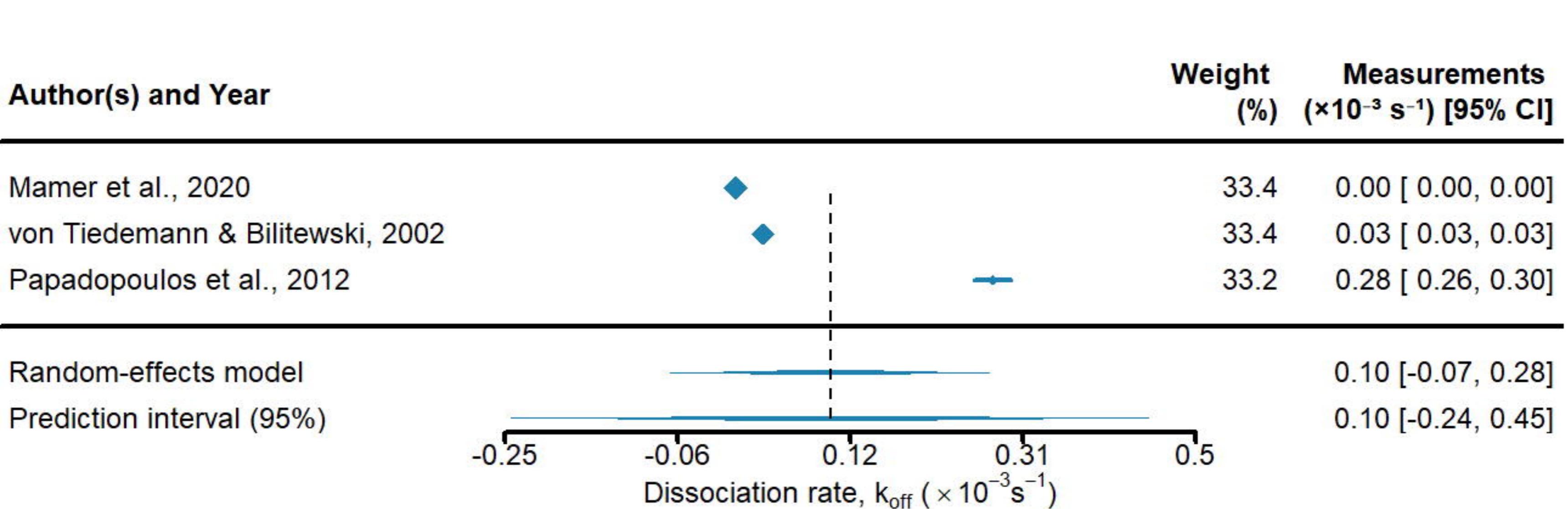


Test for heterogeneity: $\tau^2 = 1343.99$; $\chi^2 = 514.99$, df = 9 , $p < 0.001$; $I^2 = 100\%$

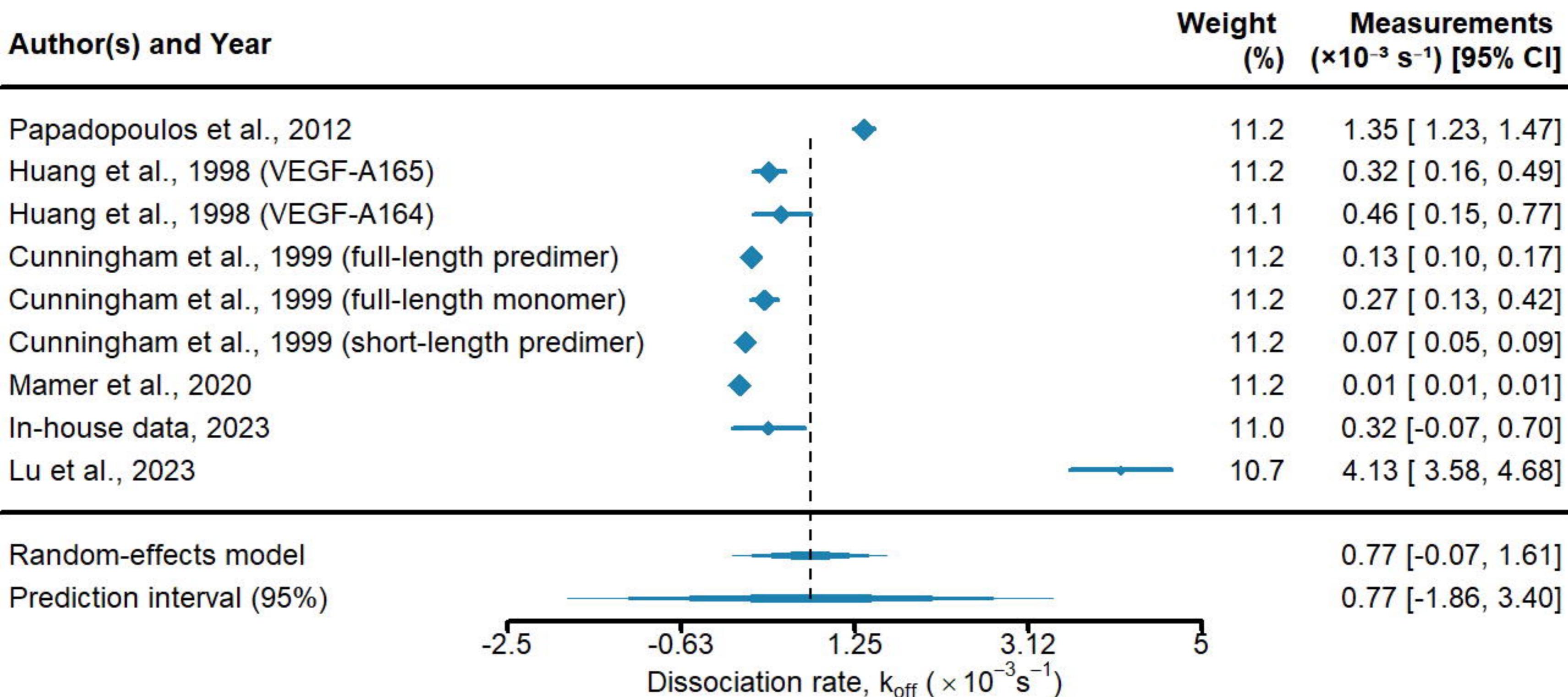


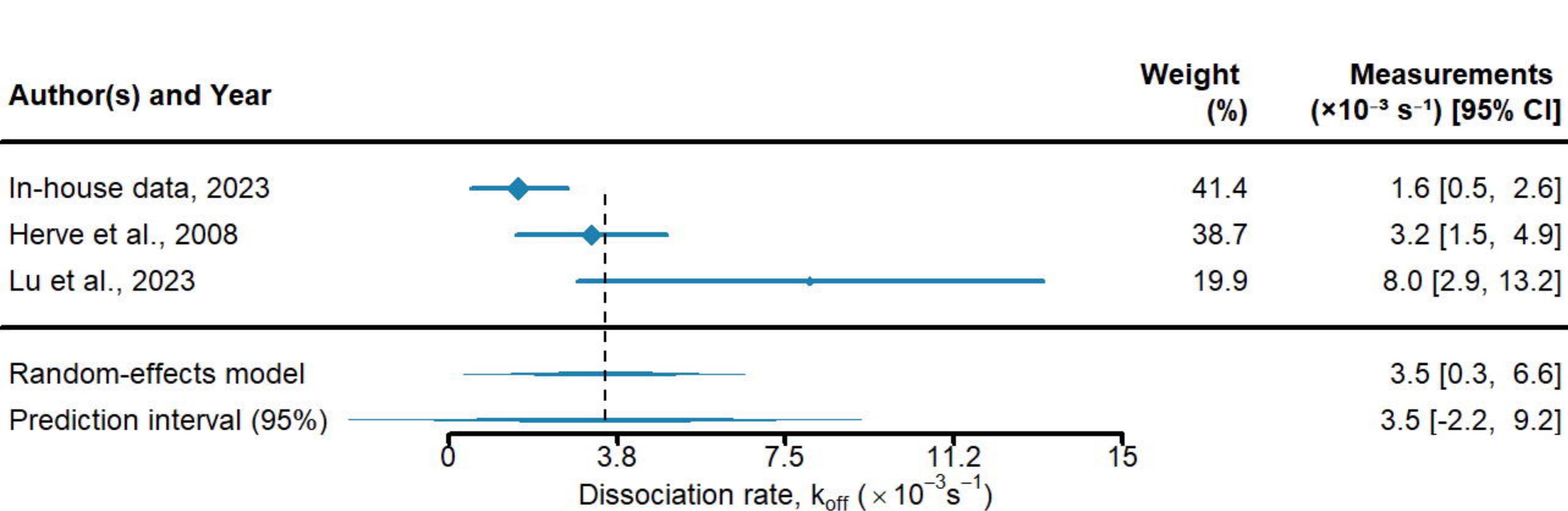


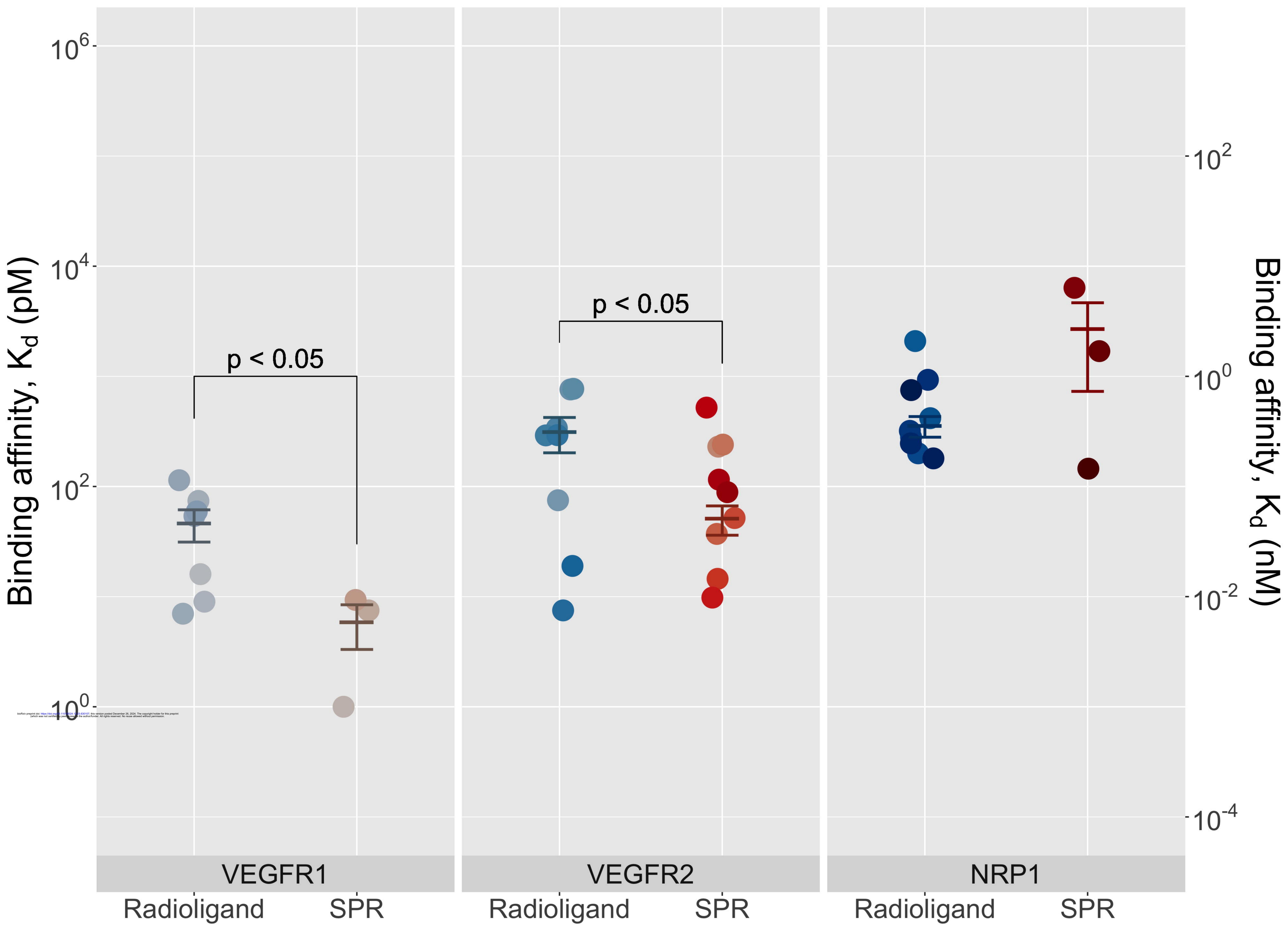
Test for heterogeneity: $\tau^2 = 1.20$; $\chi^2 = 113.05$, df = 11 , $p < 0.001$; $I^2 = 100\%$

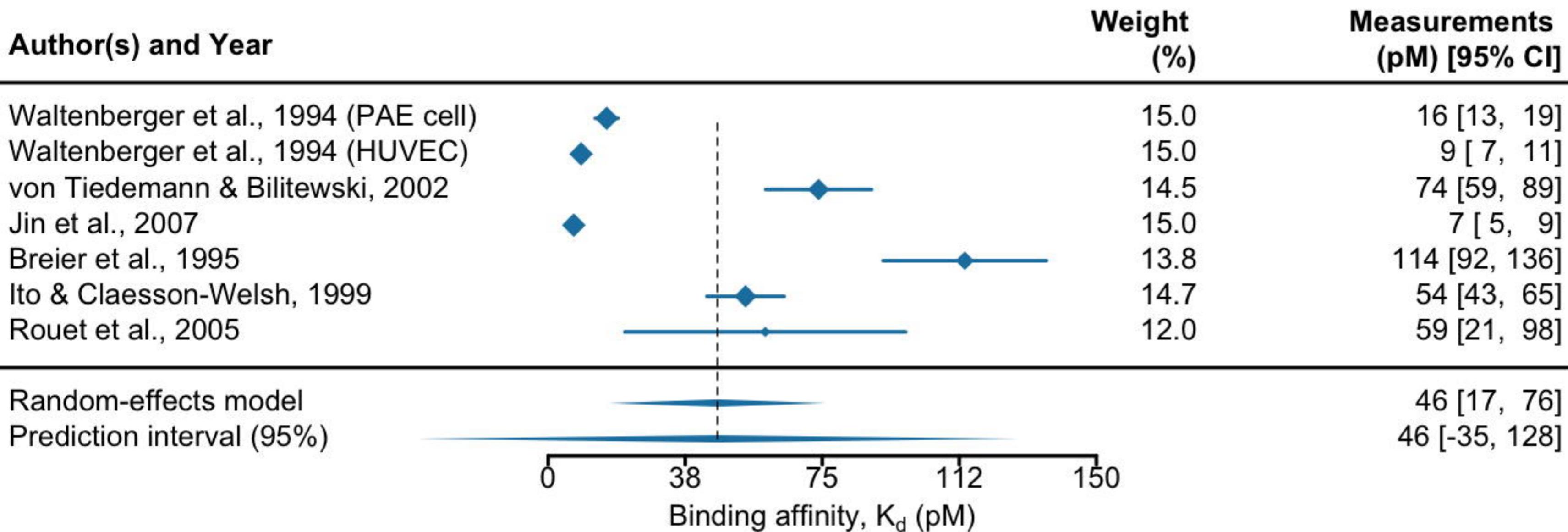


Test for heterogeneity: $\tau^2 = 256.93$; $\chi^2 = 309.02$, $\text{df} = 2$, $p < 0.001$; $I^2 = 100\%$

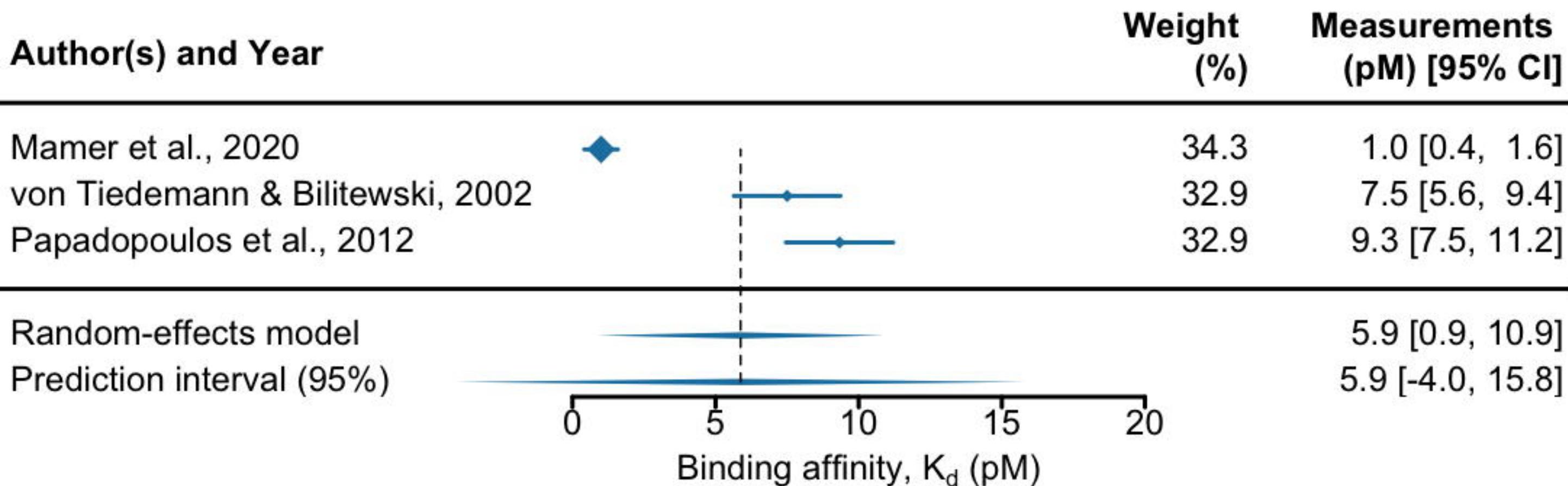



Test for heterogeneity: $\tau^2 = 0.44$; $\chi^2 = 9.04$, $\text{df} = 2$, $p < 0.05$; $I^2 = 57\%$

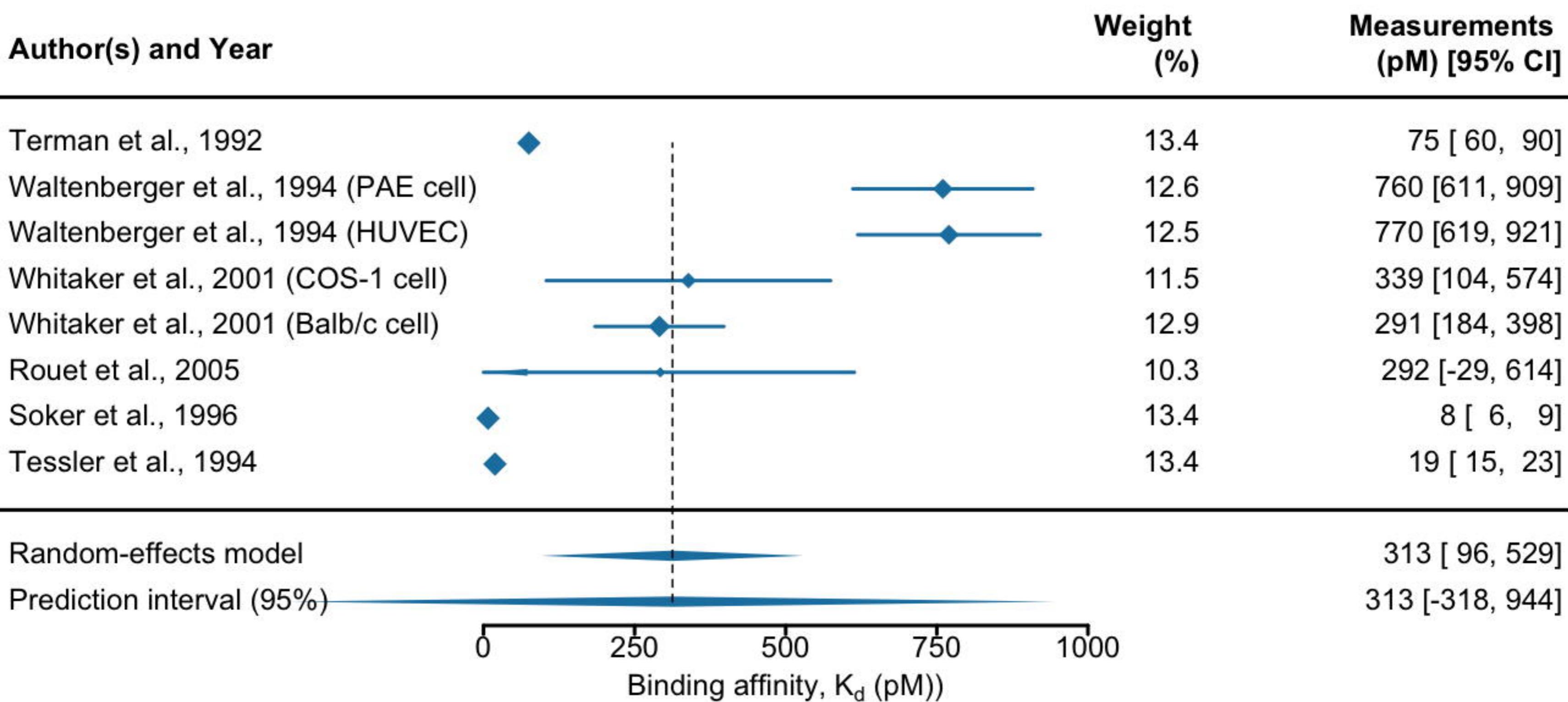

Test for heterogeneity: $\tau^2 = 0.02$; $\chi^2 = 918.66$, df = 2 , $p < 0.001$; $I^2 = 100\%$

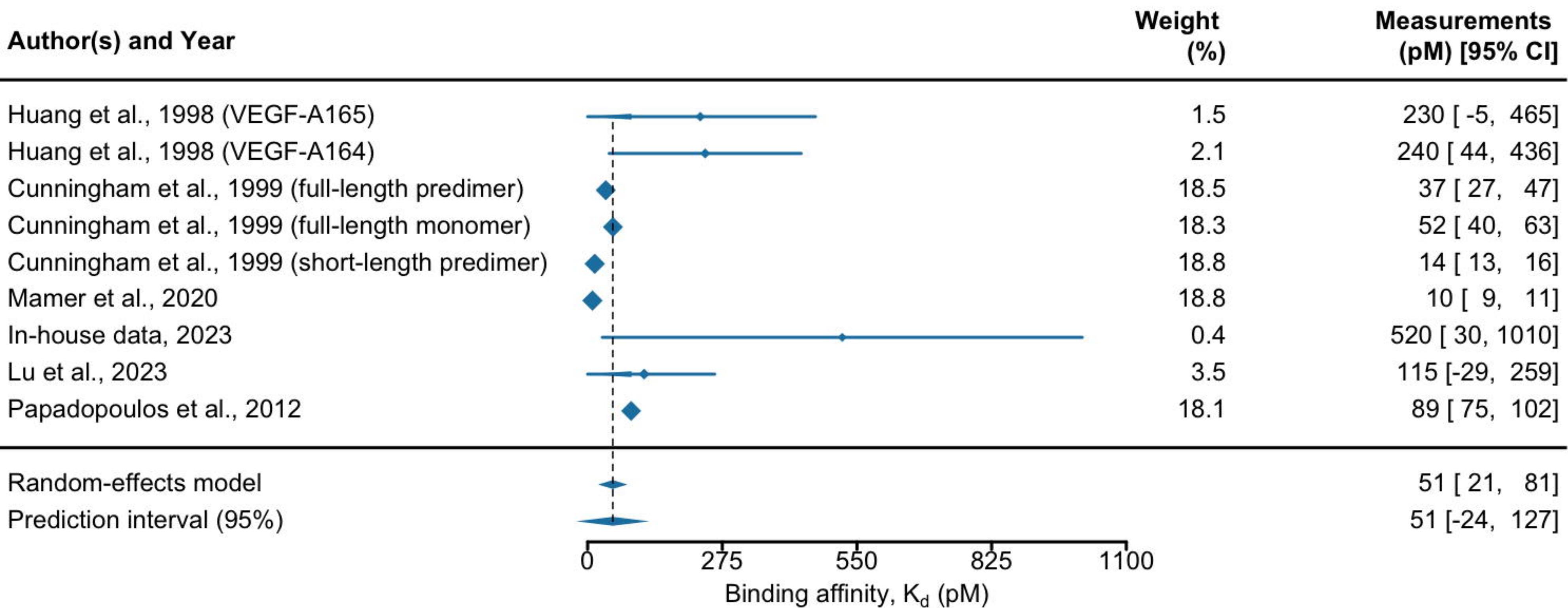


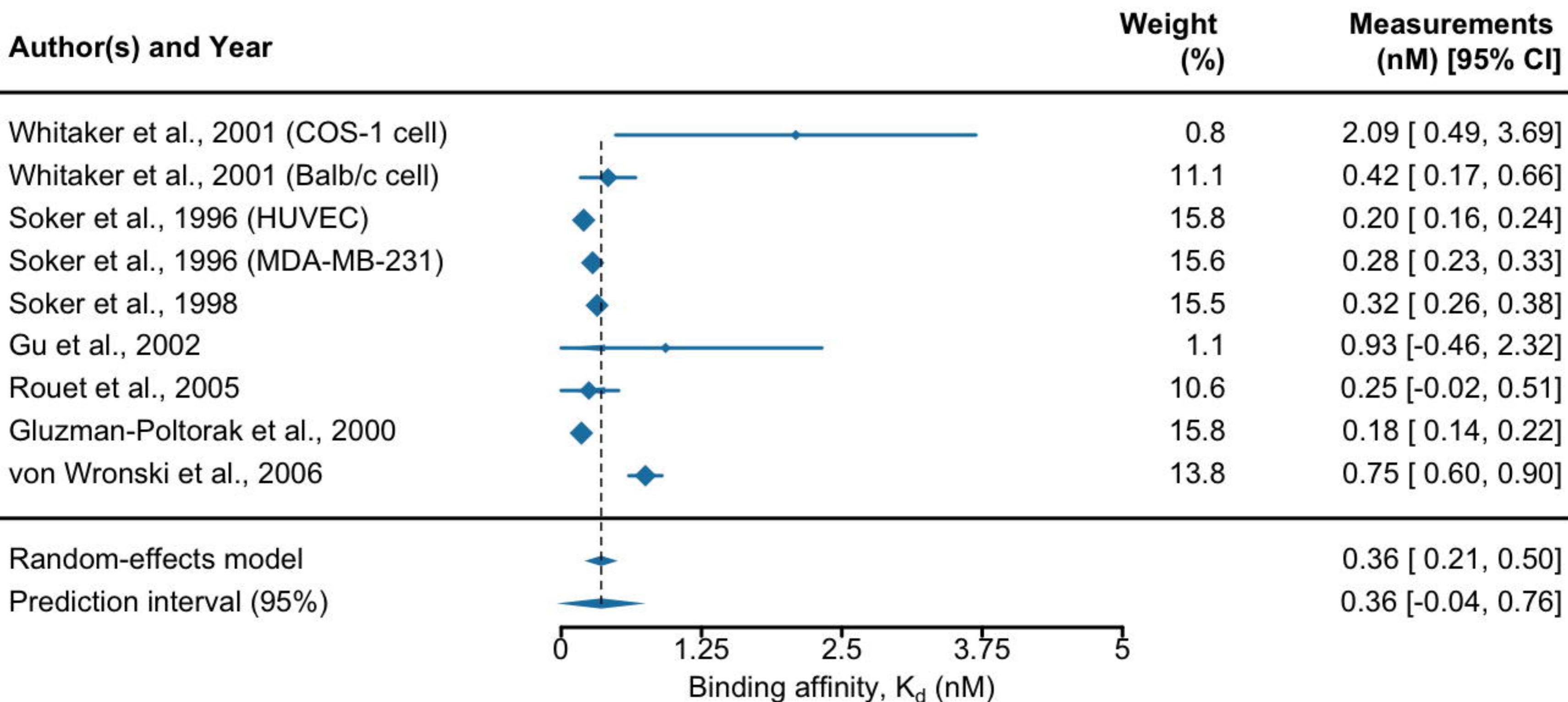
Test for heterogeneity: $\tau^2 = 1.62$; $\chi^2 = 819.73$, $df = 8$, $p < 0.001$; $I^2 = 100\%$

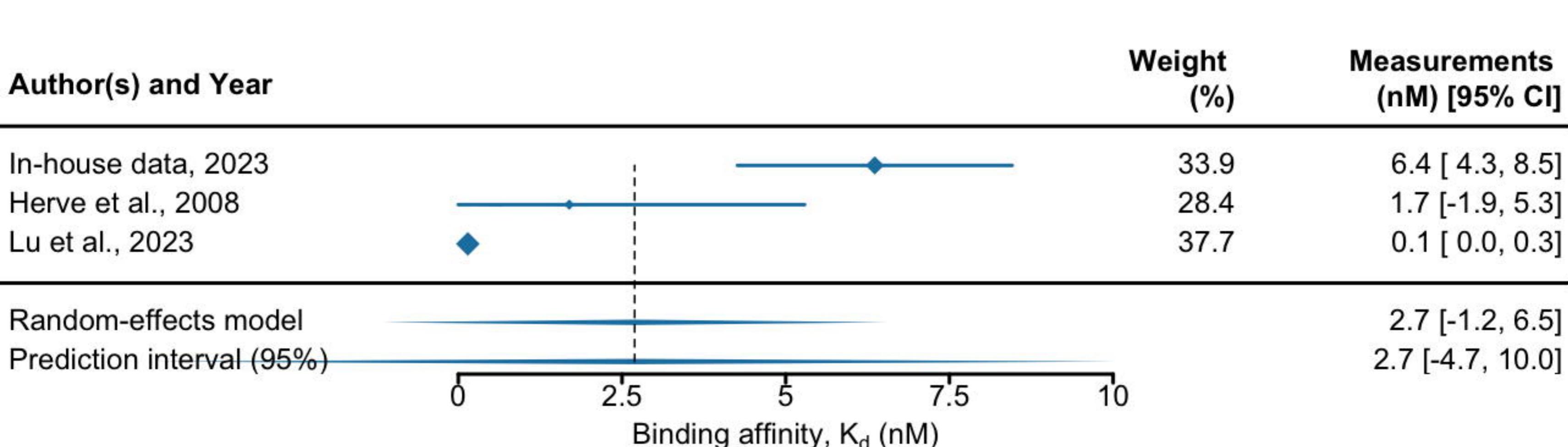


Test for heterogeneity: $\tau^2 = 5.94$; $\chi^2 = 7.55$, $df = 2$, $p < 0.05$; $I^2 = 86\%$




Test for heterogeneity: $\tau^2 = 1510.03$; $\chi^2 = 253.97$, $df = 6$, $p < 0.001$; $I^2 = 100\%$


Test for heterogeneity: $\tau^2 = 19.02$; $\chi^2 = 102.74$, df = 2 , $p < 0.001$; $I^2 = 97\%$


Test for heterogeneity: $\tau^2 = 91465.28$; $\chi^2 = 340.56$, df = 7 , $p < 0.001$; $I^2 = 100\%$

Test for heterogeneity: $\tau^2 = 1238.13$; $\chi^2 = 241.85$, df = 8 , $p < 0.001$; $I^2 = 100\%$

Test for heterogeneity: $\tau^2 = 0.04$; $\chi^2 = 77.41$, df = 8 , $p < 0.001$; $I^2 = 96\%$

Test for heterogeneity: $\tau^2 = 10.21$; $\chi^2 = 34.33$, df = 2 , $p < 0.001$; $I^2 = 92\%$