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Measurements of many biological processes are characterized by an ini-
tial trend period followed by an equilibrium period. Scientists may wish to
quantify features of the two periods as well as the timing of the change point.
Specifically, we are motivated by problems in the study of electrical cell-
substrate impedance sensing (ECIS) data. ECIS is a popular new technology
which measures cell behavior noninvasively. Previous studies using ECIS
data have found that different cell types can be classified by their equilib-
rium behavior. However, it can be challenging to identify when equilibrium
has been reached and to quantify the relevant features of cells’ equilibrium
behavior. In this paper we assume that measurements during the trend period
are independent deviations from a smooth nonlinear function of time, and
that measurements during the equilibrium period are characterized by a sim-
ple long memory model. We propose a method to simultaneously estimate
the parameters of the trend and equilibrium processes and locate the change
point between the two. We find that this method performs well in simulations
and in practice. When applied to ECIS data, it produces estimates of change
points and measures of cell equilibrium behavior which offer improved clas-
sification of infected and uninfected cells.

1. Introduction. We propose a model for time-series data that is characterized by two
consecutive regimes which correspond to a highly nonstationary and nonlinear trend period
and a stable equilibrium period. Often, researchers are interested in estimating the features of
each regime as well as the timing of the transition or change point between the two.

We are motivated by the problem of detecting contamination of mammalian cell cultures
by mycoplasma using electric cell-substrate impedance sensing (ECIS) data. Contamination
of mammalian cell cultures is pervasive, costly, and can be challenging to detect (Gustavsson
et al. (2019)). Specifically, contamination by mycoplasma is especially prevalent, occurring
in up to 20% of cell cultures, while also expensive and time consuming to identify. As a
result, there is a pressing need for the development of additional methods for detecting con-
tamination by mycoplasma.

ECIS is a relatively new noninvasive method used to study cell attachment, growth, mor-
phology, function, and motility (Keese (2019)). ECIS measurements have been used in nu-
merous cell biology studies, from cancer biology and cytotoxicity (Hong et al. (2011), Opp
et al. (2009)). Because ECIS measurements have been used to differentiate between cancer-
ous and noncancerous cells and to classify cell lines (Gelsinger, Tupper and Matteson (2020),
Lovelady et al. (2007)), it is hypothesized that they may also be used to identify cell cultures
contaminated by mycoplasma.

ECIS measurements are obtained by growing cells in a well on top of small gold-film
electrodes, between which alternating current is applied and electrical impedance is mea-
sured. As cells grow, they cover the electrode, and resistance, a component of impedence,
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Fi1G. 1. The first row shows examples of resistance measurements at 500 hertz for MDCK and BSC cell line

samples cultivated in BSA and gel, respectively. For each cell line, one example of resistance measurements dis-
playing shorter memory and one example of resistance measurements displaying longer memory are selected.
Approximate 95% confidence intervals for memory parameter estimates d are based on 10,000 parametric boot-
strap samples. A light gray vertical line at 50 hours is provided to indicate a conservative estimate of the onset of
the equilibrium regime. The second row shows the corresponding sample autocorrelations for resistance measure-
ments after 50 hours, accompanied by approximate 95% confidence intervals for sample autocorrelations, based
on 10,000 parametric bootstrap samples.

increases. Eventually, the cells fill the well and growth ceases. In some cases, cell death oc-
curs due to overcrowding, causing a small drop in resistance measurements after the peak.
After this point an equilibrium period begins. Resistance fluctuations during equilibrium are
caused by cell micromotion. The equilibrium period is sometimes called confluence in the
ECIS literature, and it continues until the cells exhaust their resources and begin to die. The
first row of Figure 1 shows a subset of resistance measurements for two different cell types,
Madin—Darby canine kidney (MDCK) cells and epithelial cells of African green monkey kid-
ney origin (BSC cells). All show a nonlinear trend period, followed by an equilibrium period,
with a more visually obvious change point present in the MDCK cells.

Equilibrium measurements are especially informative. They are believed to be less sensi-
tive to initial conditions than features of the trend period and are possibly nonstationary and
display long-range dependence, meaning that the correlations between successive measure-
ments decay very slowly over time and can be characterized parsimoniously by a very simple
three-parameter long memory time series model with parameters that are constant over the
entire equilibrium period(Lovelady et al. (2007), Tarantola et al. (2010)). Long-range depen-
dence has also been observed in wind speed and inflation data (Haslett and Raftery (1989),
Doornik and Ooms (2004)) and can be modeled as a long memory time series, also known as
a Gaussian fractionally integrated (FI) or long-memory process which has three parameters,
an overall mean y, variance v2, and a scalar long-memory (fractional differencing) parameter
d that governs how quickly autocorrelations decay. Ideally, if these parameters could be esti-
mated well, they could be used to quantify features of the equilibrium regime in the context
of ECIS data.

The subset of resistance measurements shown in Figure 1 were chosen to illustrate the fact
that equilibrium measurements can show evidence of stationary and nonstationary behavior
and variable strength of long-range dependence. Let yi, y2, ..., yr € R be a sequence of
time-ordered measurements at t = 1,2, ..., T, respectively, and let t59 refer to the index of
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the first measurement collected after 50 hours. We quantify the strength of long-range depen-
dence by comparing maximum likelihood estimates of the differencing parameter d under the
model Z;;(l) (il) (=1} Vi—i — ) L—i>z5o ~ N(O, v2) applied to each selected series. Estimates
of d and corresponding 95% confidence intervals, based on the parametric bootstrap with
10,000 simulated time series, are provided in Figure 1; they range from weaker long-range
dependence with d = 0.44 to much stronger long-range dependence with d = 1.25. Estimates
of d also provide evidence of both stationarity and nonstationarity, as values of d < 0.5 and
d > 0.5 correspond to stationary and nonstationary processes, respectively. The longer mem-
ory MDCK resistance measurements and both BSC resistance measurements show strong
evidence of nonstationarity, with 95% confidence intervals for the differencing parameter
exceeding 0.5. The second row of Figure 1 shows sample autocorrelation functions for the
subset of resistance measurements shown in the first row after 50 hours, at which point equi-
librium has been achieved for all four selected time series. Because the true autocorrelations
are not defined for nonstationary processes, we include a comparison to approximate 95%
intervals for sample autocorrelations obtained under the estimated model for each selected
set of resistance measurements acquired from using the parametric bootstrap with 10,000
simulated time series.

Unfortunately, the long-memory parameter d is notoriously difficult to estimate in finite
samples. Furthermore, the change point from trend to confluence phase, which determines
the amount of data available to estimate d, is typically not precisely known in practice. Stan-
dard practice is to use a fixed time point, for example, 50 hours, as a conservative estimate
of the start of the confluence regime (Tarantola et al. (2010)). This underutilizes the data,
potentially resulting in poorer estimates of the parameters of interest. Furthermore, such a
conservative estimate could incorrectly characterize the preceding trend phase. This suggests
the need for a change-point detection method, which can identify when the trend phase gives
way to confluence, specifically an unsupervised method that can detect the transition from a
nonstationary model to a FI model.

To our knowledge, existing methods for change-point detection are not appropriate. Some
existing methods assume short-memory autoregressive moving average (ARMA) models,
long-memory FI models, or other restrictive parametric models both before and after the
change point (Chen and Liu (1993), Dufrenot, Guegan and Peguin-Feissolle (2008), Killick,
Fearnhead and Eckley (2012)). Others, including the popular E-Divisive algorithm, assume
that measurements between change points are independent or identically distributed or as-
sume that change points strictly correspond to level shifts or isolated outliers (Matteson and
James (2014), Zhang, Gilbert and Matteson (2019)). Alternative methods in the biomedical
fields tend to be too domain specific to apply to the the problem of detecting the change point
between the trend and confluence phase in ECIS data (Olshen et al. (2004), Nika, Babyn and
Zhu (2014)).

In this paper we develop a novel method for estimating a change point between a highly
nonstationary and nonlinear trend period and a stable equilibrium period that is characterized
by an FI process. The method we introduce simultaneously obtains estimates of the nonlinear
trend function and the FI parameters and can accommodate heavier-than-normal tailed data
which is often observed in real biological applications. We apply this method to the detection
of contamination by M. hominis, a species of mycoplasma, in MDCK cells and BSC cells us-
ing ECIS measurements. Related literature on ECIS measurements of cell behavior supports
the presence of a single change point in this data (Lovelady et al. (2007), Tarantola et al.
(2010)). The available data consists of four experiments per cell type. Each experiment cor-
responds to ECIS measurements on cells on a single tray of 96 wells obtained over the course
of at least 72 hours. Of the 96 wells, 16 are left empty, 32 contain uncontaminated cells, and
48 contain cells contaminated by mycoplasma. In order to mimic lab-to-lab variability in cell
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culture preparation, wells were prepared using either of two different types of media. Half
were prepared using bovine serum albumin (BSA), and half were prepared using gel. Within
an experiment, wells containing the same media and cells with the same contamination status
can be thought of as replicates.

In Section 2 we propose a model, which we call Trend-to-Confluence Detector (T2CD),
for data which display highly nonstationary and nonlinear trend period followed by a stable,
equilibrium period with long-range dependence. In Section 3 we discuss estimation of the
parameters of the model introduced in Section 2. We consider both an exact estimation pro-
cedure, which we call T2CD-step, as well as an generalized estimation procedure which has
greater computational scalability for longer time series, which we call T2CD-sigmoid. We
demonstrate the performance of T2CD-step and T2CD-sigmoid in simulations and find that
T2CD-sigmoid provides substantial computational advantages and better estimation of the
changepoint than T2CD-step in Section 4. We apply T2CD-step and T2CD-sigmoid to the
ECIS data shown in Figure 1 and use the estimated change points and FI parameters to better
classify cells by contamination status in Section 5.

2. Trend-to-Confluence Detector (T2CD) model.

2.1. Overview. We assume that the measurements y; belong to two successive regimes,
a trend regime and an equilibrium or confluent regime. Let T denote the change point time
index. We assume that

€] vi=f(@;B)+n fort<r,
(2) yt:g(y]"“’yt—l;,u/adaf)—i_et fOI‘tZ‘L’,

where 7, <t < 13, n; ~ N(0, exp{h(z; #)}) and ¢; are random variables with mean 0 and vari-
ance v that are either normally distributed, according to €, /v ~ N(0, 1), or ¢-distributed, ac-
cording to /& /(§ — 2)€; /v ~ t¢ with degrees of freedom & > 2, depending on whether or not
equilibrium measurements display heavier-than-normal tails. If trend regime measurements
display heavier-than-normal tails, they can be captured by the time-varying trend variances
exp{h(¢; #)}. The minimum and maximum values of the change point 7, and 7}, are assumed
to be prespecified according to application-specific domain knowledge of the change point
location. In the absence of a priori information, 7, = 0 and 7, = T'. The noise terms 1; and ¢;,
which encompass measurement errors and random fluctuations due to continuous cell growth,
motility, and death, are assumed to be independent within and across the two regimes.
During the first regime (¢t < ), the measurement at time ¢ will be centered around a trend
curve f(t; B) which is a function of time ¢ and fixed but unknown parameters 8. The noise
terms 17, are possibly heteroscedastic with variance exp{A(z; 0}) to reflect different degrees
of uncertainty in the measurements when the cell culture undergoes different rates of growth
and death. During the second (equilibrium) regime (¢ > t), the measurement at time ¢ will
be centered about a function g(y1, ..., y1—1; i, d, T) of previous measurements yi, ..., yr—1
and fixed but unknown parameters u and d. The noise terms €; are homoscedastic with fixed
but unknown variance v, since the cell culture is in equilibrium and not undergoing drastic
changes. We describe our modeling choices of the two regimes in the following sections.

2.2. Trend. Resistance measurements in the first regime, or the trend phase, are charac-
terized by a trend of initial steep increase sometimes followed by a slight drop after the peak
as well as heteroscedasticity with higher variance at the stage of rapid cell growth. As men-
tioned above, the trend curve is denoted as f(¢; 8). Depending on the trend, any appropriate
parametric, semiparametric, or nonparametric model can be used to fit the first regime. The
exact formulation of the trend curve can depend on the application domain and the choice
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of the user. For the ECIS application that we focus on in this paper, we assume a smooth
trend curve. This is in line with visual inspection of real ECIS data in Figure 1 and that cell
growth, motility, death, and other functions are continuous processes. We utilize penalized
splines (Ruppert, Wand and Carroll (2003)) for their flexibility to capture the ECIS trend
phase, since it is highly nonstationary. We similarly use penalized splines in modeling the
noise variance.

We denote the matrix of B-spline basis functions B; p(u) of degree D ¢, evaluated on time
indices for the trend as X = (x/,X},...,X}) € RT*(Qs+Dr+D | where Qs is the number of
distinct interior knots. Similarly, we denote V.= (v}, V), ..., V) asthe T x (Qy + D + 1)
matrix of B-spline basis functions for the log variances of the noise terms. The model for the
first regime takes the form

i =xB+n,

where 1, ~ N (0, exp{v;8}). Let the fitted spline for the trend be s(r) = x; 8. We impose the
smoothness penalty A ¢ [ §”(u)*du = ) ¢ B'M B on the spline estimate to prevent overfitting,
where Ay > 0 is a scalar that determines the smoothness of the fitted spline and M  is a ma-
trix with elements that are fixed given the matrix of B-spline basis functions X. An equivalent
smoothness penalty 1,0 M6 is imposed on the fit for the log variances of the noise terms,
where Aj is another smoothness parameter and M, is a matrix with elements that are fixed,
given the matrix of B-spline basis functions V.

2.3. Equilibrium. Starting at time index 7, measurements are centered about a function
g1, ..., yi—1; 1, d, T) of previous measurements yi, ..., y;,—1 and fixed but unknown pa-
rameters (, and d that corresponds to the conditional mean function of a fractionally inte-
grated (FI) process,

t—1
d i
3) O T o P (l.)(—n Gt = Wy ie.
i=1

This captures long-range dependence of the measurements in confluence. The parameter
d plays the role of the long-memory parameter in a FI model (Sowell (1992)). The FI model
assumes that observed values of a time series y; satisfy (1 — B)d v; = €, where B is the differ-
encing operator Bk v; = y;—k and €; are random variables with mean 0 and variance v2 that are
either normally distributed, according to €; /v ~ N(0, 1), as FI models are commonly defined,
or ¢-distributed according to /& /(§ — 2)e, /v ~ t¢ with degrees of freedom & > 2, if equilib-
rium measurements show evidence of heavier-than-normal tails. Values of d > 0 correspond
to processes that are said to have long memory with larger values of d indicating more slowly
decaying autocorrelations over time. Specifically, the autocorrelation function Corr(y;, y;—k)
exhibits hyperbolic decay: as k — oo, Cor(y;, yi—x) — (I'(1 — d)/T'(d)k*~! (Baillie
(1996)). When d < 1, the FI process is mean reverting, and when d < 0.5 the FI process
is stationary.

2.4. An extension to multivariate data. To accommodate settings where p related time
series may be observed contemporaneously, we provide an extension to multivariate time
series data Y € R7 X7 We assume that all p time series share a common long-memory pa-
rameter d, but have their own change point 7}, trend parameters f; and 6 ;, and equilibrium
mean and variance ; and v2, and, when a ¢-distribution is assumed for equilibrium errors,
degrees of freedom &;. Specifically, we assume

€] yej=f@B;)+mn,; fort <t
(5) yr,j=g(y1,j,...,yt_1,j;uj,d, ‘L'j)-i-é[,j fOI‘tZ‘L'j,
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where 7, j ~ N(0, exp{h(z; 0 ;)}) and ¢, ; are random variables with mean 0 and variance 2

that are either normally distributed, according to €, j/v; ~ N(0, 1), or ¢-distributed, accord-

ing to \/§;/(§j — 2)€; j/vj ~ tg; with degrees of freedom &; > 2, depending on whether or
not equilibrium measurements display heavier-than-normal tails.

This is motivated by the ECIS measurements, described in Section 1, where the p re-
lated time series correspond to wells containing cells of the same type, contamination status,
and media in the same experiment which may have varying initial conditions but common
equilibrium behavior. We account for varying initial conditions, such as the number of cells
deposited, by allowing each well to have its own varying change point 7;, trend parameters
B; and 6 j, and equilibrium means u , variances vf, and, when a ¢-distribution is assumed for
€, degrees of freedom &;. A shared long-memory parameter d reflects the cells’ common
equilibrium or confluence behavior.

3. Estimation.

3.1. Exact estimation for univariate data: T2CD-step. First, we introduce a strategy for
estimating the T2CD parameters that we call T2CD-step, because it performs a complete
search over the change point location space [1,, T5]. When equilibrium errors €; are assumed
to be normal, we find the change point 7, < 7 < 15, which maximizes

—1 l /@2
ﬂ (v — x:B)
_;( > 2exp{v;0})
(6)

Ly T—t+1
—FZ(%_g(yl"“’yl—ﬁli,d, t))z_(i
Vv i—r >

) log(v?) + constant,
where 8 and @ are estimated for each candidate change point using an iterative Feasible Gen-
eralized Least Squares (FGLS) procedure (Kuan (2004)) to estimate the spline coefficients
B and 6, with penalty parameters Ay and Aj, for B and @ chosen according to leave-one-out
cross-validation, as implemented in smooth.spline in R (R Foundation for Statistical
Computing (2018)) which selects the smoothness penalties by golden-section search. A more
detailed explanation of the FGLS procedure is provided in Web Appendix A.

When equilibrium errors ¢€; are assumed to be ¢-distributed, we find the change point 7, <
T < 13, which maximizes

_i‘(log(z) A +(yz—x;ﬂ>2>
=\ 2 2 2exp{v;0}

T _ . 2
(7) —S—;IZIOg(I—i—(yt g(yb---»yl—]aﬂvdat)) )

= V(€ —2)
+(T -1+ 1)|:10g<F<¥>/ F(%)) - log(vz(é — 2))i| + constant,

where 8 and @ are estimated for each candidate change point using the same iterative feasible
generalized least squares (FGLS) procedure used when normal errors are assumed.

Setting a candidate range for change point t restricts the search region to reduce compu-
tational costs and ensures the availability of points in both regimes to estimate the respective
model parameters. The candidate range hence should leave sufficient number of points at
both ends of the time series, while still containing the true change point. Determination of
the candidate range is application specific and should be guided by domain knowledge.
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Given a candidate change location, the log-likelihood can be decomposed into one com-
ponent that involves the values of the time series during the trend regime yi, ..., y;—1, and
the parameters of the trend regime, f and @ and another component that involves the val-
ues of the time series during the equilibrium period y;, ..., yr, and the parameters of the
equilibrium period, u, d, v2, and, when a ¢-distribution is assumed for ¢, &. It follows that
the parameters of the trend and equilibrium regime can be estimated simultaneously from
the trend and equilibrium data, respectively. We estimate the long memory parameter d by
maximizing equation (6) over d € R.

3.2. Generalized estimation for univariate data: T2CD-sigmoid. In practice, maximizing
(6) can be prohibitively computationally demanding and time consuming if there are many
candidate change points, as is the case when the observed time series is long. Accordingly,
we introduce a generalization to the estimation procedure that we call T2CD-sigmoid. Let
w(t; o) denote a transition function that takes on values in the interval [0, 1], then we can
define the mean function in the second regime g(yi, ..., yr—1; 4, d, T), as defined in (3), as
a special case of

t—1
®) =X ()0 o - e - iia,
i=1

where w(z; o) has a single parameter « that corresponds to the change point T and w(¢; o) =
1;_;>q takes the form of a step function. This suggests that an alternative approach would be
to replace the discrete step transition function 1,_;>, with a continuous sigmoid transition
function w(t; o) = (1 + exp{—ap — @ 1)~ which is parameterized by a pair of real-valued
parameters & = {ag, o1 }. We denote the corresponding second regime mean function as

8ty v, Yi—15 1, d, ap, o)

t—1
=pn— <?><—1>f(yt_i — W (1 +exp{—ag— et = D}) .
i=1

The parameters «g and o« determine the timing of the transition from trend to equilibrium
phase which corresponds to the inflection point of the transition function (1 4 exp{—ao —
a11})~!. The change point is estimated as when the transition function is at 0.5, that is,
T = —g—‘l’. The timing of the transition can be constrained to the interval [7,, 7] by adding a
penalty C(w(tp; oo, 1) — w(7y; g, 1)) with fixed penalty parameter C > 0 to the objective
function.

Using a smooth transition function can offer computational speed-ups because the log-
likelihood can be differentiated with respect to the parameters that determine the timing of
the transition, g and o, and accordingly does not require an exhaustive search over all
candidate change points.

When equilibrium errors €, are assumed to be normal, T2CD-sigmoid finds the values of
oo and o1, which maximize

T / ! @A\2
B o v0 (O —x:B) )
;(1 w(t’ao’al))< 2 " 2expiujf)

1 & N
©) ~ 37 S w(ts ao. )y — E3s - V-1 1 dy g, 1))
=1

1 T
—5 Z w(t; ag, o) log(vz) + C(w(tp; ap, 001) — w(T4; o, 1)) + constant,
=1
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where C > 0 is a constant that can be set to ensure that the inflection point of the smooth
transition function occurs between 7, and t,. When equilibrium errors €; are assumed to be
t-distributed, T2CD-sigmoid finds the values of g and &y which maximize

. log(2) M)
;1 w(t; ao,al))( £ 2 + 2exp{v;0}

‘§+ ( t—g(J’l,---,J’t—1§M,d,aO70ll))2
2 ;w(t ozo,oq)log< 2E—2) )

T

+ 3w ao,an[tog(r(S32)/7(5) ) - toet?e ~ 2)]

t=1

(10)

+ C(w(tp; oo, 1) — w(T4; 2o, @1)) + constant.

The generalized log-likelihood resembles a weighted log-likelihood, which has been intu-
itively motivated as downweighting the model likelihood when model misspecification is
suspected as in the literature on tempered likelihoods for Bayesian inference (Thomas and
Corander (2019)).

The log-likelihood used by T2CD-sigmoid cannot be decomposed into two components,
one of which involves the values of the time series during the trend period and corresponding
parameters and another component that involves the values of the time series during the
equilibrium period and the corresponding parameters. Fortunately, B-spline bases are flexible
enough to fit local trends. Accordingly, the first step of T2CD-sigmoid is to estimate the trend
regime parameters from the entire time series by maximizing

T / /@2

(11) —Z(ﬁJrL ull )

P 2 2exp{v;0}
Again, we use an iterative feasible generalized least squares (FGLS) procedure (Kuan (2004))
to estimate the spline coefficients B and @, with tuning parameters A ; and Aj, chosen accord-
ing to leave-one-out cross validation, as implemented in smooth.spline in the R envi-
ronment (R Foundation for Statistical Computing (2018)). Via simulations provided in Web
Appendix A, we show that RMSEs of trend component estimated over the entire time series
and over the true trend regime data alone are similar.

Having obtained estimates of 8 and @, we can set C to be on the order of the log-likelihood
component in equation (9) at the estimated values of B and € in order to place approximately
equal weight on model fitting and change-point regularization. While alternative procedures,
such as using cross-validation to choose C can be used, we find that this simpler strategy
performs well empirically by encouraging the inflection point of the transition function to
occur in the interval [z,, tp]. Having now also fixed C, we can maximize (9) with respect to
o, d,u, vZ, and, when a 7-distribution is assumed for €, E&.

3.3. Exact and generalized estimation for multivariate data. 'When there are p replicates
of the sequences, the log-likelihood function is a sum of the log-likelihoods of the individual
sequences. The only constraint is that the long-memory parameter d is shared across dimen-
sions, as described in Section 2.4. Recall that the change locations are allowed to differ across
replicates, the number of possible combinations for change locations is m?, where m is the
number of time indices in [7,, Tp]. An exhaustive search for the best combination is often
computationally prohibitive. For this reason we use the following iterative procedure. First,
we run either T2CD-step or T2CD-sigmoid on each univariate sequence to obtain estimates
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of B;,0;,dj, 1nj, vjz, &; (when a r-distribution is assumed for ¢;) and 7; for T2CD-step or «
for T2CD-sigmoid. Second, fixing the estimates of 8 It 0, and t; for T2CD-step or o for
T2CD-sigmoid, we then optimize over d, i, vjz., and, when a ¢-distribution is assumed for ¢;,
&; initializing d at the mean univariate estimate across all of the time series p! Zle d j and

M, vJZ, and, when a ¢-distribution is assumed for ¢, &; at the univariate estimates. We then
iterate the process starting with rerunning step 1 with all parameters initialized at their current
estimated values. The process terminates after a specified maximum number of iterations or
when the difference between the two most recent objective values is below a tolerance thresh-
old, whichever is earlier. In our experiments we set the maximum number of iterations to be
10 and the tolerance threshold to be 1076,

4. Simulation study. We evaluate the performance of T2CD-step and T2CD-sigmoid
for estimating T and d under several different scenarios, using both univariate and multivari-
ate time series data. Because assuming 7-distributed equilibrium errors slows computation
substantially, we strictly consider normally distributed equilibrium errors in simulations. We
set up the simulations to be similar to the ECIS data described in Section 1. First, we consider
one simple scenario and compare estimates of the change point t, obtained by T2CD-step and
T2CD-sigmoid, in order to examine how generalizing the discrete transition using a smooth
transition function affects change-point estimation. We then consider a broader set of sce-
narios and compare T2CD-step and T2CD-sigmoid not only to each other but also to several
alternative methods.

We simulate univariate time series for comparing T2CD-step and T2CD-sigmoid as fol-
lows. Given a fixed change point 7, we simulate trend curves f = (f1, ..., f;) from a mean
zero Gaussian process with squared exponential kernel Cov[ f;, fi] = 10exp(—0.5(s — 1)?).
We simulate trend regime measurements y; = f; + 1;, where n; are mean zero heteroscedas-
tic measurement errors with standard deviation o; = ol fy}ﬁil_i)ﬁllin{ A [fe —min{fs}{_, 1+

0.1. We simulate equilibrium measurements y;1, ..., yr, according to the FI model (1 —
B)¢ v: = €, where ¢; ~ N(0, 0.25). For comparison with the observed ECIS data, we sim-
ulate univariate time series of length 7" = 420, which we can think of as 70 hours of data.
For each combination of true change points 7 set to values in the interval [90, 270] cho-
sen to correspond to change points at {15, 20, ...,45} hours and long memory parameter
d € {-0.25,-0.05, ..., 1.45}, we simulate 100 univariate time series. When applying T2CD-
step and T2CD-sigmoid to each simulated univariate time series, we set the candidate range
of T to [t, = 10, 7, = 50]. This mimics the structure of the ECIS data, where domain knowl-
edge suggests that the candidate range [z, = 10, 7, = 50] for 7 is appropriate. We also use
degree three B-spline basis functions 3 with knots at every integer value of r when fitting S,
and knots at every integer multiple of 5 when fitting 6. For T2CD-sigmoid we fix C = 1000
throughout and increase C by increments of 1000 when estimated change point does not
fall within the candidate range. We check the choice of these hyperparameters in Figure 10
through residual analysis. Extensive studies on hyperparameter tuning is beyond the scope of
this work.

The performance of estimates of t are shown in Figure 2. Estimated change points for
T2CD-sigmoid are set to the time index when the smooth transition function is equal to 0.5.
Performance of estimates of 7, based on T2CD-step and T2CD-sigmoid, varies little with
the true change point. Both T2CD-step and T2CD-sigmoid estimate the change point T well
when d is much smaller than 0.5. A more detailed investigation of how estimation of t varies
with the true value of d is available in Web Appendix B. In general, T2CD-step tends to
overestimate 7 and produces poorer estimates of T as the true value of d increases. This is
especially evident when d is close to or greater than 0.5; T2CD-step tends to overestimate
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(b) Estimates of 7 when the second regime is nonstationary at d > 0.5. T2CD-step tends to overestimate 7 because nonsta-
tionarity can be mistaken for the first regime. The overestimation issue is less severe for T2CD-sigmoid because the smooth
transition function accommodates uncertainty about the change point.

FI1G. 2. T2CD estimates of T for simulation setup where the first regime is generated via Gaussian process with
squared exponential kernel and the second regime generated via FI(d).

7 while T2CD-sigmoid continues to estimate t well, on average. We hypothesize that, as d
approaches and exceeds 0.5, the change point is more difficult to recover because the long-
range autocorrelations between equilibrium measurements can yield smoothly varying time
trends during the equilibrium period which can be mistaken for a continuation of the trend
period.

In order to understand why T2CD-sigmoid provides better change-point estimates than
T2CD-step, when d is close to or greater than 0.5, we zoom in on a pair of estimated smooth
transition functions from simulations with d = —0.45 and d = 1.35 in Figure 3, with true
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(b) Estimates by T2CD-sigmoid for simulation with d = 1.35.

F1G. 3. T2CD-sigmoid estimates for simulation setup where the first regime is generated via Gaussian process
with squared exponential kernel and the second regime generated via FI(d). The vertical dashed line marks the
time index when the regime transition function is estimated to cross 0.5. The estimated transition is less abrupt
for large d.

T =25. We observe that the estimated transition function is much steeper and more similar
to the discrete transition function assumed by T2CD-step when d = —0.45. By allowing a
smooth transition function, T2CD-sigmoid can accommodate greater uncertainty about the
change point when d is close to or greater than 0.5.

The bias in T2CD-step’s estimation of t is also accompanied by uncertainty of the esti-
mate. To quantify the uncertainty in the parameter estimates, confidence intervals (CI) can
be constructed by assuming that the sampling distribution of the parameter estimates is ap-
proximately normal and approximating the standard deviation of the parameter estimates
using a parametric bootstrap procedure. The parametric bootstrap procedure uses the stan-
dard deviation of parameter estimates, obtained by fitting T2CD-step to data simulated from
the data model, with unknown parameters set to the T2CD-step parameter estimates com-
puted from the original data. For each of the two samples in Figure 3, we draw 500 bootstrap
samples with T2CD-step parameter estimates to construct approximate 95% CI. When the
second regime is stationary with true d = —0.45, T2CD-step estimates d = —0.532 with CI
(—0.636, —0.447) and T = 24.9 with CI (24.4,27.9). When the second regime is nonstation-
ary with true d = 1.35, T2CD-step estimates d = 1.275 with CI (1.167, 1.358) and 7 =31.4
with CI (24.5, 48.1).

Having shown that using T2CD-sigmoid and generalizing the discrete transition function
assumed in T2CD-step with a smooth transition function can actually result in improved
estimation of the true change point, we now evaluate the performance of T2CD-step and
T2CD-sigmoid in estimating d and t across several different scenarios, using both univariate
and multivariate time series data. Throughout, we assess performance in terms of absolute
bias of estimates of d and t. We focus on relative performance, as compared to alternative
methods, because the magnitude of the absolute bias of estimates of d and t can depend on
the frequency and magnitude of observed data.

We examine the relative performance of T2CD-step and T2CD-sigmoid with respect to
estimating the long memory parameter d in Figure 4. For context, we also consider estimation
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F1G. 4. Performance of estimates for change location t and long-memory parameter d obtained using
T2CD-step, T2CD-sigmoid, FixedTau, and TrueTau across 100 simulated series per each combination of T and
d for each simulation configuration. The first regime is generated via Gaussian process with squared exponential
kernel; the second regime is generated via FI(d).

of d using a procedure that fixes the change point T = 50 (FixedTau) and a procedure that
fixes the change point 7 at its true value (TrueTau). FixedTau sets the bar for estimating d
with conservative data usage common in literature (Lovelady et al. (2007), Tarantola et al.
(2010)), whereas TrueTau gives the best d estimate that can be attained if the true change
point were known.

We see that estimation of the change point T and estimation of the long-memory parameter
d are closely related. When the estimated change point occurs too early, we tend to overesti-
mate the long-memory parameter. When the estimated change point occurs too late, we tend
to underestimate the long-memory parameter d. This pattern is most apparent when T2CD-
step is used. Both T2CD-step and T2CD-sigmoid provide better estimates of d than FixedTau,
as long as the true change point occurs before 40 hours. We also observe that T2CD-step pro-
vides only slightly poorer estimation of d than TrueTau. We further investigate the relative
performance of T2CD-step and T2CD-sigmoid in Figure 5.

We see that T2CD-step and T2CD-sigmoid provide comparably accurate estimates of the
differencing parameter d. Recalling that T2CD-sigmoid provides vastly superior estimation
of the change point 7, compared to T2CD-step when equilibrium process is nonstationary
with true long memory parameter d > 0.5, these results lead us to prefer T2CD-sigmoid to
T2CD-step in most settings.

Now, we compare the performance of T2CD-step and T2CD-sigmoid for estimating the
change point T and long-memory parameter d to the performance of two alternative pro-
cedures. Because we are not aware of alternative change-point detection methods in use
in the ECIS literature (Lovelady et al. (2007), Tarantola et al. (2010)), we compare to the
performance of two alternative procedures based on the popular E-Divisive algorithm in-
troduced in Matteson and James (2014) and James and Matteson (2015). The E-Divisive
algorithm is a general-use nonparametric procedure which uses the energy statistics as a dis-
tance metric for binary segmentation to find multiple change points. Because it allows for
multiple change points and, as a nonparametric procedure, does not incorporate the hypoth-
esized long-memory behavior of equilibrium measurements, the E-Divisive algorithm does
not provide an ideal approach to the ECIS change-point detection problem. Nonetheless, it
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FI1G. 5. Relative performance of estimates for change location t and long-memory parameter d obtained using
T2CD-step and T2CD-sigmoid across 100 simulated series per each combination of T and d for each simulation
configuration. The first regime is generated via Gaussian process with squared exponential kernel; the second
regime is generated via FI(d). All plots describing performance of estimates share the same x- and y-axes.

can provide a baseline to evaluate T2CD-step and T2CD-sigmoid against. In our comparison
we use E-Divisive to find a maximum of three change points and use the most significant
change point within the candidate range [t,, 75]. We consider two different procedures based
on E-Divisive: ECP applies the E-Divisive algorithm to the observed time series y, whereas
ECPdiff applies the E-Divisive algorithm to the first difference of the observed time series
data. Once an estimated change point 7 has been obtained, both ECP and ECP.diff procedures
estimate the parameters of the FI model for the equlibrium period using maximum likelihood.
The relative performance of T2CD-step and T2CD-sigmoid compared to ECP and ECP.diff
is shown in Figure 6.
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FIG. 6. Relative performance of estimates for change location t and long-memory parameter d obtained using
T2CD-step, T2CD-sigmoid, ECP, and ECPJiff across 100 simulated series per each combination of T and d
for each simulation configuration. The first regime is generated via Gaussian process with squared exponential
kernel; the second regime is generated via FI(d). All plots describing performance of estimates share the same x -
and y-axes.
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When compared to alternative methods ECP and ECP.diff, both T2CD-step and T2CD-
sigmoid estimate the change point t better for all true change points when the equilibrium
process is stationary with d < 0.5, and for late true change points T > 35 when the equi-
librium process is nonstationary with d > 0.5. Careful examination of the change-point esti-
mates indicates that ECP and ECP.diff tend to underestimate the change point, which is likely,
due to the fact that both assume that observations between change points are independently
and identically distributed. This does not hold for data that we simulated, nor do we expect it
to hold for the ECIS data described in Section 1.

Relative performance of the long-memory parameter d mirrors the relative performance of
the change point 7. T2CD-step and T2CD-sigmoid tend to perform comparably, with better
estimates of the long memory parameter d from T2CD-step for most true values of the dif-
ferencing parameter, especially when the change point 7 occurs later with t > 20 and then
when the equilibrium process is stationary with d < 0.5. ECP and ECP.diff produce much
poorer estimates of the long-memory parameter d than both T2CD-step and T2CD-sigmoid
for all true change point and long-memory parameter values, which is unsurprising, given we
observed poorer estimates of the change point T from ECP and ECP.diff.

However, the performance advantages of T2CD-step and T2CD-sigmoid do come at a
computational price. For the first univariate experiment, where the trend regime is generated
via Gaussian processes, on average, on a 2.7 GHz CPU, ECP and ECP.diff both take 1.20
seconds, T2CD-step takes 196 seconds, and T2CD-sigmoid takes 19.2 seconds. While both of
the T2CD methods are slower than the alternatives, T2CD-sigmoid is roughly 10 times faster
than T2CD-step on average. This makes T2CD-sigmoid a competitive option in providing
balance between the quality of estimation and computational speed.

Next, we consider multivariate time-series data made up of p individual time series
with unique change points 7i,...,7, and common long-memory parameter d. We sim-
ulate 100 multivariate time series of length T = 420 with p = 3 for each value of the
long-memory parameter d € {—0.25, —0.05, ..., 1.45}. For each value of d, a single sim-
ulated multivariate time series is comprised of three individual time series with different
change points 1 = 15, 1p =25, and 73 =45. As in the univariate simulations, trend curves
fj=(fj1,..., fjz;) are simulated from a mean zero Gaussian process with squared ex-

ponential kernel Cov[ f;, f;] = 10exp(—0.5(s — 1)?). We simulate trend regime measure-
ments y;; = fj; + njr, where nj, are mean zero heteroscedastic measurement errors with
max{fjs};’i_i);rllin{fjs};’; 1 [ fj: — min{f js}?: ]+ 0.1. We simulate equi-
librium measurements Yrj+1seees YT according to the FI model (1 — B)d Yjr = €1, Where
€ ~N(0,0.25). Again, we set the candidate range of 7 to [t, = 10, 7, = 50], use degree
three B-spline basis functions with knots at every integer value of ¢, when fitting 8, and knots
at every integer multiple of 5 when fitting 6. For T2CD-sigmoid we fix C = 1000 throughout.
Estimates of the change point 7 and long-memory parameter d are summarized in Figure 7.

The multivariate results shown in Figure 7 mirror the univariate results shown in Figure 4.
Both T2CD-step and T2CD-sigmoid tend to overestimate earlier change points and underesti-
mate the latest change point. Also, both T2CD-step and T2CD-sigmoid slightly overestimate
the differencing parameter d. The performance of both T2CD-step and T2CD-sigmoid is on
par with the conservative and oracle methods FixedTau and TrueTau. T2CD-step and T2CD-
sigmoid provide better estimates of the long-memory parameter d than FixedTau, as long as
the true long-memory parameter is not close to d = 0.5 and only slightly worse estimates of
the long-memory parameter d than TrueTau.

Figure 8 zooms in on the relative performance of T2CD-step and T2CD-sigmoid. T2CD-
sigmoid tends to provide better estimation of the change points 71, 72, and 73, and the two
methods again provide comparable estimates of the differencing parameter d. As in the uni-
variate case, these results lead us to prefer T2CD-sigmoid to T2CD-step in most settings.

standard deviation 0, =
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F1G. 7. Performance of estimates for change location Tt and long-memory parameter d obtained using
T2CD-step, T2CD-sigmoid, FixedTau, and TrueTau across 100 simulated series per each combination of T and
d. Multivariate simulations with p = 3, with change points at 15, 25, and 45. For each series the first regime is
generated via Gaussian process with squared exponential kernel, and the second regime is generated via FI(d).
All plots describing performance of estimates share the same x- and y-axes.

Figure 9 examines the relative performance of T2CD-step and T2CD-sigmoid compared
to ECP and ECP.diff. T2CD-step and T2CD-sigmoid provide better estimates of the change
points 11, 12, and 73, compared to ECP and ECP.diff, as long as the equilibrium process is sta-
tionary or the change point occurs late. Regarding estimation of the long-memory parameter
d, we observe consistently better performance of T2CD-step and T2CD-sigmoid estimates
relative to ECP and ECP.diff estimates.

5. Application to ECIS data. Now, we apply T2CD-step and T2CD-sigmoid to the
MDCK and BSC cell data described in Section 1. ECIS resistance measurements were ob-
tained at several frequencies; however, we focus on resistance measured at the frequency of
500 hertz. We also exclude wells that are mechanically disrupted to create a “wound-healing”
assay and a single well containing MDCK cells that displayed evidence of instrument failure.
In order to assess whether or not cell culture preparation affects our ability to identify cells
contaminated with mycoplasma, we analyze data from BSA and gel wells separately.
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F1G. 8. Relative performance of estimates for change location T and long-memory parameter d obtained using
T2CD-step and T2CD-sigmoid across 100 simulated series per each combination of t and d. Multivariate simu-
lations with p = 3, with change points at 15, 25, and 45. For each series the first regime is generated via Gaussian
process with squared exponential kernel, and the second regime is generated via FI(d). All plots describing per-
formance of estimates share the same x- and y-axes.
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FI1G. 9. Relative performance of estimates for change location t and long-memory parameter d obtained using
T2CD-step, T2CD-sigmoid, ECP, and ECP.diff across 100 simulated series per each combination of T and d.
Multivariate simulations with p = 3, with change points at 15, 25, and 45. For each series the first regime is
generated via Gaussian process with squared exponential kernel, and the second regime is generated via FI(d).
All plots describing performance of estimates share the same x- and y-axes.

For model fitting we use degree three B-spline basis functions with knots at every integer
value of ¢, when fitting 8, and knots at every integer multiple of 5 when fitting 6. As in
Section 4, we set C = 1000 when implementing T2CD-sigmoid. Based on relevant domain
knowledge and visual inspection of the MDCK and BSC data, we set the candidate range of
T to [t, = 10, 1, = 50] for MDCK cells and [t, = 5, 7, = 45] for BSC cells.

To check the choice of hyperparameters, we plot the time series for a MDCK sample in
Figure 10 as well as standardized residuals from model fitting with T2CD-step. The residuals
from the first regime are scaled by their estimated variances. Figure 10(b) shows that our
choice of model parameters reasonably fit to the trend phase. The residuals in Figure 10(c)
demonstrate heavier-than-normal tails.

To systematically assess whether or not equilibrium measurements display heavier-than-
normal tails, we perform Shapiro—Wilk type tests of the null hypothesis that the equilibrium
errors are normal based on Shapiro and Wilk (1965): we fit the equilibrium model assuming
normal errors to the measurements after 50 hours for each well, compute the Shapiro—Wilk
test statistic for the residuals, and compare the computed test statistic to the 0.05 quantile of
a simulated null distribution based on 500 equilibrium time series simulated according to the
fitted normal model. For the MDCK and BSC data, we reject the null hypothesis of normally
distributed equilibrium measurements in 60.4% and 5.6% of wells. Accordingly, we assume
t-distributed equilibrium errors for MDCK data and normally distributed equilibrium errors
for BSC data. To confirm that assuming ¢-distributed equilibrium errors for the MDCK data,
we perform additional Shapiro—Wilk type tests of the null hypothesis that the equilibrium
errors are distributed according to a ¢-distribution: we fit the equilibrium model, assuming -
distributed errors to the measurements after 50 hours for each well, compute the Shapiro-Wilk
test statistic for the residuals, and compare the computed test statistic to the 0.05 quantile of
a simulated null distribution based on 500 equilibrium time series simulated according to the
fitted 7-distribution based model. We reject the null hypothesis of ¢-distributed equilibrium
measurements for 1.9% of wells.

5.1. MDCK cell line. From Figure 1 we see that the resistance measurements for MDCK
cells tend to peak before slightly decreasing and stablizing. The start of confluence or equi-
librium is hypothesized to be at or slightly after the peak and, as a result, is visually distinct.
Figure 11(a) plots estimates of the change points t and long-memory parameters d in combi-
nation with approximate 95% confidence intervals for d obtained by applying T2CD-sigmoid
to each well as a univariate time series and by applying T2CD-sigmoid to all replicate wells
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(a) Time series of resistance measurements recorded at 500 hertz.
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(b) Standardized residuals for the trend phase.
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(c) Standardized residuals for the confluence phase.

FI1G. 10. MDCK cell, infected and cultivated in gel.

within the same experiment as a multivariate time series. Approximate 95% confidence inter-
vals for the differencing parameter are based on assuming an approximately normal sampling
distribution and obtaining an estimate of the standard deviation from 100 parametric boostrap
replicates. An analogous figure for estimates, obtained using T2CD-step, is provided in Ap-
pendix C. The estimated change points are scattered within the candidate range of [10, 50],
signifying varied initial conditions even in the same batch. We observe clear evidence of long-
range dependence at confluence, with all estimates of the long-memory parameter above 0.5.
Experiments 1, 3, and 4 suggest that MDCK cells that are contaminated by mycoplasma
tend to show longer memory than MDCK cells that are uncontaminated. For wells prepared
with BSA, approximate 95% confidence intervals for multivariate estimates of d for con-
taminated cells exceed approximate 95% confidence intervals for multivariate estimates of d
for uncontaminated cells in Experiments 1, 3, and 4. Experiment 2 provides weak evidence
of the opposite, with overlapping approximate 95% intervals for multivariate estimates for
contaminated cells and uncontaminated cells. This may reflect the presence of batch effects.
Web Appendix C contains more a detailed review of estimates of the change point T and the
long-memory parameter d, estimated by T2CD-step and T2CD-sigmoid across experiments,
serum types, and infection status.

5.2. BSC cells. From Figure 1 we see that the resistance measurements for the BSC cell
line tend to increase sharply before plateauing. As compared to the MDCK cell line, the end
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FI1G. 11. T2CD-sigmoid estimates for T and d based on assuming t-distributed errors during equilibrium for
MDCK data and normally distributed errors during equilibrium for BSC data. Points are estimates from the uni-
variate version of the method, and horizontal lines mark estimates from the multivariate version. Approximate
95% intervals for d based on an approximate normal sampling distribution and standard deviation approximated
by 100 parametric bootstrap simulations are provided by dashed vertical lines for univariate estimates and hori-
zontal lines for multivariate estimates.

of the BSC trend phase is less visually distinct. This makes change-point detection and sub-
sequent estimation of the long-memory parameter more difficult. Figure 11(b) plots estimates
of the change points t and long-memory parameters d in combination with approximate 95%
confidence intervals for d obtained by applying T2CD-sigmoid to each well as a univariate
time series and by applying T2CD-sigmoid to all replicate wells within the same experiment
as a multivariate time series. Again, approximate 95% confidence intervals for the differ-
encing parameter are based on assuming an approximately normal sampling distribution and
obtaining an estimate of the standard deviation from 100 parametric boostrap replicates. An
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analogous figure for estimates obtained using T2CD-step is provided in Appendix C. We ob-
serve evidence of long memory, regardless of contamination status, with most univariate and
multivariate estimates of the long memory parameter d exceeding one. We do not observe dis-
tinct separation between the contaminated and uncontaminated cells. We observe some weak
evidence that contaminated BSC cells tend to have slightly shorter memory, corresponding to
lower estimates of d, than uncontaminated cells in almost all experiments. However, approxi-
mate 95% intervals for multivariate estimates of d for contaminated cells and uncontaminated
cells overlap substantially in all settings; see Web Appendix C for a more detailed review of
estimates of the change point 7 and the long-memory parameter d estimated by T2CD-step
and T2CD-sigmoid across experiments, serum types, and infection status.

5.3. Mycoplasma contamination classification. To demonstrate the quality and utility of
our change point t and long-memory parameter d estimates, we incorporate the estimates
as features in a downstream task of classifying cells by their mycoplasma contamination
status. We build on the linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) classifiers built to to classify cell lines using ECIS measurements in Gelsinger, Tupper
and Matteson (2020).

Let c indicate the possible classes of observations, which, in this application, corresponds
to whether or not a well contains cells contaminated by mycoplasma. Letting z be a vector
of features and z. be the average feature vector across all observations in class ¢, LDA, and
QDA class discriminant scores can both be written as special cases of

8:(2) = (2 -2 71 (p)(z —Z0) + log|Ze(p)
Se(p)=(1—p)E +pZ.

LDA is obtained by setting p = 1, and QDA is obtained by setting p = 0.

For each cell line we train four LDA and QDA classifiers, training each classifier on data
from three experiments and computing classification accuracy on data from the remaining ex-
periment. The average classification accuracy across all four classifiers is provided in Table 1,
along with the correspond standard deviations. We compare classifiers trained using the orig-
inal features described in Gelsinger, Tupper and Matteson (2020) to classifiers trained using
the best feature from among the original features described in that paper as well as estimates
of the change point 7 and long memory parameter d, obtained by applying either T2CD-step
or T2CD-sigmoid to data from each well as a univariate time series. A more detailed descrip-
tion of how we constructed the original features for our ECIS measurements is given in the
Web Appendix D.

From Table 1 it is evident that the t and d estimates from T2CD-step and T2CD-sigmoid
are useful features that increase classification accuracy for both cell lines. For MDCK cells,
LDA using the original features has a mean classification accuracy of 0.743. Including T2CD-
step or T2CD-sigmoid features improved the mean classification accuracy by 11.8% and
18.1%, respectively. For BSC cells, LDA using the original features has a mean classification
accuracy of 0.563. Including T2CD-step and T2CD-sigmoid features improved the mean
classification accuracy by 16.5% and 23.3%, respectively.

9’

(12)

6. Conclusion. In this paper we propose a model called T2CD for estimating a change
point between a smooth, nonlinear trend period and a long-memory equilibrium period and
for quantifying features of the trend and equilibrium periods. We provide exact and gener-
alized estimation strategies, T2CD-step and T2CD-sigmoid. Via simulations, we show that
T2CD outperforms a two-step comparison method, based on the popular E-Divisive algo-
rithm for change point detection, when the equilibrium period can be characterized by a



MODELING NONLINEAR TREND FOLLOWED BY LONG-MEMORY EQUILIBRIUM 879

TABLE 1
Classification accuracy for infection status. Average is taken by taking each of the four experiments as the test set
and the other three as training set. Parameters t and d estimated by T2CD, based on assuming t-distributed
errors during equilibrium for MDCK data and normally distributed errors during equilibrium for BSC data,
increased classification accuracy for both MDCK and BSC cell line

LDA QDA
Cell line Features Mean SD Mean SD
MDCK Original 0.743 0.272 0.580 0.237
T2CD-step 0.861 0.096 0.849 0.021
T2CD-sigmoid 0.924 0.079 0.925 0.054
BSC Original 0.563 0.060 0.588 0.072
T2CD-step 0.656 0.085 0.575 0.068
T2CD-sigmoid 0.681 0.072 0.650 0.061

long memory time-series model. Compared to E-Divisive, T2CD tends to produce better es-
timates of the change points and long-memory parameters. Between T2CD-step and T2CD-
sigmoid, we show that T2CD-sigmoid offers computational efficiency gains over T2CD-step
and shows more robust performance for estimating the change point. The results also suggest
several directions for future research. For instance, the simulation results for T2CD-step in-
dicate that it would be valuable to define an adjustment factor for estimation of the change
point. Additionally, it would be valuable to define a data-driven approach to refining the can-
didate range for the change point in situations where domain knowledge is unavailable or
where the candidate range implied by domain knowledge is so large that computation for
T2CD-step becomes infeasible.

Practical usage on the MDCK and BSC cell lines shows that T2CD recovers meaningful
estimates of change points and long-memory parameters during the confluence phase. Impor-
tantly, using T2CD reduces the amount of human supervision needed to manually identify
change points, ensures that all change points are identified using the same logic, and makes
full use of the available data. Furthermore, we show that estimates of the change points and
long-memory parameters improve classification performance downstream.

Funding. The authors gratefully acknowledge financial support from the Cornell Uni-
versity Institute of Biotechnology, the New York State Foundation of Science, Technology
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SUPPLEMENTARY MATERIAL

Web appendix (DOI: 10.1214/22-AOAS1655SUPP; .pdf). Additional details on imple-
mentation of the proposed T2CD method, simulation and experiment results (Zhang, Griffin
and Matteson (2023))
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