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Flat morphisms with regular fibers

do not preserve F -rationality

Eamon Quinlan-Gallego, Austyn Simpson and Anurag K. Singh

Abstract. For each prime integer p > 0, we construct a standard graded F -rational

ring R, over a field K of characteristic p, such that R ˝K K is not F -rational.

By localizing, we obtain a flat local homomorphism .R; m/ ! .S; n/ such that R

is F -rational, S=mS is regular (in fact, a field), but S is not F -rational. In the pro-

cess, we also obtain standard graded F -rational rings R for which R ˝K R is not

F -rational.

1. Introduction

Let P denote a local property of noetherian rings. The following types of ascent have been

studied extensively; recall that for K a field, a noetherian K-algebra A is geometrically

regular over K if A ˝K L is regular for each finite extension field L of K.

.ASCI/ For a flat local homomorphism .R; m/ ! .S; n/ of excellent local rings, if R

is P and the closed fiber S=mS is regular, then S is P .

.ASCII/ For a flat local homomorphism .R; m/ ! .S; n/ of excellent local rings, if R

is P and the closed fiber S=mS is geometrically regular over R=m, then S

is P .

Our main interest here is when P is F -rationality, a property rooted in Hochster and

Huneke’s theory of tight closure [14]: a local ring .R; m/ of positive prime character-

istic is F -rational if R is Cohen–Macaulay and each ideal generated by a system of

parameters for R is tightly closed. Smith [22] proved that F -rational rings have rational

singularities, while Hara [11] and Mehta–Srinivas [19] independently proved that rings

with rational singularities have F -rational type. Rational singularities of characteristic

zero satisfy .ASCI/, as proven by Elkik, see Théorème 5 in [5].

In the situation of .ASCII/, geometric regularity of the closed fiber R=m ! S=mS

implies that of each fiber

k.p/ ! S ˝R k.p/ for p 2 Spec R;
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see [3], p. 297. The ascent .ASCII/ holds for F -rationality; this, and its variations, are due

to Vélez (Theorem 3.1 in [23]), Enescu (Theorem 2.27 in [6]), Hashimoto (Theorem 6.4

in [12]), and Aberbach–Enescu (Theorem 4.3 in [2]). A common thread amongst these

is that each affirmative answer requires assumptions along the lines that the fibers are

geometrically regular.

The situation is similar for F -injectivity in this regard; a local ring .R; m/ of positive

prime characteristic is F -injective if the Frobenius action on local cohomology modules

F W H k
m

.R/ ! H k
m

.R/

is injective for each k > 0. Datta and Murayama, see Theorem A in [4], proved that

if .R; m/ is F -injective, and .R; m/ ! .S; n/ is a flat local map such that S=mS is

Cohen–Macaulay and geometrically F -injective over R=m, then S is F -injective; see also

Theorem 4.3 in [7] and Corollary 5.7 in [12]. We present examples demonstrating that the

geometric assumptions are indeed required, i.e., that F -rationality and F -injectivity do

not satisfy .ASCI/:

Theorem 1.1. For each prime integer p > 0, there exists a flat local map .R;m/ ! .S;n/

of excellent local rings of characteristic p such that the ring R is F -rational, S=mS is

regular, but S is not F -rational or even F -injective.

Enescu had earlier demonstrated that F -injectivity does not satisfy .ASCI/, though

the examples on p. 3075 of [7] are not normal; the question of whether normal F -injective

rings satisfy .ASCI/ has been raised earlier, see, e.g., Question 8.1 in [20], and is settled in

the negative by Theorem 1.1. There is a more recent notion, F -anti-nilpotence, developed

in the papers [8, 17, 18]; in view of the implications

F -rational H) F -anti-nilpotent H) F -injective;

Theorem 1.1 also shows that F -anti-nilpotence does not satisfy .ASCI/.

It is worth mentioning that the rings R in Theorem 1.1 are necessarily not Gorenstein,

since F -rational Gorenstein rings are F -regular by Theorem 4.2 in [15], and F -regularity

satisfies .ASCI/ by Theorem 3.6 in [1]. Another subtlety is that such examples can only

exist over imperfect fields, since .ASCI/ and .ASCII/ coincide when R=m is a perfect

field, and F -rationality satisfies .ASCII/.

Some preliminary results are recorded in Section 2, including an extension of a crite-

rion for F -rationality due to Fedder and Watanabe [9]. In Section 3, we construct two fam-

ilies of examples that each imply Theorem 1.1: the first has the advantage that the proofs

are more transparent, though the transcendence degree of the imperfect field over Fp

increases with the characteristic p; the second family accomplishes the desired with tran-

scendence degree one, independent of the characteristic p > 0, though the calculations

are more involved. The examples in Section 3 are constructed as standard graded rings,

with the relevant properties preserved under passing to localizations. In the process, we

also obtain standard graded F -rational rings R, with the degree zero component being

a field K of positive characteristic, such that the enveloping algebra R ˝K R is not

F -rational.
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2. Preliminaries

Following [13], p. 125, a local ring of positive prime characteristic is F -rational if it is a

homomorphic image of a Cohen–Macaulay ring, and each ideal generated by a system of

parameters is tightly closed. It follows from this definition that an F -rational local ring is

Cohen–Macaulay, see Theorem 4.2 in [15], so the notion coincides with that in Section 1.

Moreover, an F -rational local ring is a normal domain. A localization of an F -rational

local ring at a prime ideal is again F -rational; with this in mind, a noetherian ring of pos-

itive prime characteristic – which is not necessarily local – is F -rational if its localization

at each maximal ideal (equivalently, at each prime ideal) is F -rational.

For the case of interest in this paper, let R be an N-graded Cohen–Macaulay normal

domain, such that the degree zero component is a field K of characteristic p > 0, and R

is a finitely generated K-algebra. Then R is F -rational if and only if the ideal generated

by some (equivalently, any) homogeneous system of parameters for R is tightly closed;

see Theorem 4.7 in [16] and the remark preceding it. An equivalent formulation in terms

of local cohomology, following Proposition 3.3 in [21], is described next.

Fix a homogeneous system of parameters x1; : : : ; xd for R, i.e., a sequence of d WD

dim R homogeneous elements that generate an ideal with radical the homogeneous maxi-

mal ideal m of R. The local cohomology module H d
m

.R/ may then be computed using a

Čech complex on x1; : : : ; xd as

H d
m

.R/ D
Rx1���xd

P

i Rx1��� Oxi ���xd

�

This module admits a natural Z-grading, where the cohomology class

(2.1) � WD

�

r

xk
1 � � � xk

d

�

2 H d
m

.R/;

for r 2 R a homogeneous element, has

deg � WD deg r � k

d
X

iD1

deg xi :

The Frobenius endomorphism F W R ! R induces a map

F W H d
m

.R/ ! H d
F .m/.R/ D H d

m
.R/

that is the Frobenius action on H d
m

.R/; this is simply the map

(2.2) � D

�

r

xk
1 � � � xk

d

�

7�! F.�/ D

�

rp

x
kp
1 � � � x

kp

d

�

:

Since R is Cohen–Macaulay by assumption, R is F -injective precisely when the map (2.2)

is injective.

The element � as in (2.1) belongs to 0�

H d
m.R/

, the tight closure of zero in H d
m

.R/, if

there exists a nonzero element c 2 R such that for all e 2 N, one has

cF e.�/ D 0
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in H d
m

.R/. This translates as

crpe

2 .x
kpe

1 ; : : : ; x
kpe

d
/R

for all e 2 N. In particular, R is F -rational precisely when

0�

H d
m.R/

D 0:

It follows that an F -rational ring must be F -injective.

We next review Veronese subrings. Let S be an N-graded ring for which the degree

zero component is a field K, and S is a finitely generated K-algebra. Fix a positive inte-

ger n. Then the n-th Veronese subring of S is the ring

S .n/ WD
M

k2N

Snk :

Set R WD S .n/. The extension R � S is split, so if S is normal ring, then so is R. Let m

denote the homogeneous maximal ideal of R, and note that mS is primary to the homo-

geneous maximal ideal n of S . For all i 6 d WD dim S D dim R, it follows that H i
m

.R/

is a direct summand of H i
m

.S/ D H i
n
.S/, and hence that the ring R is Cohen–Macaulay

whenever S is. Moreover, by Theorem 3.1.1 in [10], one has

H d
m

.R/ D
M

k2Z

ŒH d
n

.S/�nk :

Suppose S WD KŒx0; : : : ; xd �=.f /, where f is a homogeneous polynomial that is

monic of degree m with respect to the indeterminate x0. Then S is free over the polyno-

mial subring KŒx1; : : : ; xd �, with basis ¹1; x0; : : : ; xm�1
0 º. The local cohomology mod-

ule H d
n

.S/, as computed using a Čech complex on x1; : : : ; xd , thus has a K-basis con-

sisting of elements

(2.3)

�

x
˛0
0

x
˛1C1
1 � � � x

˛d C1

d

�

2 H d
n

.S/

where each ˛i is a nonnegative integer, and ˛0 6 m � 1. When S is graded, by restricting to

elements of appropriate degree, one obtains a basis for a graded component of H d
n

.S/, or

for the local cohomology H d
m

.R/ of the Veronese subring R. Similarly, for the enveloping

algebra S ˝K S , one has a K-basis as follows: use y0; : : : ; yd for the second copy of S ,

and consider the maximal ideal N WD .x0; : : : ; xd ; y0; : : : ; yd / of S ˝K S . Then the local

cohomology module H 2d
N

.S ˝K S/ has a K-basis

(2.4)

�

x
˛0
0 y

ˇ0

0

x
˛1C1
1 � � � x

˛d C1

d
y

ˇ1C1
1 � � � y

ˇd C1

d

�

;

where each ˛i ; ǰ is a nonnegative integer, ˛0 6 m � 1, and ˇ0 6 m � 1.

The following is a variation of Theorem 2.8 in [9] and Theorem 7.12 in [16], and is

used in the proof of Theorem 3.2.
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Theorem 2.1. Let S be an N-graded Cohen–Macaulay normal domain, such that the

degree zero component is a field K of positive characteristic, and S is a finitely gener-

ated K-algebra. Let n denote the homogeneous maximal ideal of S , and set d WD dim S .

Suppose each nonzero element of n has a power that is a test element, and that there

exists an integer n > 0 such that the Frobenius action on

ŒH d
n

.S/�
6�n

is injective. Then the tight closure of zero in H d
n

.S/ is contained in ŒH d
n

.S/�>�n.

Proof. The hypotheses ensure that S has a homogeneous system of parameters x1; : : : ;xd ,

where each xi is a test element; we compute local cohomology using a Čech complex on

such a homogeneous system of parameters. Suppose the assertion of the theorem is false;

then there exists a nonzero homogeneous element � in 0�

H d
n .S/

with deg � 6 �n. After

possibly replacing the xi by powers, we may assume that

� D
h s

x1 � � � xd

i

;

for s a homogeneous element of S . Since each xi is a test element, one has

xi s
q 2 .x

q
1 ; : : : ; x

q

d
/

for each q D pe , and hence

sq 2 .x
q
1 ; : : : ; x

q

d
/ WR .x1; : : : ; xd / D .x

q
1 ; : : : ; x

q

d
/ C .x1 � � � xd /q�1;

where the equality is because x1; : : : ; xd is a regular sequence. Since F e.�/ is nonzero in

view of the injectivity of the Frobenius action on ŒH d
n

.S/�
6�n, one has

sq … .x
q
1 ; : : : ; x

q

d
/:

This implies that deg sq
> deg.x1 � � � xd /q�1 for each q D pe , which translates as

deg s >
q � 1

q
deg.x1 � � � xd /:

Taking the limit e ! 1 gives

deg s > deg.x1 � � � xd /;

so deg � > 0. This contradicts deg � 6 �n < 0.

A ring S is standard graded if it is N-graded, with the degree zero component being

a field K, such that S is generated as a K-algebra by finitely many elements of S1.

While Theorem 2.1 requires the injectivity of the Frobenius action on ŒH d
n

.S/�
6�n,

additional hypotheses enable one to verify the injectivity of Frobenius on one graded com-

ponent; the following corollary will be used in the proof of Theorem 3.2. Following [10],

the a-invariant of a Cohen–Macaulay graded ring S , as in Theorem 2.1, is

a.S/ WD max¹i 2 Z
ˇ

ˇ ŒH d
n

.S/�i ¤ 0º:
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Corollary 2.2. Let S be a standard graded Gorenstein normal domain, of character-

istic p > 0, such that the homogeneous maximal ideal n is an isolated singular point.

Set d WD dim S . Suppose a.S/ < 0, and that there exists an integer n with �n 6 a.S/

such that the Frobenius action

F W ŒH d
n

.S/�
�n ! ŒH d

n
.S/�

�np

is injective. Then the Veronese subring S .n/ is F -rational.

Proof. Because n is an isolated singular point, each nonzero element of n has a power

that is a test element, and Theorem 2.1 is applicable. Since S is Gorenstein, each nonzero

homogeneous element � of ŒH d
n

.S/�
6�n has a nonzero multiple s� in the socle of H d

n
.S/,

which is the graded component ŒH d
n

.S/�a.S/. As S is standard graded, such a multi-

plier s 2 S can be chosen to be a product of elements of degree one, therefore � has a

nonzero multiple s0� in ŒH d
n

.S/�
�n. Since F.s0�/ is nonzero, so is F.�/. It follows that

the Frobenius action on ŒH d
n

.S/�
6�n is injective, so Theorem 2.1 implies that the tight

closure of zero in H d
n

.S/ is contained in ŒH d
n

.S/�>�n.

Set R WD S .n/. The hypotheses �n 6 a.S/ < 0 give

H d
m

.R/ � ŒH d
n

.S/�
6�n

where m is the homogeneous maximal ideal of R. As the tight closure of zero in H d
m

.R/

is contained in the tight closure of zero in H d
n

.S/, the assertion follows.

3. The examples

Theorem 3.1. Fix a prime integer p > 0. Let t1; : : : ; tp be indeterminates over the field Fp

and set K WD Fp.t1; : : : ; tp/. Consider the hypersurface

S WD KŒx0; : : : ; xp�=.x
p
0 � t1x

p
1 � � � � � tp xp

p /

with the standard N-grading, and its p-th Veronese subring R WD S .p/. Then:

(1) The ring R is F -rational.

(2) The rings R ˝K K1=p and R ˝K K are not F -injective, hence not F -rational.

(3) The enveloping algebra R ˝K R is not F -injective, hence not F -rational.

Proof. First consider the hypersurface

A WD FpŒt1; : : : ; tp; x0; : : : ; xp�=.x
p
0 � t1x

p
1 � � � � � tp xp

p /:

The Jacobian criterion shows Axi
is regular for each i , so A is normal by Serre’s criterion.

By inverting an appropriate multiplicative set in A, one obtains the ring S , which therefore

is also normal. Since R is a pure subring of the finite extension ring S , it follows that R is

normal and Cohen–Macaulay.
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Note that S is not F -injective: set n to be the homogeneous maximal ideal of S ;

computing local cohomology H
p
n .S/ using a Čech complex on the system of parameters

x1; : : : ; xp for S , the cohomology class

h x0

x1 � � � xp

i

2 H p
n

.S/

maps to zero under the Frobenius action on H
p
n .S/. We shall see that the Frobenius action

on H
p
m.R/, with m the homogeneous maximal ideal of R, is however injective.

First note that ŒH
p
m.R/��p is the socle of H

p
m.R/: it is the highest degree component,

and any nonzero homogeneous element � 2 H
p
m.R/ has a nonzero multiple s� in the socle

of H
p
n .S/, which is ŒH

p
n .S/��1; but then it has a nonzero multiple s0� in

ŒH p
n

.S/�
�p D ŒH p

m
.R/�

�p;

for s; s0 homogeneous in S , in which case degree considerations imply that s0 2 R.

To verify that the Frobenius action F on H
p
m.R/ is injective, it suffices to prove the

injectivity of F on the socle ŒH
p
m.R/��p which, following (2.3), is the K-vector space

spanned by the cohomology classes

�˛ WD

�

x
˛1C���C p̨

0

x
˛1C1
1 � � � x

p̨C1
p

�

2 ŒH p
m

.R/�
�p;

where each ˛i is a nonnegative integer,
P

˛i 6 p � 1, and ˛ WD .˛1; : : : ; p̨/. Since

x
p
0 D t1x

p
1 C � � � C tp xp

p

in the ring S , one has

(3.1) F.�˛/ D

�

.t1x
p
1 C � � � C tp x

p
p /

P

˛i

x
p˛1Cp
1 � � � x

p p̨Cp
p

�

D
.
P

˛i /Š

˛1Š � � � p̨Š

�

t
˛1

1 � � � t
p̨

p

x
p
1 � � � x

p
p

�

;

where the latter equality uses the pigeonhole principle. The elements t
˛1
1 � � � t

p̨
p of K, as ˛

varies subject to the conditions above, are linearly independent over the subfield Kp . It

follows that for any nonzero K-linear combination � of the elements �˛, one has F.�/ ¤ 0.

This proves that the ring R is F -injective.

One may now use Corollary 2.2 to conclude that R is F -rational; alternatively, one

can also argue as follows: equation (3.1) shows that the image of ŒH
p
m.R/��p under F lies

in the K-span of the cohomology class

� WD
h 1

x
p
1 � � � x

p
p

i

;

so it suffices to verify that � does not belong to the tight closure of zero in H
p
m.R/. This

holds since no nonzero homogeneous form in R annihilates

F e.�/ D

�

1

x
peC1

1 � � � x
peC1

p

�

for each e > 0.
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For (2), let R denote either of R ˝K K1=p or R ˝K K. Note that

t
1=p
2

�

x0

x2
1 x2 � � � xp

�

� t
1=p
1

�

x0

x1 x2
2 x3 � � � xp

�

is a nonzero element of H
p
m.R/, since it is a nontrivial linear combination of basis ele-

ments as in (2.3). However, its image under the Frobenius action is

t2

�

t1x
p
1 C � � � C tp x

p
p

x
2p
1 x

p
2 � � � x

p
p

�

� t1

�

t1x
p
1 C � � � C tp x

p
p

x
p
1 x

2p
2 x

p
3 � � � x

p
p

�

D t2

�

t1

x
p
1 x

p
2 � � � x

p
p

�

� t1

�

t2

x
p
1 x

p
2 � � � x

p
p

�

which, of course, is zero.

Lastly, for (3), write the enveloping algebra S ˝K S of S as

KŒx0; : : : ; xp; y0; : : : ; yp�=.x
p
0 � t1x

p
1 � � � � � tp xp

p ; y
p
0 � t1y

p
1 � � � � � tp yp

p /;

with the N
2-grading under which deg xi D .1; 0/ and deg yi D .0; 1/ for each i . Then

R ˝K R D
M

k;l2N

ŒS ˝K S�.pk;pl/:

Note that R ˝K R admits a standard grading; let M denote its homogeneous maximal

ideal. Then M.S ˝K S/ is primary to N WD .x0; : : : ; xp; y0; : : : ; yp/, the homogeneous

maximal ideal of S ˝K S , and

H
2p

M
.R ˝K R/ D

M

k;l2N

ŒH
2p

N
.S ˝K S/�

.pk;pl/
:

The cohomology class

�

x0y1 � x1y0

x2
1 x2 � � � xp y2

1 y2 � � � yp

�

2 H
2p

M
.R ˝K R/

is nonzero since it is a nontrivial linear combination of basis elements as in (2.4); however,

it is readily seen to be in the kernel of the Frobenius action.

Note that R ˝K K1=p and R ˝K K in the previous theorem are not reduced: for

example,

.x0 � t
1=p
1 x1 � � � � � t1=p

p xp/ x1 � � � xp�1

is a nonzero nilpotent element. This gives an alternative proof of (2), since F -injective

rings are reduced by Remark 2.6 in [20].

In the examples provided by Theorem 3.1, the transcendence degree of K over Fp

increases with p; for the interested reader, the following theorem gets around this, though

the proof is perhaps more technical.
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Theorem 3.2. Fix a prime integer p > 0. Let t be an indeterminate over the field Fp and

set K WD Fp.t/. Consider the hypersurface

S WD KŒw; x; y; z1; : : : ; zp�1�=
�

wpC1 � txpC1 � xyp �
Xp�1

iD1
z

pC1
i

�

with the standard N-grading, and set R WD S .p/. Then:

(1) The ring R is F -rational.

(2) The rings R ˝K K1=p and R ˝K K are not F -injective, hence not F -rational.

(3) The enveloping algebra R ˝K R is not F -injective, hence not F -rational.

Proof. We begin with the hypersurface

A WD FpŒt; w; x; y; z1; : : : ; zp�1�=
�

wpC1 � txpC1 � xyp �
X

i
z

pC1
i

�

:

The Jacobian criterion shows that, up to radical, the defining ideal of the singular locus

of A contains .w;x;y; z1; : : : ; zp�1/. The ring S is obtained from A by inverting an appro-

priate multiplicative set; it follows that S has an isolated singular point at its homogeneous

maximal ideal n. In particular, S is normal by Serre’s criterion.

To prove that R is F -rational, it suffices by Corollary 2.2 to verify that

(3.2) F W ŒH pC1
n

.S/�
�p ! ŒH pC1

n
.S/�

�p2

is injective. Using the Čech complex on x; y; z1 : : : ; zp�1, the vector space ŒH
pC1
n .S/��p

has a K-basis, as in (2.3), consisting of cohomology classes

�˛;ˇ;
 WD

�

w1C˛CˇC
P


i

x˛C1 yˇC1
Q

i z

i C1
i

�

;

where ˛; ˇ; 
1; : : : ; 
p�1 are nonnegative integers with ˛ C ˇ C
P


i 6 p � 1. The

ring S admits a .Z=.p C 1//pC1-grading with

deg zi D ei ; deg w D ep and deg x D epC1 D deg y;

where e1; : : : ; epC1 denote standard basis vectors modulo p C 1. Since gcd.p; p C 1/ D 1,

the action (3.2) maps distinct multigraded components to distinct multigraded compo-

nents, so it suffices to verify the injectivity componentwise. Note that

deg �˛;ˇ;
 D
�

� 
1 � 1; : : : ; �
p�1 � 1; 1 C ˛ C ˇ C
X

i


i ; �˛ � ˇ � 2
�

with respect to the multigrading. Thus, for fixed nonnegative integers k and 
i with

0 6 k C
X

i


i 6 p � 1;

a homogeneous element of ŒH
pC1
n .S/��p with multidegree

�

� 
1 � 1; : : : ; �
p�1 � 1; 1 C k C
X

i


i ; �k � 2
�
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has the form
X

˛CˇDk

c˛ �˛;ˇ;
 ;

where ˛ and ˇ are nonnegative integers with ˛ C ˇ D k, and c˛ 2 K.

Set m WD k C
P


i , and suppose that the above element

(3.3)
X

˛CˇDk

c˛ �˛;ˇ;
 D
X

˛CˇDk

c˛xˇ y˛

�

wmC1

xkC1 ykC1
Q

i z

i C1
i

�

belongs to the kernel of the Frobenius action. Then

�

X

˛CˇDk

cp
˛ xˇpy p̨

�

w.mC1/p

belongs to the ideal

�

x.kC1/p; y.kC1/p; z
.
1C1/p
1 ; : : : ; z

.
p�1C1/p

p�1

�

S:

Since w.mC1/p D wp�m w.pC1/m and 1 6 p � m 6 p, it follows that

(3.4)
�

X

˛CˇDk

cp
˛ xˇpy p̨

��

txpC1 C xyp C

p�1
X

iD1

z
pC1
i

�m

belongs to the monomial ideal

(3.5)
�

x.kC1/p; y.kC1/p; z
.
1C1/p
1 ; : : : ; z

.
p�1C1/ p

p�1

�

in the polynomial ring KŒx; y; z1; : : : ; zp�1�. Bearing in mind that m D k C
P


i , the

terms in the multinomial expansion of (3.4) that include the monomial

Y

i

z
.pC1/ 
i

i

constitute the polynomial

�

m

k; 
1; : : : ; 
p�1

�

�

X

˛CˇDk

cp
˛ xˇp y˛p

�

.txpC1 C xyp/k
Y

i

z
.pC1/
i

i

which, therefore, also belongs to the monomial ideal (3.5). But then

�

X

˛CˇDk

cp
˛ xˇpy p̨

�

.txpC1 C xyp/k 2
�

x.kC1/p; y.kC1/p
�

in the polynomial ring KŒx; y�. This implies that the coefficient of xkpCkykp in the poly-

nomial above must be zero, i.e., that

X

˛CˇDk

�

k

˛

�

cp
˛ t˛ D 0:
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Since c
p
˛ 2 Kp for each ˛, and k < ŒKp.t/ W Kp� D p, this forces each c˛ to be zero.

But then the element (3.3) is zero, so the map (3.2) is indeed injective as claimed. This

completes the proof of (1).

For (2), let m denote the homogeneous maximal ideal of R, and let R denote either

of R ˝K K1=p or R ˝K K. Then

�

w2

x2 y
Q

i zi

�

� t1=p

�

w2

xy2
Q

i zi

�

2 H pC1
m

.R/

is a nontrivial linear combination of basis elements as in (2.3). The ring R is not F -injec-

tive since under the Frobenius action on H
pC1
m .R/, this element maps to

�

wp�1tx

xpyp
Q

i z
p
i

�

� t

�

wp�1x

xpyp
Q

i z
p
i

�

D 0:

For (3), use w0; x0; y0; z0
i for the second copy of S , and proceed as in the proof of

Theorem 3.1. Using M for the homogeneous maximal ideal of R ˝K R, the cohomology

class
�

.ww0/2 .x0y � xy0/

.xx0yy0/2
Q

i zi

Q

i z0
i

�

2 H
2pC2

M
.R ˝K R/

is a nontrivial linear combination of basis elements as in (2.4), and is in the kernel of

the Frobenius action on H
2pC2

M
.R ˝K R/. It follows then that the ring R ˝K R is not

F -injective.

Theorem 1.1 follows readily from the results of this section.

Proof of Theorem 1.1. Let K and R be as in Theorem 3.1 or in Theorem 3.2, and let S WD

R ˝K K1=p or R ˝K K. An example is then obtained after localizing at the homogeneous

maximal ideals; note that the closed fiber is the field K1=p or K in the respective cases.
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