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1. Introduction

The study of rings of finite Frobenius representation type was initiated by Smith 

and Van den Bergh [29], as part of an attack on the conjectured simplicity of rings of 
differential operators on invariant rings; indeed, using this notion, they proved that if 
R is a graded direct summand of a polynomial ring over a perfect field k of positive 

characteristic, e.g., if R is the ring of invariants for a linearly reductive group acting 

linearly on the polynomial ring, then the ring of k-linear differential operators on R is a 

simple ring [29, Theorem 1.3].
A reduced ring R of prime characteristic p > 0, satisfying the Krull-Schmidt theorem, 

has finite Frobenius representation type (FFRT) if there exists a finite set S of R-modules 
such that for each integer e � 0, each indecomposable R-module summand of R1/pe

is 
isomorphic to an element of S; the FFRT property and its variations are reviewed in §2. 
Examples of rings with FFRT include Cohen-Macaulay rings of finite representation 

type, graded direct summands of polynomial rings [29, Proposition 3.1.6], and Stanley-
Reisner rings [20, Example 2.3.6]. More recently, Raedschelders, Špenko, and Van den 

Bergh proved that over an algebraically closed field of characteristic p � max{n − 2, 3}, 
the Plücker homogeneous coordinate ring of the Grassmannian G(2, n) has FFRT [23]. 
In another direction, work of Hara and Ohkawa [8] investigates the FFRT property for 
two-dimensional normal graded rings in terms of Q-divisors.

In addition to the original motivation, the FFRT property has found several applica-
tions. Suppose a ring R has FFRT. Then Hilbert-Kunz multiplicities over R are rational 
numbers by [24]; tight closure and localization commute in R, [31]; local cohomology 

modules of the form Hk
a

(R) have finitely many associated primes, [30,18,5]. For more on 

the FFRT property, we point the reader towards [1,20,22,25,26,28].
Our goal here is to investigate the FFRT property for rings of invariants of finite 

groups. Let V be a finite rank vector space over a perfect field k of characteristic p > 0, 
and let G be a finite subgroup of GL(V ). In the nonmodular case, that is, when the order 
of G is not divisible by p, the invariant ring SG is a direct summand of the polynomial 
ring S := Sym V via the Reynolds operator; it follows by [29, Proposition 3.1.4] that SG

has FFRT. The question becomes more interesting in the modular case, i.e., when p

divides |G|. We prove that if V is a monomial representation of G, then the ring of 
invariants SG has FFRT, Theorem 4.1; this includes the case of a subgroup G of the 

symmetric group Sn, acting on a polynomial ring S := k[x1, . . . , xn] by permuting the 

indeterminates. On the other hand, while it had been expected that rings of invariants 
of reductive groups have FFRT (see for example the abstract of [23]), we prove that this 
is not the case:

Theorem 1.1. Set k to be the algebraic closure of the function field F3(t). Then there is 

an order 9 subgroup G of GL3(k), such that k[x1, x2, x3]G does not have FFRT.
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This is proved as Theorem 3.1; the reader will find that a similar construction may be 

performed over any algebraically closed field k that is not algebraic over Fp. However, 
we do not know if (Sym V )G always has FFRT when V is a finite rank vector space over 
Fp, the algebraic closure of Fp.

Returning to the nonmodular case, let k be an algebraically closed field of charac-
teristic p > 0, and V a finite rank k-vector space. Set S := Sym V and R := SG, for 
G a finite subgroup of GL(V ) of order coprime to p. The rings S1/q and R1/q admit 
Q-gradings extending the standard N-grading on the polynomial ring S. Let M be a 

Q-graded finitely generated indecomposable R-module. By [29, Proposition 3.2.1], the 

module M(d) is a direct summand of R1/q for some d ∈ Q if and only if

M ∼= (S ⊗k L)G

for some irreducible representation L of G. Let V1, . . . , V� be a complete set of represen-
tatives of the isomorphism classes of irreducible representations of G, and set

Mi := (S ⊗k Vi)
G

for i = 1, . . . , �. Then, for each integer e � 0, the decomposition of R1/pe

into indecom-
posable R-modules takes the form

R1/pe ∼=
�⊕

i=1

cie⊕

j=1

Mi(dij),

where dij ∈ Q and cie ∈ N. Suppose additionally that G does not contain any pseudo-
reflections; by [12, Theorem 3.4], the generalized F -signature

s(R, Mi) := lim
e−→∞

cie

pe(dim R)

then agrees with

(rankk Vi)/|G|.

By [13, Theorem 5.1], this description of the asymptotic behavior of R1/pe

remains 
valid in the modular case. It follows that for the invariant ring R := k[x1, x2, x3]G

in Theorem 1.1, while there exist infinitely many nonisomorphic indecomposable R-
modules that are direct summands of some R1/pe

up to a degree shift, almost all are 

“asymptotically negligible.”
In §2, we review some basics on the FFRT property and on equivariant modules; 

these are used in §3 in the proof of Theorem 1.1. In §4, we prove that if V is a monomial 
representation then (Sym V )G has FFRT, and also that (Sym V )G is F -pure in this case; 
the latter extends a result of Hochster and Huneke [16, page 77] that (Sym V )G is F -pure 

when V is a permutation representation. Lastly, in §5, we construct a family of examples 
that are not F -regular or F -pure, but nonetheless have the FFRT property.
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2. Preliminaries

We collect some definitions and results that are used in the sequel.

Krull-Schmidt category. Let k be a perfect field of characteristic p > 0, and R a finitely 

generated positively graded commutative k-algebra, i.e., R is N-graded with [R]0 = k. 
Let RQ grmod denote the category of finitely generated Q-graded R-modules. For mod-
ules M, N in RQ grmod, the module HomR(M, N) again lies in RQ grmod; in particular,

HomRQ grmod(M, N) = [HomR(M, N)]0

is a finite rank k-vector space. Since HomRQ grmod(M, M) = [HomR(M, M)]0 has finite 

rank for each M in RQ grmod, the category RQ grmod is Krull-Schmidt; see [14, §3].

Frobenius twist. Let e be a nonnegative integer. For a k-vector space V , we use eV

to denote the k-vector space that coincides with V as an abelian group, but has the 

left k-action α · v = αpe

v for α ∈ k and v ∈ V , with the right action unchanged. An 

element v ∈ V , when viewed as an element of eV , will be denoted ev, so

eV = {ev | v ∈ V }.

The map v �−→ ev is an isomorphism of abelian groups, but not an isomorphism of 
k-vector spaces in general. Note that α · ev = e(αpe

v). When V is Q-graded, we define a 

Q-grading on eV as follows: for a homogeneous element v ∈ V , set

deg ev := (deg v)/pe.

Let V and W be k-vector spaces. For f ∈ Homk(V, W ), we define ef : eV −→ eW

by ef(ev) = e(fv). It is easy to see that ef ∈ Homk(eV, eW ). This makes e(−) an 

auto-equivalence of the category of k-vector spaces. Note that the map

eV ⊗k
eW −→ e(V ⊗k W )

with ev ⊗ ew �−→ e(v ⊗ w) is well-defined, and an isomorphism. It is easy to check that 
e(−) is a monoidal functor; the composition e(−) ◦ e′

(−) is canonically isomorphic to 
e+e′

(−), and 0(−) is the identity.
For a k-vector space V , the map e(−) : GL(V ) −→ GL(eV ) given by f �−→ ef is an 

isomorphism of abstract groups. If V is a G-module, then the composition

G −→ GL(V ) −→ GL(eV )

gives eV a G-module structure. Thus, g(ev) = e(gv) for g ∈ G and v ∈ V . Suppose 

x1, . . . , xn is a k-basis of V . Then for each integer e � 0, the elements ex1, . . . , exn form 
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a k-basis for eV . If f ∈ GL(V ) has matrix (mij) with respect to the basis x1, . . . , xn, 
then the matrix for ef with respect to ex1, . . . , exn is (m1/pe

ij ). Indeed,

ef(exj) = e(fxj) = e(
∑

i

mijxi) =
∑

i

e(mijxi) =
∑

i

m
1/pe

ij · exi.

When R is a k-algebra, the k-algebra eR has multiplication defined by (er)(es) :=
e(rs). For R a commutative k-algebra, the iterated Frobenius map F e : R −→ eR with

r �−→ e(rpe

)

is a homomorphism of k-algebras. When R is a positively graded finitely generated 

commutative k-algebra, the ring eR admits a Q-grading where for homogeneous r ∈ R,

deg er := (deg r)/pe.

The ring eR is then positively graded in the sense that [eR]j = 0 for j < 0, and [eR]0 =
k. The iterated Frobenius map F e : R −→ eR is degree-preserving and module-finite. 
Moreover,

e(−) : RQ grmod −→ RQ grmod

is an exact functor. If M ∈ RQ grmod, then the graded k-vector space eM is equipped 

with the R-action r · em = e(rpe

m), so eM is the graded eR-module with the action 
er · em = e(rm), and the action of R on eM is induced via F e : R −→ eR.

When R is reduced, it is sometimes more transparent to use the notation r1/pe

in 

place of er, and R1/pe

in place of eR.

Graded FFRT. When the equivalent conditions in the following lemma are satisfied, the 

ring R is said to have finite Frobenius representation type (FFRT) in the graded sense:

Lemma 2.1. Let R be a positively graded finitely generated commutative k-algebra. Then 

the following are equivalent:

(1) There exist M1, . . . , M� ∈ RQ grmod such that for any e � 1, one has

eR ∼= M⊕c1e

1 ⊕ · · · ⊕ M⊕c�e

�

as (non-graded) R-modules.

(2) There exist M1, . . . , M� ∈ RQ grmod such that for any e � 1, the R-module eR is 

isomorphic, as a Q-graded R-module, to a finite direct sum of copies of modules of 

the form Mi(d) with 1 � i � � and d ∈ Q.
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Proof. The direction (2) =⇒ (1) is obvious; we prove the converse. Fix e � 1. For a 

positive integer c, set M 〈c〉 to be M with the grading [M 〈c〉]cj = [M ]j . Then M 〈c〉 is 
a Q-graded module over the graded ring R〈c〉. Taking c sufficiently divisible, we may 

assume that R〈c〉 is peZ-graded and each M
〈c〉
i is Z-graded. By [14, Corollary 3.9], eR〈c〉

is isomorphic to a finite direct sum of modules of the form (M 〈c〉
i )(d) with 1 � i � �

and d ∈ Z. It follows that eR is a finite direct sum of modules of the form Mi(d/c). �

It follows from [14, Corollary 3.9] that R has FFRT in the graded sense if and only if 
the m-adic completion R̂ has FFRT, for m the homogeneous maximal ideal of R.

Pseudoreflections. Let V be a finite rank k-vector space. An element g ∈ GL(V ) is a 

pseudoreflection if rank(1V − g) = 1. Let G be a finite group and V a G-module. The 

action of G on V is small if ρ : G −→ GL(V ) is injective, and ρ(G) does not contain a 

pseudoreflection. If in addition G ⊂ GL(V ), then G is a small subgroup of GL(V ).

The twisted group algebra. Let V be a finite rank k-vector space. Let G be a subgroup 

of GL(V ), and set S := Sym V . If x1, . . . , xn is a basis for V , then Sym V = k[x1, . . . , xn]
is a polynomial ring in n variables. The action of G on V induces an action of G on the 

polynomial ring S by degree preserving k-algebra automorphisms.
We say that M is a Q-graded (G, S)-module if M is a G-module as well as a Q-

graded S-module such that the underlying k-vector space structures agree, each graded 

component [M ]i is a G-submodule of M , and g(sm) = (gs)(gm) for all g ∈ G, s ∈ S, 
and m ∈ M .

We recall the twisted group algebra construction S ∗G from [2]. Set S ∗G to be S ⊗k kG

as a k-vector space, with kG the group algebra, and define

(s ⊗ g)(s′ ⊗ g′) := s(gs′) ⊗ gg′.

For s ∈ S homogeneous, set the degree of s ⊗ g to be that of s; this gives S ∗ G a graded 

k-algebra structure. A Q-graded S ∗ G-module M is a Q-graded (G, S)-module where

sm := (s ⊗ 1)m and gm := (1 ⊗ g)m.

Conversely, if M is a Q-graded (G, S)-module, then (s ⊗g)m := sgm, gives M the struc-
ture of a Q-graded S ∗ G-module. Thus, a Q-graded S ∗ G-module and a Q-graded 

(G, S)-module are one and the same thing. Similarly, a homogeneous (i.e., degree-
preserving) map of Q-graded (G, S)-modules is precisely a homomorphism of graded 

S ∗ G-modules.
With this setup, one has the following equivalence of categories:

Lemma 2.2. Let V be a finite rank k-vector space, and G a small subgroup of GL(V ). 
Set S := Sym V and T := S ∗ G. Let TQ grmod denote the category of finitely generated 

Q-graded left T -modules, and ∗ Ref(G, S) denote the full subcategory of TQ grmod con-
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sisting of those that are reflexive as S-modules; let ∗ Ref SG denote the full subcategory 

of SGQ grmod consisting of modules that are reflexive as SG-modules.

Then one has an equivalence of categories

∗ Ref(G, S) −→ ∗ Ref SG, where M �−→ MG,

with quasi-inverse N �−→ (N ⊗SG S)∗∗, where (−)∗ := HomS(−, S).

For the proof, see [11, Lemma 2.6]; an extension to group schemes may be found in [9]. 
Note that under the functor displayed above, one has eS �−→ (eS)G = e(SG).

3. An invariant ring without FFRT

We construct the counterexample promised in Theorem 1.1; more precisely, we prove:

Theorem 3.1. Let k be the algebraic closure of F3(t), the rational function field in one 

indeterminate over F3. Let G be the subgroup of GL(k3) generated by the matrices

[
1 1 0
0 1 1
0 0 1

]
and

[
1 t 0
0 1 t
0 0 1

]
.

Then G is isomorphic to Z/3Z × Z/3Z. The invariant ring for the natural action of G

on the polynomial ring Sym(k3) does not have FFRT.

Lemma 3.2. Let k := F3(t) as above. Let G = Z/3Z ×Z/3Z = 〈Ã, Ä〉, where Ã3 = id = Ä3, 

and ÃÄ = ÄÃ. Then the group algebra kG equals the commutative ring k[a, b]/(a3, b3), 
where a := Ã − 1 and b := Ä − 1. For α ∈ k, set V (α) to be k3 with the G-action 

determined by the homomorphism G −→ GL3(k) with

Ã �−→

[
1 1 0
0 1 1
0 0 1

]
and Ä �−→

[
1 α 0
0 1 α
0 0 1

]
.

Then:

(1) If α /∈ F3, then the action of G on V (α) is small.

(2) For α �= ³ in k, the G-modules V (α) and V (³) are nonisomorphic.

(3) The Frobenius twist e(V (α)) is isomorphic to V (α1/3e

) as a G-module.

(4) For each α ∈ k, the G-module V (α) is indecomposable.

Proof. Setting

N :=

[
0 1 0
0 0 1
0 0 0

]
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and taking I to be the identity matrix, one has

ÃiÄ j = (I + N)i(I + αN)j =

[
I + iN +

(
i

2

)
N2

] [
I + jαN +

(
j

2

)
α2N2

]

= I + (i + jα)N +

[(
i

2

)
+ ijα +

(
j

2

)
α2

]
N2,

so ÃiÄ j − I has rank 2 unless α ∈ F3 or (i, j) = (0, 0) in F2
3 . This proves (1).

For (2), note that the annihilators of V (α) and V (³) are the ideals (b − αa) and 

(b − ³a) respectively in kG = k[a, b]/(a3, b3). These ideals are distinct when α �= ³.
The representation matrices for Ã and Ä in GL(e(V (α))) are

e(I + N) = I + N and e(I + αN) = I + α1/3e

N

respectively, so eV (α) ∼= V (α1/3e

) as G-modules, proving (3).
For (4), note that kG is an artinian local ring, so each nonzero kG-module has a 

nonzero socle. The socle of V (α) is spanned by the vector (1, 0, 0)tr, and hence has rank 

one. It follows that V (α) is an indecomposable kG-module. �

Proof of Theorem 3.1. Set S to be the polynomial ring Sym(k3), and T := S ∗ G. For 
M a nonzero module in TQ grmod, set

LD(M) := min{i ∈ Q | [M ]i �= 0} and LRep(M) := [M ]LD(M),

i.e., LRep(M) is the nonzero Q-graded component of M of least degree. Note that for d

a rational number, LRep(M(d)) and LRep(M) are isomorphic as G-modules.
As TQ grmod is Krull-Schmidt, there is a unique decomposition M = N1 ⊕ · · · ⊕ Nr

of M into indecomposable objects. Setting d := LD(M), we have

LRep(M) = [M ]d = [N1]d ⊕ · · · ⊕ [Nr]d.

Suppose LRep(M) is an indecomposable G-module. After a possible change of indices, 
we may assume that LRep(M) = [N1]d and that [Nj ]d = 0 for j > 1. Note that, up to 

isomorphism, N1 is the unique indecomposable direct summand of M with LD(N1) =
LD(M). We define LInd(M) := N1. Note that we have LRep(N1) ∼= LRep(M).

For M as above, and d ∈ Q, define

M〈d〉 :=
⊕

i≡d mod Z

[M ]i,

which is also an element of TQ grmod.
Since the degree 1/3e-component of eS is eV (t) = V (t1/3e

), one has

LRep
(

eS〈1/3e〉

)
= V (t1/3e

),
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which is indecomposable by Lemma 3.2 (4). The G-modules V (t), V (t1/3), V (t1/32

), . . .

are nonisomorphic by Lemma 3.2 (2), so the isomorphism classes of the indecomposable 

T -modules

LInd
(
S〈1〉

)
, LInd

(
1S〈1/3〉

)
, LInd

(
2S〈1/32〉

)
, . . .

are distinct; specifically, any two of these indecomposable objects of Q grmod T are non-
isomorphic even after a degree shift. By Lemma 2.2, it follows that the indecomposable 

Q-graded SG-modules

(
LInd

(
S〈1〉

))G

,
(

LInd
(

1S〈1/3〉

))G

,
(

LInd
(

2S〈1/32〉

))G

, . . .

are nonisomorphic. These occur as indecomposable summands of e(SG) for e � 1, so the 

ring SG does not have FFRT. �

Remark 3.3. For the interested reader, we give a presentation of the invariant ring SG

in Theorem 3.1. This was obtained using Magma [4], though one may verify all claims by 

hand, after the fact. Take S := Sym V to be the polynomial ring k[x1, x2, x3], where the 

indeterminates x1, x2, x3 are viewed as the standard basis vectors in V := k3. Then the 

invariant ring SG is generated by the polynomials

f1 := x1,

f3 := tx2
1x2 − (t + 1)x2

1x3 − (t + 1)x1x2
2 + x3

2,

f5 := t(t − 1)2x4
1x3 + t(t2 + 1)x3

1x2
2 − t(t + 1)x3

1x2x3 − (t + 1)2x3
1x2

3

− (t + 1)(t − 1)2x2
1x3

2 + (t + 1)2x2
1x2

2x3 + x2
1x3

3 − (t − 1)2x1x4
2

− (t + 1)x1x3
2x3 − (t + 1)x5

2,

f9 := x3(x2 + x3)(x1 − x2 + x3)(tx2 + x3)(tx1 + x2 + tx2 + x3)

× (x1 − tx1 − x2 + tx2 + x3)(t2x1 − tx2 + x3)(t2x1 − tx1 + x2 − tx2 + x3)

× (x1 + tx1 + t2x1 − x2 − tx2 + x3),

where f9 is the product over the orbit of x3. These four polynomials satisfy the relation

t(t − 1)2(t2 + 1)f3
1 f4

3 − t2(t − 1)2f4
1 f2

3 f5 + (t3 + 1)f5
3 + (t3 + 1)f1f3

3 f5 − f6
1 f9 + f3

5

that defines a normal hypersurface. Using this defining equation, one may see that SG

is not F -pure. The defining equation also confirms that the a-invariant is a(SG) = −3, 
as follows from [10, Theorem 3.6] or [6, Theorem 4.4] since G is a subgroup of SL(V )
without pseudoreflections.
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4. Ring of invariants of monomial actions

Let k be a field of positive characteristic, and let G be a finite group. Consider a finite 

rank k-vector space V that is a G-module. A k-basis Γ of V is a monomial basis for the 

action of G if for each g ∈ G and ´ ∈ Γ, one has g´ ∈ k´′ for some ´′ ∈ Γ. We say that V

is a monomial representation of G if V admits a monomial basis.
A monomial representation V as above is a permutation representation of G if V

admits a k-basis Γ such that each g ∈ G permutes the elements of Γ.

Theorem 4.1. Let k be a perfect field of positive characteristic, G a finite group, and V a 

monomial representation of G over k. Then the ring of invariants (Sym V )G has FFRT.

Proof. Set q := pe, where k has characteristic p and e ∈ N. The action of G on S :=
Sym V extends uniquely to an action of G on eS = S1/q; note that

(S1/q)G = (SG)1/q.

Let {x1, . . . , xn} be a monomial basis for V . The ring S1/q then has an S-basis

Be :=
{

x
λ1/q
1 · · · xλn/q

n | λi ∈ Z, 0 � λi � q − 1
}

. (4.1.1)

For μ ∈ Be, set ´μ to be the k-vector space spanned by the elements gμ for all g ∈ G. 
Then S1/q is a direct sum of modules of the form S´μ, and the action of G on S1/q

restricts to an action on each S´μ. To prove that SG has FFRT, it suffices to show that 
there are only finitely many isomorphism classes of SG-modules of the form

(S´μ)G =
( ∑

g∈G

Sgμ
)G

as e varies. Fix μ ∈ Be, and consider the rank one k-vector space kμ. Set

H := {g ∈ G | gμ ∈ kμ}.

Let g1, . . . , gm be a set of left coset representatives for G/H, where g1 is the group 

identity. We claim that the map

m∑

i=1

gi : (Sμ)H −→ (S´μ)G (4.1.2)

is an isomorphism of Q-graded SG-modules. Assuming the claim, (Sμ)H = (S ⊗k kμ)H

is isomorphic, up to a degree shift, with a module of the form (S ⊗k χ)H , where χ is 
a rank one representation of H. Since there are only finitely many subgroups H of G, 
only finitely many rank one representations χ of H, and only finitely many isomorphism 
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classes of indecomposable Q-graded SG-summands of (S ⊗k χ)H by the Krull-Schmidt 
theorem, the claim indeed completes the proof.

It remains to verify the isomorphism (4.1.2). Given g ∈ G, there exists a permuta-
tion Ã ∈ Sm such that ggi = gσihi for each i, with hi ∈ H. Given sμ ∈ (Sμ)H , one 

has

g
( ∑

i

gi(sμ)
)

=
∑

i

gσihi(sμ) =
∑

i

gσi(sμ) =
∑

i

gi(sμ),

so 
∑

i gi(sμ) indeed lies in (S´μ)G. Since each gi is SG-linear and preserves degrees, the 

same holds for their sum. As to the injectivity, if

∑

i

gi(sμ) =
∑

i

(gis)(giμ) = 0,

then gis = 0 for each i, since g1μ, . . . , gmμ are distinct elements of the basis Be as 
in (4.1.1), and hence linearly independent over S. But then s = 0. For the surjectivity, 
first note that an element of S´μ may be written as 

∑
i sigiμ. Consider

f := s1g1μ + s2g2μ + · · · + smgmμ ∈ (S´μ)G.

Apply gi to the above; since gif = f , and g1μ, . . . , gmμ are linearly independent over S, 
it follows that gis1 = si. But then

f =
∑

i

gi(s1μ),

so it remains to show that s1μ ∈ (Sμ)H . Fix h ∈ H. Since hf = f , one has

∑

i

hgi(s1μ) =
∑

i

gi(s1μ).

As hg1 ∈ H and hgi /∈ H for i � 2, the linear independence of g1μ, . . . , gmμ over S

implies that h(s1μ) = s1μ. �

Remark 4.2. For k a field of positive characteristic, and V a finite rank permutation 

representation of G, Hochster and Huneke showed that the invariant ring (Sym V )G is 
F -pure [16, page 77]; the same holds more generally when V is a monomial representation:

It suffices to prove the F -purity in the case where the field k is perfect. With the 

notation as in the proof of Theorem 4.1, (SG)1/q is a direct sum of SG-modules of the 

form (S´μ)G, where ´μ is the k-vector space spanned by gμ for g ∈ G. When μ := 1 one 

has ´μ = k, so SG indeed splits from (SG)1/q.

Remark 4.3. In Theorem 4.1 suppose, moreover, that V is a permutation representation 

of G. Then one may choose a basis {x1, . . . , xn} for V whose elements are permuted 
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by G. In this case, each g ∈ G permutes the elements of Be for e ∈ N, and each rank 

one representation χ : H −→ k∗ is trivial; it follows that (SG)1/q is a direct sum of 
SG-modules of the form SH , for subgroups H of G.

Example 4.4. Let p be a prime integer. Set S := Fp[x1, . . . , xp], and let G := 〈Ã〉 be the 

cyclic group of order p acting on S by cyclically permuting the variables. The ring SG

has FFRT by Theorem 4.1. Let q = pe be a varying power of p.
If p = 2, then SG is a polynomial ring, and each (SG)1/q is a free SG-module; thus, up 

to isomorphism and degree shift, the only indecomposable summand of (SG)1/q is SG.
Suppose p � 3. For μ ∈ Be, consider the kG-submodule ´μ = kgμ of S1/q. If the 

stabilizer of μ is G, then ´μ = kμ is an indecomposable kG module, and (Sμ)G =
SGμ ∼= SG is an indecomposable SG-summand of (SG)1/q. Since the only subgroups of 
G are {id} and G, the only other possibility for the stabilizer of an element μ of Be is 
{id}, in which case the orbit is a free orbit, i.e., an orbit of size |G|, and ´μ

∼= kG. We 

claim that

(S ⊗k kG)G ∼= S

is an indecomposable SG-module. Since the group G contains no pseudoreflections in the 

case p � 3, Lemma 2.2 is applicable, and it suffices to verify that S ⊗k kG is an inde-
composable graded (G, S)-module. Note that kG = k[Ã]/(1 − Ã)p is an indecomposable 

kG-module. Suppose one has a decomposition as graded (G, S)-modules

S ⊗k kG ∼= P1 ⊕ P2,

apply (−) ⊗S S/m where m is the homogeneous maximal ideal of S. Then

kG ∼= P1/mP1 ⊕ P2/mP2.

The indecomposability of kG implies that Pi/mPi = 0 for some i. But then Nakayama’s 
lemma, in its graded form, gives Pi = 0, which proves the claim. Lastly, it is easy to see 

that both of these types of G-orbits appear in Be if e � 1 so, up to isomorphism and 

degree shift, the indecomposable SG-summands of (SG)1/q are indeed SG and S.

Example 4.5. As a specific example of the above, consider the alternating group A3 with 

its natural permutation action on the polynomial ring S := F3[x1, x2, x3]. For q = 3e, 
consider the S-basis (4.1.1) for S1/q. It is readily seen that the monomials

(x1x2x3)λ/q where λ ∈ Z, 0 � λ � q − 1

are fixed by A3, whereas every other monomial in Be has a free orbit. It follows that, 
ignoring the grading, the decomposition of (SA3)

1/q
into indecomposable SA3-modules 

is
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(SA3)
1/q ∼= (SA3)

q
⊕ S(q3−q)/3.

Example 4.6. Let k be a perfect field of characteristic 2 that contains a primitive third 

root ω of unity. Let G be the group generated by

Ã :=

[
ω 0
0 ω

]

acting on S := k[x1, x2]. The invariant ring SG is the Veronese subring

k[x1, x2](3) = k[x3
1, x2

1x2, x1x2
2, x3

2].

The action of G on S extends to an action on S1/q where Ã(x1/q
i ) = ωqx

1/q
i . For Be as 

in (4.1.1), consider

S1/q =
⊕

μ∈Be

Sμ.

Suppose μ = x
λ1/q
1 x

λ2/q
2 , where λi are integers with 0 � λi � q − 1. Then

(Sμ)G =

⎧
⎪⎪«
⎪⎪¬

SGμ if λ1 + λ2 ≡ 0 mod 3,

SGx1μ + SGx2μ if λ1 + λ2 ≡ 2q mod 3,

SGx2
1μ + SGx1x2μ + SGx2

2μ if λ1 + λ2 ≡ q mod 3.

The SG-modules that occur in the three cases above are, respectively, isomorphic to the 

ideals SG, (x3
1, x2

1x2)SG, and (x3
1, x2

1x2, x1x2
2)SG, that constitute the indecomposable 

summands of S1/q. The number of copies of each of these is asymptotically q2/3.
This extends readily to Veronese subrings of the form k[x1, x2](n), for k a perfect field 

of characteristic p that contains a primitive nth root of unity; see [19, Example 17].

Example 4.7. Let G := 〈Ã〉 be a cyclic group of order 4, acting on S := F2[x1, x2, x3, x4]
by cyclically permuting the variables. In view of [3], the invariant ring SG is a UFD that 
is not Cohen-Macaulay; SG has FFRT by Theorem 4.1.

We describe the indecomposable summands that occur in an SG-module decomposi-
tion of (SG)1/q for q = 2e. The group G contains no pseudoreflections, so Lemma 2.2
applies. Consider the S-basis Be for S1/q, as in (4.1.1). The monomials

(x1x2x3x4)λ/q where 0 � λ � q − 1

are fixed by G; each such monomial μ gives an indecomposable kG module ´μ = kμ, and 

an indecomposable SG-summand (Sμ)G ∼= SG of (SG)1/q. The monomials μ of the form

(x1x3)λ1/q(x2x4)λ2/q with 0 � λi � q − 1, λ1 �= λ2
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have stabilizer H := 〈Ã2〉. In this case, ´μ
∼= k[Ã]/(1 − Ã)2 is an indecomposable kG

module, corresponding to an indecomposable SG-summand (S ⊗k ´μ)G ∼= SH . Any other 
monomial in Be has a free orbit that corresponds to a copy of (S ⊗k kG)G ∼= S.

Ignoring the grading, the decomposition of (SG)
1/q

into indecomposable SG-modules 
is

(SG)
1/q ∼= (SG)

q
⊕ (SH)

(q2−q)/2
⊕ S(q4−q2)/4.

5. Examples that are FFRT but not F -regular

The notion of F -regular rings is central to Hochster and Huneke’s theory of tight 
closure, introduced in [15]; while there are different notions of F -regularity, they coincide 

in the graded case under consideration here by [21, Corollary 4.3], so we downplay the 

distinction. The FFRT property and F -regularity are intimately related, though neither 
implies the other: The hypersurface

Fp[x, y, z]/(x2 + y3 + z5)

has FFRT for each prime integer p, though it is not F -regular if p ∈ {2, 3, 5}; Stanley-
Reisner rings have FFRT by [20, Example 2.3.6], though they are F -regular only if they 

are polynomial rings. For the other direction, the hypersurface

R := Fp[s, t, u, v, w, x, y, z]/(su2x2 + sv2y2 + tuvxy + tw2z2)

is F -regular for each prime integer p, but admits a local cohomology module H3
(x,y,z)(R)

with infinitely many associated prime ideals, [27, Theorem 5.1], and hence does not 
have FFRT by [30, Corollary 3.3] or [18, Theorem 1.2]. Nonetheless, for the invariant 
rings of finite groups that are our focus here, F -regularity implies FFRT; this follows 
readily from well-known results, but is recorded here for the convenience of the reader:

Proposition 5.1. Let k be a perfect field, G a finite group, and V a finite rank k-vector 

space that is a G-module. If the invariant ring (Sym V )G is F -regular, then it has FFRT.

Proof. An F -regular ring is splinter by [17, Theorem 5.25], i.e., it is a direct summand 

of each module-finite extension ring. Hence, if (Sym V )G is F -regular, then it is a direct 
summand of Sym V . But then it has FFRT by [29, Proposition 3.1.4]. �

We next present a family of examples where (Sym V )G is not F -regular or even F -
pure, but has FFRT:

Example 5.2. Let p be a prime integer, V := F4
p , and G the subgroup of GL(V ) generated 

by the matrices
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£
¤¥

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

¦
§̈

,

£
¤¥

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

¦
§̈

,

£
¤¥

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

¦
§̈

.

It is readily seen that the matrices commute, and that the group G has order p3. Con-
sider the action of G on the polynomial ring S := Sym V = Fp[x1, x2, x3, x4], where 

x1, x2, x3, x4 are viewed as the standard basis vectors in V . While x1 and x2 are fixed 

under the action, the orbits of x3 and x4 respectively consist of all linear forms

x3 + αx1 + ´x2 and x4 + ³x1 + αx2,

where α, ³, ́ are in Fp. Using Moore determinants as in [7, Chapter 1.3], the respective 

orbit products may be expressed as

u :=

det

£
¤¥

x1 x2 x3

xp
1 xp

2 xp
3

xp2

1 xp2

2 xp2

3

¦
§̈

det

[
x1 x2

xp
1 xp

2

] and v :=

det

£
¤¥

x1 x2 x4

xp
1 xp

2 xp
4

xp2

1 xp2

2 xp2

4

¦
§̈

det

[
x1 x2

xp
1 xp

2

] .

In addition to these, it is readily seen that the polynomial t := x1xp
4 −xp

1x4 +x2xp
3 −xp

2x3

is invariant. These provide us with a candidate for the invariant ring, namely

C := Fp[x1, x2, t, u, v].

Note that S is integral over C as x3 and x4 are, respectively, roots of the monic polyno-
mials

∏

α,γ ∈Fp

(T + αx1 + ´x2) − u and
∏

β,α ∈Fp

(T + ³x1 + αx2) − v

that have coefficients in C. Using the first of these polynomials, one also sees that

[frac(C)(x3) : frac(C)] � p2.

Bearing in mind that t ∈ C, one then has [frac(C)(x3, x4) : frac(C)(x3)] � p, and hence

[frac(S) : frac(C)] � p3.

Since C ⊆ SG ⊆ S and |G| = p3, it follows that frac(C) = frac(SG). To prove that 
C = SG, it suffices to verify that C is normal. Note that C must be a hypersurface; we 

arrive at its defining equation as follows: One readily verifies the identity
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det

[
x1 x2

xp
1 xp

2

] (
det

[
x1 x4

xp
1 xp

4

]
+ det

[
x2 x3

xp
2 xp

3

])p

− xp
1 det

£
¤¥

x1 x2 x4

xp
1 xp

2 xp
4

xp2

1 xp2

2 xp2

4

¦
§̈

− xp
2 det

£
¤¥

x1 x2 x3

xp
1 xp

2 xp
3

xp2

1 xp2

2 xp2

3

¦
§̈

=

(
det

[
x1 x2

xp
1 xp

2

])p (
det

[
x1 x4

xp
1 xp

4

]
+ det

[
x2 x3

xp
2 xp

3

])
,

which may be rewritten as

tp det

[
x1 x2

xp
1 xp

2

]
− vxp

1 det

[
x1 x2

xp
1 xp

2

]
− uxp

2 det

[
x1 x2

xp
1 xp

2

]
= t

(
det

[
x1 x2

xp
1 xp

2

])p

.

Dividing by the determinant that occurs on the left, one then has

tp − vxp
1 − uxp

2 = t(x1xp
2 − xp

1x2)p−1. (5.2.1)

The Jacobian criterion shows that a hypersurface with (5.2.1) as its defining equation 

must be normal; it follows that C is indeed a normal hypersurface, with defining equa-
tion (5.2.1), and hence that C is precisely the invariant ring SG. Equation (5.2.1) shows 
that SG is not F -pure: t is in the Frobenius closure of (x1, x2)SG, though it does not 
belong to this ideal.

It remains to prove that the ring C = SG has FFRT. For this, note that after a change 

of variables, one has

SG ∼= Fp[x1, x2, t, ũ, ṽ]/(tp − ṽxp
1 − ũxp

2).

But then SG has FFRT by [25, Observation 3.7, Theorem 3.10]: Set A := Fp[x1, x2, ̃u, ṽ], 
and note that

A ⊆ SG ⊆ A1/p,

where A is a polynomial ring.
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