

Frobenius representation type for invariant rings of finite groups [☆]

Mitsuyasu Hashimoto ^a, Anurag K. Singh ^{b,*}

^a Department of Mathematics, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan

^b Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

ARTICLE INFO

Article history:

Received 1 February 2024

Received in revised form 16 July 2024

Accepted 9 October 2024

Available online xxxx

Communicated by Karen Smith

Dedicated to Professor Kei-ichi Watanabe, in celebration of his 80th birthday

MSC:

primary 13A50

secondary 13A35

Keywords:

Ring of invariants

Finite Frobenius representation type

F-pure rings

ABSTRACT

Let V be a finite rank vector space over a perfect field of characteristic $p > 0$, and let G be a finite subgroup of $\mathrm{GL}(V)$. If V is a permutation representation of G , or more generally a monomial representation, we prove that the ring of invariants $(\mathrm{Sym} V)^G$ has finite Frobenius representation type. We also construct an example with V a finite rank vector space over the algebraic closure of the function field $\mathbb{F}_3(t)$, and G an elementary abelian subgroup of $\mathrm{GL}(V)$, such that the invariant ring $(\mathrm{Sym} V)^G$ does not have finite Frobenius representation type.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

[☆] M.H. was partially supported by JSPS KAKENHI Grant number 20K03538 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165; A.K.S. was supported by NSF grants DMS 2101671 and DMS 2349623.

* Corresponding author.

E-mail addresses: mh7@omu.ac.jp (M. Hashimoto), singh@math.utah.edu (A.K. Singh).

1. Introduction

The study of rings of finite Frobenius representation type was initiated by Smith and Van den Bergh [29], as part of an attack on the conjectured simplicity of rings of differential operators on invariant rings; indeed, using this notion, they proved that if R is a graded direct summand of a polynomial ring over a perfect field k of positive characteristic, e.g., if R is the ring of invariants for a linearly reductive group acting linearly on the polynomial ring, then the ring of k -linear differential operators on R is a simple ring [29, Theorem 1.3].

A reduced ring R of prime characteristic $p > 0$, satisfying the Krull-Schmidt theorem, has *finite Frobenius representation type* (FFRT) if there exists a finite set \mathcal{S} of R -modules such that for each integer $e \geq 0$, each indecomposable R -module summand of R^{1/p^e} is isomorphic to an element of \mathcal{S} ; the FFRT property and its variations are reviewed in §2. Examples of rings with FFRT include Cohen-Macaulay rings of finite representation type, graded direct summands of polynomial rings [29, Proposition 3.1.6], and Stanley-Reisner rings [20, Example 2.3.6]. More recently, Raedschelders, Špenko, and Van den Bergh proved that over an algebraically closed field of characteristic $p \geq \max\{n-2, 3\}$, the Plücker homogeneous coordinate ring of the Grassmannian $G(2, n)$ has FFRT [23]. In another direction, work of Hara and Ohkawa [8] investigates the FFRT property for two-dimensional normal graded rings in terms of \mathbb{Q} -divisors.

In addition to the original motivation, the FFRT property has found several applications. Suppose a ring R has FFRT. Then Hilbert-Kunz multiplicities over R are rational numbers by [24]; tight closure and localization commute in R , [31]; local cohomology modules of the form $H_{\mathfrak{a}}^k(R)$ have finitely many associated primes, [30, 18, 5]. For more on the FFRT property, we point the reader towards [1, 20, 22, 25, 26, 28].

Our goal here is to investigate the FFRT property for rings of invariants of finite groups. Let V be a finite rank vector space over a perfect field k of characteristic $p > 0$, and let G be a finite subgroup of $\mathrm{GL}(V)$. In the nonmodular case, that is, when the order of G is not divisible by p , the invariant ring S^G is a direct summand of the polynomial ring $S := \mathrm{Sym} V$ via the Reynolds operator; it follows by [29, Proposition 3.1.4] that S^G has FFRT. The question becomes more interesting in the modular case, i.e., when p divides $|G|$. We prove that if V is a monomial representation of G , then the ring of invariants S^G has FFRT, Theorem 4.1; this includes the case of a subgroup G of the symmetric group \mathfrak{S}_n , acting on a polynomial ring $S := k[x_1, \dots, x_n]$ by permuting the indeterminates. On the other hand, while it had been expected that rings of invariants of reductive groups have FFRT (see for example the abstract of [23]), we prove that this is not the case:

Theorem 1.1. *Set k to be the algebraic closure of the function field $\mathbb{F}_3(t)$. Then there is an order 9 subgroup G of $\mathrm{GL}_3(k)$, such that $k[x_1, x_2, x_3]^G$ does not have FFRT.*

This is proved as Theorem 3.1; the reader will find that a similar construction may be performed over any algebraically closed field k that is not algebraic over \mathbb{F}_p . However, we do not know if $(\text{Sym } V)^G$ always has FFRT when V is a finite rank vector space over $\overline{\mathbb{F}}_p$, the algebraic closure of \mathbb{F}_p .

Returning to the nonmodular case, let k be an algebraically closed field of characteristic $p > 0$, and V a finite rank k -vector space. Set $S := \text{Sym } V$ and $R := S^G$, for G a finite subgroup of $\text{GL}(V)$ of order coprime to p . The rings $S^{1/q}$ and $R^{1/q}$ admit \mathbb{Q} -gradings extending the standard \mathbb{N} -grading on the polynomial ring S . Let M be a \mathbb{Q} -graded finitely generated indecomposable R -module. By [29, Proposition 3.2.1], the module $M(d)$ is a direct summand of $R^{1/q}$ for some $d \in \mathbb{Q}$ if and only if

$$M \cong (S \otimes_k L)^G$$

for some irreducible representation L of G . Let V_1, \dots, V_ℓ be a complete set of representatives of the isomorphism classes of irreducible representations of G , and set

$$M_i := (S \otimes_k V_i)^G$$

for $i = 1, \dots, \ell$. Then, for each integer $e \geq 0$, the decomposition of R^{1/p^e} into indecomposable R -modules takes the form

$$R^{1/p^e} \cong \bigoplus_{i=1}^{\ell} \bigoplus_{j=1}^{c_{ie}} M_i(d_{ij}),$$

where $d_{ij} \in \mathbb{Q}$ and $c_{ie} \in \mathbb{N}$. Suppose additionally that G does not contain any pseudo-reflections; by [12, Theorem 3.4], the *generalized F-signature*

$$s(R, M_i) := \lim_{e \rightarrow \infty} \frac{c_{ie}}{p^{e(\dim R)}}$$

then agrees with

$$(\text{rank}_k V_i)/|G|.$$

By [13, Theorem 5.1], this description of the asymptotic behavior of R^{1/p^e} remains valid in the modular case. It follows that for the invariant ring $R := k[x_1, x_2, x_3]^G$ in Theorem 1.1, while there exist infinitely many nonisomorphic indecomposable R -modules that are direct summands of some R^{1/p^e} up to a degree shift, almost all are “asymptotically negligible.”

In §2, we review some basics on the FFRT property and on equivariant modules; these are used in §3 in the proof of Theorem 1.1. In §4, we prove that if V is a monomial representation then $(\text{Sym } V)^G$ has FFRT, and also that $(\text{Sym } V)^G$ is F -pure in this case; the latter extends a result of Hochster and Huneke [16, page 77] that $(\text{Sym } V)^G$ is F -pure when V is a permutation representation. Lastly, in §5, we construct a family of examples that are not F -regular or F -pure, but nonetheless have the FFRT property.

2. Preliminaries

We collect some definitions and results that are used in the sequel.

Krull-Schmidt category. Let k be a perfect field of characteristic $p > 0$, and R a finitely generated *positively graded* commutative k -algebra, i.e., R is \mathbb{N} -graded with $[R]_0 = k$. Let $R\mathbb{Q}\text{grmod}$ denote the category of finitely generated \mathbb{Q} -graded R -modules. For modules M, N in $R\mathbb{Q}\text{grmod}$, the module $\text{Hom}_R(M, N)$ again lies in $R\mathbb{Q}\text{grmod}$; in particular,

$$\text{Hom}_{R\mathbb{Q}\text{grmod}}(M, N) = [\text{Hom}_R(M, N)]_0$$

is a finite rank k -vector space. Since $\text{Hom}_{R\mathbb{Q}\text{grmod}}(M, M) = [\text{Hom}_R(M, M)]_0$ has finite rank for each M in $R\mathbb{Q}\text{grmod}$, the category $R\mathbb{Q}\text{grmod}$ is Krull-Schmidt; see [14, §3].

Frobenius twist. Let e be a nonnegative integer. For a k -vector space V , we use eV to denote the k -vector space that coincides with V as an abelian group, but has the left k -action $\alpha \cdot v = \alpha^{p^e}v$ for $\alpha \in k$ and $v \in V$, with the right action unchanged. An element $v \in V$, when viewed as an element of eV , will be denoted ${}^e v$, so

$${}^eV = \{{}^e v \mid v \in V\}.$$

The map $v \mapsto {}^e v$ is an isomorphism of abelian groups, but not an isomorphism of k -vector spaces in general. Note that $\alpha \cdot {}^e v = {}^e(\alpha^{p^e} v)$. When V is \mathbb{Q} -graded, we define a \mathbb{Q} -grading on eV as follows: for a homogeneous element $v \in V$, set

$$\deg {}^e v := (\deg v)/p^e.$$

Let V and W be k -vector spaces. For $f \in \text{Hom}_k(V, W)$, we define ${}^e f: {}^eV \longrightarrow {}^eW$ by ${}^e f({}^e v) = {}^e(fv)$. It is easy to see that ${}^e f \in \text{Hom}_k({}^eV, {}^eW)$. This makes ${}^e(-)$ an auto-equivalence of the category of k -vector spaces. Note that the map

$${}^eV \otimes_k {}^eW \longrightarrow {}^e(V \otimes_k W)$$

with ${}^e v \otimes {}^e w \mapsto {}^e(v \otimes w)$ is well-defined, and an isomorphism. It is easy to check that ${}^e(-)$ is a monoidal functor; the composition ${}^e(-) \circ {}^{e'}(-)$ is canonically isomorphic to ${}^{e+e'}(-)$, and ${}^0(-)$ is the identity.

For a k -vector space V , the map ${}^e(-): \text{GL}(V) \longrightarrow \text{GL}({}^eV)$ given by $f \mapsto {}^e f$ is an isomorphism of abstract groups. If V is a G -module, then the composition

$$G \longrightarrow \text{GL}(V) \longrightarrow \text{GL}({}^eV)$$

gives eV a G -module structure. Thus, $g({}^e v) = {}^e(gv)$ for $g \in G$ and $v \in V$. Suppose x_1, \dots, x_n is a k -basis of V . Then for each integer $e \geq 0$, the elements ${}^e x_1, \dots, {}^e x_n$ form

a k -basis for eV . If $f \in \mathrm{GL}(V)$ has matrix (m_{ij}) with respect to the basis x_1, \dots, x_n , then the matrix for ${}^e f$ with respect to ${}^e x_1, \dots, {}^e x_n$ is (m_{ij}^{1/p^e}) . Indeed,

$${}^e f({}^e x_j) = {}^e(fx_j) = {}^e\left(\sum_i m_{ij} x_i\right) = \sum_i {}^e(m_{ij} x_i) = \sum_i m_{ij}^{1/p^e} \cdot {}^e x_i.$$

When R is a k -algebra, the k -algebra ${}^e R$ has multiplication defined by $({}^e r)({}^e s) := {}^e(rs)$. For R a commutative k -algebra, the iterated Frobenius map $F^e: R \longrightarrow {}^e R$ with

$$r \longmapsto {}^e(r^{p^e})$$

is a homomorphism of k -algebras. When R is a positively graded finitely generated commutative k -algebra, the ring ${}^e R$ admits a \mathbb{Q} -grading where for homogeneous $r \in R$,

$$\deg {}^e r := (\deg r)/p^e.$$

The ring ${}^e R$ is then positively graded in the sense that $[{}^e R]_j = 0$ for $j < 0$, and $[{}^e R]_0 = k$. The iterated Frobenius map $F^e: R \longrightarrow {}^e R$ is degree-preserving and module-finite. Moreover,

$${}^e(-): R\mathbb{Q} \text{ grmod} \longrightarrow R\mathbb{Q} \text{ grmod}$$

is an exact functor. If $M \in R\mathbb{Q} \text{ grmod}$, then the graded k -vector space ${}^e M$ is equipped with the R -action $r \cdot {}^e m = {}^e(r^{p^e} m)$, so ${}^e M$ is the graded ${}^e R$ -module with the action ${}^e r \cdot {}^e m = {}^e(rm)$, and the action of R on ${}^e M$ is induced via $F^e: R \longrightarrow {}^e R$.

When R is reduced, it is sometimes more transparent to use the notation r^{1/p^e} in place of ${}^e r$, and R^{1/p^e} in place of ${}^e R$.

Graded FFRT. When the equivalent conditions in the following lemma are satisfied, the ring R is said to have finite Frobenius representation type (FFRT) in the graded sense:

Lemma 2.1. *Let R be a positively graded finitely generated commutative k -algebra. Then the following are equivalent:*

(1) *There exist $M_1, \dots, M_\ell \in R\mathbb{Q} \text{ grmod}$ such that for any $e \geq 1$, one has*

$${}^e R \cong M_1^{\oplus c_{1e}} \oplus \cdots \oplus M_\ell^{\oplus c_{\ell e}}$$

as (non-graded) R -modules.

(2) *There exist $M_1, \dots, M_\ell \in R\mathbb{Q} \text{ grmod}$ such that for any $e \geq 1$, the R -module ${}^e R$ is isomorphic, as a \mathbb{Q} -graded R -module, to a finite direct sum of copies of modules of the form $M_i(d)$ with $1 \leq i \leq \ell$ and $d \in \mathbb{Q}$.*

Proof. The direction (2) \implies (1) is obvious; we prove the converse. Fix $e \geq 1$. For a positive integer c , set $M^{(c)}$ to be M with the grading $[M^{(c)}]_{cj} = [M]_j$. Then $M^{(c)}$ is a \mathbb{Q} -graded module over the graded ring $R^{(c)}$. Taking c sufficiently divisible, we may assume that $R^{(c)}$ is $p^e\mathbb{Z}$ -graded and each $M_i^{(c)}$ is \mathbb{Z} -graded. By [14, Corollary 3.9], ${}^eR^{(c)}$ is isomorphic to a finite direct sum of modules of the form $(M_i^{(c)})(d)$ with $1 \leq i \leq \ell$ and $d \in \mathbb{Z}$. It follows that eR is a finite direct sum of modules of the form $M_i(d/c)$. \square

It follows from [14, Corollary 3.9] that R has FFRT in the graded sense if and only if the \mathfrak{m} -adic completion \widehat{R} has FFRT, for \mathfrak{m} the homogeneous maximal ideal of R .

Pseudoreflections. Let V be a finite rank k -vector space. An element $g \in \mathrm{GL}(V)$ is a *pseudoreflection* if $\mathrm{rank}(1_V - g) = 1$. Let G be a finite group and V a G -module. The action of G on V is *small* if $\rho: G \rightarrow \mathrm{GL}(V)$ is injective, and $\rho(G)$ does not contain a pseudoreflection. If in addition $G \subset \mathrm{GL}(V)$, then G is a *small subgroup of $\mathrm{GL}(V)$* .

The twisted group algebra. Let V be a finite rank k -vector space. Let G be a subgroup of $\mathrm{GL}(V)$, and set $S := \mathrm{Sym} V$. If x_1, \dots, x_n is a basis for V , then $\mathrm{Sym} V = k[x_1, \dots, x_n]$ is a polynomial ring in n variables. The action of G on V induces an action of G on the polynomial ring S by degree preserving k -algebra automorphisms.

We say that M is a \mathbb{Q} -graded (G, S) -module if M is a G -module as well as a \mathbb{Q} -graded S -module such that the underlying k -vector space structures agree, each graded component $[M]_i$ is a G -submodule of M , and $g(sm) = (gs)(gm)$ for all $g \in G$, $s \in S$, and $m \in M$.

We recall the *twisted group algebra* construction $S * G$ from [2]. Set $S * G$ to be $S \otimes_k kG$ as a k -vector space, with kG the group algebra, and define

$$(s \otimes g)(s' \otimes g') := s(gs') \otimes gg'.$$

For $s \in S$ homogeneous, set the degree of $s \otimes g$ to be that of s ; this gives $S * G$ a graded k -algebra structure. A \mathbb{Q} -graded $S * G$ -module M is a \mathbb{Q} -graded (G, S) -module where

$$sm := (s \otimes 1)m \quad \text{and} \quad gm := (1 \otimes g)m.$$

Conversely, if M is a \mathbb{Q} -graded (G, S) -module, then $(s \otimes g)m := sgm$, gives M the structure of a \mathbb{Q} -graded $S * G$ -module. Thus, a \mathbb{Q} -graded $S * G$ -module and a \mathbb{Q} -graded (G, S) -module are one and the same thing. Similarly, a homogeneous (i.e., degree-preserving) map of \mathbb{Q} -graded (G, S) -modules is precisely a homomorphism of graded $S * G$ -modules.

With this setup, one has the following equivalence of categories:

Lemma 2.2. *Let V be a finite rank k -vector space, and G a small subgroup of $\mathrm{GL}(V)$. Set $S := \mathrm{Sym} V$ and $T := S * G$. Let $T\mathbb{Q}\mathrm{grmod}$ denote the category of finitely generated \mathbb{Q} -graded left T -modules, and ${}^*\mathrm{Ref}(G, S)$ denote the full subcategory of $T\mathbb{Q}\mathrm{grmod}$ con-*

sisting of those that are reflexive as S -modules; let ${}^*\text{Ref } S^G$ denote the full subcategory of $S^G\mathbb{Q}\text{grmod}$ consisting of modules that are reflexive as S^G -modules.

Then one has an equivalence of categories

$${}^*\text{Ref}(G, S) \longrightarrow {}^*\text{Ref } S^G, \quad \text{where} \quad M \longmapsto M^G,$$

with quasi-inverse $N \longmapsto (N \otimes_{S^G} S)^{**}$, where $(-)^* := \text{Hom}_S(-, S)$.

For the proof, see [11, Lemma 2.6]; an extension to group schemes may be found in [9]. Note that under the functor displayed above, one has ${}^eS \longmapsto ({}^eS)^G = {}^e(S^G)$.

3. An invariant ring without FFRT

We construct the counterexample promised in Theorem 1.1; more precisely, we prove:

Theorem 3.1. *Let k be the algebraic closure of $\mathbb{F}_3(t)$, the rational function field in one indeterminate over \mathbb{F}_3 . Let G be the subgroup of $\text{GL}(k^3)$ generated by the matrices*

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & t & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}.$$

Then G is isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. The invariant ring for the natural action of G on the polynomial ring $\text{Sym}(k^3)$ does not have FFRT.

Lemma 3.2. *Let $k := \overline{\mathbb{F}_3(t)}$ as above. Let $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} = \langle \sigma, \tau \rangle$, where $\sigma^3 = \text{id} = \tau^3$, and $\sigma\tau = \tau\sigma$. Then the group algebra kG equals the commutative ring $k[a, b]/(a^3, b^3)$, where $a := \sigma - 1$ and $b := \tau - 1$. For $\alpha \in k$, set $V(\alpha)$ to be k^3 with the G -action determined by the homomorphism $G \longrightarrow \text{GL}_3(k)$ with*

$$\sigma \longmapsto \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \tau \longmapsto \begin{bmatrix} 1 & \alpha & 0 \\ 0 & 1 & \alpha \\ 0 & 0 & 1 \end{bmatrix}.$$

Then:

- (1) *If $\alpha \notin \mathbb{F}_3$, then the action of G on $V(\alpha)$ is small.*
- (2) *For $\alpha \neq \beta$ in k , the G -modules $V(\alpha)$ and $V(\beta)$ are nonisomorphic.*
- (3) *The Frobenius twist ${}^e(V(\alpha))$ is isomorphic to $V(\alpha^{1/3^e})$ as a G -module.*
- (4) *For each $\alpha \in k$, the G -module $V(\alpha)$ is indecomposable.*

Proof. Setting

$$N := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

and taking I to be the identity matrix, one has

$$\begin{aligned}\sigma^i \tau^j &= (I + N)^i (I + \alpha N)^j = \left[I + iN + \binom{i}{2} N^2 \right] \left[I + j\alpha N + \binom{j}{2} \alpha^2 N^2 \right] \\ &= I + (i + j\alpha)N + \left[\binom{i}{2} + ij\alpha + \binom{j}{2} \alpha^2 \right] N^2,\end{aligned}$$

so $\sigma^i \tau^j - I$ has rank 2 unless $\alpha \in \mathbb{F}_3$ or $(i, j) = (0, 0)$ in \mathbb{F}_3^2 . This proves (1).

For (2), note that the annihilators of $V(\alpha)$ and $V(\beta)$ are the ideals $(b - \alpha a)$ and $(b - \beta a)$ respectively in $kG = k[a, b]/(a^3, b^3)$. These ideals are distinct when $\alpha \neq \beta$.

The representation matrices for σ and τ in $\mathrm{GL}({}^e(V(\alpha)))$ are

$${}^e(I + N) = I + N \quad \text{and} \quad {}^e(I + \alpha N) = I + \alpha^{1/3^e} N$$

respectively, so ${}^eV(\alpha) \cong V(\alpha^{1/3^e})$ as G -modules, proving (3).

For (4), note that kG is an artinian local ring, so each nonzero kG -module has a nonzero socle. The socle of $V(\alpha)$ is spanned by the vector $(1, 0, 0)^{\mathrm{tr}}$, and hence has rank one. It follows that $V(\alpha)$ is an indecomposable kG -module. \square

Proof of Theorem 3.1. Set S to be the polynomial ring $\mathrm{Sym}(k^3)$, and $T := S * G$. For M a nonzero module in $T\mathbb{Q} \mathrm{grmod}$, set

$$\mathrm{LD}(M) := \min\{i \in \mathbb{Q} \mid [M]_i \neq 0\} \quad \text{and} \quad \mathrm{LRep}(M) := [M]_{\mathrm{LD}(M)},$$

i.e., $\mathrm{LRep}(M)$ is the nonzero \mathbb{Q} -graded component of M of least degree. Note that for d a rational number, $\mathrm{LRep}(M(d))$ and $\mathrm{LRep}(M)$ are isomorphic as G -modules.

As $T\mathbb{Q} \mathrm{grmod}$ is Krull-Schmidt, there is a unique decomposition $M = N_1 \oplus \cdots \oplus N_r$ of M into indecomposable objects. Setting $d := \mathrm{LD}(M)$, we have

$$\mathrm{LRep}(M) = [M]_d = [N_1]_d \oplus \cdots \oplus [N_r]_d.$$

Suppose $\mathrm{LRep}(M)$ is an indecomposable G -module. After a possible change of indices, we may assume that $\mathrm{LRep}(M) = [N_1]_d$ and that $[N_j]_d = 0$ for $j > 1$. Note that, up to isomorphism, N_1 is the unique indecomposable direct summand of M with $\mathrm{LD}(N_1) = \mathrm{LD}(M)$. We define $\mathrm{LInd}(M) := N_1$. Note that we have $\mathrm{LRep}(N_1) \cong \mathrm{LRep}(M)$.

For M as above, and $d \in \mathbb{Q}$, define

$$M_{(d)} := \bigoplus_{i \equiv d \pmod{\mathbb{Z}}} [M]_i,$$

which is also an element of $T\mathbb{Q} \mathrm{grmod}$.

Since the degree $1/3^e$ -component of eS is ${}^eV(t) = V(t^{1/3^e})$, one has

$$\mathrm{LRep}({}^eS_{(1/3^e)}) = V(t^{1/3^e}),$$

which is indecomposable by Lemma 3.2 (4). The G -modules $V(t)$, $V(t^{1/3})$, $V(t^{1/3^2})$, \dots are nonisomorphic by Lemma 3.2 (2), so the isomorphism classes of the indecomposable T -modules

$$\mathrm{LInd}(S_{\langle 1 \rangle}), \quad \mathrm{LInd}(^1 S_{\langle 1/3 \rangle}), \quad \mathrm{LInd}(^2 S_{\langle 1/3^2 \rangle}), \quad \dots$$

are distinct; specifically, any two of these indecomposable objects of $\mathbb{Q} \mathrm{grmod} T$ are non-isomorphic even after a degree shift. By Lemma 2.2, it follows that the indecomposable \mathbb{Q} -graded S^G -modules

$$\left(\mathrm{LInd}(S_{\langle 1 \rangle}) \right)^G, \quad \left(\mathrm{LInd}(^1 S_{\langle 1/3 \rangle}) \right)^G, \quad \left(\mathrm{LInd}(^2 S_{\langle 1/3^2 \rangle}) \right)^G, \quad \dots$$

are nonisomorphic. These occur as indecomposable summands of ${}^e(S^G)$ for $e \geq 1$, so the ring S^G does not have FFRT. \square

Remark 3.3. For the interested reader, we give a presentation of the invariant ring S^G in Theorem 3.1. This was obtained using **Magma** [4], though one may verify all claims by hand, after the fact. Take $S := \mathrm{Sym} V$ to be the polynomial ring $k[x_1, x_2, x_3]$, where the indeterminates x_1, x_2, x_3 are viewed as the standard basis vectors in $V := k^3$. Then the invariant ring S^G is generated by the polynomials

$$\begin{aligned} f_1 &:= x_1, \\ f_3 &:= tx_1^2x_2 - (t+1)x_1^2x_3 - (t+1)x_1x_2^2 + x_2^3, \\ f_5 &:= t(t-1)^2x_1^4x_3 + t(t^2+1)x_1^3x_2^2 - t(t+1)x_1^3x_2x_3 - (t+1)^2x_1^3x_3^2 \\ &\quad - (t+1)(t-1)^2x_1^2x_2^3 + (t+1)^2x_1^2x_2^2x_3 + x_1^2x_3^3 - (t-1)^2x_1x_2^4 \\ &\quad - (t+1)x_1x_2^3x_3 - (t+1)x_2^5, \\ f_9 &:= x_3(x_2 + x_3)(x_1 - x_2 + x_3)(tx_2 + x_3)(tx_1 + x_2 + tx_2 + x_3) \\ &\quad \times (x_1 - tx_1 - x_2 + tx_2 + x_3)(t^2x_1 - tx_2 + x_3)(t^2x_1 - tx_1 + x_2 - tx_2 + x_3) \\ &\quad \times (x_1 + tx_1 + t^2x_1 - x_2 - tx_2 + x_3), \end{aligned}$$

where f_9 is the product over the orbit of x_3 . These four polynomials satisfy the relation

$$t(t-1)^2(t^2+1)f_1^3f_3^4 - t^2(t-1)^2f_1^4f_3^2f_5 + (t^3+1)f_3^5 + (t^3+1)f_1f_3^3f_5 - f_1^6f_9 + f_5^3$$

that defines a normal hypersurface. Using this defining equation, one may see that S^G is not F -pure. The defining equation also confirms that the a -invariant is $a(S^G) = -3$, as follows from [10, Theorem 3.6] or [6, Theorem 4.4] since G is a subgroup of $\mathrm{SL}(V)$ without pseudoreflections.

4. Ring of invariants of monomial actions

Let k be a field of positive characteristic, and let G be a finite group. Consider a finite rank k -vector space V that is a G -module. A k -basis Γ of V is a *monomial basis* for the action of G if for each $g \in G$ and $\gamma \in \Gamma$, one has $g\gamma \in k\gamma'$ for some $\gamma' \in \Gamma$. We say that V is a *monomial representation* of G if V admits a monomial basis.

A monomial representation V as above is a *permutation representation* of G if V admits a k -basis Γ such that each $g \in G$ permutes the elements of Γ .

Theorem 4.1. *Let k be a perfect field of positive characteristic, G a finite group, and V a monomial representation of G over k . Then the ring of invariants $(\text{Sym } V)^G$ has FFRT.*

Proof. Set $q := p^e$, where k has characteristic p and $e \in \mathbb{N}$. The action of G on $S := \text{Sym } V$ extends uniquely to an action of G on ${}^e S = S^{1/q}$; note that

$$(S^{1/q})^G = (S^G)^{1/q}.$$

Let $\{x_1, \dots, x_n\}$ be a monomial basis for V . The ring $S^{1/q}$ then has an S -basis

$$B_e := \left\{ x_1^{\lambda_1/q} \cdots x_n^{\lambda_n/q} \mid \lambda_i \in \mathbb{Z}, \quad 0 \leq \lambda_i \leq q-1 \right\}. \quad (4.1.1)$$

For $\mu \in B_e$, set γ_μ to be the k -vector space spanned by the elements $g\mu$ for all $g \in G$. Then $S^{1/q}$ is a direct sum of modules of the form $S\gamma_\mu$, and the action of G on $S^{1/q}$ restricts to an action on each $S\gamma_\mu$. To prove that S^G has FFRT, it suffices to show that there are only finitely many isomorphism classes of S^G -modules of the form

$$(S\gamma_\mu)^G = \left(\sum_{g \in G} Sg\mu \right)^G$$

as e varies. Fix $\mu \in B_e$, and consider the rank one k -vector space $k\mu$. Set

$$H := \{g \in G \mid g\mu \in k\mu\}.$$

Let g_1, \dots, g_m be a set of left coset representatives for G/H , where g_1 is the group identity. We claim that the map

$$\sum_{i=1}^m g_i: (S\mu)^H \longrightarrow (S\gamma_\mu)^G \quad (4.1.2)$$

is an isomorphism of \mathbb{Q} -graded S^G -modules. Assuming the claim, $(S\mu)^H = (S \otimes_k k\mu)^H$ is isomorphic, up to a degree shift, with a module of the form $(S \otimes_k \chi)^H$, where χ is a rank one representation of H . Since there are only finitely many subgroups H of G , only finitely many rank one representations χ of H , and only finitely many isomorphism

classes of indecomposable \mathbb{Q} -graded S^G -summands of $(S \otimes_k \chi)^H$ by the Krull-Schmidt theorem, the claim indeed completes the proof.

It remains to verify the isomorphism (4.1.2). Given $g \in G$, there exists a permutation $\sigma \in \mathfrak{S}_m$ such that $gg_i = g_{\sigma i}h_i$ for each i , with $h_i \in H$. Given $s\mu \in (S\mu)^H$, one has

$$g\left(\sum_i g_i(s\mu)\right) = \sum_i g_{\sigma i}h_i(s\mu) = \sum_i g_{\sigma i}(s\mu) = \sum_i g_i(s\mu),$$

so $\sum_i g_i(s\mu)$ indeed lies in $(S\gamma_\mu)^G$. Since each g_i is S^G -linear and preserves degrees, the same holds for their sum. As to the injectivity, if

$$\sum_i g_i(s\mu) = \sum_i (g_i s)(g_i \mu) = 0,$$

then $g_i s = 0$ for each i , since $g_1\mu, \dots, g_m\mu$ are distinct elements of the basis B_e as in (4.1.1), and hence linearly independent over S . But then $s = 0$. For the surjectivity, first note that an element of $S\gamma_\mu$ may be written as $\sum_i s_i g_i \mu$. Consider

$$f := s_1 g_1 \mu + s_2 g_2 \mu + \dots + s_m g_m \mu \in (S\gamma_\mu)^G.$$

Apply g_i to the above; since $g_i f = f$, and $g_1\mu, \dots, g_m\mu$ are linearly independent over S , it follows that $g_i s_1 = s_i$. But then

$$f = \sum_i g_i(s_1 \mu),$$

so it remains to show that $s_1 \mu \in (S\mu)^H$. Fix $h \in H$. Since $hf = f$, one has

$$\sum_i hg_i(s_1 \mu) = \sum_i g_i(s_1 \mu).$$

As $hg_1 \in H$ and $hg_i \notin H$ for $i \geq 2$, the linear independence of $g_1\mu, \dots, g_m\mu$ over S implies that $h(s_1 \mu) = s_1 \mu$. \square

Remark 4.2. For k a field of positive characteristic, and V a finite rank permutation representation of G , Hochster and Huneke showed that the invariant ring $(\text{Sym } V)^G$ is F -pure [16, page 77]; the same holds more generally when V is a monomial representation:

It suffices to prove the F -purity in the case where the field k is perfect. With the notation as in the proof of Theorem 4.1, $(S^G)^{1/q}$ is a direct sum of S^G -modules of the form $(S\gamma_\mu)^G$, where γ_μ is the k -vector space spanned by $g\mu$ for $g \in G$. When $\mu := 1$ one has $\gamma_\mu = k$, so S^G indeed splits from $(S^G)^{1/q}$.

Remark 4.3. In Theorem 4.1 suppose, moreover, that V is a permutation representation of G . Then one may choose a basis $\{x_1, \dots, x_n\}$ for V whose elements are permuted

by G . In this case, each $g \in G$ permutes the elements of B_e for $e \in \mathbb{N}$, and each rank one representation $\chi: H \longrightarrow k^*$ is trivial; it follows that $(S^G)^{1/q}$ is a direct sum of S^G -modules of the form S^H , for subgroups H of G .

Example 4.4. Let p be a prime integer. Set $S := \mathbb{F}_p[x_1, \dots, x_p]$, and let $G := \langle \sigma \rangle$ be the cyclic group of order p acting on S by cyclically permuting the variables. The ring S^G has FFRT by Theorem 4.1. Let $q = p^e$ be a varying power of p .

If $p = 2$, then S^G is a polynomial ring, and each $(S^G)^{1/q}$ is a free S^G -module; thus, up to isomorphism and degree shift, the only indecomposable summand of $(S^G)^{1/q}$ is S^G .

Suppose $p \geq 3$. For $\mu \in B_e$, consider the kG -submodule $\gamma_\mu = kg\mu$ of $S^{1/q}$. If the stabilizer of μ is G , then $\gamma_\mu = k\mu$ is an indecomposable kG module, and $(S\mu)^G = S^G\mu \cong S^G$ is an indecomposable S^G -summand of $(S^G)^{1/q}$. Since the only subgroups of G are $\{\text{id}\}$ and G , the only other possibility for the stabilizer of an element μ of B_e is $\{\text{id}\}$, in which case the orbit is a *free orbit*, i.e., an orbit of size $|G|$, and $\gamma_\mu \cong kG$. We claim that

$$(S \otimes_k kG)^G \cong S$$

is an indecomposable S^G -module. Since the group G contains no pseudoreflections in the case $p \geq 3$, Lemma 2.2 is applicable, and it suffices to verify that $S \otimes_k kG$ is an indecomposable graded (G, S) -module. Note that $kG = k[\sigma]/(1 - \sigma)^p$ is an indecomposable kG -module. Suppose one has a decomposition as graded (G, S) -modules

$$S \otimes_k kG \cong P_1 \oplus P_2,$$

apply $(-) \otimes_S S/\mathfrak{m}$ where \mathfrak{m} is the homogeneous maximal ideal of S . Then

$$kG \cong P_1/\mathfrak{m}P_1 \oplus P_2/\mathfrak{m}P_2.$$

The indecomposability of kG implies that $P_i/\mathfrak{m}P_i = 0$ for some i . But then Nakayama's lemma, in its graded form, gives $P_i = 0$, which proves the claim. Lastly, it is easy to see that both of these types of G -orbits appear in B_e if $e \geq 1$ so, up to isomorphism and degree shift, the indecomposable S^G -summands of $(S^G)^{1/q}$ are indeed S^G and S .

Example 4.5. As a specific example of the above, consider the alternating group A_3 with its natural permutation action on the polynomial ring $S := \mathbb{F}_3[x_1, x_2, x_3]$. For $q = 3^e$, consider the S -basis (4.1.1) for $S^{1/q}$. It is readily seen that the monomials

$$(x_1 x_2 x_3)^{\lambda/q} \quad \text{where } \lambda \in \mathbb{Z}, \quad 0 \leq \lambda \leq q-1$$

are fixed by A_3 , whereas every other monomial in B_e has a free orbit. It follows that, ignoring the grading, the decomposition of $(S^{A_3})^{1/q}$ into indecomposable S^{A_3} -modules is

$$(S^{A_3})^{1/q} \cong (S^{A_3})^q \oplus S^{(q^3-q)/3}.$$

Example 4.6. Let k be a perfect field of characteristic 2 that contains a primitive third root ω of unity. Let G be the group generated by

$$\sigma := \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$$

acting on $S := k[x_1, x_2]$. The invariant ring S^G is the Veronese subring

$$k[x_1, x_2]^{(3)} = k[x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3].$$

The action of G on S extends to an action on $S^{1/q}$ where $\sigma(x_i^{1/q}) = \omega^q x_i^{1/q}$. For B_e as in (4.1.1), consider

$$S^{1/q} = \bigoplus_{\mu \in B_e} S\mu.$$

Suppose $\mu = x_1^{\lambda_1/q} x_2^{\lambda_2/q}$, where λ_i are integers with $0 \leq \lambda_i \leq q-1$. Then

$$(S\mu)^G = \begin{cases} S^G \mu & \text{if } \lambda_1 + \lambda_2 \equiv 0 \pmod{3}, \\ S^G x_1 \mu + S^G x_2 \mu & \text{if } \lambda_1 + \lambda_2 \equiv 2q \pmod{3}, \\ S^G x_1^2 \mu + S^G x_1 x_2 \mu + S^G x_2^2 \mu & \text{if } \lambda_1 + \lambda_2 \equiv q \pmod{3}. \end{cases}$$

The S^G -modules that occur in the three cases above are, respectively, isomorphic to the ideals S^G , $(x_1^3, x_1^2 x_2)S^G$, and $(x_1^3, x_1^2 x_2, x_1 x_2^2)S^G$, that constitute the indecomposable summands of $S^{1/q}$. The number of copies of each of these is *asymptotically* $q^2/3$.

This extends readily to Veronese subrings of the form $k[x_1, x_2]^{(n)}$, for k a perfect field of characteristic p that contains a primitive n th root of unity; see [19, Example 17].

Example 4.7. Let $G := \langle \sigma \rangle$ be a cyclic group of order 4, acting on $S := \mathbb{F}_2[x_1, x_2, x_3, x_4]$ by cyclically permuting the variables. In view of [3], the invariant ring S^G is a UFD that is not Cohen-Macaulay; S^G has FFRT by Theorem 4.1.

We describe the indecomposable summands that occur in an S^G -module decomposition of $(S^G)^{1/q}$ for $q = 2^e$. The group G contains no pseudoreflections, so Lemma 2.2 applies. Consider the S -basis B_e for $S^{1/q}$, as in (4.1.1). The monomials

$$(x_1 x_2 x_3 x_4)^{\lambda/q} \quad \text{where } 0 \leq \lambda \leq q-1$$

are fixed by G ; each such monomial μ gives an indecomposable kG module $\gamma_\mu = k\mu$, and an indecomposable S^G -summand $(S\mu)^G \cong S^G$ of $(S^G)^{1/q}$. The monomials μ of the form

$$(x_1 x_3)^{\lambda_1/q} (x_2 x_4)^{\lambda_2/q} \quad \text{with } 0 \leq \lambda_i \leq q-1, \quad \lambda_1 \neq \lambda_2$$

have stabilizer $H := \langle \sigma^2 \rangle$. In this case, $\gamma_\mu \cong k[\sigma]/(1 - \sigma)^2$ is an indecomposable kG module, corresponding to an indecomposable S^G -summand $(S \otimes_k \gamma_\mu)^G \cong S^H$. Any other monomial in B_e has a free orbit that corresponds to a copy of $(S \otimes_k kG)^G \cong S$.

Ignoring the grading, the decomposition of $(S^G)^{1/q}$ into indecomposable S^G -modules is

$$(S^G)^{1/q} \cong (S^G)^q \oplus (S^H)^{(q^2-q)/2} \oplus S^{(q^4-q^2)/4}.$$

5. Examples that are FFRT but not F -regular

The notion of F -regular rings is central to Hochster and Huneke's theory of tight closure, introduced in [15]; while there are different notions of F -regularity, they coincide in the graded case under consideration here by [21, Corollary 4.3], so we downplay the distinction. The FFRT property and F -regularity are intimately related, though neither implies the other: The hypersurface

$$\mathbb{F}_p[x, y, z]/(x^2 + y^3 + z^5)$$

has FFRT for each prime integer p , though it is not F -regular if $p \in \{2, 3, 5\}$; Stanley-Reisner rings have FFRT by [20, Example 2.3.6], though they are F -regular only if they are polynomial rings. For the other direction, the hypersurface

$$R := \mathbb{F}_p[s, t, u, v, w, x, y, z]/(su^2x^2 + sv^2y^2 + tuvxy + tw^2z^2)$$

is F -regular for each prime integer p , but admits a local cohomology module $H_{(x,y,z)}^3(R)$ with infinitely many associated prime ideals, [27, Theorem 5.1], and hence does not have FFRT by [30, Corollary 3.3] or [18, Theorem 1.2]. Nonetheless, for the invariant rings of finite groups that are our focus here, F -regularity implies FFRT; this follows readily from well-known results, but is recorded here for the convenience of the reader:

Proposition 5.1. *Let k be a perfect field, G a finite group, and V a finite rank k -vector space that is a G -module. If the invariant ring $(\text{Sym } V)^G$ is F -regular, then it has FFRT.*

Proof. An F -regular ring is *splinter* by [17, Theorem 5.25], i.e., it is a direct summand of each module-finite extension ring. Hence, if $(\text{Sym } V)^G$ is F -regular, then it is a direct summand of $\text{Sym } V$. But then it has FFRT by [29, Proposition 3.1.4]. \square

We next present a family of examples where $(\text{Sym } V)^G$ is not F -regular or even F -pure, but has FFRT:

Example 5.2. Let p be a prime integer, $V := \mathbb{F}_p^4$, and G the subgroup of $\text{GL}(V)$ generated by the matrices

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

It is readily seen that the matrices commute, and that the group G has order p^3 . Consider the action of G on the polynomial ring $S := \text{Sym } V = \mathbb{F}_p[x_1, x_2, x_3, x_4]$, where x_1, x_2, x_3, x_4 are viewed as the standard basis vectors in V . While x_1 and x_2 are fixed under the action, the orbits of x_3 and x_4 respectively consist of all linear forms

$$x_3 + \alpha x_1 + \gamma x_2 \quad \text{and} \quad x_4 + \beta x_1 + \alpha x_2,$$

where α, β, γ are in \mathbb{F}_p . Using Moore determinants as in [7, Chapter 1.3], the respective orbit products may be expressed as

$$u := \frac{\det \begin{bmatrix} x_1 & x_2 & x_3 \\ x_1^p & x_2^p & x_3^p \\ x_1^{p^2} & x_2^{p^2} & x_3^{p^2} \end{bmatrix}}{\det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix}} \quad \text{and} \quad v := \frac{\det \begin{bmatrix} x_1 & x_2 & x_4 \\ x_1^p & x_2^p & x_4^p \\ x_1^{p^2} & x_2^{p^2} & x_4^{p^2} \end{bmatrix}}{\det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix}}.$$

In addition to these, it is readily seen that the polynomial $t := x_1 x_4^p - x_1^p x_4 + x_2 x_3^p - x_2^p x_3$ is invariant. These provide us with a *candidate* for the invariant ring, namely

$$C := \mathbb{F}_p[x_1, x_2, t, u, v].$$

Note that S is integral over C as x_3 and x_4 are, respectively, roots of the monic polynomials

$$\prod_{\alpha, \gamma \in \mathbb{F}_p} (T + \alpha x_1 + \gamma x_2) - u \quad \text{and} \quad \prod_{\beta, \alpha \in \mathbb{F}_p} (T + \beta x_1 + \alpha x_2) - v$$

that have coefficients in C . Using the first of these polynomials, one also sees that

$$[\text{frac}(C)(x_3) : \text{frac}(C)] \leq p^2.$$

Bearing in mind that $t \in C$, one then has $[\text{frac}(C)(x_3, x_4) : \text{frac}(C)(x_3)] \leq p$, and hence

$$[\text{frac}(S) : \text{frac}(C)] \leq p^3.$$

Since $C \subseteq S^G \subseteq S$ and $|G| = p^3$, it follows that $\text{frac}(C) = \text{frac}(S^G)$. To prove that $C = S^G$, it suffices to verify that C is normal. Note that C must be a hypersurface; we arrive at its defining equation as follows: One readily verifies the identity

$$\begin{aligned}
& \det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix} \left(\det \begin{bmatrix} x_1 & x_4 \\ x_1^p & x_4^p \end{bmatrix} + \det \begin{bmatrix} x_2 & x_3 \\ x_2^p & x_3^p \end{bmatrix} \right)^p \\
& \quad - x_1^p \det \begin{bmatrix} x_1 & x_2 & x_4 \\ x_1^p & x_2^p & x_4^p \\ x_1^{p^2} & x_2^{p^2} & x_4^{p^2} \end{bmatrix} - x_2^p \det \begin{bmatrix} x_1 & x_2 & x_3 \\ x_1^p & x_2^p & x_3^p \\ x_1^{p^2} & x_2^{p^2} & x_3^{p^2} \end{bmatrix} \\
& = \left(\det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix} \right)^p \left(\det \begin{bmatrix} x_1 & x_4 \\ x_1^p & x_4^p \end{bmatrix} + \det \begin{bmatrix} x_2 & x_3 \\ x_2^p & x_3^p \end{bmatrix} \right),
\end{aligned}$$

which may be rewritten as

$$t^p \det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix} - vx_1^p \det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix} - ux_2^p \det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix} = t \left(\det \begin{bmatrix} x_1 & x_2 \\ x_1^p & x_2^p \end{bmatrix} \right)^p.$$

Dividing by the determinant that occurs on the left, one then has

$$t^p - vx_1^p - ux_2^p = t(x_1x_2^p - x_1^px_2)^{p-1}. \quad (5.2.1)$$

The Jacobian criterion shows that a hypersurface with (5.2.1) as its defining equation must be normal; it follows that C is indeed a normal hypersurface, with defining equation (5.2.1), and hence that C is precisely the invariant ring S^G . Equation (5.2.1) shows that S^G is not F -pure: t is in the Frobenius closure of $(x_1, x_2)S^G$, though it does not belong to this ideal.

It remains to prove that the ring $C = S^G$ has FFRT. For this, note that after a change of variables, one has

$$S^G \cong \mathbb{F}_p[x_1, x_2, t, \tilde{u}, \tilde{v}] / (t^p - \tilde{v}x_1^p - \tilde{u}x_2^p).$$

But then S^G has FFRT by [25, Observation 3.7, Theorem 3.10]: Set $A := \mathbb{F}_p[x_1, x_2, \tilde{u}, \tilde{v}]$, and note that

$$A \subseteq S^G \subseteq A^{1/p},$$

where A is a polynomial ring.

Acknowledgments

Calculations with the computer algebra system **Magma** [4] were helpful in obtaining the presentation of the invariant ring in Remark 3.3. The authors are also deeply grateful to Professor Kei-ichi Watanabe for valuable discussions, and to the referee for useful suggestions.

References

[1] K. Alhazmy, M. Katzman, FFRT properties of hypersurfaces and their F -signatures, *J. Algebra Appl.* 18 (2019) 1950215, 15 pp.

- [2] M. Auslander, On the purity of the branch locus, *Am. J. Math.* 84 (1962) 116–125.
- [3] M.-J. Bertin, Anneaux d'invariants d'anneaux de polynomes, en caractéristique p , *C. R. Math. Acad. Sci. Paris* 264 (1967) 653–656.
- [4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, *J. Symb. Comput.* 24 (1997) 235–265.
- [5] H. Dao, P.H. Quy, On the associated primes of local cohomology, *Nagoya Math. J.* 237 (2020) 1–9.
- [6] K. Goel, J. Jeffries, A.K. Singh, Local cohomology of modular invariant rings, *Transform. Groups* (2024), <https://doi.org/10.1007/s00031-024-09851-6>, in press.
- [7] D. Goss, Basic Structures of Function Field Arithmetic, *Ergeb. Math. Grenzgeb.*, vol. 35, Springer-Verlag, Berlin, 1996.
- [8] N. Hara, R. Ohkawa, The FFRT property of two-dimensional graded rings and orbifold curves, *Adv. Math.* 370 (2020) 107215, 37 pp.
- [9] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles, <https://arxiv.org/abs/1503.02133>.
- [10] M. Hashimoto, The symmetry of finite group schemes, Watanabe type theorem, and the a -invariant of the ring of invariants, <https://arxiv.org/abs/2309.10256>.
- [11] M. Hashimoto, F. Kobayashi, Generalized F -signatures of the rings of invariants of finite group schemes, *J. Pure Appl. Algebra* 228 (2024) 107610, 15 pp.
- [12] M. Hashimoto, Y. Nakajima, Generalized F -signature of invariant subrings, *J. Algebra* 443 (2015) 142–152.
- [13] M. Hashimoto, P. Symonds, The asymptotic behavior of Frobenius direct images of rings of invariants, *Adv. Math.* 305 (2017) 144–164.
- [14] M. Hashimoto, Y. Yang, Indecomposability of graded modules over a graded ring, *Kyoto J. Math.* (2024), <https://arxiv.org/abs/2306.14523>, in press.
- [15] M. Hochster, C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, *J. Am. Math. Soc.* 3 (1990) 31–116.
- [16] M. Hochster, C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, *Ann. Math.* 135 (1992) 53–89.
- [17] M. Hochster, C. Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, *J. Algebraic Geom.* 3 (1994) 599–670.
- [18] M. Hochster, L. Núñez-Betancourt, Support of local cohomology modules over hypersurfaces and rings with FFRT, *Math. Res. Lett.* 24 (2017) 401–420.
- [19] C. Huneke, G.J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, *Math. Ann.* 324 (2002) 391–404.
- [20] Y. Kamoi, A study of Noetherian G -graded rings, Ph.D. thesis, Tokyo Metropolitan University, 1995.
- [21] G. Lyubeznik, K.E. Smith, Strong and weak F -regularity are equivalent for graded rings, *Am. J. Math.* 121 (1999) 1279–1290.
- [22] D. Mallory, Finite F -representation type for homogeneous coordinate rings of non-Fano varieties, *Ép. Géom. Algébr.* 7 (2023) 21, 18 pp.
- [23] T. Raedschelders, Š. Špenko, M. Van den Bergh, The Frobenius morphism in invariant theory II, *Adv. Math.* 410 (2022) 108587, 64 pp.
- [24] G. Seibert, The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, *Arch. Math. (Basel)* 69 (1997) 286–296.
- [25] T. Shibuta, One-dimensional rings of finite F -representation type, *J. Algebra* 332 (2011) 434–441.
- [26] T. Shibuta, Affine semigroup rings are of finite F -representation type, *Commun. Algebra* 45 (2017) 5465–5470.
- [27] A.K. Singh, I. Swanson, Associated primes of local cohomology modules and of Frobenius powers, *Int. Math. Res. Not.* 33 (2004) 1703–1733.
- [28] A.K. Singh, K-i. Watanabe, On Segre products, F -regularity, and finite Frobenius representation type, *Acta Math. Vietnam.* 49 (2024) 129–138, special issue in honor of Ngo Viet Trung.
- [29] K.E. Smith, M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, *Proc. Lond. Math. Soc.* 75 (1997) 32–62.
- [30] S. Takagi, R. Takahashi, D -modules over rings with finite F -representation type, *Math. Res. Lett.* 15 (2008) 563–581.
- [31] Y. Yao, Modules with finite F -representation type, *J. Lond. Math. Soc.* (2) 72 (2005) 53–72.