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Abstract

We introduce the concept of group state transfer on graphs, summarize its relationship to other concepts in
the theory of quantum walks, set up a basic theory, and discuss examples.

Let X be a graph with adjacency matrix A and consider quantum walks on the vertex set V (X) governed
by the continuous time-dependent unitary transition operator U(t) = exp(itA). For S, T ✓ V (X), we say
X admits “group state transfer” from S to T at time ⌧ if the submatrix of U(⌧) obtained by restricting to
columns in S and rows not in T is the all-zero matrix. As a generalization of perfect state transfer, fractional
revival and periodicity, group state transfer satisfies natural monotonicity and transitivity properties. Yet
non-trivial group state transfer is still rare; using a compactness argument, we prove that bijective group
state transfer (the optimal case where |S| = |T |) is absent for almost all ⌧ . Focusing on this bijective case,
we obtain a structure theorem, prove that bijective group state transfer is “monogamous”, and study the
relationship between the projections of S and T into each eigenspace of the graph.

Group state transfer is obviously preserved by graph automorphisms and this gives us information about
the relationship between the setwise stabilizer of S ✓ V (X) and the stabilizers of certain vertex subsets
F(S, t) and I(S, t). The operation S 7! F(S, t) is su�ciently well-behaved to give us a topology on V (X); this
is simply the topology of subsets for which bijective group state transfer occurs at time t. We illustrate non-
trivial group state transfer in bipartite graphs with integer eigenvalues, in joins of graphs, and in symmetric
double stars. The Cartesian product allows us to build new examples from old ones.
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1. Introduction

Theoretical investigations in quantum computing and quantum information theory have given rise to
a number of interesting questions in algebraic graph theory and nearby areas of combinatorics. Quantum
walks on graphs, in particular, seem both fundamental to our understanding of how to control the evolution
of finite-dimensional quantum mechanical systems and quite amenable to study using the standard tools of5

spectral graph theory. Since their introduction in 1998 by Farhi and Gutman [1] as a powerful alternative
to classical Markov random processes, continuous time quantum walks on graphs and weighted graphs
have received much attention as researchers attempt to understand the potential advantages of quantum
computation over classical computation. While Farhi and Gutman allowed for a sparse real Hamiltonian
expressible as a sum of Hamiltonians each acting on a limited number of underlying qubits, Childs proved10

in 2006 that we may restrict attention to Hamiltonians that are simply adjacency matrices of graphs having
maximum degree three and still e�ciently simulate any quantum circuit [2].

With the path on two vertices as a classical motivating example [3], Christandl, et al. [4] first demon-
strated perfect quantum state transfer (PST) between vertices at arbitrary distance d using the product of d
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such paths to obtain the d-cube. Graph theorists specializing in spectral techniques soon developed a theory15

around such questions (see [5]), showing that perfect state transfer is quite rare. Attention then broadened to
include closely related phenomena such as periodicity and fractional revival as well as approximations such
as pretty good state transfer [6, 5], among other interesting behavior of quantum walks on graphs such as
uniform mixing. With path-length distance between vertices as a reasonable surrogate for physical distance
between components in an implementation of a quantum circuit, the hope of finding perfect state transfer20

between vertices far apart in a relatively small unweighted graph seems to have been dashed. Perfect state
transfer is not only rare, but the number of vertices must grow at least in proportion to the cube of the
distance between the endpoints (and possibly at a much larger rate) [7].

Overview of the paper. The present work is an outgrowth of the undergraduate senior thesis [8]1 of the first
author (LCB), completed in April 2019 under the supervision of the second author (WJM). In this paper,25

motivated more by a desire to extend the theory than by any particular physical application, we introduce
“group state transfer” by which any initial state supported on one set S of vertices is carried to some state
supported on another set T . In full generality, group state transfer occurs everywhere: every graph X admits
such state transfer from the empty set to any subset of vertices and from any set of vertices to the entire
vertex set V (X). We call these cases “trivial”. In Lemma 3.1, we see how group state transfer behaves with30

respect to intersections, unions, complements, and time reversal. If X admits group state transfer from S

to T at time ⌧ then, at time ⌧ , X admits group state transfer from any subset of S to any superset of T .
This naturally leads (Section 3) to a partial order on such pairs with maximal pairs of particular interest. A
compactness argument is used in Lemma 3.3 to show that for all but finitely many values of ⌧ in any finite
interval [t0, t1], the only maximal elements are the trivial ones (;, ;) and (V (X), V (X)). In most strongly35

regular graphs, only trivial situations arise (Proposition 3.4).
The fundamental inequality |S|  |T | in Lemma 3.2 can be viewed as an entropy bound and we focus

on bijective group state transfer, where |S| = |T |, in Section 3.1. Using Lemma 3.3, we prove (Theorem
3.7) that bijective group state transfer is “monogamous” in the sense that, aside from S itself, a set S can
be transferred to at most one other vertex subset of the same size. Whenever we have bijective group state40

transfer from S to some other set at time ⌧ , we have group state transfer from S to itself at time 2⌧ — i.e.,
S is “periodic at 2⌧”. Godsil showed that the complement of a periodic set is again periodic; we show that
the collection of vertex subsets periodic at time ⌧ is closed under intersection and union. A fundamental
restriction on perfect state transfer is the idea of “parallel vertices” [9, Section 6.5]. Analogous to this, we
show in Lemma 4.1 that, if X admits bijective group state transfer from S to T and Er is any primitive45

idempotent of the adjacency algebra of X, then there is an |S| ⇥ |S| unitary matrix mapping the columns
of Er indexed by S to the columns of Er indexed by T .

Given a set S of vertices and a time t, there are natural targets R = I(S,�t) and T = F(S, t) for group
state transfer to and from S, respectively. In Theorem 5.1, we consider these maps I(·, ·) and F(·, ·) and a
time-dependent topology on the vertices of X whose clopen sets are those S ✓ V (X) for which bijective50

group state transfer occurs in X at time t from S to F(S, t) (Corollary 5.2). This leads into some results in
Section 6 revealing how group state transfer behaves with respect to the automorphism group of the graph
X.

Turning toward examples, Section 7 explores the Cartesian product and join of two graphs. In Proposition
7.1, we show that if graph X admits group state transfer from S to T at time ⌧ and graph Y admits group55

state transfer from S
0 to T

0 at time ⌧ , then the Cartesian product X⇤Y admits group state transfer from
S⇥S

0 to T ⇥T
0 at time ⌧ . In a simple reformulation of work of Coutinho and Godsil [9], we find non-trivial

group state transfer from V (X) to itself in any join X + Y (Proposition 7.4). In Section 8, we list some
further examples. For instance, in any bipartite graph X whose eigenvalue ratios are all odd integers, we see
group state transfer from one bipartite half to the other. Also in Theorem 8.1, we see periodicity on each60

bipartite half under weaker conditions. Periodicity is also shown in the symmetric double star in Proposition
8.2. We finish the paper with a few more examples and a list of open problems.

1The Major Qualifying Project (MQP) at Worcester Polytechnic Institute is a campus-wide capstone requirement of all
undergraduates.
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Our exposition of group state transfer is complemented well by the study of real state transfer in Godsil
[10] and, as we indicate in this paper, the existence of (S, S)-GST may sometimes be yielded as a consequence
of real state transfer, with bounds on the minimum period ⌧ due to Godsil.65

2. Preliminaries

Throughout, X = (V (X), E(X)) is a finite simple undirected graph on n vertices with adjacency matrix
A. For simplicity, we will sometimes write V (X) = {1, . . . , n}. When a and b are joined by an edge, we
write a ⇠ b or (ab 2 E(G)) and we use X(a) = {b 2 V (X) | a ⇠ b} to denote the neighborhood of a in X.
The distance between a and b in X, denoted @(a, b), is the length of a shortest path joining the two.70

The unitary time-dependent transition operator U(t) = UX(t) is given by

U(t) = exp(itA) =
1X

k=0

(it)k

k!
A

k

where t is any real number. As shown, for example, by Coutinho and Godsil in their text [9], the spectral
decomposition of A carries over to a useful expression for U(t). Throughout, we suppose that graph X

has d + 1 distinct eigenvalues ✓0 > ✓1 > · · · > ✓d. We denote by Er the matrix representing orthogonal
projection onto the eigenspace belonging to ✓r, Vr = {' 2 Cn

| A' = ✓r'}. Then we have A =
P

d

r=0 ✓rEr

where the various projections sum to the identity:
P

d

r=0 Er = I. This gives [9, Section 1.5]

U(t) =
dX

r=0

e
it✓rEr . (1)

3. Group state transfer and a partial order on subset pairs

We now give the central definition of this paper. We say graph X admits group state transfer from
S ✓ V (X) to T ✓ V (X) at time ⌧ if the evolution operator U(⌧) carries every initial state vector whose
support is contained in S to some vector whose support is contained in T .

Definition 3.1. Let X be a graph and let S, T ✓ V (X). We say that X has (S, T )-group state transfer,75

or (S, T )-GST, at time ⌧ 2 R if, for all  2 Cn
such that Supp ✓ S, the vector � = UX(⌧) satisfies

Supp� ✓ T .

For S ✓ V (X), denote by hSi the subspace of Cn of vectors whose support is contained in S: hSi =
span {ea|a 2 S}. For S, T ✓ V (X), we have (S, T )-GST at time ⌧ if U(⌧)hSi ✓ hT i.

Familiar examples. Trivial examples include S = ; and T = V (X): for any R ✓ V (X) and for any ⌧ 2 R,80

we have both (;, R)-GST and (R, V (X))-GST at time ⌧ . Our definition of group state transfer, while having
no direct physical motivation, generalizes some important phenomena that have received much attention in
the quantum information theory community recently. The graph X is said to be periodic at a at time ⌧ if
X has ({a}, {a})-GST at time ⌧ and, for b 6= a, we say that we have perfect state transfer (ab-PST) from a

to b in X at time ⌧ if X has ({a}, {b})-GST at time ⌧ . The graph X has fractional revival on S = {a, b}85

at time ⌧ if X has ({a}, S)-GST at time ⌧ . We use the term proper fractional revival when this holds with
U(⌧)a,b 6= 0. (I.e., ({a}, {a, b})-GST occurs at time ⌧ but ({a}, {a})-GST does not.) It is already known
that, if X has ({a}, {a, b})-GST at time ⌧ then either a is periodic or X has ({b}, {a, b})-GST at time ⌧ ; see,
e.g., Lemma 9.9.1 in [9]. So ({a}, {a, b})-GST at time ⌧ implies either that X is periodic at a, PST occurs
from a to b, or we have proper fractional revival on {a, b} in X (all at time ⌧). In [11], Chan, et al. say90

graph X has generalized fractional revival from a 2 V (X) to B ✓ V (X) if X admits ({a}, B)-GST but does
not admit ({a}, B0)-GST for any proper subset B

0
⇢ B. For S ✓ V (X), the set S is a periodic subset [9,
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Section 9.6] if X has (S, S)-GST at at some time ⌧ (in which case we say S is periodic at time ⌧)2. In [12],
Chan et al. use the term K-fractional revival for a periodic subset and build a theory of K-fractional revival
which includes a ratio condition on eigenvalues that we do not have and a number of examples having some95

overlap with the examples in [8]. (See also [11].)

Basic results. We begin with a number of elementary observations that already impose a good deal of
structure on the group state transfer phenomenon.

Lemma 3.1. Let X be a simple undirected graph. Then

(a) X admits (S, V (X))-GST at time ⌧ for all S ✓ V (X) and all times ⌧ ;100

(b) X admits (;, T )-GST at time ⌧ for all T ✓ V (X) and all times ⌧ .

(c) X has (S, T )-GST at time ⌧ if and only if X has ({a}, T )-GST at time ⌧ for every a 2 S;

(d) if S
0
✓ S and T ✓ T

0
and (S, T )-GST occurs at time ⌧ , then (S0

, T
0)-GST also occurs at time ⌧ ;

(e) if, at time ⌧ , graph X has (S1, T1)-GST and (S2, T2)-GST, then X has both (S1 \ S2, T1 \ T2)-GST

and (S1 [ S2, T1 [ T2)-GST at time ⌧ ;105

(f) if X has (R,S)-GST at time � and X has (S, T )-GST at time ⌧ , then X has (R, T )-GST at time

� + ⌧ ;

(g) X has (S, T )-GST at time ⌧ if and only if X has (V (X) \ T, V (X) \ S)-GST at time ⌧ ;

(h) X has (S, T )-GST at time ⌧ if and only if X has (S, T )-GST at time �⌧ .

Proof. Parts (a) and (b) are vacuous. For part (d), we simply observe that, if U(⌧)hSi ✓ hT i, then110

U(⌧)hS0
i ✓ hT

0
i since S

0
✓ S, T ✓ T

0 give hS
0
i ✓ hSi and hT i ✓ hT

0
i, respectively. Part (e): suppose

' 2 hS1 [ S2i = hS1i + hS2i. Then U(⌧)' 2 hT1i + hT2i = hT1 [ T2i. (The preservation of intersections is
proved in a similar manner.) Now (c) follows from (d) and (e). Part (f) is also straightforward. Part (g)

follows from the fact that U(t) is a symmetric matrix. Part (h): since U(�⌧) = U(⌧)�1 = U(⌧), we see that
U(⌧) and U(�⌧) have precisely the same set of all-zero submatrices.115

Example 3.1. Suppose graph X admits aibi-PST at time ⌧ for i = 1, . . . , `. Then, with S = {a1, . . . , a`}

and T = {b1, . . . , b`}, X admits (S, T )-GST at ⌧ . For instance, the d-cube has PST at time ⇡/2 from any

vertex to its antipode. Let S ✓ V (X) and choose T to consist of the antipodes of the elements of S; this

provides us examples with |S| = |T | taking any value up to |V (X)| = n when X is the d-cube.

Lemma 3.2. If graph X has (S, T )-GST at ⌧ , then |S|  |T |.120

Proof. Since ' 7! U(⌧)' is injective and U(⌧)hSi ✓ hT i, we have dimhSi  dimhT i.

Example 3.2. Let (P,B) be a symmetric (40, 13, 4) design with bipartite incidence graph
3
X having eigen-

values ±13, ±3. For a 2 P , we have ({a}, B)-GST at time ⌧ = ⇡/2 (Theorem 8.1(b)) but (B, {a})-GST

can never occur by Lemma 3.2.

2Note that, in [9], a graph X is said to be “periodic” at time ⌧ if U(⌧) is a diagonal matrix; that is, every subset of V (X)
is periodic at time ⌧ .

3Here, V (X) = P [B and a ⇠ b if one of these, say b 2 B, is a block containing point a 2 P .
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Figure 1: The partially ordered set on (V (X) ⇥ V (X),�) with (S0, T 0) � (S, T ) when S0 ✓ S and T 0 ◆ T . Here, P denotes
the power set of V (X) ordered by containment. The blue region indicates pairs (S, T ) with |S|  |T | and necessarily contains
ST (X, ⌧). Ideal GST occurs at the upper boundary of the blue region, with PST as a special case.

The state transfer poset. We now introduce the state transfer poset of a graph X. Writing P for the power
set of V (X),

P = P(V (X)) = {S|S ✓ V (X)} ,

we begin with the poset (P ⇥ P ,�) with partial order relation (S, T ) � (S0
, T

0) if S ✓ S
0 and T

0
✓ T . For125

each time t, the state transfer poset of X at time t is the subposet of this partially ordered set, depicted in
Figure 1, consisting only of those pairs (S, T ) for which X has (S, T )-GST at time t; this smaller partially
ordered set is denoted ST (X, t). Note that, at any time t, ST (X, t) contains the trivial pairs (;, T ) for all
T ✓ V (X) and (S, V (X)) for all S ✓ V (X) but may otherwise depend on t. One may alternatively view
this collection of pairs (S, T ) for which X has GST at time t as a down-set (or “downward closed set”) in130

the original poset (P ⇥ P ,�). This is nothing more than the poset formed by the all-zero submatrices of
U(t); we have (S, T )-GST at time t precisely when the submatrix of U(t) obtained by restricting to rows
indexed by elements of V (X) \ T and columns indexed by elements of S has all entries zero.

Except at times ⌧ = 2⇡k/n with k 2 Z, the complete graph Kn admits no non-trivial GST for n � 3. In
Figure 2, we give the state transfer poset for the path on two vertices X = K2 at time ⌧ = ⇡/2.135

The extremal case. Let us say that X has maximal group state transfer from S to T at time ⌧ if X has
(S, T )-GST at ⌧ and, whenever X has (S0

, T
0)-GST at ⌧ for S ✓ S

0 and T
0
✓ T , S0 = S and T

0 = T .
Focusing on a more rare situation, we say X has bijective group state transfer from S to T at time ⌧ if X
has (S, T )-GST at ⌧ and |S| = |T |. Lemma 3.2 tells us that bijective implies maximal. Given S ✓ V (X),
the maximal element of ST (X, t) of the form (S, T ) is (S,F(S, t)) where

F(S, t) =
�
a 2 V (X)

�� (9' 2 hSi)(e>
a
U(t)' 6= 0)

 
;

that is, X has (S, T )-GST at time t if and only if T ◆ F(S, t).

Smallest non-trivial elements of the poset. The most common (and least interesting) case of non-trivial
GST (i.e., where S 6= ; and T 6= V (X)) occurs where U(⌧) has some entry equal to zero: X exhibits
({a}, V (X) \ {b})-GST at time ⌧ if and only if U(⌧)b,a = 0. Even this fails almost everywhere.

Lemma 3.3. Assume X is a connected graph. In any interval [t0, t1] of finite length, there are only finitely140

many t for which ST (X, t) contains non-trivial pairs.

Proof. We need only show that, for a, b 2 V (X), U(t)b,a = 0 for at most finitely many values of t 2 [t0, t1].
Assume not. By compactness, there exists a convergent sequence {tk}1k=1 of values all satisfying U(tk)b,a = 0.
Define

f(t) =
dX

r=0

e
i✓rt(Er)b,a .
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Then f(t) is analytic and f(tk) = 0 for all k. So, defining t
⇤ = limk!1 tk, we obtain f(t⇤) = 0 by continuity.

Similarly, every derivative of f is zero at t
⇤. Since f is analytic, it must be the zero function. But we are

assuming that X is connected, so some element of the adjacency algebra hAi has a nonzero value in its
(b, a)-position. Since the ✓r are algebraic integers, they remain distinct when reduced modulo 2⇡; thus,145

there is some ✏ > 0 for which U(✏) has d + 1 distinct eigenvalues. Therefore the set {U(t) | t 2 R}, closed
under multiplication, generates hAi and there must be some time t at which U(t)b,a 6= 0, giving us the
desired contradiction.

Strongly regular graphs. For some graphs X, there is no value of t in (0, 2⇡) for which ST (X, t) is non-trivial,150

as we now illustrate.
A graph X is strongly regular with parameters (⌫,,�, µ) if |V (X)| = ⌫ and |X(a) \ X(b)| = ,�, µ,

accordingly, as a = b, a ⇠ b and b 62 {a} [X(a), respectively. We say X is an srg(⌫,,�, µ). Write A0 = I,
A1 = A and A2 = J � I �A; these form a vector space basis for the adjacency algebra of X. Standard tools
(e.g., [13, Chapter 10]) give us the eigenvalues:

✓0 = , ✓1 =
1

2

⇣
�� µ+

p

�
⌘
, ✓2 =

1

2

⇣
�� µ�

p

�
⌘

where � = (µ� �)2 + 4(� µ). The respective eigenvalue multiplicities for ✓1 and ✓2 are

f =
1

2

✓
⌫ � 1 +

(⌫ � 1)(µ� �)� 2
p
�

◆
, g =

1

2

✓
⌫ � 1�

(⌫ � 1)(µ� �)� 2
p
�

◆
.

Except when f = g, ✓1 and ✓2 must be integers. It is well-known that E0 = 1
⌫
J ,

E1 =
1

⌫

✓
fA0 +

f✓1


A1 +

f(1 + ✓1)

+ 1� ⌫
A2

◆
,

E2 =
1

⌫

✓
gA0 +

g✓2


A1 +

g(1 + ✓2)

+ 1� ⌫
A2

◆
.

Choose a base vertex b 2 V (X) and define the ⌫ ⇥ 3 matrix H whose columns are eb, Aeb and A2eb. Since
the partition according to distance from b is equitable, we have AH = HB for

B =

2

4
0  0
1 � � 1� �

0 µ � µ

3

5 .

(;,{1,2})

(;,{1}) (;,{2})

(;,;)
({1},{1,2})

({1},{1}) ({1},{2})

({1},;)

({2},{1,2})

({2},{1}) ({2},{2})

({2},;)
({1,2},{1,2})

({1,2},{1}) ({1,2},{2})

({1,2},;)

(;,{1,2})

(;,{1}) (;,{2})

(;,;)
({1},{1,2})

({1},{2})

({2},{1,2})

({2},{1})

({1,2},{1,2})

Figure 2: The poset (P(V (K2))⇥P(V (K2)),�) on the left (reverse inclusion highlighted in black) with the subposet identified
in red giving us the state transfer poset ST (K2,

⇡
2 ) for K2 at time ⌧ = ⇡/2.
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Omitting details, we find that U(t) = exp(itA) = e
it

E0+ e
it✓1E1+ e

it✓2E2 satisfies U(t)H = HU
0(t) where

U
0(t) = e

it
F0 + e

it✓1F1 + e
it✓2F2 with

F0 =
1

⌫

2

4
1  ⌫ � 1� 

1  ⌫ � 1� 

1  ⌫ � 1� 

3

5 , F1 =
f

⌫

2

64
1 ✓1 �1� ✓1
✓1


+�✓1+µ(�1�✓1)


�✓1���✓1+µ(1+✓1)


�1�✓1
⌫�1�

�✓1���✓1+µ(1+✓1)
⌫�1�

2✓1+1++�✓1+µ(�1�✓1)
⌫�1�

3

75

and

F2 =
g

⌫

2

64
1 ✓2 �1� ✓2
✓2


+�✓2+µ(�1�✓2)


�✓2���✓2+µ(1+✓2)


�1�✓2
⌫�1�

�✓2���✓2+µ(1+✓2)
⌫�1�

2✓2+1++�✓2+µ(�1�✓2)
⌫�1�

3

75 .

If the system is in initial state eb at time zero, then at time t, the state of the system is given by U(t)eb =

HU
0(t)

⇥
1 0 0

⇤>
. So U(t)eb is constant on the neighbors of b and and on the non-neighbors of b. Define

h0(t) = e
it + fe

i✓1t + ge
i✓2t

h1(t) = e
it + (f✓1/)e

i✓1t + (g✓2/)e
i✓2t

h2(t) = e
it + f(1 + ✓1)/(+ 1� ⌫)ei✓1t + g(1 + ✓2)/(+ 1� ⌫)ei✓2t .

Then e
>
a
U(t)eb =

1
⌫
h�(t) where � 2 {0, 1, 2} is the distance from a to b in X. This tells us that GST almost155

never occurs on strongly regular graphs.

Proposition 3.4. Let X be a connected strongly regular graph with non-trivial (S, T )-GST at time ⌧ 2

(0, 2⇡). Then one of the following occurs:

(a) , ✓1, ✓2 are all integers divisible by some D � 2 and ⌧ = 2`⇡/D where ` is an integer, 0 < ` < D;

(b) (⌫,,�, µ) = (n, n�m,n�2m,n�m), X is complete multipartite, the complement of a disjoint union160

of |✓2| =
n

m
> 2 complete graphs Km, ⌧ = 2⇡`/m;

(c) (⌫,,�, µ) = (2m,m, 0,m), X is complete bipartite and ⌧ = ⇡/D where D is any positive divisor of ;

(d) (⌫,,�, µ) = (4m + 1, 2m,m � 1,m) and ⌧ = 2⇡B/⌫ for some integer B satisfying cos
�
⇡B⌫

�1/2
�
=

�1/4m.

Proof. We have done most of the work already. Part (c) is handled in Theorem 8.1 below.165

First note that 1+ f + g = ⌫; if |f � g| > 1, then h0(t) is never zero, by the triangle inequality. Likewise,
since

1 + f
✓1


+ g

✓2


= 1 + f

✓1 + 1

+ 1� ⌫
+ g

✓2 + 1

+ 1� ⌫
= 0,

we can only have h2(t) = 0 when e
it = e

i✓1t = e
i✓2t, in which case U(t)eb = eb. These are the only times

at which h1(t) = 0 with the exception of complete multipartite graphs X = |✓2|Km (where ✓1 = 0) in which
case we obtain ({b}, V (X) \X(b))-GST at times t = 2⇡`/m, maximal for ` odd.

In the case f = g, it is well-known that the parameters (⌫,,�, µ) are as given in case (d) with f = g = 2µ
and ✓1, ✓2 = 1

2 (�1 ±
p
⌫). To obtain h0(⌧) = 0, we must have ⌧(✓1 � ) + ⌧(✓2 � ) an integer multiple of

2⇡. Writing ⌧ = �2⇡B/⌫, we need

e
i⌧(✓1�) + e

i⌧(✓1�) = �1/

which gives us the condition cos
�
⇡B/

p
4µ+ 1

�
= �1/4µ and no such examples are known.

The only case that remains to consider is ({b}, V (X)\{b})-GST in the case where |f�g| = 1. Aleksandar
Jurǐsić [pers. communication] showed that the strongly regular graph parameters with |f�g| = 1 are precisely
those in the family

(⌫,,�, µ) = (4m2 + 4m+ 2, 2m2 +m, m
2
� 1, m

2)

where m is a positive integer. And now a simple parity argument shows U(t)b,b 6= 0 for all real t.170
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Example 3.3. The line graph of the complete graph X = L(Kn) has eigenvalues  = 2n � 4, ✓1 = n � 4
and ✓2 = �2. For n even, case (a) holds and we have U(⇡) = I.

A regular graphX is distance-regular if the partition according to distance from any vertex is an equitable
partition (and, hence, all these partitions admit the same quotient matrix B [14]). Connected strongly
regular graphs are precisely the distance-regular graphs of diameter d = 2. The analysis above for strongly
regular graphs extends to distance-regular graphs in the following way: if X is a distance-regular graph of
diameter d and X admits (S, T )-GST at time ⌧ , then there exist i1, . . . , ik 2 {0, 1, . . . , d}, k > 0, for which

T ◆ {v 2 V (X)|(9u 2 S, 1  j  k) (@(u, v) = ij)}

where @(u, v) denotes path-length distance between u and v in X.

3.1. Bijective group state transfer

Block matrices. Let us consider the block structure of UX(⌧) when X admits (S, T )-GST at time ⌧ . For
convenience, assume the vertex set V (X) = {1, . . . , n} is ordered so that

S \ T = {1, . . . , n1}, I = S \ T = {n1 + 1, . . . , n2}, T \ S = {n2 + 1, . . . n3}

where 1  n1  n2  n3  n. Partition the rows and columns accordingly and write

U(⌧) = UX(⌧) =

U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

2

666664

3

777775
T

S

=

2

664

0 0 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

0 0 U43 U44

3

775

using the hypothesis of (S, T )-GST. Since U(⌧) is a symmetric matrix, we have

U(⌧) =

2

664

0 0 U13 0
0 U22 U23 0

U31 U32 U33 U34

0 0 U43 U44

3

775

with U31 = U
>
13, U32 = U

>
23, U43 = U

>
34, and Ujj symmetric for j = 2, 3, 4.175

A by-product of this calculation is a second proof of Lemma 3.1(g): if X has (S, T )-GST at time ⌧ , then
X has (V (X) \ T, V (X) \ S)-GST at time ⌧ .

The Frobenius norm of U31 is n1, so the sum of the squared moduli of the entries of U13 is also n1, giving
another proof that |S|  |T |. If |S| = |T |, then Uj3 = 0 is forced for j = 2, 3, 4. So, for |S| = |T |, we have

U(⌧) =

2

664

0 0 U13 0
0 U22 0 0

U31 0 0 0
0 0 0 U44

3

775

with U22 and U44 symmetric unitary matrices. This gives us the following result4

Theorem 3.5. Assume that graph X has (S, T )-GST at time ⌧ and |S| = |T |. Write I = S \ T . Then

4Godsil [personal communication] studied the case of a periodic subset (where S = T ), showing not only that V (X) \ S is
also periodic but proving that QSU(⌧)QS belongs to the center of the algebra QSAQS where QS =

P
a2S eae>a is the diagonal

matrix projecting Cn orthogonally onto hSi.
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(a) X has (T, S)-GST at ⌧ ;180

(b) X has (S \ I, T \ I)-GST at ⌧ ;

(c) X has (T \ I, S \ I)-GST at ⌧ ;

(d) I is periodic at ⌧ ;

(e) both S and T are periodic at time 2⌧ ;

(f) the set R = V (X) \ S [ T is periodic at ⌧ .185

Corollary 3.6. If X is a graph with (S, T )-GST at time ⌧ such that |S| = |T | but S 6= T , then there exist

non-empty disjoint S
0
, T

0
✓ V (X) for which |S

0
| = |T

0
| and X has (S0

, T
0)-GST at time ⌧ .

In 2011, Kay [15] showed that perfect state transfer is monogamous: if a, b, c 2 V (X) and X has both
ab-PST and ac-PST, then c = b. In [10, Corollary 5.3], Godsil generalized this to mixed states with real
density matrices. We now generalize this in a di↵erent direction.190

Theorem 3.7. If X is a connected graph and X admits (S,R)-GST at time � and (S, T )-GST at time ⌧

with |R| = |S| = |T |, then R 2 {S, T}.

Proof. We first prove that � and ⌧ must be commensurable real numbers. If not, then the set of remainders
{⇢k = k⌧ (mod �) | k 2 Z } (where ⇢k satisfies 0  ⇢k < � and (k⌧ � ⇢k)/� 2 Z) must be infinite. Re-index
to a subsequence of Z+ if necessary so that, with `(k) = (k⌧ � ⇢k)/�, we have ⌧k = k⌧ � `(k)� converging195

to some point ⌧⇤ 2 [0,�). Applying Lemma 3.1(f) and Theorem 3.5(a,e), we find infinitely many distinct
times at which (K,L)-GST occurs for some K,L 2 {R,S, T}, contradicting Lemma 3.3. So there must be
some distinct k and k

0 for which ⇢k = ⇢k0 and we have � = (k � k
0)⌧/(`(k)� `(k0)).

Since � and ⌧ are commensurable, there exist nonzero integers k, ` such that `� = k⌧ and, without loss
of generality, ` is odd. At time `�, X admits (S,R)-GST and either (S, S)-GST or (S, T )-GST. Thus R = S200

or R = T .

4. Eigenspace geometry

Let X be a graph on n vertices with adjacency matrix A and spectral decomposition A =
P

d

r=0 ✓rEr

with ✓0, . . . , ✓d distinct. The adjacency algebra A = spanC

�
In, A,A

2
, . . .

 
=
nP

d

r=0 ↵rA
r

��� ↵0, . . . ,↵d 2 C
o

of X contains E0, . . . , Ed as well as UX(t) for each t 2 R. This is properly contained in the centralizer algebra205

C(A) = {M 2 Cn⇥n
|MA = AM} of A. The permutation matrices in C(A) are simply those representing

elements of the automorphism group, {P� | � 2 Aut(X)}.

The action of U(⌧) on an eigenspace. Suppose X admits (S, T )-GST at time ⌧ with |S| = |T |. As in the
previous section, write U(⌧) in block form and partition Er into blocks in the same way:

U = U(⌧) =

2

664

0 0 U13 0
0 U22 0 0

U31 0 0 0
0 0 0 U44

3

775 , E = Er =

2

664

E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44

3

775 .

Abbreviating e
i⌧✓r = �r, the equations EU = UE = �rE give us a system of equations relating the various210

blocks
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E13U31 = U13E31 = �rE11 E11U13 = U13E33 = �rE13

E23U31 = U22E21 = �rE21 E21U13 = U22E23 = �rE23

E33U31 = U31E11 = �rE31 E31U13 = U31E13 = �rE33

E43U31 = U44E41 = �rE41 E41U13 = U44E43 = �rE43

E12U22 = U13E32 = �rE12 E14U44 = U13E34 = �rE14

E22U22 = U22E22 = �rE22 E24U44 = U22E24 = �rE24

E32U22 = U31E12 = �rE32 E34U44 = U31E14 = �rE34

E42U22 = U44E42 = �rE42 E44U44 = U44E44 = �rE44

where we know that both E and U are symmetric and U is unitary. So U13, U22, U31, U44 are all unitary.
This shows that S \ I and T \ I are “parallel” subsets in the following sense.

Lemma 4.1. Let X be a graph with adjacency matrix A having spectral decomposition A =
P

d

r=0 ✓rEr with215

✓0, . . . , ✓d distinct. Let S, T ✓ V (X) with |S| = |T | having orthogonal projections QS =
P

a2S
eae

>
a

and

QT =
P

a2T
eae

>
a
onto hSi and hT i, respectively. If X admits (S, T )-GST, then, for each r = 0, . . . , d, there

exists a unitary matrix Nr such that ErQSNr = ErQT . In particular span{Erea | a 2 S} = span{Erea |

a 2 T}.

Proof. Write M = �
�1
r

U13, so that 2

664

E11

E21

E31

E41

3

775M =

2

664

E13

E23

E33

E43

3

775

from above. Choose

N
0 =

2

664

M 0 0 0
0 I 0 0
0 0 M

�1 0
0 0 0 I

3

775 , P =

2

664

0 0 I 0
0 I 0 0
I 0 0 0
0 0 0 I

3

775 , so that ErN
0 =

2

664

E13 E12 E11 E14

E23 E22 E21 E24

E33 E32 E31 E34

E43 E42 E41 E44

3

775

and Nr = N
0
P satisfies ErQSNr = ErQT as desired.220

5. Discrete topology

The elementary structure seen in Lemma 3.1 motivates us to fix a time t and view those sets S for
which there exists bijective (S, T )-GST at time t for some T as “closed sets”. As there is a rich history
of topological methods in combinatorics (see Björner, [16, Chapter 34] for an early survey), we hope this
viewpoint will help us understand the connection between GST phenomena in related graphs.225

Three maps on subsets of vertices. In Section 3, we introduced a time-dependent function F : P ! P given
by

F(S, t) = {a 2 V (X) | ea 6? U(t)hSi} .

Mirroring this, consider
I(S, t) = {a 2 V (X) | ea 2 U(t)hSi} .

Immediately, we see that the following are equivalent for S, T ✓ V (X):

• X has (S, T )-GST at time ⌧ ;

• F(S, ⌧) ✓ T ;

• S ✓ I(T,�⌧).
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Now define the t-closure of S ✓ V (X) as

C̀ t(S) = F (F(S, t),�t) .

Example 5.1. As an example, consider the path X = P3. For convenience, write V (X) = {1, 2, 3} with

1 ⇠ 2 ⇠ 3 so that

A = A(X) =

2

4
0 1 0
1 0 1
0 1 0

3

5 .

Clearly A
3 = 2A, so P3 has minimal polynomial p(z) = z

3
� 2z and eigenvalues 0,±

p
2. We compute

e
iAt =

1

2

2

4
1 0 �1
0 0 0
�1 0 1

3

5+
1

2
cos(t

p
2)

2

4
1 0 1
0 2 0
1 0 1

3

5+
i
p
2
sin(t

p
2)

2

4
0 1 0
1 0 1
0 1 0

3

5 .

Observe that, for a = 1, 2, 3, P3 exhibits ({a}, {4�a})-GST at t = (2m+1)⇡/
p
2 (m 2 Z), exhibits ({a}, {a})-230

GST at t = m⇡
p
2 (m 2 Z), and that P3 exhibits only trivial GST at any other time. Consequently, for every

subset S ✓ V (X) and every t = n⇡/
p
2 (n 2 Z) we have C̀ t(S) = S. But when

p
2

⇡
t 62 Z, C̀ t({a}) = V (X)

for each a 2 V (X). (Note that this example also illustrates Theorem 8.1 below; X is bipartite and, for

↵ = 1/
p
2, ↵A has integer eigenvalues.)

Theorem 5.1. Let X be a graph and let S, T ✓ V (X). Then, for any t 2 R,235

(a) S ✓ T implies F(S, t) ✓ F(T, t);

(b) F(S \ T, t) ✓ F(S, t) \ F(T, t);

(c) F(S [ T, t) = F(S, t) [ F(T, t);

(d) S ✓ T implies I(S, t) ✓ I(T, t);

(e) I(S \ T, t) = I(S, t) \ I(T, t);240

(f) I(S [ T, t) ◆ I(S, t) [ I(T, t);

(g) S ✓ T implies C̀ t(S) ✓ C̀ t(T );

(h) S ✓ C̀ t(S);

(i) C̀ t(S \ T ) ✓ C̀ t(S) \ C̀ t(T );

(j) C̀ t(S [ T ) = C̀ t(S) [ C̀ t(T ).245

Proof. The proofs are all elementary. We include proofs of (b), (f), and (h)-(j) and note that (a), (d), (g)
follow from (b), (e), (i), respectively. First, we prove part (b): if u 2 F(S\T, t) then there is some v 2 S\T

with e
>
u
U(t)ev 6= 0. Since v 2 S, u 2 F(S, t) and since v 2 T , u 2 F(T, t). For (f), take u 2 I(S, t) so that

eu 2 U(t)hSi, giving eu 2 U(t)hSi + U(t)hT i = U(t)hS [ T i and repeat this with S and T swapped. To
prove (h), take u 2 S and set ' = U(t)eu 2 U(t)hSi. Then Supp(') ✓ F(S, t) giving ' 2 hF(S, t)i which, in250

turn, implies eu 2 F(F(S, t),�t) = C̀ t(S). Part (i) (resp., (j)) follows by applying (b) (resp., (c)) twice.

Discrete topology. Let us say that S ✓ V (X) is closed at time t (or simply t-closed) if S = C̀ t(S) and open

at time t if V (X)\S is closed at time t. Note immediately that S is t-closed if and only if X admits bijective
group state transfer from S to F(S, t) at time t by Lemma 3.2. Combining Lemma 3.1(g) and Theorem
3.5(a), we see that S is t-closed if and only if S is t-open. From Lemma 3.3, we know that, for most t, we255

obtain only the indiscrete topology {;, V (X)} and Example 3.1 illustrates a case where the discrete topology
arises: at time t = ⇡/2, every vertex subset of the d-cube is both t-open and t-closed.
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Corollary 5.2. Let X be a graph. At each time t, the t-open sets form a topology on V (X).

Proof. Both ; and V (X) are t-closed for all t. By parts (h) and (i) of Theorem 5.1, the intersection of any
two t-closed sets is t-closed and, by part (j), the union of any two t-closed sets is t-closed.260

Definition 5.1. For graphs X and Y , a function ↵ : V (X) ! V (Y ) is continuous at times t0 and t1 (or

continuous at time t0 = t1) if ↵
�1(S) is t0-open in V (X) for every t1-open S ✓ V (Y ).

It is worthwhile to consider some examples of functions that are continuous in this sense. Proposition
6.1 yields that any automorphism of X is continuous at each time t. The identity function V (X) ! V (X)
is continuous at times kt and t for each integer k and each t 2 R (Lemma 3.1(f) and Theorem 3.5(a,e)).265

Since, at time t0 = k
⇡

2 (k 2 Z), the topology of t-open sets on the n-cube is the discrete topology, any graph
homomorphism from the n-cube to a graph Y is continuous at times t0 and any t1. We will see below that
the projection map from a Cartesian product of graphs to any individual factor is continuous relative to
the two topologies at time t. Returning to our previous example of P3, the topology of t-open sets on P3 is
trivial for almost all t � 0, but at each t = n⇡/

p
2, the topology is {;, S, T, V }. As a result, for instance,270

the functions f : V (P3) ! R that are continuous with respects to the GST-induced topology at t = n⇡/
p
2,

where R is endowed the the natural topology, are exactly those functions for which f(1) = f(3).

6. GST and the automorphism group

We continue with a graphX on vertex set V (X) = {1, . . . , n} and adjacency matrix A. Using Sn to denote
the symmetric group, we denote by Aut(X) the automorphism group of X: if P� is the permutation matrix275

representing the bijection � : V (X) ! V (X) sending a 2 X to a
�, then Aut(X) = {� 2 Sn | P�A = AP�}.

For a 2 V (X) and H  Aut(X), the orbit of a under H will be denoted OH(a) = {a
⌘
| ⌘ 2 H} and, writing

S
⌘ = {a

⌘
| a 2 S}, the orbit of S ✓ V (X) under H will be denote OH(S) = {S

⌘
| ⌘ 2 H}. The setwise

stabilizer of S is Stab(S) = {� 2 Aut(X) | S� = S}.

Proposition 6.1. Let X be a graph, S, T ✓ V (X). Assume X admits (S, T )-GST at time ⌧ . Then280

(a) for any � 2 Aut(X), X admits (S�
, T

�)-GST at time ⌧ ;

(b) setting H = Stab(S) and T
0 =

\

⌘2H

T
⌘
, X admits (S, T 0)-GST at time ⌧ ;

(c) if |S| = |T |, then Stab(S) = Stab(T ).

Proof. For part (a), u 2 S
� gives U(⌧)eu = P�U(⌧)P�1

�
eu = P� for some  2 hT i. Now part (b) follows

by applying (a) to each � 2 H and using Lemma 3.1(e). Part (c) follows from (b) using Theorems 3.2 and285

3.5 (a).

Using this, together with Lemma 3.1(c), we have

Corollary 6.2. If X has (u, v)-PST at ⌧ , then X has both (O(u),O(v))-GST at ⌧ and (O(v),O(u))-GST

at ⌧ , where O(u) and O(v) denote the orbit under any subgroup H of Aut(X).

Proposition 6.3. Let X be a graph, S ✓ V (X); write R = I(S, t) and T = F(S, t). Then290

(a) Stab(S)  Stab(R) and Stab(S)  Stab(T );

(b) |O(S)| � |O(R)| and |O(S)| � |O(T )|.

Proof. Suppose � 2 Stab(S). For v 2 T , locate  2 hSi with e
>
v
U(t) 6= 0. Then ev� = P�ev and

e
>
v�U(t)' = e

>
v
U(t) 6= 0 for ' = P� 2 hSi since � 2 Stab(S). This shows v� 2 T . On the other hand, if

v 2 R, then ' = U(t)ev 2 hSi so U(t)ev� = U(t)P�ev = P�' 2 hSi since � stabilizes S. This shows that �295

stabilizes R. Part (b) now follows by the Orbit-Stabilizer Theorem.

Lemma 3.3 tells us that we almost always have R = ; and T = V (X); in such cases, the above result is
vacuous.
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7. Products and joins

Proposition 7.1. Let X1 and X2 be connected graphs. Assume that X1 has (S1, T1)-GST at time ⌧ and X2300

has (S2, T2)-GST at time ⌧ . Then X1⇤X2 has (S1 ⇥S2, T1 ⇥ T2)-GST at ⌧ , where ⇤ denotes the Cartesian

graph product.

Proof. Let U1(t) = UX1(t) and U2(t) = UX2(t). We know from [9, Lemma 1.3.1] that

UX1⇤X2
(t) = U1(t)⌦ U2(t).

Suppose that graph X1 has (S1, T1)-GST at ⌧ , and graph X2 has (S2, T2)-GST at ⌧ . If (a1, a2) 2 S1⇥S2,
then we may write e(a1,a2) = ea1 ⌦ ea2 and we compute

UX1⇤X2
(t)e(a1,a2) = (U1(t)⌦ U2(t)) (ea1 ⌦ ea2) = (U1(t)ea1)⌦ (U2(t)ea2) .

Since U1(t)ea1 2 hT1i and U2(t)ea2 2 hT2i, we have UX1⇤X2
(t)e(a1,a2) 2 hT1 ⇥ T2i.

As a special case, we have the following, using Lemma 3.1(a).

Proposition 7.2. Let X and Y be connected graphs, so that X has (S, T )-GST at ⌧ . Then X⇤Y has305

(S ⇥ V (Y ), T ⇥ V (Y ))-GST at ⌧ .

One curious consequence comes in the form of the following corollary.

Corollary 7.3. If ⇡i : (a1, a2) 7! ai is the projection from X⇤Y onto X or Y in the cases i = 1 and i = 2,
respectively, then ⇡i is continuous with respects to the GST-induced topology at each time t.

Proof. Without loss of generality, take i = 1 and suppose S ✓ V (X) is t-closed in X. Then X admits
bijective (S,F(S, t))-GST at time t and therefore X⇤Y admits bijective (S ⇥ V (Y ),F(S, t)⇥ V (Y ))-GST at
time t. Therefore

⇡
�1
1 (S) = S ⇥ V (Y )

is t-closed, so for any t-closed S in X, ⇡�1
1 (S) is t-closed in X⇤Y .310

The join. LetX1 andX2 be connected graphs on disjoint vertex sets and defineX = X1+X2 to be the graph
on vertex set V (X) = V (X1)[V (X2) with edge set E(X) = E(X1)[E(X2)[{ab | a 2 V (X1), b 2 V (X2)}.
The graph X is the join of X1 and X2. Denoting the adjacency matrices of the three graphs by A(X1),
A(X2) and A(X), we have

A(X) =


A(X1) J

J
>

A(X2)

�

where J is the all ones matrix with n1 = |V (X1)| rows and n2 = |V (X2)| columns. In the case that X1

and X2 are regular graphs, a basis of eigenvectors for A(X) can be derived from eigenbases for A(X1) and
A(X2) as shown, for example, in [9, Section 12.1–2]; from this, the following result is immediate.

Proposition 7.4. Assume X is the join of the k1-regular graph X1 on n1 vertices and the k2-regular graph

X2 on n2 vertices. Let � = (k1�k2)2+4n1n2. Then X admits (V (X1), V (X1))-GST and (V (X2), V (X2))-315

GST at time ⌧ = 2`⇡/
p
� for each integer `.

Proof. The equitable partition {V (X), V (Y )} of the vertex set of X + Y has quotient matrix


k1 n2

n1 k2

�

with eigenvalues ✓0, ✓1 = 1
2

⇣
k1 + k2 ±

p
�
⌘
. Set

j1 =


1
0

�
, j2 =


0
1

�
, u0 = n2j1 + (✓0 � k1)j2, u1 = n2j1 + (✓1 � k1)j2 .
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Then A(X)uh = ✓huh (h = 0, 1). It follows that every eigenvector v of Xi orthogonal to the all-ones vector
gives us an eigenvector of X by simply extending by an all-zero vector. So we may expand

A(X) =
dX

r=0

✓rEr where E0 =
1

ku0k
2
u0u

>
0 , E1 =

1

ku1k
2
u1u

>
1

and each Er is block diagonal for r � 2. Since
P

d

r=0 Er = I, E0 +E1 is block diagonal as well. So, for any

` 2 Z, we may take ⌧ = 2`⇡/
p
� so that e

i✓0⌧ = e
i✓1⌧ and U(⌧) =

P
d

r=0 e
i✓r⌧Er is block diagonal. This

guarantees that U(⌧)hV (X1)i = hV (X1)i as desired. 2

8. Examples320

In previous sections we have seen mostly trivial examples of group state transfer, but also those cases
that arise from perfect state transfer. We now discuss non-trivial examples of this phenomenon.

Example 8.1. The six-cycle C6 can be expressed as the tensor product C3⇥P2 of C3 and P2. If we number

the vertices 1, 2, 3, 4, 5, 6 in cyclic order and set S = {1, 3, 5}, then C6 admits (S, S)-GST at time ⇡.

This is a special case of the following phenomenon.325

Theorem 8.1. Let X be a connected bipartite graph with bipartition V (X) = V0 [ V1.

(a) If, for some ↵ > 0, all eigenvalues of ↵A are integers, then X admits (V0, V0)-GST and (V1, V1)-GST

at time ⌧ = ⇡↵;

(b) If, for some ↵ > 0, all eigenvalues of ↵A are odd integers, then X admits (V0, V1)-GST and (V1, V0)-
GST at time ⌧ = ⇡↵/2.330

Proof. Suppose ✓r is an eigenvalue of X whose projector has block form Er =


F00 F01

F10 F11

�
. Since X is

bipartite, there is an index r
0 such that ✓r0 = �✓r and Er0 =


F00 �F01

�F10 F11

�
. So

e
i✓r⌧


F00 F01

F10 F11

�
+ e

�i✓r⌧


F00 �F01

�F10 F11

�
=


(ei✓r⌧ + e

�i✓r⌧ )F00 (ei✓r⌧ � e
�i✓r⌧ )F01

(ei✓r⌧ � e
�i✓r⌧ )F10 (ei✓r⌧ + e

�i✓r⌧ )F11

�
.

Let us assume first that A is invertible so that A =
P

✓r>0 (✓rEr + ✓r0Er0). Let us first consider case (b): at

time ⌧ = ⇡↵/2, ei✓r⌧ = ±i, e�i✓r⌧ = ⌥i and the diagonal blocks of ei✓r⌧Er + e
i✓r0⌧Er0 vanish. Similarly, in

case (a), the o↵-diagonal blocks of ei✓r⌧Er + e
i✓r0⌧Er0 vanish at time ⌧ = ⇡↵/2. Summing over the positive

eigenvalues ✓r gives our result, except in case (a) where A is singular. To finish the argument we note that
the zero eigenspace of a bipartite graph admits a basis of eigenvectors each supported on just one of V0,335

V1. So the orthogonal projection E0 is a block diagonal matrix and this does not a↵ect the block diagonal
structure of U(⌧).

Remark 8.1. The existence of a time ⌧ at which GST exists in part (a) of Theorem 8.1 (but not its value)

is also a corollary of Godsil’s Theorem 2.2 and Lemma 2.3 in [10]. The results in [10] also imply periodicity

of V0 and V1 at time 2⌧ in part (b) above.340

The symmetric double star. In [17], Fan and Godsil study pretty good state transfer on graphs composed
of gluing together two stars. Let X be the graph (denoted Sk,k in [17]) on vertex set V (X) = {1, . . . , n}
where n = 2k + 2 with E(X) = {1a | 2  a  k + 2} [ {2a | k + 3  a  2k + 2} and adjacency matrix

A =

2

664

0 1 1> 0
1 0 0 1>

1 0 0 0
0 1 0 0

3

775
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where 1 is the k ⇥ 1 matrix of all ones. The eigenvalues are given, for example, in [17];

✓0 =
1

2

⇣
1 +

p
4k + 1

⌘
, ✓1 =

1

2

⇣
�1 +

p
4k + 1

⌘
, ✓2 = 0, ✓3 =

1

2

⇣
1�

p
4k + 1

⌘
, ✓4 =

1

2

⇣
�1�

p
4k + 1

⌘

with each nonzero eigenvalue having multiplicity one.

Proposition 8.2. At time ⌧ = 2⇡/
p
4k + 1, the symmetric double star X admits (S, S)-GST for S = {1, 2}.

Proof. Let �0 = �3 = +1 and �1 = �4 = �1 and note that ✓2
r
� k = �r✓r for r 6= 2. The orthogonal

projection onto the eigenspace of A belonging to ✓r (r 6= 2) is

Er =
1

4k + 2�r✓r

2

66664

✓
2
r

�r✓
2
r

✓r1>
�r✓r1>

�r✓
2
r

✓
2
r

�r✓r1>
✓r1>

✓r1 �r✓r1 J �rJ

�r✓r1 ✓r1 �rJ J

3

77775

where J is the k ⇥ k matrix of all ones. The null space of A is orthogonal to hSi so E2 plays no role here.
Since

✓3⌧ = ✓0⌧ � 2⇡, ✓4⌧ = ✓1⌧ � 2⇡, ✓4 = �✓0, ✓3 = �✓1,

we have
e
i✓3⌧ = e

i✓0⌧ , e
i✓4⌧ = e

i✓1⌧ = ei✓0⌧ .

This gives us
U(⌧) = e

i✓0⌧ (E0 + E3) + e
i✓1⌧ (E1 + E4) + E2

having its first two rows equal to

"
U(⌧)11 U(⌧)12 ↵1>

�1>

U(⌧)21 U(⌧)22 �1>
↵1>

#

where

↵ =
4X

r=0

e
i✓r⌧✓r

4k + 2�r✓r
, � =

4X

r=0

e
i✓r⌧�r✓r

4k + 2�r✓r
.

Writing K = 4k + 1, we have

✓0

4k + 2✓0
+

✓3

4k + 2✓3
=

1

2

"
1 +

p
K

K +
p
K

+
1�

p
K

K �
p
K

#
= 0

and
✓1

4k � 2✓1
+

✓4

4k � 2✓4
=

1

2

"
�1 +

p
K

K �
p
K

+
�1�

p
K

K +
p
K

#
= 0

giving us ↵ = � = 0 as desired.

Denote by Ti the leaf vertices of the symmetric double star X adjacent to vertex i (i = 1, 2). At time
⌧ = ⇡, X admits (S, S)-GST for S = {1} [ T2 and S = {2} [ T1 and, at time ⌧ = 2⇡, (S, S)-GST for each345

of S = {1}, {2}, T1 and T2.
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9. Some problems

We now list some questions that we consider worthy of study.

1. Which graph products respect group state transfer?
2. If X is a path on five or more vertices, can non-trivial bijective (S, T )-GST ever occur?350

3. Which graph homomorphism are continuous with respect to the topologies of t-open sets?
4. Does case (d) of Proposition 3.4 ever occur?
5. Suppose X is a double star with S and T the natural partition of the vertices of degree one (elements

of S (resp., T ) are pairwise at distance two in X and each a 2 S is at distance three from each b 2 T .
In what cases does X admit (S, T )-GST?355

6. Assume X admits (S, T )-GST at time ⌧ with S \ T = ;. When is there a weighted quotient graph X̄

admitting PST from the sole image of S to the sole image of T?
7. Is it true that, for almost all graphs X, the poset ST (X, t) is trivial for all t 6= 0?
8. Suppose X admits (S, T )-GST at time ⌧ and let � denote the minimum distance from a to b over all

a 2 S, b 2 T . Must |V (X)| grow exponentially with �?360
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