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Abstract

We introduce the concept of group state transfer on graphs, summarize its relationship to other concepts in
the theory of quantum walks, set up a basic theory, and discuss examples.

Let X be a graph with adjacency matrix A and consider quantum walks on the vertex set V(X)) governed
by the continuous time-dependent unitary transition operator U(t) = exp(itA). For S,T C V(X), we say
X admits “group state transfer” from S to T" at time 7 if the submatrix of U(7) obtained by restricting to
columns in S and rows not in T is the all-zero matrix. As a generalization of perfect state transfer, fractional
revival and periodicity, group state transfer satisfies natural monotonicity and transitivity properties. Yet
non-trivial group state transfer is still rare; using a compactness argument, we prove that bijective group
state transfer (the optimal case where |S| = |T|) is absent for almost all 7. Focusing on this bijective case,
we obtain a structure theorem, prove that bijective group state transfer is “monogamous”, and study the
relationship between the projections of S and T into each eigenspace of the graph.

Group state transfer is obviously preserved by graph automorphisms and this gives us information about
the relationship between the setwise stabilizer of S C V(X) and the stabilizers of certain vertex subsets
F(S,t) and I(S,t). The operation S +— F(S,t) is sufficiently well-behaved to give us a topology on V(X); this
is simply the topology of subsets for which bijective group state transfer occurs at time ¢t. We illustrate non-
trivial group state transfer in bipartite graphs with integer eigenvalues, in joins of graphs, and in symmetric
double stars. The Cartesian product allows us to build new examples from old ones.
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2010 MSC: 05C50, 81P16.

1. Introduction

Theoretical investigations in quantum computing and quantum information theory have given rise to
a number of interesting questions in algebraic graph theory and nearby areas of combinatorics. Quantum
walks on graphs, in particular, seem both fundamental to our understanding of how to control the evolution
of finite-dimensional quantum mechanical systems and quite amenable to study using the standard tools of
spectral graph theory. Since their introduction in 1998 by Farhi and Gutman [1] as a powerful alternative
to classical Markov random processes, continuous time quantum walks on graphs and weighted graphs
have received much attention as researchers attempt to understand the potential advantages of quantum
computation over classical computation. While Farhi and Gutman allowed for a sparse real Hamiltonian
expressible as a sum of Hamiltonians each acting on a limited number of underlying qubits, Childs proved
in 2006 that we may restrict attention to Hamiltonians that are simply adjacency matrices of graphs having
maximum degree three and still efficiently simulate any quantum circuit [2].

With the path on two vertices as a classical motivating example [3], Christandl, et al. [4] first demon-
strated perfect quantum state transfer (PST) between vertices at arbitrary distance d using the product of d
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such paths to obtain the d-cube. Graph theorists specializing in spectral techniques soon developed a theory
around such questions (see [5]), showing that perfect state transfer is quite rare. Attention then broadened to
include closely related phenomena such as periodicity and fractional revival as well as approximations such
as pretty good state transfer [6], [5], among other interesting behavior of quantum walks on graphs such as
uniform mixing. With path-length distance between vertices as a reasonable surrogate for physical distance
between components in an implementation of a quantum circuit, the hope of finding perfect state transfer
between vertices far apart in a relatively small unweighted graph seems to have been dashed. Perfect state
transfer is not only rare, but the number of vertices must grow at least in proportion to the cube of the
distance between the endpoints (and possibly at a much larger rate) [7].

Overview of the paper. The present work is an outgrowth of the undergraduate senior thesis [8] of the first
author (LCB), completed in April 2019 under the supervision of the second author (WJM). In this paper,
motivated more by a desire to extend the theory than by any particular physical application, we introduce
“group state transfer” by which any initial state supported on one set S of vertices is carried to some state
supported on another set T'. In full generality, group state transfer occurs everywhere: every graph X admits
such state transfer from the empty set to any subset of vertices and from any set of vertices to the entire
vertex set V' (X). We call these cases “trivial”. In Lemma we see how group state transfer behaves with
respect to intersections, unions, complements, and time reversal. If X admits group state transfer from S
to T at time 7 then, at time 7, X admits group state transfer from any subset of S to any superset of T.
This naturally leads (Section [3]) to a partial order on such pairs with maximal pairs of particular interest. A
compactness argument is used in Lemma to show that for all but finitely many values of 7 in any finite
interval [to, t1], the only maximal elements are the trivial ones (0,0) and (V(X),V(X)). In most strongly
regular graphs, only trivial situations arise (Proposition [3.4)).

The fundamental inequality |S| < |T| in Lemma [3.2 can be viewed as an entropy bound and we focus
on bijective group state transfer, where |S| = |T'|, in Section Using Lemma [3.3] we prove (Theorem
that bijective group state transfer is “monogamous” in the sense that, aside from §' itself, a set S can
be transferred to at most one other vertex subset of the same size. Whenever we have bijective group state
transfer from S to some other set at time 7, we have group state transfer from S to itself at time 27 — i.e.,
S is “periodic at 27”. Godsil showed that the complement of a periodic set is again periodic; we show that
the collection of vertex subsets periodic at time 7 is closed under intersection and union. A fundamental
restriction on perfect state transfer is the idea of “parallel vertices” [9, Section 6.5]. Analogous to this, we
show in Lemma that, if X admits bijective group state transfer from S to T and E, is any primitive
idempotent of the adjacency algebra of X, then there is an |\S| x |S| unitary matrix mapping the columns
of F, indexed by S to the columns of F, indexed by T

Given a set S of vertices and a time ¢, there are natural targets R = (S, —t) and T' = F(S,t) for group
state transfer to and from S, respectively. In Theorem [5.1] we consider these maps I(-,-) and F(:,-) and a
time-dependent topology on the vertices of X whose clopen sets are those S C V(X) for which bijective
group state transfer occurs in X at time ¢ from S to F(S,t) (Corollary. This leads into some results in
Section [6] revealing how group state transfer behaves with respect to the automorphism group of the graph
X.

Turning toward examples, Section[7]explores the Cartesian product and join of two graphs. In Proposition
we show that if graph X admits group state transfer from S to T at time 7 and graph Y admits group
state transfer from S’ to T” at time 7, then the Cartesian product XY admits group state transfer from
Sx S toT xT" at time 7. In a simple reformulation of work of Coutinho and Godsil [9], we find non-trivial
group state transfer from V(X) to itself in any join X + Y (Proposition . In Section [8] we list some
further examples. For instance, in any bipartite graph X whose eigenvalue ratios are all odd integers, we see
group state transfer from one bipartite half to the other. Also in Theorem [8.1] we see periodicity on each
bipartite half under weaker conditions. Periodicity is also shown in the symmetric double star in Proposition
We finish the paper with a few more examples and a list of open problems.

IThe Major Qualifying Project (MQP) at Worcester Polytechnic Institute is a campus-wide capstone requirement of all
undergraduates.
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Our exposition of group state transfer is complemented well by the study of real state transfer in Godsil
[10] and, as we indicate in this paper, the existence of (S, .S)-GST may sometimes be yielded as a consequence
of real state transfer, with bounds on the minimum period 7 due to Godsil.

2. Preliminaries

Throughout, X = (V(X), E(X)) is a finite simple undirected graph on n vertices with adjacency matrix
A. For simplicity, we will sometimes write V(X) = {1,...,n}. When a and b are joined by an edge, we
write a ~ b or (ab € E(G)) and we use X(a) = {b € V(X) | a ~ b} to denote the neighborhood of ¢ in X.
The distance between a and b in X, denoted 9(a, b), is the length of a shortest path joining the two.

The unitary time-dependent transition operator U(t) = Ux(t) is given by

< — (it)" &
U(t) = exp(itd) = oA
k=0

where ¢ is any real number. As shown, for example, by Coutinho and Godsil in their text [9], the spectral
decomposition of A carries over to a useful expression for U(t). Throughout, we suppose that graph X
has d + 1 distinct eigenvalues 6y > 61 > --- > 64. We denote by E, the matrix representing orthogonal
projection onto the eigenspace belonging to 6,, V. = {y € C" | Ap = 0,¢}. Then we have A = Zf:o 0, E.,
where the various projections sum to the identity: Zf:o E,. = 1. This gives [9, Section 1.5]

d

Ut)=>» e"E, . (1)

r=0

3. Group state transfer and a partial order on subset pairs

We now give the central definition of this paper. We say graph X admits group state transfer from
S CV(X)toT CV(X) at time 7 if the evolution operator U(7) carries every initial state vector whose
support is contained in S to some vector whose support is contained in 7.

Definition 3.1. Let X be a graph and let S,T C V(X). We say that X has (S,T)-group state transfer,
or (S,T)-GST, at time 7 € R if, for all ¥ € C™ such that Suppv C S, the vector ¢ = Ux ()¢ satisfies
Suppo C T

For S C V(X), denote by (S) the subspace of C™ of vectors whose support is contained in S: (S) =
span {e,|a € S}. For S,T C V(X), we have (S,T)-GST at time 7 if U(7)(S) C (T).

Familiar examples. Trivial examples include S = () and T = V(X): for any R C V(X) and for any T € R,
we have both (0, R)-GST and (R, V(X))-GST at time 7. Our definition of group state transfer, while having
no direct physical motivation, generalizes some important phenomena that have received much attention in
the quantum information theory community recently. The graph X is said to be periodic at a at time 7 if
X has ({a}, {a})-GST at time 7 and, for b # a, we say that we have perfect state transfer (ab-PST) from a
to b in X at time 7 if X has ({a}, {b})-GST at time 7. The graph X has fractional revival on S = {a,b}
at time 7 if X has ({a}, S)-GST at time 7. We use the term proper fractional revival when this holds with
U(T)ap # 0. (Le., ({a},{a,b})-GST occurs at time 7 but ({a}, {a})-GST does not.) It is already known
that, if X has ({a}, {a,b})-GST at time 7 then either a is periodic or X has ({b}, {a,b})-GST at time 7; see,
e.g., Lemma 9.9.1 in [9]. So ({a}, {a,b})-GST at time 7 implies either that X is periodic at a, PST occurs
from a to b, or we have proper fractional revival on {a,b} in X (all at time 7). In [11], Chan, et al. say
graph X has generalized fractional revival from a € V(X) to B C V(X) if X admits ({a}, B)-GST but does
not admit ({a}, B)-GST for any proper subset B’ C B. For S C V(X), the set S is a periodic subset [9}
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Section 9.6] if X has (5, S)-GST at at some time 7 (in which case we say S is periodic at time T) In [12],
Chan et al. use the term K-fractional revival for a periodic subset and build a theory of K-fractional revival
which includes a ratio condition on eigenvalues that we do not have and a number of examples having some
overlap with the examples in [8]. (See also [L1].)

Basic results. We begin with a number of elementary observations that already impose a good deal of
structure on the group state transfer phenomenon.

Lemma 3.1. Let X be a simple undirected graph. Then
(a) X admits (S,V(X))-GST at time 7 for all S C V(X) and all times 7;
(b) X admits (0, T)-GST at time 7 for all T C V(X) and all times 7.
(¢) X has (S,T)-GST at time 7 if and only if X has ({a},T)-GST at time 7 for every a € S;
(d) if 8" C S and T C T and (S,T)-GST occurs at time 7, then (S’,T")-GST also occurs at time T;

(e) if, at time T, graph X has (S1,T1)-GST and (S3,T3)-GST, then X has both (S1 NSy, Ty NTs)-GST
and (Sl U SQ,Tl U TQ)—GST at time T5

(f) if X has (R,S)-GST at time o and X has (S,T)-GST at time 7, then X has (R,T)-GST at time

o+T;
(9) X has (S,T)-GST at time 7 if and only if X has (V(X)\T,V(X)\ S)-GST at time 7;
(h) X has (S,T)-GST at time 7 if and only if X has (S,T)-GST at time —.

Proof. Parts (a) and (b) are vacuous. For part (d), we simply observe that, if U(7)(S) C (T), then
U(T)(S") € (I") since S C S, T C T’ give (S"y C (S) and (T') C (I”), respectively. Part (e): suppose
@ € (S1USs) = (S1) + (S2). Then U(1)p € (T1) + (T2) = (T1 UTs). (The preservation of intersections is
proved in a similar manner.) Now (¢) follows from (d) and (e). Part (f) is also straightforward. Part (g)
follows from the fact that U(t) is a symmetric matrix. Part (h): since U(—7) = U(7)~* = U(r), we see that
U(7) and U(—7) have precisely the same set of all-zero submatrices. O

Example 3.1. Suppose graph X admits a;b;-PST at time T for i =1,... 4. Then, with S = {ay,...,as}
and T = {by,...,bs}, X admits (S,T)-GST at 7. For instance, the d-cube has PST at time 7/2 from any
vertez to its antipode. Let S C V(X)) and choose T to consist of the antipodes of the elements of S; this
provides us examples with |S| = |T| taking any value up to |V(X)| = n when X is the d-cube.

Lemma 3.2. If graph X has (S,T)-GST at T, then |S| < |T.
Proof. Since ¢ — U(7) is injective and U(7)(S) C (T'), we have dim(S) < dim(T). O

Example 3.2. Let (P, B) be a symmetric (40,13,4) design with bipartite incidence gme having eigen-
values +13, £3. For a € P, we have ({a}, B)-GST at time T = 7/2 (Theorem [8.1(b)) but (B,{a})-GST
can never occur by Lemma[3.2.

2Note that, in [9], a graph X is said to be “periodic” at time 7 if U(7) is a diagonal matrix; that is, every subset of V(X)
is periodic at time 7.
3Here, V(X) = PU B and a ~ b if one of these, say b € B, is a block containing point a € P.
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(V(X),0)

(V(X), V(X))

(0, V(X))

Figure 1: The partially ordered set on (V(X) x V(X), X) with (5’,T7") < (S,T) when S’ C S and T’ O T. Here, P denotes

y 2

the power set of V(X)) ordered by containment. The blue region indicates pairs (S,T) with |S| < |T'| and necessarily contains
ST (X, 7). Ideal GST occurs at the upper boundary of the blue region, with PST as a special case.

The state transfer poset. We now introduce the state transfer poset of a graph X. Writing P for the power
set of V(X),
P=PV(X))={SISCV(X)},

we begin with the poset (P x P, <) with partial order relation (S,T) < (S',7") if S C S’ and T C T. For
each time ¢, the state transfer poset of X at time t is the subposet of this partially ordered set, depicted in
Figure [} consisting only of those pairs (S, T) for which X has (S,T)-GST at time ¢; this smaller partially
ordered set is denoted ST (X,t). Note that, at any time ¢, ST (X, ¢) contains the trivial pairs (9,7 for all
T C V(X) and (S,V(X)) for all S C V(X) but may otherwise depend on t. One may alternatively view
this collection of pairs (S,T') for which X has GST at time t as a down-set (or “downward closed set”) in
the original poset (P x P, =). This is nothing more than the poset formed by the all-zero submatrices of
U(t); we have (S,T)-GST at time t precisely when the submatrix of U(t) obtained by restricting to rows
indexed by elements of V(X)\ T and columns indexed by elements of S has all entries zero.

Except at times 7 = 27k /n with k € Z, the complete graph K,, admits no non-trivial GST for n > 3. In
Figure [2| we give the state transfer poset for the path on two vertices X = Ko at time 7 = /2.

The extremal case. Let us say that X has mazimal group state transfer from S to T at time 7 if X has
(S,T)-GST at 7 and, whenever X has (S, 7')-GST at 7 for S C S’ and T C T, "= Sand T’ = T.
Focusing on a more rare situation, we say X has bijective group state transfer from S to T at time 7 if X
has (S,T)-GST at 7 and |S| = |T|. Lemma tells us that bijective implies maximal. Given S C V(X),
the maximal element of ST (X, t) of the form (S,T) is (S, F(S,t)) where

F(S.t) ={a e V(X) | Bp € (9) (e Ut)p #0)} ;
that is, X has (S, T)-GST at time ¢ if and only if T 2 F(S,¢).

Smallest non-trivial elements of the poset. The most common (and least interesting) case of non-trivial
GST (i.e., where S # () and T # V(X)) occurs where U(7) has some entry equal to zero: X exhibits
({a}, V(X)\ {b})-GST at time 7 if and only if U(7)p, = 0. Even this fails almost everywhere.

Lemma 3.3. Assume X is a connected graph. In any interval [to,t1] of finite length, there are only finitely
many t for which ST (X,t) contains non-trivial pairs.

Proof. We need only show that, for a,b € V(X), U(t)s,, = 0 for at most finitely many values of ¢ € [to, t1].
Assume not. By compactness, there exists a convergent sequence {5 }32 ; of values all satistying U (ty)p,q = 0.

Define
d

f(t) = Zewrt(Er)b,a .

r=0
)
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Then f(t) is analytic and f(t;) = 0 for all k. So, defining t* = limy_, « tx, we obtain f(t*) = 0 by continuity.
Similarly, every derivative of f is zero at t*. Since f is analytic, it must be the zero function. But we are
assuming that X is connected, so some element of the adjacency algebra (A) has a nonzero value in its
(b, a)-position. Since the 0, are algebraic integers, they remain distinct when reduced modulo 27; thus,
there is some € > 0 for which U(e) has d + 1 distinct eigenvalues. Therefore the set {U(t) | ¢ € R}, closed
under multiplication, generates (A) and there must be some time ¢ at which U(¢)y, # 0, giving us the
desired contradiction. O

Strongly regqular graphs. For some graphs X, there is no value of ¢ in (0, 27) for which ST (X, t) is non-trivial,
as we now illustrate.

A graph X is strongly regular with parameters (v, s, A, p) if |[V(X)| = v and | X (a) N X(b)| = &, A, p,
accordingly, as a = b, a ~ b and b & {a} U X (a), respectively. We say X is an srg(v, k, A, ). Write Ag = 1,
Ay = A and Ay = J — I — A; these form a vector space basis for the adjacency algebra of X. Standard tools
(e.g., [13, Chapter 10]) give us the eigenvalues:

t=r. 0= (A-utVR), =L (r\-u-Va)

where A = (u — \)2 4+ 4(k — p). The respective eigenvalue multiplicities for 6; and 6 are

@-1)(,5/;)_2&)7 _;(V_l_(y_u(%n_zﬁ)_

Except when f = g, 1 and 0 must be integers. It is well-known that Fy = =J,

v

f:;(z/—l-i-

1 (% 1+6

E, = (fA0+flAl+f( T0) A2>,
v K k+1—v
1 0 1+6

E, = <9A0+92A1+g(2)A2>-
v K k+1—v

Choose a base vertex b € V(X) and define the v x 3 matrix H whose columns are e;, Ae, and Asep. Since
the partition according to distance from b is equitable, we have AH = HB for

0 K 0
B=|1 A k=1-2X
0 u K—

({1,2},0)

7N\

({1,2},{1})  ({1,2}.{2})

N

.0 0
({11.0) t1,2}.{1,21) «23.0) ({1,2},{1,2})

/N /N

{1341} {1}.{2H) ({2}.{1}H) ({2}.{2}H) {1}y.{2}H)

N X/ /

{1}.{1,2}) ({2}.{1.2}) ({1}.{1,2})

0.0} 0.42}) w @.42)

(0,{1,2}) (0,{1,2})

({2}{1})

\\

({2}.{1,2})

Figure 2: The poset (P(V(Kz2)) x P(V(K2)), %) on the left (reverse inclusion highlighted in black) with the subposet identified
in red giving us the state transfer poset ST (K2, 5) for K2 at time 7 = 7/2.

6
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Omitting details, we find that U(t) = exp(itA) = e Ey + %1 By + €92 [, satisties U(t)H = HU'(t) where
U'(t) = e Fy + €1 F) + %2 Fy with

1 1 vk v—1—& f 1 01 -1-6;
YU —1-0 —01—Kk—M\0 146
Fob=—|1 kK v—=1—k |, == % K+ 1+/;( 1) 1=K Hl-‘ru(-&-l)
Vi1 k ve1-—k Vil 126 —01—k—Mi+u(1+61) 201 +1+k+N01+u(—1-061)
v—1—k v—1—k v—1—k
and
1 02 —1—06-
Fy = g 62 KN +p(—1-02) —02—Kk—=A02+p(1462)
- K K K
v 1.0y —Oa—k—A0a+u(14602)  205+1+k+A0a+pu(—1—62)
v—1—k v—1—k v—1—k

If the system is in initial state e, at time zero, then at time ¢, the state of the system is given by U(t)e, =
HU'(t)[1 o o ]T. So U(t)ep is constant on the neighbors of b and and on the non-neighbors of b. Define

t) — eilit +fei91t +g€i02t
t) = eirft 4 (f91/l<a)ewlt + (g@//ﬁ)ewﬁ
ho(t) = ettt + fA+6)/(k+1— V)ewlt +g(1+62)/(k+1— V)ewzt )

Then e} U(t)e, = Lhs(t) where § € {0,1,2} is the distance from a to b in X. This tells us that GST almost

R

never occurs on strongly regular graphs.

Proposition 3.4. Let X be a connected strongly regqular graph with non-trivial (S,T)-GST at time 7 €
(0,27). Then one of the following occurs:

(a) k,01,05 are all integers divisible by some D > 2 and 7 = 2¢n/D where ¢ is an integer, 0 < { < D;

() (v,k, A\, 1) = (nyn—m,n—2m,n—m), X is complete multipartite, the complement of a disjoint union
of |02] = 2 > 2 complete graphs K,, T = 21l/m;

(c) (vyk, A, 1) = (2m,m,0,m), X is complete bipartite and 7 = w/D where D is any positive divisor of k;

(d) (v,k,A\,pu) = (dm + 1,2m,m — 1,m) and 7 = 2w B/v for some integer B satisfying cos (7TBI/71/2) =
—1/4m.

Proof. We have done most of the work already. Part (¢) is handled in Theorem below.
First note that 1+ f+g = v; if |f —g| > 1, then ho(t) is never zero, by the triangle inequality. Likewise,
since

01 05 0; +1 0 +1
1+ f—=+g—=1 =0
+f/i+g/€ +fl€+1—l/+gl€+l—y ’
we can only have hy(t) = 0 when et = %1t = ¢t in which case U(t)e, = ;. These are the only times

at which h;(t) = 0 with the exception of complete multipartite graphs X = |02| K, (where 6, = 0) in which
case we obtain ({b},V(X)\ X (0))-GST at times t = 2w¢/m, maximal for ¢ odd.

In the case f = g, it is well-known that the parameters (v, k, A, 1) are as given in case (d) with f = g = 2
and 61,02 = 3(—1 £ /v). To obtain ho(7) = 0, we must have 7(6; — k) + 7(f2 — £) an integer multiple of
27. Writing 7 = —27B/v, we need

61’7’(9175) + 61’7’(917/{) — —]./KJ
which gives us the condition cos (7rB/V4u + 1) = —1/4p and no such examples are known.
The only case that remains to consider is ({b}, V(X )\ {b})-GST in the case where |f —g| = 1. Aleksandar
Jurisi¢ [pers. communication] showed that the strongly regular graph parameters with | f —g| = 1 are precisely

those in the family
(v, 5, A\, 1) = (4m? +4m + 2, 2m* +m, m? — 1, m?)

where m is a positive integer. And now a simple parity argument shows U(t) # 0 for all real ¢. O

7
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Example 3.3. The line graph of the complete graph X = L(K,,) has eigenvalues Kk = 2n — 4, §; = n — 4
and 03 = —2. For n even, case (a) holds and we have U(w) = I.

A regular graph X is distance-reqular if the partition according to distance from any vertex is an equitable
partition (and, hence, all these partitions admit the same quotient matrix B [14]). Connected strongly
regular graphs are precisely the distance-regular graphs of diameter d = 2. The analysis above for strongly
regular graphs extends to distance-regular graphs in the following way: if X is a distance-regular graph of
diameter d and X admits (S,T)-GST at time 7, then there exist i1,...,ix € {0,1,...,d}, k > 0, for which

ToO{veV(X)|(Fues, 1<j<k)(0(u,v)=1i;)}
where d(u,v) denotes path-length distance between u and v in X.

3.1. Bijective group state transfer

Block matrices. Let us consider the block structure of Ux(7) when X admits (S,7T)-GST at time 7. For
convenience, assume the vertex set V(X) = {1,...,n} is ordered so that

S\T={1,...,m}, I=8SNnT={n1+1,....n2}, T\S={n2+1,...n3}

where 1 < ny < ny < ng < n. Partition the rows and columns accordingly and write

S
Uir Uiz Uiz Uns 0 0 | Uz | Ups
U(r)=Ux(r) = p Usi Usp Uss Upy | _ | Uzi | Usz | Usg | Ung
Usr Usy Usz Usy Us1 | Usg | Uz | Usg
0 0 | Usg | Uga

Usi Usg Usz Uy

using the hypothesis of (S,T)-GST. Since U(7) is a symmetric matrix, we have

0 0 U3 0
0 [Uxp |Uxz| O
Uzt | Usz | Usz | Uz
0 0 | Usz | Uy

U(r) =

with U3y = Ul—';,, Uso = UQ—';,, Uy = U;l, and Uj; symmetric for j = 2, 3, 4.

A by-product of this calculation is a second proof of Lemma[3.1](g): if X has (S,T)-GST at time 7, then
X has (V(X)\T,V(X)\ S)-GST at time 7.

The Frobenius norm of Us; is 11, so the sum of the squared moduli of the entries of U3 is also ny, giving
another proof that |S| < |T|. If |S| = |T|, then U;3 = 0 is forced for j = 2,3,4. So, for |S| = |T|, we have

0] 0 |Us| 0

0 [Un| 0 [0

U(r) = U] 0] 0] 0
010 0 |Uu

with Usg and Uy symmetric unitary matrices. This gives us the following resul

Theorem 3.5. Assume that graph X has (S, T)-GST at time 7 and |S| =|T|. Write I = SNT. Then

4Godsil [personal communication] studied the case of a periodic subset (where S = T'), showing not only that V(X)\ S is
also periodic but proving that QsU(7)Qs belongs to the center of the algebra Qs.AQs where Qs =37, g eqe, is the diagonal
matrix projecting C™ orthogonally onto (S).
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(a) X has (T,S)-GST at T;

(b) X has (S\I,T\ I)-GST at ;

(¢) X has (T\I,S\I)-GST at 7;

(d) T is periodic at T;

(e) both S and T are periodic at time 27;

(f) the set R=V(X)\ SUT is periodic at T. O

Corollary 3.6. If X is a graph with (S,T)-GST at time 7 such that |S| = |T| but S # T, then there exist
non-empty disjoint S, T" C V(X) for which |S'| =|T"| and X has (S",T")-GST at time . O

In 2011, Kay [15] showed that perfect state transfer is monogamous: if a,b,c € V(X) and X has both
ab-PST and ac-PST, then ¢ = b. In |10, Corollary 5.3], Godsil generalized this to mixed states with real
density matrices. We now generalize this in a different direction.

Theorem 3.7. If X is a connected graph and X admits (S, R)-GST at time o and (S,T)-GST at time T
with |R| = |S| = |T|, then R € {S,T}.

Proof. We first prove that o and 7 must be commensurable real numbers. If not, then the set of remainders
{pr = k7 (mod o) | k € Z } (where py, satisfies 0 < pi, < 0 and (k7 — py)/o € Z) must be infinite. Re-index
to a subsequence of Z*1 if necessary so that, with ¢(k) = (kT — px)/o, we have 7, = kT — £(k)o converging
to some point 7* € [0,0). Applying Lemma ( f) and Theorem ( a,e), we find infinitely many distinct
times at which (K, L)-GST occurs for some K, L € {R, S, T}, contradicting Lemma [3.3] So there must be
some distinct & and &’ for which py = pxr and we have o = (k — k')7/(£(k) — £(k")).

Since o and 7 are commensurable, there exist nonzero integers k, ¢ such that fo = k7 and, without loss
of generality, £ is odd. At time fo, X admits (5, R)-GST and either (5, 5)-GST or (S,T)-GST. Thus R = S
or R=T. O

4. Eigenspace geometry

Let X be a graph on n vertices with adjacency matrix A and spectral decomposition A = Efzo 0.E,

with g, ..., 0, distinct. The adjacency algebra A = spanc {In, A A2 .. } = {Zi:o A" | ag,...,aq € C}
of X contains Ey, ..., E4 as well as Ux (t) for each t € R. This is properly contained in the centralizer algebra

C(A) = {M e C"™"|MA =AM} of A. The permutation matrices in C(A) are simply those representing
elements of the automorphism group, {P, | 0 € Aut(X)}.

The action of U(T) on an eigenspace. Suppose X admits (S,T)-GST at time 7 with |S| = |T|. As in the
previous section, write U(7) in block form and partition E,. into blocks in the same way:

0 0 |Uis] 0O En | B | Eig | B

B 0 |Ux| O 0 0 | Fo1 | oo | Bag | By
U=0(r) Usi| O 0 0 |’ BE=E= Es1 | By | B3 | B3y
0 0 0 | Uy Ey | By | Bgz | Esa

Abbreviating ¢’7 = \,., the equations EU = UE = )\, E give us a system of equations relating the various
blocks
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Ei3Us1 = Uisbs = MEn EnwUiz = UisbEsz = AEgs
Eo3Us1 = UxpFEy = A Eo Eo Uiz = UypFErs = A Eog
E33Us1 = Uz B11 = A Esy E3 Uiz = Uz Bz = A Es
Eup3Ust = UnEyn = MEgy EnUs = UuBys = AEys
E1Usy = UiszEzs = MErg F1Uy = Uisbsy = AN Eyy
EooUsy = UxpFr = MNEy EoyUyy = UppFEoy = A Eoy
EsUsy = UsiE1a = A\ Es3g Es Uy = UsiEiy = A Esy
EpUsp = UuFEsy = MEgp EuUyy = UpBEy = MNEy

where we know that both E and U are symmetric and U is unitary. So Uiz, Uss, Us1, Uy are all unitary.
This shows that S\ I and T\ I are “parallel” subsets in the following sense.

Lemma 4.1. Let X be a graph with adjacency matriz A having spectral decomposition A = Zf«l:o 0. E, with
0o, --.,0q distinct. Let S,T C V(X) with |S| = |T| having orthogonal projections Qs = > ,cq €a€q and
Qr = gcr eqe,s onto (S) and (T), respectively. If X admits (S,T)-GST, then, for eachr =0,...,d, there
exists a unitary matriz N, such that E.QsN, = E.Qr. In particular span{FE,e, | a € S} = span{E, e, |
aeTh.

Proof. Write M = \.1U3, so that

By Ei3
Eo Ess
M =
Es; Es3
Eq Ey3
from above. Choose
M]|0]oO 0 olo|rI]o Ei3 | Eio | E11 | By
, | 0]T]0 0 | 0|I]0]O s | Fas | Eag | Eoy | By
N = o ToTar"To | P= TToToTo | so that FE,N' = T | By | Ba1 | B
000 I 00|01 Ey3 | By | By | Egg
and N, = N'P satisfies E,.QsN, = E,Qr as desired. U

5. Discrete topology

The elementary structure seen in Lemma motivates us to fix a time ¢ and view those sets S for
which there exists bijective (S, T)-GST at time t for some T as “closed sets”. As there is a rich history
of topological methods in combinatorics (see Bjorner, [16l Chapter 34] for an early survey), we hope this
viewpoint will help us understand the connection between GST phenomena in related graphs.

Three maps on subsets of vertices. In Section [3] we introduced a time-dependent function F : P — P given
by
F(S,t) ={a e V(X) | ea LU(t)(S)}.

Mirroring this, consider

1(S,t) ={a e V(X) | e € U(t)(5)}.
Immediately, we see that the following are equivalent for S,T C V(X):
e X has (5,T)-GST at time T;
e F(S,7)CT;
e SCUT,—7).

10
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Now define the t-closure of S C V(X)) as
() = F(F(S,1), 1) .

Example 5.1. As an example, consider the path X = Ps. For convenience, write V(X) = {1,2,3} with
1~2~ 3 so that

01 0
A=AX)=|1 0 1
01 0

Clearly A3 = 2A, so P3 has minimal polynomial p(z) = 2% — 2z and eigenvalues 0, £v/2. We compute

4 (10 -1 1 1 01 ; 010
elAt — 3 0 0 0 |+ 3 cos(tv2) | 0 2 0 | +—=sin(tv2) | 1 0 1
-1 0 1 1 01 V2 01 0

Observe that, fora = 1,2,3, Py exhibits ({a}, {4—a})-GST att = 2m~+1)7/\V/2 (m € Z), exhibits ({a}, {a})-
GST att = mmv/2 (m € Z), and that P3 exhibits only trivial GST at any other time. Consequently, for every
subset S C V(X) and every t = nw/v/2 (n € Z) we have Cl(S) = S. But when ?t ¢Z C({a}) =V(X)
for each a € V(X). (Note that this example also illustrates Theorem @ below; X 1is bipartite and, for
a =1/v2, aA has integer eigenvalues.)

Theorem 5.1. Let X be a graph and let S,T C V(X). Then, for any t € R,
(a) S C T implies F(S,t) C F(T,t);
(b) F(SNT,t) C F(S,t) NF(T,¢t);
(¢c) F(SUT,t) = F(S,t) UF(T,1t);
(d) S C T implies 1(S,t) C (T, t);
(e) I(SNT,t) =1(S,t) NI(T,t);

(f) (SUT,t) D I(S,t) UNT,t);
(9) S C T implies Cli(S) C Clu(T);
(h) S CC(S);

(i) CL(SNT) C Cly(S) N Cl(T);
(i) Cl(SUT) = Cly(S) UC(T).

Proof. The proofs are all elementary. We include proofs of (b), (f), and (h)-(j) and note that (a), (d), (g)
follow from (b), (e), (i), respectively. First, we prove part (b): if u € F(SNT,t) then there is some v € SNT
with e, U(t)e, # 0. Since v € S, u € F(S,t) and since v € T, u € F(T,t). For (f), take u € 1(S,t) so that
e, € U)(S), giving e, € U()(S) + U){(T) = U(t)(SUT) and repeat this with S and T swapped. To
prove (h), take u € S and set ¢ = U(t)e,, € U(t)(S). Then Supp(p) C F(S,t) giving ¢ € (F(S,t)) which, in
turn, implies e,, € F(F(S,t), —t) = Cl;(S). Part (i) (resp., (j)) follows by applying (b) (resp., (¢)) twice. O

Discrete topology. Let us say that S C V(X)) is closed at time t (or simply t-closed) if S = Cl(S) and open
at time t if V(X)\ S is closed at time ¢. Note immediately that S is t-closed if and only if X admits bijective
group state transfer from S to F(S,¢) at time ¢ by Lemma Combining Lemma ( g) and Theorem
( a), we see that S is t-closed if and only if S is t-open. From Lemma we know that, for most ¢, we
obtain only the indiscrete topology {0, V(X)} and Example illustrates a case where the discrete topology
arises: at time t = 7/2, every vertex subset of the d-cube is both ¢-open and t-closed.

11
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Corollary 5.2. Let X be a graph. At each time t, the t-open sets form a topology on V(X). O

Proof. Both ) and V(X)) are t-closed for all ¢. By parts (h) and (i) of Theorem the intersection of any
two t-closed sets is ¢-closed and, by part (j), the union of any two ¢-closed sets is t-closed. O

Definition 5.1. For graphs X and Y, a function o : V(X) — V(Y) is continuous at times to and ¢1 (or
continuous at time tg = t;) if a=1(S) is tg-open in V(X) for every ti-open S C V(Y).

It is worthwhile to consider some examples of functions that are continuous in this sense. Proposition
yields that any automorphism of X is continuous at each time ¢. The identity function V(X) — V(X)
is continuous at times kt and ¢ for each integer k and each ¢ € R (Lemma [3.1](f) and Theorem [3.5](a,¢)).
Since, at time to = k5 (k € Z), the topology of t-open sets on the n-cube is the discrete topology, any graph
homomorphism from the n-cube to a graph Y is continuous at times ty and any t;. We will see below that
the projection map from a Cartesian product of graphs to any individual factor is continuous relative to
the two topologies at time ¢t. Returning to our previous example of P, the topology of t-open sets on Pj is
trivial for almost all ¢ > 0, but at each t = nn/v/2, the topology is {§,S,T,V}. As a result, for instance,
the functions f : V(P;) — R that are continuous with respects to the GST-induced topology at t = nw/v/2,
where R is endowed the the natural topology, are exactly those functions for which f(1) = f(3).

6. GST and the automorphism group

We continue with a graph X on vertex set V(X) = {1,...,n} and adjacency matrix A. Using S,, to denote
the symmetric group, we denote by Aut(X) the automorphism group of X: if P, is the permutation matrix
representing the bijection o : V(X) — V(X)) sending a € X to a?, then Aut(X)={c € S, | P,A= AP,}.
For a € V(X) and H < Aut(X), the orbit of a under H will be denoted Oy (a) = {a” | n € H} and, writing
ST = {a" | a € S}, the orbit of S C V(X) under H will be denote O (S) = {S" | n € H}. The setwise
stabilizer of S is Stab(S) = {o € Aut(X) | 7 = S}.

Proposition 6.1. Let X be a graph, S,T C V(X). Assume X admits (S,T)-GST at time 7. Then

(a) for any o € Aut(X), X admits (S7,T7)-GST at time 7;

(b) setting H = Stab(S) and T' = ﬂ T7, X admits (S,T")-GST at time 7;

neH

(c) if |S| = |T|, then Stab(S) = Stab(T).
Proof. For part (a), u € S gives U(7)e, = P,U(7)P; e, = P, for some ¢ € (T). Now part (b) follows
by applying (a) to each 0 € H and using Lemma[3.1)(e). Part (c¢) follows from (b) using Theorems and
(a). O

Using this, together with Lemma ( ¢), we have

Corollary 6.2. If X has (u,v)-PST at 7, then X has both (O(u), O(v))-GST at 7 and (O(v),O(u))-GST
at T, where O(u) and O(v) denote the orbit under any subgroup H of Aut(X). O

Proposition 6.3. Let X be a graph, S C V(X); write R =1(S,t) and T = F(S,t). Then
(a) Stab(S) < Stab(R) and Stab(S) < Stab(T');
(b) 10(5)] = |O(R)| and |O(S)| = [O(T)].

Proof. Suppose o € Stab(S). For v € T, locate ¢ € (S) with e] U(t)yp # 0. Then e,c = Pye, and
el Ut)p = el U(t)y # 0 for ¢ = P,ap € (S) since o € Stab(S). This shows v € T. On the other hand, if
v € R, then ¢ = U(t)e, € (S) so U(t)eye = U(t)Pye, = Py € (S) since o stabilizes S. This shows that o
stabilizes R. Part (b) now follows by the Orbit-Stabilizer Theorem. O

Lemma tells us that we almost always have R = () and T' = V(X); in such cases, the above result is
vacuous.

12
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7. Products and joins

Proposition 7.1. Let X7 and X2 be connected graphs. Assume that X1 has (S1,T1)-GST at time T and Xo
has (S2,T2)-GST at time 7. Then X10X5 has (S X Sa, Ty X Ty)-GST at 7, where O denotes the Cartesian
graph product.

Proof. Let Uy (t) = Ux, (t) and Us(t) = Ux,(t). We know from [9, Lemma 1.3.1] that
Ux,0x,(t) = U1(t) @ Uz(2).
Suppose that graph X; has (S1,T1)-GST at 7, and graph Xs has (S2,T2)-GST at 7. If (a1,as) € S1 X Sa,
then we may write €4, q,) = €a; ® €q, and we compute
Ux,0x; (H)€(a1,a2) = (U1(t) @ Ua(t)) (€, ® €a,) = (Ur(t)ea,) @ (Uz(t)ea,) -
Since Ui (t)eq, € (T1) and Us(t)eq, € (T2), we have Ux,ox, (t)€(ay,a0) € (T1 X T2). O
As a special case, we have the following, using Lemma ( a).

Proposition 7.2. Let X and Y be connected graphs, so that X has (S,T)-GST at 7. Then XOY has
(SxV(Y), T xV(Y))-GST at . O

One curious consequence comes in the form of the following corollary.

Corollary 7.3. If m; : (a1,a2) — a; is the projection from XOY onto X orY in the casesi =1 and i = 2,
respectively, then m; is continuous with respects to the GST-induced topology at each time t.

Proof. Without loss of generality, take ¢ = 1 and suppose S C V(X) is t-closed in X. Then X admits
bijective (S, F(S,t))-GST at time ¢ and therefore XOY admits bijective (S x V(Y),F(S,t) x V(Y))-GST at
time ¢. Therefore

7 (S) =S x V(Y)
is t-closed, so for any t-closed S in X, 7, '(S) is t-closed in XOY. O

The join. Let X7 and X5 be connected graphs on disjoint vertex sets and define X = X7+ X5 to be the graph
on vertex set V(X) = V(X;1)UV(Xy) with edge set E(X) = E(X1)UE(X2)U{ab|a € V(X1), be V(Xa)}.
The graph X is the join of X; and X». Denoting the adjacency matrices of the three graphs by A(X7),
A(X32) and A(X), we have

AXy) | T
AX) =
= [
where J is the all ones matrix with n; = |V(X1)| rows and ng = |V(X3)| columns. In the case that X3

and X, are regular graphs, a basis of eigenvectors for A(X) can be derived from eigenbases for A(X;) and
A(X>3) as shown, for example, in [9) Section 12.1-2]; from this, the following result is immediate.

Proposition 7.4. Assume X is the join of the ki-regular graph X, on ny vertices and the ko-reqular graph
Xy on ng vertices. Let A = (k1 —k2)? +4nyny. Then X admits (V(X1),V(X1))-GST and (V(X3),V(X2))-
GST at time T = 2677/\/Z for each integer £.

Proof. The equitable partition {V(X),V(Y)} of the vertex set of X + Y has quotient matrix [ Sl ZQ }
1 ko

with eigenvalues 6y, 01 = % (kl + ko £ \/Z) Set

. 1 . 0 . . . .
1= {0} , Jo = [1] ; ug = naj1 + (6o — k1)j2, up = naji + (01 — k1)Ja2 -

13
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Then A(X)up = 0pup (h=0,1). It follows that every eigenvector v of X; orthogonal to the all-ones vector
gives us an eigenvector of X by simply extending by an all-zero vector. So we may expand

d
1 1
AX) = QTET where E():inuT, Elziulu—r
x)=2 o] 00 e

and each F,. is block diagonal for r > 2. Since Zi:o E,. =1, Ey + F; is block diagonal as well. So, for any
¢ € Z, we may take 7 = 27/v/A so that e%™ = €7 and U(r) = Zf«l:o e’"TE,. is block diagonal. This
guarantees that U(7)(V(X1)) = (V(X7)) as desired. O O

8. Examples

In previous sections we have seen mostly trivial examples of group state transfer, but also those cases
that arise from perfect state transfer. We now discuss non-trivial examples of this phenomenon.

Example 8.1. The siz-cycle Cg can be expressed as the tensor product C3 x Py of C3 and Ps. If we number
the vertices 1,2,3,4,5,6 in cyclic order and set S = {1,3,5}, then Cg admits (S,S)-GST at time .

This is a special case of the following phenomenon.
Theorem 8.1. Let X be a connected bipartite graph with bipartition V(X) = Vo U V7.

(a) If, for some a > 0, all eigenvalues of aA are integers, then X admits (Vo,Vy)-GST and (V1,V1)-GST
at time T = T,

(b) If, for some o > 0, all eigenvalues of aA are odd integers, then X admits (Vo,V1)-GST and (V1,Vp)-
GST at time T = wa/2.

Proof. Suppose 0, is an eigenvalue of X whose projector has block form FE, = { ?,00 ?01 ] Since X is
10 | £11
Foo | —F
bipartite, there is an index 7’ such that 6, = —0,. and E,. = 90 ot | So
—Fio| Fu

R Foo | Fou 1 emieT Foo ‘ —F _ (61:9'"7 + e—l:erT)FOO ‘ (ezjéwr _ 6_1:97‘T)F01
Fo | Fih —Fi ‘ i1 (eww _ 6—197~T)F10 ‘ (ezew +€_ZGTT)F11 .

Let us assume first that A is invertible so that A =3, _, (0, E; + 0,/ E,). Let us first consider case (b): at
time 7 = Ta /2, €™ = +i, 77 = Fi and the diagonal blocks of €!*" E,. + %7 E,, vanish. Similarly, in
case (a), the off-diagonal blocks of €™ E,. 4 ¢~ E,, vanish at time 7 = /2. Summing over the positive
eigenvalues 6, gives our result, except in case (a) where A is singular. To finish the argument we note that
the zero eigenspace of a bipartite graph admits a basis of eigenvectors each supported on just one of Vj,
V1. So the orthogonal projection Ej is a block diagonal matrix and this does not affect the block diagonal
structure of U(7). O

Remark 8.1. The existence of a time T at which GST exists in part (a) of Theorem@ (but not its value)
is also a corollary of Godsil’s Theorem 2.2 and Lemma 2.3 in [10]. The results in [10] also imply periodicity
of Vo and Vi at time 27 in part (b) above.

The symmetric double star. In [17], Fan and Godsil study pretty good state transfer on graphs composed
of gluing together two stars. Let X be the graph (denoted Sj j in [17]) on vertex set V(X) = {1,...,n}
where n = 2k + 2 with E(X) ={la|2<a<k+2}U{2a| k+ 3 <a <2k+2} and adjacency matrix

ol1]17] o0
110l 0 |17
A= 1ol oo
o1l oo
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where 1 is the k x 1 matrix of all ones. The eigenvalues are given, for example, in [17];

eozé(um), el%(—lwmy 62 = 0, egzé(l—wﬂ?l), o1 =5 (~1- VIR +1)

N | =

with each nonzero eigenvalue having multiplicity one.
Proposition 8.2. At time 7 = 2w /\/4k + 1, the symmetric double star X admits (S,S)-GST for S = {1,2}.

Proof. Let 09 = 03 = +1 and 01 = 04 = —1 and note that 62 — k = 0,0, for r # 2. The orthogonal
projection onto the eigenspace of A belonging to 8, (r # 2) is

0% | 0,02 6,17 | 0,6,17

o 1 Uref 93 ,.6,17 6,17
" 4k + 20,0, 0,11 o.0,1 J orJ
0.0,1 0,1 ord J

where J is the k& x k matrix of all ones. The null space of A is orthogonal to (S) so Fy plays no role here.
Since
93’7’ = 007‘ - 27T, 947’ = 917’ - 27T, 04 = —90, 93 = —91,
we have
ei03‘r — ei90T7 ei047' — eiel‘r — W A
This gives us ‘ ‘
U(r) = €7 (Eo + Es) + " (Ey + Ey4) + By

having its first two rows equal to

U(T)ll ‘ U(T)lg ‘ OélT ‘ ﬂl—r
U(T)21 ‘ U(’T)QQ ‘ 51T ‘ Oé].—r

where _
_ e v Ort o0,
_;4k+2arar’ p= Z4k+2aw

Writing K = 4k + 1, we have

6, N s 1 1+¢E+17\/R _
4k+290 4k+293_2 K+\/[? K—\/E o
and
01 n 04 _1 —1—}—\/?_'_—1—\/]? .
4k —20,  4k—20, 2| K-VvK K+VK|
giving us o = 8 = 0 as desired. 0

Denote by T; the leaf vertices of the symmetric double star X adjacent to vertex ¢ (i = 1,2). At time
T =m, X admits (5,S5)-GST for S = {1} UT, and S = {2} UT} and, at time 7 = 2, (S, 5)-GST for each
of S ={1}, {2}, T1 and T5.
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9. Some problems

We now list some questions that we consider worthy of study.

A I

Which graph products respect group state transfer?

If X is a path on five or more vertices, can non-trivial bijective (S,T)-GST ever occur?

Which graph homomorphism are continuous with respect to the topologies of t-open sets?

Does case (d) of Proposition ever occur?

Suppose X is a double star with S and T' the natural partition of the vertices of degree one (elements
of S (resp., T') are pairwise at distance two in X and each a € S is at distance three from each b € T..
In what cases does X admit (S,7T)-GST?

Assume X admits (S, T)-GST at time 7 with SN T = (). When is there a weighted quotient graph X
admitting PST from the sole image of S to the sole image of 77

Is it true that, for almost all graphs X, the poset ST (X, t) is trivial for all ¢ # 07

Suppose X admits (S,T)-GST at time 7 and let § denote the minimum distance from a to b over all
a €S, beT. Must |V(X)| grow exponentially with §7
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