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For K an infinite field of characteristic other than two, consider the action of the special
orthogonal group SOt(K) on a polynomial ring via copies of the regular representation.
When K has characteristic zero, Boutot’s theorem implies that the invariant ring has
rational singularities; when K has positive characteristic, the invariant ring is F -regular,
as proven by Hashimoto using good filtrations. We give a new proof of this, viewing the
invariant ring for SOt(K) as a cyclic cover of the invariant ring for the corresponding
orthogonal group; this point of view has a number of useful consequences, for example,
it readily yields the a-invariant and information on the Hilbert series. Indeed, we use
this to show that the h-vector of the invariant ring for SOt(K) need not be unimodal.
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1. Introduction

Let X be an n × n symmetric matrix of indeterminates over a field K, and let

It+1(X) denote the ideal of the polynomial ring K[X ] generated by the size t + 1

¶Corresponding author.
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A. Conca, A. K. Singh & M. Varbaro

minors of X . For t a positive integer with t + 1 ≤ n, we refer to K[X ]/It+1(X)

as a symmetric determinantal ring. The ring K[X ]/It+1(X) is a Cohen–Macaulay

normal domain of dimension(
n + 1

2

)
−

(
n + 1 − t

2

)
,

as proven in [25]. These rings have been studied extensively, in part because they

arise as invariant rings for the natural action of the orthogonal group

Ot(K) := {M ∈ GLt(K) |M trM = id} (1)

as follows: for Y a t × n matrix of indeterminates, Ot(K) acts K-linearly on K[Y ]

via

M : Y �−→ MY for M ∈ Ot(K).

This is a right action of Ot(K) on the polynomial ring K[Y ], corresponding to a left

action of Ot(K) on the affine space At×n
K . Note that Y trY �−→ Y trM trMY = Y trY

for M ∈ Ot(K), so the entries of Y trY are invariant under the action; when the

field K is infinite of characteristic other than two, the invariant ring is precisely

the K-algebra generated by the entries of Y trY , see [14, Theorem 5.6], and is

isomorphic to the symmetric determinantal ring K[X ]/It+1(X) via the entrywise

map X �−→ Y trY . We use this to identify the rings K[X ]/It+1(X) and K[Y trY ].

By [17, 18], the ring R := K[Y trY ] has class group Z/2, and is Gorenstein

precisely when n ≡ t + 1 mod 2. Taking p to be a prime ideal that serves as a

generator for the class group, it follows that the symbolic power p(2) is isomorphic

to R. We choose an explicit isomorphism p(2) ∼= R so that the cyclic cover of

R with respect to p is precisely the invariant ring for the action of the special

orthogonal group SOt(K). This gives a straightforward approach towards studying

the invariant ring K[Y ]SOt(K), for example towards determining its a-invariant and

information regarding the Hilbert series.

When K is an infinite field of characteristic two, the groups Ot(K) and SOt(K)

coincide when taking Ot(K) to be the group as defined in (1); the invariant ring in

this case is

K

[
Y trY,

t∑

i=1

yij

∣∣∣∣∣ 1 ≤ j ≤ n

]
,

see [31, Proposition 17], and a presentation is provided by [31, Proposition 23]. The

reader is warned that there are varying definitions used for the orthogonal group

in characteristic two, see for example [30, p. 10].

Section 2 includes some generalities on cyclic covers; these are used in Sec. 3

where we compute the a-invariant of K[Y ]SOt(K) and also record a proof that

this ring is F -regular. Section 4 is devoted to the h-vector of K[Y ]SOt(K), i.e. the

coefficients of the numerator of its Hilbert series: the key result here is that this

invariant ring is a semistandard graded Gorenstein normal domain, for which the

h-vector need not be unimodal; the context for this is discussed as well in Sec. 4.
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Invariant rings of the special orthogonal group

2. Cyclic Covers and F -Regularity

Let R be a normal domain. By a divisorial ideal of R, we mean a nonzero intersection

of fractional principal ideals. Let a be a divisorial ideal that has finite order m when

viewed as an element of the divisor class group of R. Then a(m) = αR, for an element

α in the fraction field of R. Set

T := 1/α1/m, (2)

which is an element in an algebraic closure of the fraction field of R; the choice of

α or the mth root is not unique. The cyclic cover of R with respect to a is the ring

R̃ := R[aT, a
(2)T 2, a

(3)T 3, . . .],

viewed as a subring of R[T ]. Since

a
(m+k)T m+k = αa

(k)T m+k = a
(k)T k

for each k ≥ 0, the ring R̃ is a finitely generated reflexive R-module; specifically,

one has an R-module isomorphism

R̃ ∼= R ⊕ a ⊕ a
(2) ⊕ · · · ⊕ a

(m−1).

When the ring R is N-graded and a is a homogeneous divisorial ideal of finite

order m, there exists a homogeneous element α with a(m) = αR, and the N-grading

on R extends to a Q-grading on R̃ obtained by setting

deg T := −(deg α)/m.

It turns out that this is a Q≥0-grading on R̃, and that [R̃]0 = R0, see [32, Proposi-

tion 4.2].

Suppose that the characteristic of R is zero or relatively prime to m, and that

p is a height one prime ideal of R. Then the ideal aRp is principal; take r to be a

generator. Since rm = αu, for u a unit in Rp, it follows that

R̃p = Rp[rT ] ∼= Rp[u
1/m],

so Rp −→ R̃p is étale. In particular, under this assumption on the characteristic,

the ring R̃p is regular for each height one prime of R; since each a(k) is reflexive,

the ring R̃ also satisfies the Serre condition S2, and is hence a normal domain.

By [36, Theorem 2.7], F -regularity is preserved under finite extensions that are

étale at height one primes, so one has:

Theorem 2.1 (Watanabe). Let R be an N-graded ring that is finitely generated

over a field R0 of characteristic p > 0, and let R̃ be the cyclic cover of R with

respect to a homogeneous ideal of finite order relatively prime to p. Then, if R is

F -regular, so is R̃.

The restriction on the characteristic is removed in [9, Theorem C]. For the theory

of F -regularity in the graded setting, we point the reader towards [22]. When R

is an N-graded ring finitely generated over a field R0 of positive characteristic, the
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A. Conca, A. K. Singh & M. Varbaro

notions of weak F -regularity, F -regularity, and strong F -regularity all coincide as

proven in [27], so we do not make a distinction between these in the present paper.

The F -regularity of generic determinantal rings and of Plücker coordinate rings

of Grassmannians is proven as [22, Theorem 7.14]; the proof therein is read-

ily adapted to symmetric determinantal rings, as we show next. For a different

approach, see [26, §4.1].

Theorem 2.2. Let X be an n×n symmetric matrix of indeterminates over a field

K of positive prime characteristic. Then the ring K[X ]/It+1(X) is F -regular.

Proof. If n ≡ t + 1 mod 2, then K[X ]/It+1(X) is Gorenstein; otherwise, enlarge

X to a symmetric matrix X̃ of size n + 1, in which case the ring K[X̃]/It+1(X̃)

is Gorenstein, and contains K[X ]/It+1(X) as a pure subring. Since F -regularity

is inherited by pure subrings, it suffices to prove the desired result when R :=

K[X ]/It+1(X) is Gorenstein.

The a-invariant of R is computed in [3] and [11], and recorded in the following

section; in particular, a(R) < 0. We next claim that R is F -injective, equivalently

F -pure, since the notions coincide in the Gorenstein case. This follows by [13, The-

orem 2.1] in combination with the main result of [10] asserting that the “diagonal”

initial ideal of It+1(X) is square-free and defines a Cohen–Macaulay ring.

The F -regularity of R now follows from [22, Corollary 7.13], once we verify that

the localization Rxij
is F -regular for each xij . Using the lemma below and induction

on t, the localizations Rx11
and R∆ are F -regular; but then Rp is F -regular if p is

a prime ideal such that x11 /∈ p or ∆ /∈ p. It follows that Rp is also F -regular if

x12 /∈ p. Since we have accounted for the diagonal variable x11 and the off-diagonal

variable x12, the symmetry implies that Rxij
is F -regular for each xij .

Lemma 2.3. Let R := K[X ]/It+1(X), where X is a symmetric n × n matrix of

indeterminates. Then:

(1) The ring Rx11
is isomorphic to a localization of a polynomial ring over

K[X ′]/It(X
′), where X ′ is a symmetric (n− 1)× (n− 1) matrix of indetermi-

nates.

(2) For ∆ := x11x22 − x2
12, the ring R∆ is isomorphic to a localization of a poly-

nomial ring over K[X ′]/It−1(X
′), for X ′ a symmetric (n− 2)× (n− 2) matrix

of indeterminates.

For a proof, see [24, Lemma 1.1]; the argument also appears implicitly in [28].

3. The a-Invariant

Let Y be a t×n matrix of indeterminates over a field K. In this section, we work with

the grading on the subring R := K[Y trY ] that is induced by the standard grading

on the polynomial ring K[Y ]. Note that under the identification of K[X ]/It+1(X)
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Invariant rings of the special orthogonal group

with K[Y trY ], this corresponds to taking deg xij = 2 for each i, j. With this grading,

[3, Theorem 4.4] or [11, Theorem 2.4] imply that the a-invariant of R is

a(R) =

{
−t(n + 1) ifn ≡ t mod 2,

−tn ifn 
≡ t mod 2;

more generally, the graded canonical module of R is

ωR =

{
p(−tn + t) ifn ≡ t mod 2,

R(−tn) ifn 
≡ t mod 2,

where p is the ideal of K[Y trY ] generated by the maximal minors of the first t rows

of Y trY , i.e. by the maximal minors of the product matrix

»
¼¼¼¼¼½

y11 y21 · · · yt1

y12 y22 · · · yt2

...
...

...
...

y1t y2t · · · ytt

¾
¿¿¿¿¿À

»
¼¼¼¼¼½

y11 y12 y13 · · · · · · y1n

y21 y22 y23 · · · · · · y2n

...
...

...
...

...
...

yt1 yt2 yt3 · · · · · · ytn

¾
¿¿¿¿¿À

.

Using the identification of K[X ]/It+1(X) with K[Y trY ], the ideal p is prime of

height one by [25, Theorem 1], and generates the class group of R by [17]. The

symbolic power p(2) is the principal ideal of R generated by the determinant of

the first t columns of the product matrix displayed above, i.e. p(2) is generated by

the square of

∆ := det

»
¼¼¼¼¼½

y11 y21 · · · yt1

y12 y22 · · · yt2

...
...

...
...

y1t y2t · · · ytt

¾
¿¿¿¿¿À

.

Choosing a unit as in (2), set

T := 1/∆.

The generators of pT are then identified with the maximal minors of the matrix Y ,

so that the cyclic cover R̃ of R with respect to p is the subring of the polynomial

ring K[Y ] generated by the entries of the product matrix Y trY along with the

maximal minors of Y . It is clear that these generators are fixed under the action of

the special orthogonal group

M : Y �−→ MY for M ∈ SOt(K).

When the field K is infinite of characteristic other than two, the invariant ring is

precisely the K-algebra generated by these elements [14, Theorem 5.6].
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A. Conca, A. K. Singh & M. Varbaro

We determine the graded canonical module of R̃; while the semisimplicity of

SOt(K) may be used to verify that R̃ is Gorenstein, [23, p. 123], our goal is to

additionally obtain the a-invariant of R̃. Since deg T = −t, one has

R̃ = R ⊕ p(t).

Let m denote the homogeneous maximal ideal of R. For an N-graded R-module

M , we use Hom(M, R/m) to denote its graded dual as in [19, p. 184]. Setting

d := dim R, the graded canonical module of R̃ may be computed as

ωR̃ = Hom(Hd
m(R̃), R/m) = Hom(Hd

m(R), R/m) ⊕ Hom(Hd
m(p(t)), R/m).

The first term in this direct sum is ωR, while the second is

Hom(Hd
m(p(t)), R/m) = Hom(Hd

m(ωR) ⊗R ω
(−1)
R ⊗R p(t), R/m)

= HomR(ω
(−1)
R ⊗R p(t), Hom(Hd

m(ωR), R/m))

= HomR(ω
(−1)
R ⊗R p(t), R)

= (ωR ⊗R p
(−1)(−t))∗∗,

where (−)∗∗ is the reflexive hull. Since p(2) = R(−2t), one has p(−1) = p(2t), so

(ωR ⊗R p
(−1)(−t))∗∗ =

{
R(−tn) ifn ≡ t mod 2,

p(−tn + t) ifn 
≡ t mod 2.

Putting it all together, one gets

ωR̃ =

{
p(−tn + t) ⊕ R(−tn) ifn ≡ t mod 2,

R(−tn) ⊕ p(−tn + t) ifn 
≡ t mod 2,

so that

ωR̃ = R̃(−tn),

i.e. R̃ is Gorenstein with a(R̃) = −tn. To summarize what we have at this stage:

Theorem 3.1. Let Y be a t × n matrix of indeterminates over a field K of char-

acteristic other than two. Let R̃ denote the K-subalgebra of K[Y ] generated by the

entries of the product matrix Y trY along with the maximal minors of Y . Then R̃

is a Gorenstein normal domain. When K has characteristic zero, the ring R̃ has

rational singularities; when K has positive characteristic, R̃ is F -regular.

With the N-grading on R̃ inherited from the standard grading on K[Y ], one has

a(R̃) = −tn.

The fact that R̃ has rational singularities in characteristic zero follows from

Boutot’s theorem [4]; the F -regularity in characteristic p ≥ 3 follows by combining

Theorems 2.1 and 2.2. For a different approach using good filtrations, see [20,

Corollary 2].

Remark 3.2. The ring R̃ in Theorem 3.1 has K-algebra generators in degree 2

and degree t; it admits a standard grading in the following two cases:
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Invariant rings of the special orthogonal group

(i) When t = 1, index the entries of Y as y1, . . . , yn. The ring R := K[Y trY ] is

then the second Veronese subring of the polynomial ring K[Y ], i.e. the subring

generated by the monomials yiyj. One has

p = (y2
1 , y1y2, . . . , y1yn)R and p

(2) = (y2
1)R.

Taking T := 1/y1, the cyclic cover R̃ coincides with K[Y ] under the standard

grading.

(ii) When t = 2, the K-algebra generators of R̃ are the entries of Y trY, and the

size two minors of Y ; these generators all have degree two, so the grading on

R̃ may be rescaled to a standard grading.

Remark 3.3. When t is even, the ring R̃ in Theorem 3.1 has generators of even

degree; rescaling by a factor of two, one obtains generators in degree one (the entries

of Y trY ) and generators in degree t/2 (the maximal minors of Y ); this is the grading

considered in the following section. This is a semistandard grading on R̃, i.e. an

N-grading under which the ring is integral over the K-subalgebra generated by its

elements of degree one.

4. Nonunimodal h-Vectors

A description for the Hilbert function of a generic determinantal ring may be found

in [1], while an expression for its Hilbert series is presented in [12]. In particular,

for the numerator of the Hilbert series, known as the h-polynomial, one has both

a combinatorial description (in terms on non-intersection paths with given num-

ber of turns) and an explicit compact (and determinantal!) formula. For pfaffian

rings, the corresponding results are in [15, 16]. For symmetric determinantal rings

one finds in [11] a combinatorial description of the h-polynomial, but no compact

determinantal expression for it is known in general. However, for X a symmetric

n×n matrix of indeterminates and t+1 = n−1, the expression of the h-polynomial

of K[X ]/It+1(X) is easily obtained to be
(

2

2

)
+

(
3

2

)
z + · · · +

(
n

2

)
zn−2, (3)

see, for example, [11, Example 2.3(c)].

As in Remark 3.3, an N-grading on a ring A is semistandard if A is a finitely

generated algebra over a field K := A0, and A is integral over the K-subalgebra

generated by its elements of degree one. This condition ensures that the Hilbert

series of A may be written as a rational function

h0 + h1z + h2z
2 + · · · + hkzk

(1 − z)dim A
, where hi ∈ Z and hk 
= 0.

The coefficients of the numerator, i.e. of the h-polynomial, form the h-vector

(h0, . . . , hk) of the ring A. When A is Cohen–Macaulay, it is readily seen that
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A. Conca, A. K. Singh & M. Varbaro

each hi is nonnegative; when A is Gorenstein, the h-vector is a palindrome, i.e.

hi = hk−i for each 0 ≤ i ≤ k. In this case, the h-vector is said to be unimodal if

h0 ≤ h1 ≤ · · · ≤ h�k/2�.

Unimodality results reflect interesting geometric and combinatorial properties; they

figure prominently in Ehrhart theory. Following his proof of the Anand–Dumir–

Gupta conjectures regarding the enumeration of magic squares [33, 35], Stanley

asked if the h-vector of the corresponding affine semigroup ring is unimodal. This

was indeed proven to be the case by Athanasiadis [2], see also [8]. While Mustaţă

and Payne [29] have constructed examples of Gorenstein normal affine semigroup

rings for which the h-vector is not unimodal, these are not standard graded, and

the following remains unresolved:

Conjecture 4.1. The h-vector of a standard graded Gorenstein domain is uni-

modal.

This is due to Stanley [34, Conjecture 4(a)], see also [5, Conjecture 1], [6, Con-

jecture 5.1], [7, p. 36], and [21, Conjecture 1.5]. We show that invariant rings for

the action of SOt(K) yield examples of “naturally occurring” semistandard graded

Gorenstein normal domains, for which the h-vector is not unimodal:

Theorem 4.2. Consider a 2m×(2m+2) matrix of indeterminates Y over a field K

of characteristic other than two. Let R̃ denote the K-subalgebra of K[Y ] generated

by the entries of the product matrix Y trY and the maximal minors of Y, where the

generators are assigned degree 1 and degree m respectively. If m ≥ 2, the h-vector

of R̃ is not unimodal.

Proof. Viewing the subring R := K[Y trY ] as a symmetric determinantal ring and

using the expression (3), one see that R has Hilbert series
(
2
2

)
+

(
3
2

)
z + · · · +

(
2m+2

2

)
z2m

(1 − z)2m2+5m
.

The ring R is not Gorenstein; the Hilbert series of R yields that of ωR, from which

it follows that the cyclic cover R̃ has Hilbert series
[(

2
2

)
+

(
3
2

)
z + · · · +

(
2m+2

2

)
z2m

]
+

[(
2m+2

2

)
zm +

(
2m+1

2

)
zm+1 + · · · +

(
2
2

)
z3m

]

(1 − z)2m2+5m
.

Hence

hm − hm+1 =

[(
m + 2

2

)
+

(
2m + 2

2

)]
−

[(
m + 3

2

)
+

(
2m + 1

2

)]
= m − 1,

so the h-vector of R̃ is not unimodal; for a specific example, the case m = 2 yields

the nonunimodal h-vector

(1, 3, 6, 10, 15, 0, 0) + (0, 0, 15, 10, 6, 3, 1) = (1, 3, 21, 20, 21, 3, 1).
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