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For K an infinite field of characteristic other than two, consider the action of the special
orthogonal group SO¢(K) on a polynomial ring via copies of the regular representation.
When K has characteristic zero, Boutot’s theorem implies that the invariant ring has
rational singularities; when K has positive characteristic, the invariant ring is F-regular,
as proven by Hashimoto using good filtrations. We give a new proof of this, viewing the
invariant ring for SO¢(K) as a cyclic cover of the invariant ring for the corresponding
orthogonal group; this point of view has a number of useful consequences, for example,
it readily yields the a-invariant and information on the Hilbert series. Indeed, we use
this to show that the h-vector of the invariant ring for SO¢(K) need not be unimodal.
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1. Introduction

Let X be an n X n symmetric matrix of indeterminates over a field K, and let
I;+1(X) denote the ideal of the polynomial ring K[X] generated by the size t + 1
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minors of X. For t a positive integer with ¢t + 1 < n, we refer to K[X]/I;4+1(X)
as a symmetric determinantal ring. The ring K[X]/IL;11(X) is a Cohen—Macaulay
normal domain of dimension

n+1 n+1-—t
2 2 ’
as proven in [25]. These rings have been studied extensively, in part because they
arise as invariant rings for the natural action of the orthogonal group

O4(K) :={M € GLy(K)| M" M =id} (1)
as follows: for Y a ¢ x n matrix of indeterminates, O;(K) acts K-linearly on K[Y]
via
M:Y — MY for M € Oy(K).

This is a right action of O;(K) on the polynomial ring K[Y], corresponding to a left
action of O¢(K) on the affine space A%*™. Note that Y'Y +—— YUY MY MY = YUY
for M € O4(K), so the entries of Y'Y are invariant under the action; when the
field K is infinite of characteristic other than two, the invariant ring is precisely
the K-algebra generated by the entries of Y'Y, see [14, Theorem 5.6], and is
isomorphic to the symmetric determinantal ring K[X]/I;1+1(X) via the entrywise
map X — Y"Y. We use this to identify the rings K[X]/l;4+1(X) and K[Y*"Y].

By [17, 18], the ring R := K[Y"Y] has class group Z/2, and is Gorenstein
precisely when n = t + 1 mod 2. Taking p to be a prime ideal that serves as a
generator for the class group, it follows that the symbolic power p(?) is isomorphic
to R. We choose an explicit isomorphism p® = R so that the cyclic cover of
R with respect to p is precisely the invariant ring for the action of the special
orthogonal group SO;(K). This gives a straightforward approach towards studying
the invariant ring K [Y]SOt(K ), for example towards determining its a-invariant and
information regarding the Hilbert series.

When K is an infinite field of characteristic two, the groups O;(K) and SO.(K)
coincide when taking O.(K) to be the group as defined in (1); the invariant ring in
this case is

t
Y1y, Z Yij

=1

K

1§j§ﬁ1,

see [31, Proposition 17], and a presentation is provided by [31, Proposition 23]. The
reader is warned that there are varying definitions used for the orthogonal group
in characteristic two, see for example [30, p. 10].

Section 2 includes some generalities on cyclic covers; these are used in Sec. 3
where we compute the a-invariant of K[Y]5°:(5) and also record a proof that
this ring is F-regular. Section 4 is devoted to the h-vector of K[Y]39:(5) ie. the
coefficients of the numerator of its Hilbert series: the key result here is that this
invariant ring is a semistandard graded Gorenstein normal domain, for which the
h-vector need not be unimodal; the context for this is discussed as well in Sec. 4.
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2. Cyclic Covers and F-Regularity

Let R be a normal domain. By a divisorial ideal of R, we mean a nonzero intersection
of fractional principal ideals. Let a be a divisorial ideal that has finite order m when
viewed as an element of the divisor class group of R. Then a(™) = R, for an element
« in the fraction field of R. Set

T:=1/a'/™, (2)

which is an element in an algebraic closure of the fraction field of R; the choice of
« or the mth root is not unique. The cyclic cover of R with respect to a is the ring

R:= R[aT, a®T? a®T13 ],
viewed as a subring of R[T]. Since

alm+k)pmtk _ o (k)pmtk _ G (k)pk

for each k > 0, the ring Ris a finitely generated reflexive R-module; specifically,
one has an R-module isomorphism

EgR@a@a@)@...@a(m—l).

When the ring R is N-graded and a is a homogeneous divisorial ideal of finite
order m, there exists a homogeneous element a with a(™ = aR, and the N-grading
on R extends to a Q-grading on R obtained by setting

degT := —(deg a)/m.

It turns out that this is a Q>¢-grading on E, and that [E]O = Ry, see [32, Proposi-
tion 4.2].

Suppose that the characteristic of R is zero or relatively prime to m, and that
p is a height one prime ideal of R. Then the ideal aR, is principal; take r to be a
generator. Since ™ = au, for u a unit in Ry, it follows that

Ry = Ry[rT] = Ry[u/™),

so Ry — ]A%p is étale. In particular, under this assumption on the characteristic,
the ring Ep is regular for each height one prime of R; since each a(®) is reflexive,
the ring R also satisfies the Serre condition So, and is hence a normal domain.
By [36, Theorem 2.7], F-regularity is preserved under finite extensions that are
étale at height one primes, so one has:

Theorem 2.1 (Watanabe). Let R be an N-graded ring that is finitely generated
over a field Ry of characteristic p > 0, and let R be the cyclic cover of R with
respect to a homogeneous ideal of finite order relatively prime to p. Then, if R is
F-regular, so is R.

The restriction on the characteristic is removed in [9, Theorem C]. For the theory
of F-regularity in the graded setting, we point the reader towards [22]. When R
is an N-graded ring finitely generated over a field Ry of positive characteristic, the
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notions of weak F-regularity, F-regularity, and strong F-regularity all coincide as
proven in [27], so we do not make a distinction between these in the present paper.

The F-regularity of generic determinantal rings and of Pliicker coordinate rings
of Grassmannians is proven as [22, Theorem 7.14]; the proof therein is read-
ily adapted to symmetric determinantal rings, as we show next. For a different
approach, see [26, §4.1].

Theorem 2.2. Let X be an n X n symmetric matriz of indeterminates over a field
K of positive prime characteristic. Then the ring K[X]/I;+1(X) is F-regular.

Proof. If n =t +1 mod 2, then K[X]/I;+1(X) is Gorenstein; otherwise, enlarge

X to a symmetric matrix X of size n + 1, in which case the ring K[X]/I;;1(X)
is Gorenstein, and contains K[X]/I;11(X) as a pure subring. Since F-regularity
is inherited by pure subrings, it suffices to prove the desired result when R :=
K[X]/I;+1(X) is Gorenstein.

The a-invariant of R is computed in [3] and [11], and recorded in the following
section; in particular, a(R) < 0. We next claim that R is F-injective, equivalently
F-pure, since the notions coincide in the Gorenstein case. This follows by [13, The-
orem 2.1] in combination with the main result of [10] asserting that the “diagonal”
initial ideal of Iy (X) is square-free and defines a Cohen—Macaulay ring.

The F-regularity of R now follows from [22, Corollary 7.13], once we verify that
the localization R,,; is F-regular for each x;;. Using the lemma below and induction
on t, the localizations R,,, and Ra are F-regular; but then R, is F-regular if p is
a prime ideal such that z11 ¢ p or A ¢ p. It follows that R, is also F-regular if
212 ¢ p. Since we have accounted for the diagonal variable z1; and the off-diagonal
variable x12, the symmetry implies that R,,, is F-regular for each z;;. O

Lemma 2.3. Let R := K[X]/I;+1(X), where X is a symmetric n x n matriz of
indeterminates. Then:

(1) The ring Ry, 1is isomorphic to a localization of a polynomial ring over
K[X'/I:(X"), where X' is a symmetric (n — 1) X (n — 1) matriz of indeterms-
nates.

(2) For A := x11292 — x%z, the ring Ra is isomorphic to a localization of a poly-
nomial ring over K[X']/I;—1(X’), for X' a symmetric (n —2) x (n — 2) matriz
of indeterminates.

For a proof, see [24, Lemma 1.1]; the argument also appears implicitly in [28].

3. The a-Invariant

Let Y be a t xn matrix of indeterminates over a field K. In this section, we work with
the grading on the subring R := K[Y"Y] that is induced by the standard grading
on the polynomial ring K[Y]. Note that under the identification of K[X]/I;11(X)
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with K [Y*Y7], this corresponds to taking deg z;; = 2 for each 4, j. With this grading,
[3, Theorem 4.4] or [11, Theorem 2.4] imply that the a-invariant of R is

—t(n+1) ifn=t mod 2,
a(R) =
—tn ifn£t¢ mod 2;
more generally, the graded canonical module of R is

p(—tn+t) ifn=¢ mod 2,
e R(—tn) ifn ¢t mod 2,

where p is the ideal of K[Y*Y] generated by the maximal minors of the first ¢ rows
of Y®Y  i.e. by the maximal minors of the product matrix

Y11 Y21 0 Yu Yyir Y12 Yz - 0 Yin
Y12 Y22 - Y2 Y21 Y22 Y23 - 0 Yo
Yie Y2t 0 Yt Y1 Y2 Y3 0 0 Ytn

Using the identification of K[X]/I;+1(X) with K[Y*Y], the ideal p is prime of
height one by [25, Theorem 1], and generates the class group of R by [17]. The
symbolic power p(?) is the principal ideal of R generated by the determinant of
the first ¢ columns of the product matrix displayed above, i.e. p(?) is generated by
the square of

Yii Y21 - Yu
Yiz Y22 0 Y2
A = det
Yie Y2t o Yt
Choosing a unit as in (2), set
T:=1/A.

The generators of pT" are then identified with the maximal minors of the matrix Y,
so that the cyclic cover R of R with respect to p is the subring of the polynomial
ring K[Y] generated by the entries of the product matrix Y¥Y along with the
maximal minors of Y. It is clear that these generators are fixed under the action of
the special orthogonal group

M:Y +— MY for M € SO(K).

When the field K is infinite of characteristic other than two, the invariant ring is
precisely the K-algebra generated by these elements [14, Theorem 5.6].
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We determine the graded canonical module of }~%; while the semisimplicity of
SO:(K) may be used to verify that R is Gorenstein, [23, p. 123], our goal is to
additionally obtain the a-invariant of R. Since degT = —t, one has

R=R®p(t).
Let m denote the homogeneous maximal ideal of R. For an N-graded R-module

M, we use Hom(M, R/m) to denote its graded dual as in [19, p. 184]. Setting
d := dim R, the graded canonical module of R may be computed as

wi = Hom(Hy\(R), R/m)=Hom(Hy(R), R/m)® Hom(H (p(t)), R/m).
The first term in this direct sum is wg, while the second is
Hom(Hy (p(t)), R/m) = Hom(Hy(wr) @rwi  ©rp(t), R/m)

= Homp(w$; V) @ p(t), Hom(H% (wg), R/m))

= Hompg(w$; ” @& p(t), R)

= (wr®r PV (=1)",
where (—)** is the reflexive hull. Since p(®) = R(—2t), one has p(~1) = p(2t), so
R(—tn) ifn=¢ mod 2,
p(—tn+t) ifn#t mod 2.

(wr®@rpTH (=)™ = {

Putting it all together, one gets
{p(tn +1t)® R(—tn) ifn=t mod 2,

YRT R(—tn)®p(—tn+1t) ifn#t mod 2,
so that
wg = R(—tn),
i.e. R is Gorenstein with a(R) = —tn. To summarize what we have at this stage:

Theorem 3.1. Let Y be a t x n matriz of indeterminates over a field K of char-
acteristic other than two. Let R denote the K -subalgebra of K[Y] generated by the
entries of the product matriz Y®Y along with the mazimal minors of Y. Then R
is a Gorenstein normal domain. When K has characteristic zero, the ring R has
rational singularities; when K has positive characteristic, RisF -regular.

With the N-grading on R inherited from the standard grading on K[Y], one has

a(R) = —tn.

The fact that R has rational singularities in characteristic zero follows from
Boutot’s theorem [4]; the F-regularity in characteristic p > 3 follows by combining
Theorems 2.1 and 2.2. For a different approach using good filtrations, see [20,
Corollary 2].

Remark 3.2. The ring R in Theorem 3.1 has K -algebra generators in degree 2
and degree t; it admits a standard grading in the following two cases:
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(i) When ¢ = 1, index the entries of Y as y1,...,yn. The ring R := K[Y¥"Y] is
then the second Veronese subring of the polynomial ring K[Y], i.e. the subring
generated by the monomials y;y;. One has

p=(yl.y192, ... y1yn)R and p® = (y)R.

Taking T := 1/y1, the cyclic cover R coincides with K[Y] under the standard
grading.

(i) When t = 2, the K-algebra generators of R are the entries of Y'Y, and the
size two minors of Y; these generators all have degree two, so the grading on
R may be rescaled to a standard grading.

Remark 3.3. When ¢ is even, the ring R in Theorem 3.1 has generators of even
degree; rescaling by a factor of two, one obtains generators in degree one (the entries
of YY) and generators in degree t/2 (the maximal minors of Y); this is the grading
considered in the following section. This is a semistandard grading on E, ie. an
N-grading under which the ring is integral over the K-subalgebra generated by its
elements of degree one.

4. Nonunimodal h-Vectors

A description for the Hilbert function of a generic determinantal ring may be found
in [1], while an expression for its Hilbert series is presented in [12]. In particular,
for the numerator of the Hilbert series, known as the h-polynomial, one has both
a combinatorial description (in terms on non-intersection paths with given num-
ber of turns) and an explicit compact (and determinantall) formula. For pfaffian
rings, the corresponding results are in [15, 16]. For symmetric determinantal rings
one finds in [11] a combinatorial description of the h-polynomial, but no compact
determinantal expression for it is known in general. However, for X a symmetric
n X n matrix of indeterminates and t+1 = n—1, the expression of the h-polynomial
of K[X]/I;4+1(X) is easily obtained to be

(e ()

see, for example, [11, Example 2.3(c)].

As in Remark 3.3, an N-grading on a ring A is semistandard if A is a finitely
generated algebra over a field K := Ap, and A is integral over the K-subalgebra
generated by its elements of degree one. This condition ensures that the Hilbert
series of A may be written as a rational function

ho+ h1z + hoz? + -+« + hy 2"
(1 7Z)dimA ?

where h; € Z and hy # 0.

The coefficients of the numerator, i.e. of the h-polynomial, form the h-vector
(ho,...,hi) of the ring A. When A is Cohen—Macaulay, it is readily seen that
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each h; is nonnegative; when A is Gorenstein, the h-vector is a palindrome, i.e.
h; = hyi_; for each 0 <4 < k. In this case, the h-vector is said to be unimodal if

ho <hy < < hig.

Unimodality results reflect interesting geometric and combinatorial properties; they
figure prominently in Ehrhart theory. Following his proof of the Anand-Dumir—
Gupta conjectures regarding the enumeration of magic squares [33, 35], Stanley
asked if the h-vector of the corresponding affine semigroup ring is unimodal. This
was indeed proven to be the case by Athanasiadis [2], see also [8]. While Mustata
and Payne [29] have constructed examples of Gorenstein normal affine semigroup
rings for which the h-vector is not unimodal, these are not standard graded, and
the following remains unresolved:

Conjecture 4.1. The h-vector of a standard graded Gorenstein domain is uni-
modal.

This is due to Stanley [34, Conjecture 4(a)], see also [5, Conjecture 1], [6, Con-
jecture 5.1], [7, p. 36], and [21, Conjecture 1.5]. We show that invariant rings for
the action of SO.(K) yield examples of “naturally occurring” semistandard graded
Gorenstein normal domains, for which the h-vector is not unimodal:

Theorem 4.2. Consider a 2m x (2m+2) matriz of indeterminates Y over a field K
of characteristic other than two. Let R denote the K -subalgebra of K[Y] generated
by the entries of the product matriz Y'Y and the maximal minors of Y, where the
generators are assigned degree 1 and degree m respectively. If m > 2, the h-vector
of R is not unimodal.

Proof. Viewing the subring R := K[Y"Y] as a symmetric determinantal ring and
using the expression (3), one see that R has Hilbert series
2 3 2m+2) 2
() + Gz + ()"
(1 _ z)2m2+5m ’

The ring R is not Gorenstein; the Hilbert series of R yields that of wg, from which
it follows that the cyclic cover R has Hilbert series
2 3 2m+2\ _2m 2m+2\ _,m 2m+1\ ,m 2\ ,3m
[G) + )z +--- + C7) 2 + [(57) 2™ + (75 ) 2 + - + (5)2°]
(1 _ z)2m2+5m .

Hence

= () () ()

so the h-vector of R is not unimodal; for a specific example, the case m = 2 yields
the nonunimodal h-vector

(1, 3, 6, 10, 15, 0, 0)+ (0, 0, 15, 10, 6, 3, 1) = (1, 3, 21, 20, 21, 3, 1).
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