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1. Introduction

The pioneering work of Bell [5] showing that no hidden variable theory can fully
explain quantum mechanical correlations of spatially separated entangled particles has
been experimentally verified; related experimental work of Aspect, Clauser and Zeilinger
earned the Nobel Prize in Physics in 2022. Over recent decades, Bell’s ideas have been
refined and generalized in many directions, with one application being the study of quan-
tum games. In one of the most basic quantum games, two physically separated players
who share both a strategy and a quantum state, but are otherwise unable to commu-
nicate, are fed classical questions from a referee and respond with classical answers.
Bell-type inequalities identify a gap between the winning probability of the optimal clas-
sical strategy and the corresponding probability in this quantum version. A particularly
attractive class of quantum games are the graph homomorphism games [19]. These games
are intuitive, cast in the familiar language of computer science protocols. They generate
new lines of investigation in graph theory; for example, the quantum chromatic number
of a graph is sandwiched between the classical chromatic number and the vector chro-
matic number. And, perhaps surprisingly, the natural definition of the quantum analogue
of the automorphism group of a graph happens to be a compact quantum group.

This notion of quantum isomorphism of graphs was introduced by Atserias et al. [1]
in their study of a non-local graph isomorphism game with two quantum players. In that
paper, the first known construction is given for non-isomorphic graphs that are quantum
isomorphic. Further examples were discovered by S. Schmidt [27] using Godsil-McKay
switching; Schmidt constructs a family of pairs of strongly regular graphs on 120 vertices
that are quantum isomorphic but pairwise non-isomorphic. (Schmidt also lists several
references proposing alternative approaches, but these have led to no new examples so
far.) In this paper, we give a different strategy of finding quantum isomorphic but non-
isomorphic graphs using association schemes and scaffolds. We show how this approach
implies that any two Hadamard graphs on the same number of vertices are quantum
isomorphic. The feature we exploit is exact triple regularity, a property closely tied to
the study of spin models [15].

Two graphs G and H, with adjacency matrices Ag and Ay respectively, are isomorphic
if and only if there exists a permutation matrix P such that

PAqg =AgP.

Lovéasz’s classical result states that two graphs are isomorphic if and only if they have
the same number of graph homomorphisms from any graph [17].

Let A be a C*-algebra with unity 1 and let &/ = (u;;) be an n x n matrix with
entries in A. We call U a quantum permutation matriz if it satisfies u?j = uj; = u;; and
S opq Wiktjk = 651 = D7 ugug; for all 1 < 4,5 < n. See, for example, [20,30,31]

for much more on quantum permutation matrices. Two graphs, G and H, are quantum
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isomorphic if and only if there exists a quantum permutation matrix &/ with entries in
some C*-algebra A such that

UAc = AgU

where operations are performed in A. Note that when A = C, U is a permutation matrix
and G is isomorphic to H. See [1, p323] for a pair of non-isomorphic graphs on 24 vertices
that are quantum isomorphic. Only two families of examples are known of quantum
isomorphic but non-isomorphic graphs; the graphs in the first family [1] are constructed
based on a reduction from linear binary constraint system games to isomorphism games,
and the graphs in the second family [27] are constructed via Godsil-McKay switching on
two particular strongly regular graphs with parameters (120, 63, 30, 36).

Given graphs F' and G, we use hom(F, G) to denote the number of graph homomor-
phisms from F' to G. Mancinska and Roberson give the following remarkable character-
ization of quantum isomorphic graphs.

Theorem 1.1 (/20]). Two graphs, G and H, are quantum isomorphic if and only if
hom(F,G) = hom(F, H)
for any planar graph F.

Earlier, Atserias et al. [1] showed that it is undecidable to determine if two graphs are
quantum isomorphic. Putting these together, given any graphs G and H, the problem of
determining if there exists a planar F' such that hom(F, G) # hom(F, H) is undecidable.

For ¢ : V(F) — V(G), we have

1 if ¢ is a graph homomorphism from F to G,
[ “o)ewem = 0 otherui
{a,b}€E(F) otherwise.

Hence

hom(F,G) = Z H (AG)e(a),0 ) (1.1)

0V (F)=V(G) {a,b}€E(F)

which is the scaffold S(F, }; w) on the graph F' with no root node and a weight function
w that maps every edge of F' to the matrix Ag. Please see Section 2 for some background
on scaffolds and association schemes.

In Section 3, we consider the case where Ag belongs to the Bose-Mesner algebra of
an exactly triply regular association scheme. We apply Epifanov’s theorem to express
the scaffold S(F,(;w) on any connected planar graph F in terms of the Delta-Wye
parameters of the association scheme. This observation leads to our main result.
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Theorem 3.3. Let (X,R) and (Y,S) be exactly triply regular symmetric association
schemes that have the same Delta-Wye parameters (Definition 2.6). Let G' be a graph
in (Y,8) corresponding to* G in (X, R). Then G and G' are quantum isomorphic.

We focus on Hadamard graphs in Section 4. In the construction of spin models from
Hadamard graphs [26], Nomura computes the Delta-Wye parameters of the association
scheme of a Hadamard graph and shows that these parameters depend only on the
number of vertices. Hence, the association schemes of two Hadamard graphs of the
same order have the same Delta-Wye parameters. From [15] and [26], we see that the
association scheme of a Hadamard matrix is exactly triply regular which leads to the
following result, which has also been obtained independently by Gromada [13] via entirely

different means.

Theorem 4.3. Any two Hadamard graphs of the same order are quantum isomorphic.

To our knowledge, the Hadamard graphs of the same order (> 64) are the first exam-
ples of three or more mutually quantum isomorphic but not isomorphic graphs. Merchant
proved [25] that, provided at least one Hadamard matrix of order n exists, there are at
least 22n—16=6logn jpequivalent Hadamard matrices of order 2n. And McKay [24] proved
that, given two Hadamard matrices H and H', if H' is inequivalent to both H and H ",
then H and H’ produce non-isomorphic Hadamard graphs. The longstanding Hadamard
conjecture, claiming that there exists a Hadamard matrix of order 4m for each positive
integer m would then imply that there are an exponential number (in m) non-isomorphic
Hadamard graphs on 32m vertices.

Paley’s construction of Hadamard matrix of order 28 gives a vertex transitive
Hadamard graph. Hence this graph is quantum vertex transitive and its quantum or-
bital coherent configuration is homogeneous [18, Corollary 3.8 and Theorem 3.10]. By
Theorem 4.3 and Theorem 4.6 of [18], any Hadamard graph of order 112 has a ho-
mogeneous quantum orbital coherent configuration and is therefore quantum vertex
transitive. In particular, the Hadamard graph constructed from Had.28.101 of http://
neilsloane.com/hadamard/ has a cyclic automorphism group, Zso, which gives an af-
firmative answer to Problem 3.10 of [31]. Any Hadamard matrix has at least two
automorphisms (I, I) and (—1I,—1I), so the automorphism group of a Hadamard graph is
non-trivial [24]. The problem of finding an asymmetric graph with a non-trivial quantum
automorphism group remains open [31, Problem 3.9].

We discuss additional open problems and directions for future research in Section 5.

1 See Definition 2.7 below.


http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/
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2. Association schemes and scaffolds

A symmetric association scheme is a partition of the edges of a complete graph into
regular graphs whose adjacency matrices span a vector space closed and commutative un-
der multiplication (a “Bose-Mesner algebra”). The regularity imposed by the definition,
and by extra assumptions such as triple regularity, facilitate counting of pairs, triples
and m-tuples of vertices forming prescribed configurations. While the idea has been used
informally in the community for decades, the concept of a “scaffold” was recently intro-
duced in [23] to treat these counts of m-tuples algebraically. A simple example of such
a formal sum of configuration counts is the degree sequence, Ag1, of a graph G. (Here,
1 denotes the all ones vector of appropriate length.) Scaffolds allow us to take linear
combinations of m-vertex counts and to apply local change-of-basis operations on such
configurations. In this section, we introduce these concepts, and set up notation and
terminology that we will use as we work with exactly triply regular association schemes
later.

2.1. Definitions and our notation

A d-class symmetric association scheme [9,4,6,12,8,22] is an ordered pair (X, R) where
X is a nonempty finite set and R = { Ry, ..., R4} is a partition of X x X into non-empty
relations satisfying

e Ry ={(z,2) |z € X} is the identity relation;
o for each i, 0 < i < d, we have R} = R; where R = {(y,z) | (z,y) € R;};
o there exist intersection numbers pfj, 0 <1i,j,k < d satisfying

[{z € X | (z,2) € Ri, (2,y) € R;}| = pi
whenever (z,y) € Ry.

Note that, since all relations are symmetric, we have pfj = p?i for all 7, j, k; all symmetric
association schemes are commutative.

For z,y € X and 0 <14 < d, we write & y to mean (z,y) € R;.

Denote by Matx (C) the algebra of all matrices with rows and columns indexed by the
set X having complex entries. We define adjacency matrices (or Schur idempotents?) of
the association scheme, Ag,..., A4 € Matx(C) by

1 ifzt Y,
(Av)Ty = {

0 otherwise.

2 Note that the sum of any subset of these is also an idempotent under the Schur product; these d + 1
matrices are minimal Schur idempotents.
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These satisfy

. Z?:o A; = J, the all ones matrix

o A;jo0A; =96, ;A; where o is the entrywise or Hadamard/Schur product;

o Ay =1,

o foreachi, 0<i<d, A] = A;;

o A = spang({4o,...,A4}) is closed and commutative under matrix multiplication:
there exist pf;, 0 < i,j,k < d satisfying A;4; = A;A; = ZZ:O i A

We call A the Bose-Mesner algebra of the association scheme (X, R).

Up to a choice of ordering of relations and ordering of vertices, the correspondence
between Bose-Mesner algebras and association schemes is immediate and we often work
with the adjacency matrix A; in place of the graph (X, R;).

The vector space A = spang{Ay,...,Aqs} has a second basis of primitive (matriz)
idempotents {Ey, ..., Eq}: 2520 E; =1, E;E; = 0;;E;, E; = E,". The eigenvalues Pj;
and the dual eigenvalues @);; of the association scheme satisfy

d d
1
Jj=0 Jj=0

Since A is closed under entrywise multiplication, there exist Krein parameters qu, 0<
Lﬂkgdmm@mg&oﬁcﬁ%iiﬂ%Ek@%WﬁhﬂleZ%)

2.2. Scaffolds

Let (X, R) be an association scheme with Bose-Mesner algebra A. These matrices act,
in the obvious way, on the standard module V.= CX of all complex-valued functions on
X with standard basis of column vectors {# | € X}. This space is equipped with the
corresponding positive definite Hermitian inner product (v, w) = vfw (where -7 denotes
conjugate transpose) satisfying (Z,9) = 0, , for x,y € X. We identify V' with its dual
space V1 of linear functionals and view matrices in Matx (C) as second order tensors.
More generally, we will presently define a scaffold with m roots (or m'™" order scaffold)
as a certain type of tensor belonging to

Ve =V RV®---QV
N—_——

m

with standard basis consisting of simple tensors of the form &) ® &2 ® - - - ® &,,, where
T1,22,...,Tm € X.

For a graph F' = (V(F), E(F)), an ordered set R = {ry,...,ry,} of nodes in F' called
roots, and a function w : E(F) — Matx (C), we define
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S(F,Rjw) = > [T w@e@em | )@ o) @ - @p(rm).  (2.2)
e:V(F)—»X e€E(F)
e={a,b}

We call F' the “diagram” of the scaffold S(F, R;w), use red solid nodes to depict the
roots, and label each edge e with the matrix w(e). We identify the scaffold S(F, R; w)
with this pictorial representation of its data, being careful to consistently order the roots
by spacial placement when two scaffolds appear in the same equation. For instance, the
matrix A = [A;,] € Matx(C), viewed as the second-order tensor »_, v Agy £ ® 9, is

denoted by .L).. In this paper, all examples are symmetric matrices. So we will
omit the directions on edges of the diagrams.?
When studying an association scheme (X, R) with adjacency matrices A;, two families

of third order scaffolds of fundamental importance [28,15] are

= >  i®je

x,y,z€X

N>
N
o
Il
2>
&
<
®
N
—
[\
w
S—

z,Yy,2,ueX

i J k 3 J k
T2, TAY, Y~ Z TAUYSU,ZU

We next consider the vector space spanned by all scaffolds with a given diagram and
edge weights in A [23, Section 3.2]. In particular, define

M L
. W(A’ A) = span L M,N €A 3,

L

.W(A;A) = span M N |L,M,N € A

As explained in our introduction, scaffolds help us count homomorphisms.
Lemma 2.1. Let F be a graph, let G be a graph on verter set X with adjacency matriz
A. Define w(e) = A for all edges e of F. Then S(F,0;w) = hom(F,G), the number of

graph homomorphisms from F to G.

Proof. This lemma is an immediate consequence of (1.1): a function ¢ from V(F') to
V(G) is a homomorphism if and only if [T, jyep(r) Ap(a), o) = 1. O

3 In fact, our definition of a scaffold here is specialized to undirected graphs.
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We will perform local operations on scaffolds that preserve their value, using Propo-
sition 1.5 in [23]. These include loop removal, removal of a non-root vertex of degree
one, and series and parallel reduction. One may use the definition to directly verify the
following rules:

a: If M has constant row sum a, then ¢ M .~ =a o

b: If M has constant diagonal «, then @Vl =a ¢
c: For M,N S MatX(C), .ﬁ)oi). = .ﬂ).

M
d: For M, N € Matx (C), @. — oNe

2.3. Eztra regqularity

An association scheme (X,R) with Bose-Mesner algebra A is triply regular if, for
all z,y,z € X and all 0 < i,5,k < d, v(x,y,2) = { u€e X : azéu,yiu,zﬁu H
depends only on 7, j, k and the three relations joining x, y, z and not on the choice of x, y, z

themselves. Jaeger proved that (X,R) is triply regular if and only if W( .A' ;A )

- W( A ;A > [15, Proposition 7(ii)]. If (X, R) is triply regular and we use vﬁjslz

to denote v(z,y, z) when z Nz,xAyandy i z, then the scaffold equation

_ Ui,j,k
Ak - T,8,t

T,s,t

holds for all 4, j, k.
The association scheme (X, R) is dually triply reqular if W( A ; A) C

W( .A' ; A) [15, Proposition 8(ii)] and ezactly triply regular if it is both triply
regular and dually triply regular.
Theorem 2.2 (Terwilliger [29] (see [23, Theorem 3.8])). Let (X,R) be a symmetric

association scheme with minimal Schur idempotents Ao, .. ., Aq, primitive (matriz) idem-
potents Ey, ..., Eq, intersection numbers pfj and Krein parameters qu 0 <i,j,k<d).

The set pfj >0 » is an orthogonal basis for W( A ;A ) and
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Ej qu >0 » is an orthogonal basis for W( .A' ; A) . O

Let us denote by N, the number of ordered triples (4, j, k) with pfj > 0 and by N,
the number of ordered triples (i, j, k) with qu > (. The following lemma follows from
Jaeger’s propositions.

Lemma 2.3. If (X, R) is an exactly triply regular association scheme with Bose-Mesner

algebra A, then W(A7 A) —W(./L'Q A) . If N, = Ny and (X, R) is

either triply regular or dually triply regular, then (X, R) is exactly triply regular. O

Definition 2.4. Let (X,R) be an exactly triply regular d-class association scheme with
Bose-Mesner algebra having an ordered basis Ag, ..., A4 of adjacency matrices and an
ordered basis Ey, ..., Eq of primitive idempotents. The Delta- Wye parameters of (X, R)

are those { bgk pm >0, ¢¢, > O} and { :Jskt p” >0, ¢t, > O} satisfying the equations

rst

(2.4)

and

Remark 2.5. The two sets of coeflicients are mutual inverses:

B9,k st _ oo st _ig.k
E Or st it 5/ k' = 0i,i 05,5 Ol k' » E , Ti gk Orl st = Or,p/ 05,570t 47 -

q7.s>0 pk;>0

.3,k

rs,t> one may derive from these the parameters 7, i ’ and conversely.

So if one knows all o

Applying (2.1) to Definition 2.4 gives the following equations

= a]b c E. |X|3 a]b70 E QraQspQtc  As A,
qab>0 45, >0 rit
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.

(2.7)
which we will use in the proof of Theorem 3.2. Note that, while the expansion in (2.7)

A; E,
a,b,c
Ay = § Painchk Ey E. — E Painchk § Tr,s,t

a,b,c a,b,c pt,>0

linear combination of the (d + 1) non-zero tensors 4, ; it is important that

we consistently use expression (2.6) in our proof.

Definition 2.6. Let (X, R) and (Y, S) be exactly triply regular d-class association schemes.
We say (X,R) and (Y,S) have the same Delta- Wye parameters if there exist orderings
Ap, Aq, ..., Aqgand A, A, ..., A} of their respective adjacency matrices, and there exist
orderings FEy, E1,...,Eq and Ey, E{, ..., E} of their respective primitive idempotents
such that every Delta-Wye parameter afni]; for (X,R) is equal to the corresponding
Delta-Wye parameter for (Y,S).

Definition 2.7. Let (X, R) and (Y, S) be exactly triply regular d-class association schemes
with the same Delta-Wye parameters with respect to orderings Ag, A1,...,Aq and

0, A%, ..., Al of their respective adjacency matrices, and orderings Ey, E1,. .., E; and
Ej, E1, ..., B} of their respective primitive idempotents. The bijection A; — A extends
linearly to a vector space isomorphism « : A — A’ carrying a matrix M = Z?:o cjA; to
the matrix k(M) = Z?:o cj A’ which we denote M’. (Note that x(E;) = E’ by Propo-
sition 2.8.) We call M’ the matrix in the Bose-Mesner algebra of (Y, S) corresponding to
M. In the special case where M is the adjacency matrix of a graph G on vertex set X,
the matrix M’ is the adjacency matrix of some graph G’ on vertex set Y'; we call G’ the

graph in (Y, S) corresponding to G.

We do not know whether two exactly triply regular association schemes with the same
intersection numbers must have the same Delta-Wye parameters. In Section 5, we ask if
these parameters are functions of the pfj’s.

Proposition 2.8. If (X, R) and (Y,S) are exactly triply reqular association schemes hav-
ing the same Delta-Wye parameters, then they also have the same eigenvalues, dual
etgenvalues, intersection numbers and Krein parameters under the appropriate consis-
tent orderings of relations and primitive idempotents. The linear map K in Definition 2.7
is a Bose-Mesner isomorphism: k(M N) = k(M)k(N) and k(M o N) = k(M) o k(N).
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Proof. We first show that all intersection numbers of an association scheme can be
computed from its Delta-Wye parameters. From these we can obtain the eigenvalues,
dual eigenvalues and Krein parameters (see [6, pp. 46,49]).

We compare the two sides of Equation (2.4) with all nodes made hollow (so that

k,k,0
E Jr,s,t Es

' k.k,0  kk0 _ k,k,0
E, =0p00 Fo Ey = 90,0,0 _| 3 § 1= |X|00,0,0
qt,>0

. k,k,0 . .
showing p?, = 0500+ By the same considerations, we also have

| X |ppy vty =

qt,>0

allowing us to compute pfj from the Delta-Wye parameters.
Since r(A;) = Aj is a 0l-matrix and both A; o A; = §;;4; and Aj o A} = §;; A} hold
for this pair of bases, we have k(M o N) = k(M) o k(N) by linearity. Finally,

d d
K(AiA)) = K (Zpi@-@) =D phAL = AA] = K(A)R(4)). D
k=0 k=0

3. Homomorphism counting

Given a planar graph F and a graph G, let wg be the weight function mapping
each edge of F' to the adjacency matrix Ag. Using Lemma 2.1, we compute the scaffold
S(F, 0; we) to count the number of graph homomorphisms from F to G. Simplification
of such counts is achieved using Epifanov’s Theorem on plane graphs.

3.1. Epifanov’s theorem

A plane graph [10, p83] is an embedding of a planar graph and we do not differentiate
between embeddings equivalent under ambient isotopy. We allow the following local
operations on plane graphs. Each modifies an embedded graph only within a closed disk
with the understanding that this disk contains no part of the embedding other than what
is shown.
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loop: {) ~ D deletion of a loop

pendent: e o deletion of a vertex of degree one
P and pendent edge

series: H»—0o0— <& ~ p—¢ aseries reduction

parallel: o o~ o—o- a parallel reduction
Delta: A ~ A a Delta-Wye transformation
Wye: e a Wye-Delta transformation

Theorem 3.1 (Epifanov (see [11] and [15, Proposition 5])). Let F be any connected plane
graph. Then there exists a sequence of plane graphs Fy, Fi, ..., Fy with the following
properties.

(i) Fo = F and Fy is a graph with one vertex and no edges
(ii) up to ambient isotopy, Fy41 is obtained from Fy by just one of the above local
transformations (loop, pendent, series, parallel, Delta, or Wye), for 0 < h < (. O

3.2. A technical theorem and the main result

In this section, we assume (X, R) and (Y,S) are exactly triply regular association

schemes having the same Delta-Wye parameters with respect to orderings Ay, ..., Ay
and Aj, ..., A}, of their respective adjacency matrices, and orderings Ey, E1, ..., Eq and
E{,E1,..., E} of their respective primitive idempotents. We use A and A’ to denote the

Bose-Mesner algebras of (X,R) and (Y, S), respectively. To avoid confusion, we denote
the composition of functions using the symbol e.

Theorem 3.2. Let (X, R) and (Y,S) be exactly triply reqular association schemes having
the same Delta- Wye parameters and let k : A — A’ be as given in Proposition 2.8. Let
F be a connected planar graph (possibly with loops and multiple edges) and consider any
edge weights w : E(F) — A. Then S(F,0;w) = S(F,0; x e w).

Proof. Write w’ = k e w so that w' : E(F) — A’. First choose an embedding and
view F' as a plane graph. Let Fy, F1,..., Fy be a sequence of plane graphs satisfying the
conditions in Theorem 3.1.

Since A = span{Ag, A1,...,Aq} and A" = span{A{, A],..., A}, it is sufficient to
show inductively that, for h = 0,1,...,¢, there exist my, o, and weight functions

Wh,m - E(Fh) — {Ao,Al, - ,Ad}



352 A. Chan, W.J. Martin / Journal of Combinatorial Theory, Series B 164 (2024) 340-363

such that
mp Mp

S(F,0:w) = Y anm S(Fn, G whm) and S(E0;0') =Y anm S(E, 0k @ wim) -
m=1 m=1

(3.1)
Note that, since Fy has no edges, S(Fy, 0;w) = |X| for w:  — Matx (C) and the result
follows:

my mye
S(F, by w) = |X| Z apm = Y| Z apm = S(F,0;w").
m=1

m=1

When h = 0, Equation 3.1 follows because w(e) € A, for each e € E(F), and w' = kew.
For h > 0, we show Equation 3.1 holds for appropriate oy, ,,, and wp, ,,, by considering each
type of local transformation occurring in Theorem 3.1 and its effect on the associated
scaffolds. We include the edge weights in the following scaffolds to highlight the change
of the weight functions due to the local transformations.

loop: Fj41 is obtained from Fj, by deleting a loop e. Set my1 = myp, consider 1 <m <
my,, and suppose wy, m(e) = A,. Define wpi1,m : E(Frt1) = A to be the restriction of
Wh,m to E(Fy)\{e} so that

S( {) Ar a@;wh,m) = 50’7‘ S( ;O 7®;wh+1,m)7 (32)

by Rule b in Section 2.2 above and the same equation holds after replacing wy, ,, and
Wht1,m With K ® wp , and K @ wy 1, respectively. Summing over m with coefficients
Qht1,m = 00.rQh,m yields Equations (3.1) with h replaced by h + 1.

pendent: Fj 41 is obtained from F} by deletion of a degree one vertex and the sole
incident edge e. Let mp11 = my, and, for each 1 < m < my, setting A, = wp m(e),
define wpy1,m : E(Fp41) — A to be the restriction of wy, ., to E(F},)\{e}. Then we have

S( 200 Bwnm) = 2% S( =0 Biwhg1m) (3.3)

by Rule a in Section 2.2 above. Since A, = k(A,) has the same row sum as A,, the
same equation holds when wy, ,, and wp41 ., are replaced by k ® wy, ,, and & ® W41 m,
respectively. Choosing coefficients ap41,m = p?.,rah,m for 1 < m < my and summing
gives the induction step in this case.

series: Fj, 41 is obtained from Fj, by contraction of an edge e; in series with edge ey (their
common endpoint being incident to no other edges). We have E(Fyy1) = E(Fp)\{e1}.
Let mp41 = (d + 1)my,. Re-indexing to keep things simple define, for 1 < m < my, and
0<t<d,
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A if e = e,
Why €)= { '

wp,m(e) otherwise

and j ,; ,,, = Pr.s0h,m- Then, applying Rule ¢, we have the equation

S( ggioiog 0wy, ) = Zprs H O;whyy ). (3.4)

Summing over 1 < m < my, gives us

mp mp d
ot
§ Oh,m Fth) whm = § ah—i—l m Fh+1’®’wh+1,7n)
m=1 m=1 t=0

and similarly for edge weights in A’:

mp mp d

t t
Z Apn S(Fh, 0k @ whm) = Z Zah+1,m S(Fht1, 056 @ wh 4 4n)
m=1 m=1 t=0

using Proposition 2.8.

parallel: F}1 is obtained from F}, by deletion of an edge e; which is in parallel to edge
ez. Let mp41 = my, and, for each 1 < m < my,, define wp41,m : E(Fpt1) — A to be the
restriction of wy, ., to E(Fp,)\{e1} and, assuming wy, ,,(e1) = A, and wy, ,,(e2) = As, set
Qht1,m = Or s m. Then we have, using Rule d,

Ar
As
( m aw;wh,j) = 57",5 S( H 7®;wh+1,j) (35)
As
so that
Mp, an
Z anm S(Fp, 0 wp,m) = Z aht1,m S(Fht1, 0 wWht1,m)
m=1 m=1

and the same holds with edge weights replaced by «  wy, ,, and & e wp41 m by Proposi-
tion 2.8.

Delta: F}, 1 is obtained from Fj, by replacing a Delta (the edges of a triangle) with a Wye
(a new vertex adjacent only to the three vertices of that triangle). Let us treat E(Fp1)
as equal to E(F}) with the understanding that the three edges ej, e, e3 of the triangle
are now the three edges of the Wye, with the convention that e, in the second graph is
incident to neither end of e, in the first.

Fix an m, 1 <m < my, and set 4; = wp,m(e1), Aj = wp m(e2), and Ay = wpm(e3).
Equation (2.6) can be written
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Z (Ai)z,z (Aj)%y (Ak)y7z ERY®2

z,y,z€X
d P
Yookt Y, Aee(Auy(Adu: ERGO 2 (3.6)
r,5,t=0 w,z,y,z€X

where p”k = |X1|3 Z ’JkaQSthc for all 0 < 4,5,k,r,s,t < d. Hence, for all

r,s,t a b,c
q5,>0
z,y,2 € X,
d
ij.k
(Ai)z,2(Aj)ay(Ar)y,. = Z Pr,js,t Z (Ar)w,o(As)w,y(At)w,z- (3.7)
r,s,t=0 weX

As above, it will be simpler to allow several indices of summation on the right hand side

of Equations (3.1). For each 0 < r,s,t < d, define w;;ifm : E(Fpi1) — A via

A, if e=e;

W (e) = Ay ife=ey
h+1, = .

m A, if e =e3

wp,m(e) otherwise.

It follows from (3.7) (cf. [23, Proposition 1.5]) that

kg
s 2 05 whm Z Pl S (3.8)
r,s,t=0
Using Proposition 2.8, we likewise obtain
A,
dik g | AN .
S Z pr]st : 7®7H.w;i1tm . (39)

r,s,t=0

. . . t k . . .
Summing over m with coefficients O‘qu m= pr’jg "+Ch,m, We obtain our induction step for

the Delta-Wye transformation.

Wye: Fj41 is obtained from F}, by replacing a Wye with a Delta. We employ the same
conventions as in the previous case.
Fix m and locate those i, j, k for which A; = wy m(e1), 4; = Wh,m(e2), and Ay =

Wh,m(€3)-
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With g% = ZZ p.e=0 LaiPoj PerTys. b¢ Bquation (2.7) can be written

r,8,t

. ik N s o s
Z (Ai)w,'r (Aj)w y(Ak)w 2 TRYR Qrz; t r z(As)m,y(At)y,z TRYRZ.
w,z,y,2€X Prs>0
(3.10)
(In fact, gi{,’i Tjg],f defined in Section 2.3.) Hence, for all z,y,z € X,
ik
Z z w 'r w y Ak w 2z Z erq 3t 7" T z(As)m,y(At)y,z- (311)
weX pL,>0

For each 0 < r,s,t < d, define w;’j_’fm : E(Fpy1) — A via

A, ife=e

W (o) A, ife=ey
e) =

ChetLm A, if e=e3

wp,m(e) otherwise

and everything goes through as in the previous case, giving

ik g
S Z Qr,s,t (312)
r,s,t=0
and
A’
AJ Al;c . 2y
S , 05 kewpm | = Z 0,51 S
r,8,t=0

(3.13)
Summing over m and using ah+f m = grﬂs’tah m, we establish our induction step. O

We are ready to present our main theorem. By “a graph in” an association scheme
(X,R) we mean a graph with vertex set X whose adjacency relation is a union of non-
identity basis relations from R.

Theorem 3.3. Let (X,R) and (Y,S) be exactly triply reqular symmetric association
schemes that have the same Delta-Wye parameters. Let G' be a graph in (Y,S) cor-
responding to G in (X, R). Then G and G’ are quantum isomorphic.

Proof. By Proposition 2.8, the map k given in Definition 2.7 is a Bose-Mesner isomor-
phism from A to A’.
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Given any planar graph F, we define functions w such that w(e) = Ag for alle € E(F)
and k e w(e) = Ag for all e € E(F). By Lemma 2.1 and Theorem 3.2, we have

hom(F,G) = S(F,0;w) = S(F,0; x e w) = hom(F,G’).
By Theorem 1.1, we conclude that G and G’ are quantum isomorphic. O

A weaker result holds for association schemes with the same parameters if we allow
only the loop, pendent, series and parallel transformations.

Theorem 3.4. Let (X, R) and (Y,S) be symmetric d-class association schemes with the
same parameters, say pfj = p’fj (0 < i,j,k < d) with respect to fixed orderings of the
relations. Let G' be a graph in (Y,S) corresponding to G in (X, R). For any series-parallel
graph F, hom(F,G) = hom(F,G’). O

If one writes G = H when hom(F,G) = hom(F, H) for all series-parallel graphs F,
it is not clear if there is an independent characterization of this equivalence relation,
along the lines of [20, Section 1.1]. (See also [21].) From known results, we can see that
G = H implies that G and H are fractionally isomorphic (since all trees are series-parallel
graphs) but does not imply that G and H are quantum isomorphic (as the Shrikhande
graph and 4 x 4 grid illustrate).

4. Hadamard graphs

Hadamard graphs are very closely related to Hadamard matrices, which have received
much attention, and are themselves a well-studied family of distance-regular graphs, see
[6, Section 1.8]. Our goal in this section is to show that Theorem 3.3 applies to any pair
of Hadamard graphs of the same order. In [13], Gromada proves the same result using
diagrammatic calculus. Please see [2,3] for quantum symmetries of complex Hadamard
matrices.

4.1. Quantum isomorphism

A Hadamard matrix is an n x n £1 matrix H satisfying
HH' =nl.
Given an n x n Hadamard matrix, we construct a graph G on vertex set

— + = + - + = + -
X*{Tlﬂql""vrnarnvClvclv'--vcnvcn}7

+

where ;" is adjacent to cj+ and r; is adjacent to ¢ if Hy; =1, r;r is adjacent to ¢; and

K2

r; is adjacent to c;r if H;j = —1. This graph, called a Hadamard graph of order 4n, is a
distance-regular graph of diameter four with intersection array
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E,n—l,n}.

n
—1.=
{n,n—1, 5

1,1
27a7

For j =0,...,4, we use A; to denote the 4t distance matrix of G. Then Aq,..., Ay
are the adjacency matrices of a 4-class symmetric association scheme. The matrix of
eigenvalues of this association scheme is

1 n 2n — 2 n 1
1 vn 0 —v/n -1
P=]1 0 -2 0 1
1 —v/n 0 vnoo -1
1

-n 2n—2 —-n 1

Since P? = 4nl, this association scheme is formally self-dual which means P;; = Q;;
and pfj = qu, for i,5,k =0,...,4. See [15, p138]. The intersection numbers are given in
L; = [pF lk,; with Lo =TI and Ly, ..., Ly listed in order as

j

0 n 0 0 0 0 0 2n-2 0 0 0 0 0 =n 0

1 0 n-1 0 0 0 n-—1 0 n-1 0 0 0 n-1 0 1

0 n/2 0 n/2 0|,|1 0 2n—4 o0 1|,|0 n/2 0 m/2 0],

0 0 =n-1 0 1 0 n-—1 0 n-1 0 1 0 n-1 0 0
o o o n o] [0 0O 222 0 0] |O mn 0 0 0
[0 0 0 0 1

00 0 1 0

00 1 0 0

01 0 0 0

1 0 0 0 O

We see that N, = N, = 35.
In Nomura’s construction of spin models from Hadamard graphs [26], he proves that

the association scheme of Hadamard graphs are triply regular by computing all param-
i3,k
r,8,t

eters v satisfying

Applying Lemma 2.3 gives the following result due to Jaeger [15, Section 7.3].

Lemma 4.1. The association scheme of a Hadamard graph is exactly triply reqular. 0O

.3,k

s+ depend only on n. For instance, when i = j =

Further, all of the parameters v
k=1,
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1,1,1 1,1,1 11,1 1,11 1 1,1,1 1 41
Vp,0,0 =M Yg2,2 = V0,2 = V220 = Bk Ug 290 = 1 (4.1)

LLL 0 for all other r, s and ¢.

and v, g} =

Lemma 4.2. The association schemes of Hadamard graphs of order 4n have the same
Delta-Wye parameters.

Proof. From [26], the coefficients on the right-hand side of

‘ . Ey, Ea
Ak = Z U:’:{e’f: Z PaersPct

r,8,t a,b,c

depend only on n. Hence the association schemes of any two Hadamard graphs of order
4n have the same Delta-Wye parameters. 0O

Our next result follows immediately from Theorem 3.3.
Theorem 4.3. Any two Hadamard graphs of order 4n are quantum isomorphic. 0O

Remark 4.4. Given a Hadamard graph of order 4n, let s, tg, t1, t2, t3,t4 be complex num-
bers satisfying
2y/n
2 2 4
2(2n — 1 1=0, t{=——""——, t;=1, ty=st ty3 = —t
57+ (TL )S+ ) 0 (4n—1)s+1’ 1 ’ 2 Sto, 3 1

and ty = to.

Then the matrices W, = Z?:o t;Aj and W_ = Zj‘:o tj_lAj form a spin model [26]. In

[16], Jones constructed from each link diagram a plane graph F' with signed edges and
showed that the scaffold S(F, 0;w), where

)

W, if the sign of e is +
w(e) =
W_ if the sign of e is —

is a link invariant with some simple normalization.

Using Theorem 3.2, we reproduce Jaeger’s proof that the spin models from any
Hadamard graphs of the same order give the same link invariant [15, Proposition 22].

4.2. Examples of homomorphism counts

We have seen that scaffolds of order zero include homomorphism counts and we have
given a general recipe for reducing these scaffolds to sums of single-vertex scaffolds.
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Here, we give two concrete examples where we compute hom(F, G) where F is a small
planar graph and G is a Hadamard graph on 4n vertices. In the first example, F' is a
series-parallel graph and the Delta-Wye equations are not needed.

Example 4.5. The number of homomorphisms from the complete bipartite graph
K, 3 into a Hadamard graph G on 4n vertices with adjacency matrix A = A; is
hom(K23,G) = n'(n + 3), the sum of entries of the matrix (A?) o (A4%) o (4%) using
the expansion A? = nAg + 5 Aot

(A%)o(A%)0(A?)

Now let’s work with a more complicated example where the extended series-parallel
reduction rules are applied in conjunction with the scaffold expansion afforded by triple
regularity.

Example 4.6. Consider the graph F', below, obtained by taking a 1-clique sum of a 4-cycle
and the graph obtained by deleting one vertex of the 3-cube. Let A be the adjacency
matrix of a Hadamard graph G on 4n vertices with Bose-Mesner algebra having basis
of Schur idempotents {A4g = I, A1 = A, As, A3, A4} ordered according to distance in G.
We compute, using scaffold rules c (series reduction) and b (loop removal),
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A
As a consequence of exact triple regularity, we have from (4.1) % =

and, with A% o Ay = nAg and A% o Ay = 2 Ay, we apply Rule d (parallel reduction) to
arrive at

0 0
Ap Ag Ag
nA
=2n3(n+1) | n'y —|—§ o
Ag Ao Ag
O O
o)
Ag
L
32¢
Az
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4

n nt
=2n3(n+1) [n*tr(I) + 3 3-tr(A3) + —=tr

A3

S r(43)
=n't +4n'® + 70 + 4nd.

5. Discussion and open problems

In this paper, we have used association schemes as a place to search for graphs where
subconfiguration counts are somewhat under control. We have relied on a theorem of
Mancinska and Roberson that shows it is sufficient to count homomorphisms into G
from any planar graph F' and also on a theorem of Epifanov that gives a reduction
procedure for any planar graph F' involving moves on just 1, 2, or 3 edges. The algebraic
effect of single-edge and 2-edge reductions can be computed in any association scheme,
but the moves involving three edges — the Delta-Wye transformations — seem only
manageable in the case of exactly triply regular association schemes. Fortunately, the
association scheme of any Hadamard graph has this property.

In Section 4.1, we use homomorphism counting to show two Hadamard graphs of the
same order, G and H, are quantum isomorphic. So we know that there exists a quantum
permutation matrix I that satisfies U Ag = AgU. While there is no guarantee that there
exists such a U whose entries belong to a finite-dimensional C*-algebra, we ask if there
exists a quantum permutation matrix P with entries in Mat,(C) for some d satisfying
P(Ag ® I;) = (Ag ® I4)P; such a solution would give a perfect quantum strategy for
the non-local isomorphism game in the quantum tensor framework.

The example from [1] and Hadamard graphs are graphs in association schemes. While
the schemes arising from Hadamard graphs are exactly triply regular, the conjugacy
class scheme of the symmetric group Ss is not: here N, = 42 while N, = 43 so it
cannot be triply regular. The two graphs in [1] both belong to this association scheme.
We are interested in the common properties shared by distinct association schemes that
contain quantum isomorphic graphs. In particular, do they have to be both exactly
triply regular with the same Delta-Wye parameters? We ask for more pairs of exactly
triply regular association schemes with the same Delta-Wye parameters, which will give
more examples of quantum isomorphic graphs. A related question is whether the Delta-
Wye parameters of an exactly triply regular association scheme are determined by its
intersection numbers.

In Section 6 of [1], the authors mention their first example of quantum isomorphic
graphs can be constructed using both their method as well as a version of the Cai, Fiirer
and Immerman construction. The Cai, Fiirer and Immerman construction is designed
to produce non-isomorphic graphs that are indistinguishable by the Weisfeiler-Lehman
algorithm [7]. A natural question is whether two non-isomorphic Hadamard graphs of
the same order are distinguishable by the d-dimensional Weisfeiler-Lehman algorithm,
for some d.

The association schemes supporting spin models that give the Kauffman polynomial
or the Hadamard spin models are formally self-dual and exactly triply regular, [14]
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and [26]. Does the Bose-Mesner algebra of a formally self-dual exactly triply regular
association scheme always contain a spin model? Conversely, is the Nomura algebra
of a spin model exactly triply regular? In [15], Jaeger asked for examples of exactly
triply regular association schemes that are not formally self-dual or a proof that such an
association scheme cannot exist.
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