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1. Introduction

The pioneering work of Bell [5] showing that no hidden variable theory can fully 
explain quantum mechanical correlations of spatially separated entangled particles has 
been experimentally verified; related experimental work of Aspect, Clauser and Zeilinger 
earned the Nobel Prize in Physics in 2022. Over recent decades, Bell’s ideas have been 
refined and generalized in many directions, with one application being the study of quan-
tum games. In one of the most basic quantum games, two physically separated players 
who share both a strategy and a quantum state, but are otherwise unable to commu-
nicate, are fed classical questions from a referee and respond with classical answers. 
Bell-type inequalities identify a gap between the winning probability of the optimal clas-
sical strategy and the corresponding probability in this quantum version. A particularly 
attractive class of quantum games are the graph homomorphism games [19]. These games 
are intuitive, cast in the familiar language of computer science protocols. They generate 
new lines of investigation in graph theory; for example, the quantum chromatic number 
of a graph is sandwiched between the classical chromatic number and the vector chro-
matic number. And, perhaps surprisingly, the natural definition of the quantum analogue 
of the automorphism group of a graph happens to be a compact quantum group.

This notion of quantum isomorphism of graphs was introduced by Atserias et al. [1]
in their study of a non-local graph isomorphism game with two quantum players. In that 
paper, the first known construction is given for non-isomorphic graphs that are quantum 
isomorphic. Further examples were discovered by S. Schmidt [27] using Godsil-McKay 
switching; Schmidt constructs a family of pairs of strongly regular graphs on 120 vertices 
that are quantum isomorphic but pairwise non-isomorphic. (Schmidt also lists several 
references proposing alternative approaches, but these have led to no new examples so 
far.) In this paper, we give a different strategy of finding quantum isomorphic but non-
isomorphic graphs using association schemes and scaffolds. We show how this approach 
implies that any two Hadamard graphs on the same number of vertices are quantum 
isomorphic. The feature we exploit is exact triple regularity, a property closely tied to 
the study of spin models [15].

Two graphs G and H, with adjacency matrices AG and AH respectively, are isomorphic 
if and only if there exists a permutation matrix P such that

PAG = AHP.

Lovász’s classical result states that two graphs are isomorphic if and only if they have 
the same number of graph homomorphisms from any graph [17].

Let A be a C∗-algebra with unity 1 and let U = (uij) be an n × n matrix with 
entries in A. We call U a quantum permutation matrix if it satisfies u2

ij = u∗
ij = uij and ∑n

k=1 uikujk = δi,j1 =
∑n

k=1 ukiukj for all 1 ≤ i, j ≤ n. See, for example, [20,30,31]
for much more on quantum permutation matrices. Two graphs, G and H, are quantum 
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isomorphic if and only if there exists a quantum permutation matrix U with entries in 
some C∗-algebra A such that

UAG = AHU

where operations are performed in A. Note that when A = C, U is a permutation matrix 
and G is isomorphic to H. See [1, p323] for a pair of non-isomorphic graphs on 24 vertices 
that are quantum isomorphic. Only two families of examples are known of quantum 
isomorphic but non-isomorphic graphs; the graphs in the first family [1] are constructed 
based on a reduction from linear binary constraint system games to isomorphism games, 
and the graphs in the second family [27] are constructed via Godsil-McKay switching on 
two particular strongly regular graphs with parameters (120, 63, 30, 36).

Given graphs F and G, we use hom(F, G) to denote the number of graph homomor-
phisms from F to G. Mančinska and Roberson give the following remarkable character-
ization of quantum isomorphic graphs.

Theorem 1.1 ([20]). Two graphs, G and H, are quantum isomorphic if and only if

hom(F,G) = hom(F,H)

for any planar graph F .

Earlier, Atserias et al. [1] showed that it is undecidable to determine if two graphs are 
quantum isomorphic. Putting these together, given any graphs G and H, the problem of 
determining if there exists a planar F such that hom(F, G) ̸= hom(F, H) is undecidable.

For ϕ : V (F ) → V (G), we have

∏

{a,b}∈E(F )
(AG)ϕ(a),ϕ(b) =

{
1 if ϕ is a graph homomorphism from F to G,
0 otherwise.

Hence

hom(F,G) =
∑

ϕ:V (F )→V (G)

∏

{a,b}∈E(F )
(AG)ϕ(a),ϕ(b), (1.1)

which is the scaffold S(F, ∅; w) on the graph F with no root node and a weight function 
w that maps every edge of F to the matrix AG. Please see Section 2 for some background 
on scaffolds and association schemes.

In Section 3, we consider the case where AG belongs to the Bose-Mesner algebra of 
an exactly triply regular association scheme. We apply Epifanov’s theorem to express 
the scaffold S(F, ∅; w) on any connected planar graph F in terms of the Delta-Wye 
parameters of the association scheme. This observation leads to our main result.
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Theorem 3.3. Let (X, R) and (Y, S) be exactly triply regular symmetric association 
schemes that have the same Delta-Wye parameters (Definition 2.6). Let G′ be a graph 
in (Y, S) corresponding to1 G in (X, R). Then G and G′ are quantum isomorphic.

We focus on Hadamard graphs in Section 4. In the construction of spin models from 
Hadamard graphs [26], Nomura computes the Delta-Wye parameters of the association 
scheme of a Hadamard graph and shows that these parameters depend only on the 
number of vertices. Hence, the association schemes of two Hadamard graphs of the 
same order have the same Delta-Wye parameters. From [15] and [26], we see that the 
association scheme of a Hadamard matrix is exactly triply regular which leads to the 
following result, which has also been obtained independently by Gromada [13] via entirely 
different means.

Theorem 4.3. Any two Hadamard graphs of the same order are quantum isomorphic.

To our knowledge, the Hadamard graphs of the same order (≥ 64) are the first exam-
ples of three or more mutually quantum isomorphic but not isomorphic graphs. Merchant 
proved [25] that, provided at least one Hadamard matrix of order n exists, there are at 
least 22n−16−6 logn inequivalent Hadamard matrices of order 2n. And McKay [24] proved 
that, given two Hadamard matrices H and H ′, if H ′ is inequivalent to both H and H⊤, 
then H and H ′ produce non-isomorphic Hadamard graphs. The longstanding Hadamard 
conjecture, claiming that there exists a Hadamard matrix of order 4m for each positive 
integer m would then imply that there are an exponential number (in m) non-isomorphic 
Hadamard graphs on 32m vertices.

Paley’s construction of Hadamard matrix of order 28 gives a vertex transitive 
Hadamard graph. Hence this graph is quantum vertex transitive and its quantum or-
bital coherent configuration is homogeneous [18, Corollary 3.8 and Theorem 3.10]. By 
Theorem 4.3 and Theorem 4.6 of [18], any Hadamard graph of order 112 has a ho-
mogeneous quantum orbital coherent configuration and is therefore quantum vertex 
transitive. In particular, the Hadamard graph constructed from Had.28.101 of http://
neilsloane .com /hadamard/ has a cyclic automorphism group, Z2, which gives an af-
firmative answer to Problem 3.10 of [31]. Any Hadamard matrix has at least two 
automorphisms (I, I) and (−I, −I), so the automorphism group of a Hadamard graph is 
non-trivial [24]. The problem of finding an asymmetric graph with a non-trivial quantum 
automorphism group remains open [31, Problem 3.9].

We discuss additional open problems and directions for future research in Section 5.

1 See Definition 2.7 below.

http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/
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2. Association schemes and scaffolds

A symmetric association scheme is a partition of the edges of a complete graph into 
regular graphs whose adjacency matrices span a vector space closed and commutative un-
der multiplication (a “Bose-Mesner algebra”). The regularity imposed by the definition, 
and by extra assumptions such as triple regularity, facilitate counting of pairs, triples 
and m-tuples of vertices forming prescribed configurations. While the idea has been used 
informally in the community for decades, the concept of a “scaffold” was recently intro-
duced in [23] to treat these counts of m-tuples algebraically. A simple example of such 
a formal sum of configuration counts is the degree sequence, AG1, of a graph G. (Here, 
1 denotes the all ones vector of appropriate length.) Scaffolds allow us to take linear 
combinations of m-vertex counts and to apply local change-of-basis operations on such 
configurations. In this section, we introduce these concepts, and set up notation and 
terminology that we will use as we work with exactly triply regular association schemes 
later.

2.1. Definitions and our notation

A d-class symmetric association scheme [9,4,6,12,8,22] is an ordered pair (X, R) where 
X is a nonempty finite set and R = {R0, . . . , Rd} is a partition of X×X into non-empty 
relations satisfying

• R0 = {(x, x) | x ∈ X} is the identity relation;
• for each i, 0 ≤ i ≤ d, we have R⊤

i = Ri where R⊤
i = {(y, x) | (x, y) ∈ Ri};

• there exist intersection numbers pkij , 0 ≤ i, j, k ≤ d satisfying

|{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = pkij

whenever (x, y) ∈ Rk.

Note that, since all relations are symmetric, we have pkij = pkji for all i, j, k; all symmetric 
association schemes are commutative.

For x, y ∈ X and 0 ≤ i ≤ d, we write x i∼ y to mean (x, y) ∈ Ri.
Denote by MatX(C) the algebra of all matrices with rows and columns indexed by the 

set X having complex entries. We define adjacency matrices (or Schur idempotents2) of 
the association scheme, A0, . . . , Ad ∈ MatX(C) by

(Ai)x,y =
{

1 if x i∼ y,
0 otherwise.

2 Note that the sum of any subset of these is also an idempotent under the Schur product; these d + 1
matrices are minimal Schur idempotents.
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These satisfy

•
∑d

i=0 Ai = J , the all ones matrix
• Ai ◦Aj = δi,jAi where ◦ is the entrywise or Hadamard/Schur product;
• A0 = I;
• for each i, 0 ≤ i ≤ d, A⊤

i = Ai;
• A = spanR({A0, . . . , Ad}) is closed and commutative under matrix multiplication: 

there exist pkij , 0 ≤ i, j, k ≤ d satisfying AiAj = AjAi =
∑d

k=0 p
k
ijAk.

We call A the Bose-Mesner algebra of the association scheme (X, R).
Up to a choice of ordering of relations and ordering of vertices, the correspondence 

between Bose-Mesner algebras and association schemes is immediate and we often work 
with the adjacency matrix Ai in place of the graph (X, Ri).

The vector space A = spanR{A0, . . . , Ad} has a second basis of primitive (matrix) 
idempotents {E0, . . . , Ed}: 

∑d
j=0 Ej = I, EiEj = δijEi, Ei = E⊤

i . The eigenvalues Pji

and the dual eigenvalues Qji of the association scheme satisfy

Ai =
d∑

j=0
PjiEj and Ei = 1

|X|

d∑

j=0
QjiAj . (2.1)

Since A is closed under entrywise multiplication, there exist Krein parameters qkij , 0 ≤
i, j, k ≤ d satisfying Ei ◦ Ej = 1

|X|
∑d

k=0 q
k
ijEk. (See [6, Section 2.2-2.3].)

2.2. Scaffolds

Let (X, R) be an association scheme with Bose-Mesner algebra A. These matrices act, 
in the obvious way, on the standard module V = CX of all complex-valued functions on 
X with standard basis of column vectors {x̂ | x ∈ X}. This space is equipped with the 
corresponding positive definite Hermitian inner product ⟨v, w⟩ = v†w (where ·† denotes 
conjugate transpose) satisfying ⟨x̂, ŷ⟩ = δx,y for x, y ∈ X. We identify V with its dual 
space V † of linear functionals and view matrices in MatX(C) as second order tensors. 
More generally, we will presently define a scaffold with m roots (or mth order scaffold) 
as a certain type of tensor belonging to

V ⊗m = V ⊗ V ⊗ · · ·⊗ V︸ ︷︷ ︸
m

with standard basis consisting of simple tensors of the form x̂1 ⊗ x̂2 ⊗ · · · ⊗ x̂m where 
x1, x2, . . . , xm ∈ X.

For a graph F = (V (F ), E(F )), an ordered set R = {r1, . . . , rm} of nodes in F called 
roots, and a function w : E(F ) → MatX(C), we define
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S(F,R;w) =
∑

ϕ:V (F )→X

⎛

⎜⎜⎝
∏

e∈E(F )
e={a,b}

w(e)ϕ(a),ϕ(b)

⎞

⎟⎟⎠ ϕ̂(r1) ⊗ ϕ̂(r2) ⊗ · · ·⊗ ϕ̂(rm). (2.2)

We call F the “diagram” of the scaffold S(F, R; w), use red solid nodes to depict the 
roots, and label each edge e with the matrix w(e). We identify the scaffold S(F, R; w)
with this pictorial representation of its data, being careful to consistently order the roots 
by spacial placement when two scaffolds appear in the same equation. For instance, the 
matrix A = [Axy] ∈ MatX(C), viewed as the second-order tensor 

∑
x,y∈X Axy x̂ ⊗ ŷ, is 

denoted by A . In this paper, all examples are symmetric matrices. So we will 
omit the directions on edges of the diagrams.3

When studying an association scheme (X, R) with adjacency matrices Ai, two families 
of third order scaffolds of fundamental importance [28,15] are

AiAj

Ak

=
∑

x,y,z∈X

x
i∼z,x

j∼y,y
k∼z

x̂⊗ ŷ⊗ ẑ ,

Ai

Aj Ak
=

∑

x,y,z,u∈X

x
i∼u,y

j∼u,z
k∼u

x̂⊗ ŷ⊗ ẑ . (2.3)

We next consider the vector space spanned by all scaffolds with a given diagram and 
edge weights in A [23, Section 3.2]. In particular, define

• W
(

;
)

A = span

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LM

N

∣∣∣∣∣∣∣∣∣

L,M,N ∈ A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

•W
(

;
)

A = span

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L

M N

∣∣∣∣∣∣∣∣∣

L,M,N ∈ A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

As explained in our introduction, scaffolds help us count homomorphisms.

Lemma 2.1. Let F be a graph, let G be a graph on vertex set X with adjacency matrix 
A. Define w(e) = A for all edges e of F . Then S(F, ∅; w) = hom(F, G), the number of 
graph homomorphisms from F to G.

Proof. This lemma is an immediate consequence of (1.1): a function ϕ from V (F ) to 
V (G) is a homomorphism if and only if 

∏
{a,b}∈E(F ) Aϕ(a),ϕ(b) = 1. !

3 In fact, our definition of a scaffold here is specialized to undirected graphs.
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We will perform local operations on scaffolds that preserve their value, using Propo-
sition 1.5 in [23]. These include loop removal, removal of a non-root vertex of degree 
one, and series and parallel reduction. One may use the definition to directly verify the 
following rules:

a: If M has constant row sum α, then M = α

b: If M has constant diagonal α, then 
M

= α

c: For M, N ∈ MatX(C), M N = MN

d: For M, N ∈ MatX(C), 
M

N = M◦N

2.3. Extra regularity

An association scheme (X, R) with Bose-Mesner algebra A is triply regular if, for 
all x, y, z ∈ X and all 0 ≤ i, j, k ≤ d, υ(x, y, z) :=

∣∣∣
{

u ∈ X : x
i∼ u, y

j∼ u, z
k∼ u

}∣∣∣
depends only on i, j, k and the three relations joining x, y, z and not on the choice of x, y, z

themselves. Jaeger proved that (X, R) is triply regular if and only if W
(

;
)

A

⊆ W
(

;
)

A [15, Proposition 7(ii)]. If (X, R) is triply regular and we use υi,j,k
r,s,t

to denote υ(x, y, z) when x r∼ z, x s∼ y and y t∼ z, then the scaffold equation

Ai

Aj Ak
=

∑

r,s,t

υi,j,k
r,s,t

ArAs

At

holds for all i, j, k.

The association scheme (X, R) is dually triply regular if W
(

;
)

A ⊆

W
(

;
)

A [15, Proposition 8(ii)] and exactly triply regular if it is both triply 

regular and dually triply regular.

Theorem 2.2 (Terwilliger [29] (see [23, Theorem 3.8])). Let (X, R) be a symmetric 
association scheme with minimal Schur idempotents A0, . . . , Ad, primitive (matrix) idem-
potents E0, . . . , Ed, intersection numbers pkij and Krein parameters qkij (0 ≤ i, j, k ≤ d). 

The set 

⎧
⎪⎨

⎪⎩
AiAj

Ak

∣∣∣∣∣∣∣
pkij > 0

⎫
⎪⎬

⎪⎭
is an orthogonal basis for W

(
;

)
A and
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⎧
⎪⎨

⎪⎩

Ei
Ej Ek

∣∣∣∣∣∣∣
qkij > 0

⎫
⎪⎬

⎪⎭
is an orthogonal basis for W

(
;

)
A . !

Let us denote by Np the number of ordered triples (i, j, k) with pkij > 0 and by Nq

the number of ordered triples (i, j, k) with qkij > 0. The following lemma follows from 
Jaeger’s propositions.

Lemma 2.3. If (X, R) is an exactly triply regular association scheme with Bose-Mesner 

algebra A, then W
(

;
)

A = W
(

;
)

A . If Np = Nq and (X, R) is 

either triply regular or dually triply regular, then (X, R) is exactly triply regular. !

Definition 2.4. Let (X, R) be an exactly triply regular d-class association scheme with 
Bose-Mesner algebra having an ordered basis A0, . . . , Ad of adjacency matrices and an 
ordered basis E0, . . . , Ed of primitive idempotents. The Delta-Wye parameters of (X, R)
are those 

{
σi,j,k
r,s,t

∣∣∣pkij > 0, qtrs > 0
}

and 
{
τ r,s,ti,j,k

∣∣∣pkij > 0, qtrs > 0
}

satisfying the equations

AiAj

Ak

=
∑

qtrs>0
σi,j,k
r,s,t

Er

Es Et
(2.4)

and

Er

Es Et
=

∑

pk
ij>0

τ r,s,ti,j,k

AiAj

Ak

. (2.5)

Remark 2.5. The two sets of coefficients are mutual inverses:
∑

qtrs>0
σi,j,k
r,s,tτ

r,s,t
i′,j′,k′ = δi,i′δj,j′δk,k′ ,

∑

pk
ij>0

τ r,s,ti,j,kσ
i,j,k
r′,s′,t′ = δr,r′δs,s′δt,t′ .

So if one knows all σi,j,k
r,s,t , one may derive from these the parameters τ r,s,ti,j,k and conversely.

Applying (2.1) to Definition 2.4 gives the following equations

AiAj

Ak

=
∑

qcab>0
σi,j,k
a,b,c

Ea

Eb Ec
= 1

|X|3
∑

qcab>0
σi,j,k
a,b,c

∑

r,s,t

QraQsbQtc

Ar

As At

(2.6)
and
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Ai

Aj Ak
=

∑

a,b,c

PaiPbjPck

Ea

Eb Ec
=

∑

a,b,c

PaiPbjPck

∑

pt
rs>0

τa,b,cr,s,t

ArAs

At

(2.7)
which we will use in the proof of Theorem 3.2. Note that, while the expansion in (2.7)

is unique by Theorem 2.2, there are typically many ways to express 
AiAj

Ak

as a 

linear combination of the (d + 1)3 non-zero tensors 
Ar

As At
; it is important that 

we consistently use expression (2.6) in our proof.

Definition 2.6. Let (X, R) and (Y, S) be exactly triply regular d-class association schemes. 
We say (X, R) and (Y, S) have the same Delta-Wye parameters if there exist orderings 
A0, A1, . . . , Ad and A′

0, A
′
1, . . . , A

′
d of their respective adjacency matrices, and there exist 

orderings E0, E1, . . . , Ed and E′
0, E

′
1, . . . , E

′
d of their respective primitive idempotents 

such that every Delta-Wye parameter σi,j,k
r,s,t for (X, R) is equal to the corresponding 

Delta-Wye parameter for (Y, S).

Definition 2.7. Let (X, R) and (Y, S) be exactly triply regular d-class association schemes 
with the same Delta-Wye parameters with respect to orderings A0, A1, . . . , Ad and 
A′

0, A
′
1, . . ., A′

d of their respective adjacency matrices, and orderings E0, E1, . . . , Ed and 
E′

0, E
′
1, . . . , E

′
d of their respective primitive idempotents. The bijection Ai /→ A′

i extends 
linearly to a vector space isomorphism κ : A → A′ carrying a matrix M =

∑d
j=0 cjAj to 

the matrix κ(M) =
∑d

j=0 cjA
′
j which we denote M ′. (Note that κ(Ej) = E′

j by Propo-
sition 2.8.) We call M ′ the matrix in the Bose-Mesner algebra of (Y, S) corresponding to
M . In the special case where M is the adjacency matrix of a graph G on vertex set X, 
the matrix M ′ is the adjacency matrix of some graph G′ on vertex set Y ; we call G′ the 
graph in (Y, S) corresponding to G.

We do not know whether two exactly triply regular association schemes with the same 
intersection numbers must have the same Delta-Wye parameters. In Section 5, we ask if 
these parameters are functions of the pkij’s.

Proposition 2.8. If (X, R) and (Y, S) are exactly triply regular association schemes hav-
ing the same Delta-Wye parameters, then they also have the same eigenvalues, dual 
eigenvalues, intersection numbers and Krein parameters under the appropriate consis-
tent orderings of relations and primitive idempotents. The linear map κ in Definition 2.7
is a Bose-Mesner isomorphism: κ(MN) = κ(M)κ(N) and κ(M ◦N) = κ(M) ◦ κ(N).
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Proof. We first show that all intersection numbers of an association scheme can be 
computed from its Delta-Wye parameters. From these we can obtain the eigenvalues, 
dual eigenvalues and Krein parameters (see [6, pp. 46,49]).

We compare the two sides of Equation (2.4) with all nodes made hollow (so that 

the tensor is just a scalar). By definition, 
AkAk

A0
=

∑

x∈X

∑

y∈X

(Ak)xy = |X|p0
kk and 

since Er has row sum zero for r ̸= 0 and E0 has row sum one, we use Rule a to find

∑

qtrs>0
σk,k,0
r,s,t

Er

Es Et
= σk,k,0

0,0,0

E0

E0 E0 = σk,k,0
0,0,0

1
|X|3

∑

x,y,z,u∈X

1 = |X|σk,k,0
0,0,0

showing p0
kk = σk,k,0

0,0,0 . By the same considerations, we also have

|X|p0
kk p

k
ij =

AjAi

Ak

=
∑

qtrs>0
σj,i,k
r,s,t

Er

Es Et
= |X|σj,i,k

0,0,0

allowing us to compute pkij from the Delta-Wye parameters.
Since κ(Ai) = A′

i is a 01-matrix and both Ai ◦ Aj = δijAi and A′
i ◦ A′

j = δijA′
i hold 

for this pair of bases, we have κ(M ◦N) = κ(M) ◦ κ(N) by linearity. Finally,

κ(AiAj) = κ

(
d∑

k=0
pkijAk

)
=

d∑

k=0
pkijA

′
k = A′

iA
′
j = κ(Ai)κ(Aj). !

3. Homomorphism counting

Given a planar graph F and a graph G, let wG be the weight function mapping 
each edge of F to the adjacency matrix AG. Using Lemma 2.1, we compute the scaffold 
S(F, ∅; wG) to count the number of graph homomorphisms from F to G. Simplification 
of such counts is achieved using Epifanov’s Theorem on plane graphs.

3.1. Epifanov’s theorem

A plane graph [10, p83] is an embedding of a planar graph and we do not differentiate 
between embeddings equivalent under ambient isotopy. We allow the following local 
operations on plane graphs. Each modifies an embedded graph only within a closed disk 
with the understanding that this disk contains no part of the embedding other than what 
is shown.
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loop: ! deletion of a loop

pendent: ! deletion of a vertex of degree one
and pendent edge

series: ! a series reduction
parallel: ! a parallel reduction

Delta: ! a Delta-Wye transformation

Wye: ! a Wye-Delta transformation

Theorem 3.1 (Epifanov (see [11] and [15, Proposition 5])). Let F be any connected plane 
graph. Then there exists a sequence of plane graphs F0, F1, . . . , Fℓ with the following 
properties.

(i) F0 = F and Fℓ is a graph with one vertex and no edges
(ii) up to ambient isotopy, Fh+1 is obtained from Fh by just one of the above local 

transformations (loop, pendent, series, parallel, Delta, or Wye), for 0 ≤ h < ℓ. !

3.2. A technical theorem and the main result

In this section, we assume (X, R) and (Y, S) are exactly triply regular association 
schemes having the same Delta-Wye parameters with respect to orderings A0, . . . , Ad

and A′
0, . . . , A

′
d of their respective adjacency matrices, and orderings E0, E1, . . . , Ed and 

E′
0, E

′
1, . . . , E

′
d of their respective primitive idempotents. We use A and A′ to denote the 

Bose-Mesner algebras of (X, R) and (Y, S), respectively. To avoid confusion, we denote 
the composition of functions using the symbol •.

Theorem 3.2. Let (X, R) and (Y, S) be exactly triply regular association schemes having 
the same Delta-Wye parameters and let κ : A → A′ be as given in Proposition 2.8. Let 
F be a connected planar graph (possibly with loops and multiple edges) and consider any 
edge weights w : E(F ) → A. Then S(F, ∅; w) = S(F, ∅; κ • w).

Proof. Write w′ = κ • w so that w′ : E(F ) → A′. First choose an embedding and 
view F as a plane graph. Let F0, F1, . . . , Fℓ be a sequence of plane graphs satisfying the 
conditions in Theorem 3.1.

Since A = span{A0, A1, . . . , Ad} and A′ = span{A′
0, A

′
1, . . . , A

′
d}, it is sufficient to 

show inductively that, for h = 0, 1, . . . , ℓ, there exist mh, αh,m and weight functions

wh,m : E(Fh) → {A0, A1, . . . , Ad}
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such that

S(F, ∅;w) =
mh∑

m=1
αh,m S(Fh, ∅;wh,m) and S(F, ∅;w′) =

mh∑

m=1
αh,m S(Fh, ∅;κ • wh,m) .

(3.1)
Note that, since Fℓ has no edges, S(Fℓ, ∅; ω) = |X| for ω : ∅ → MatX(C) and the result 
follows:

S(F, ∅;w) = |X|
mℓ∑

m=1
αℓ,m = |Y |

mℓ∑

m=1
αℓ,m = S(F, ∅;w′).

When h = 0, Equation 3.1 follows because w(e) ∈ A, for each e ∈ E(F ), and w′ = κ •w. 
For h > 0, we show Equation 3.1 holds for appropriate αh,m and wh,m by considering each 
type of local transformation occurring in Theorem 3.1 and its effect on the associated 
scaffolds. We include the edge weights in the following scaffolds to highlight the change 
of the weight functions due to the local transformations.

loop: Fh+1 is obtained from Fh by deleting a loop e. Set mh+1 = mh, consider 1 ≤ m ≤
mh, and suppose wh,m(e) = Ar. Define wh+1,m : E(Fh+1) → A to be the restriction of 
wh,m to E(Fh)\{e} so that

ArS( , ∅;wh,m) = δ0,r S( , ∅;wh+1,m), (3.2)

by Rule b in Section 2.2 above and the same equation holds after replacing wh,m and 
wh+1,m with κ • wh,m and κ • wh+1,m respectively. Summing over m with coefficients 
αh+1,m = δ0,rαh,m yields Equations (3.1) with h replaced by h + 1.

pendent: Fh+1 is obtained from Fh by deletion of a degree one vertex and the sole 
incident edge e. Let mh+1 = mh and, for each 1 ≤ m ≤ mh, setting Ar = wh,m(e), 
define wh+1,m : E(Fh+1) → A to be the restriction of wh,m to E(Fh)\{e}. Then we have

ArS( , ∅;wh,m) = p0
r,r S( , ∅;wh+1,m) (3.3)

by Rule a in Section 2.2 above. Since A′
r = κ(Ar) has the same row sum as Ar, the 

same equation holds when wh,m and wh+1,m are replaced by κ • wh,m and κ • wh+1,m, 
respectively. Choosing coefficients αh+1,m = p0

r,rαh,m for 1 ≤ m ≤ mh and summing 
gives the induction step in this case.

series: Fh+1 is obtained from Fh by contraction of an edge e1 in series with edge e2 (their 
common endpoint being incident to no other edges). We have E(Fh+1) = E(Fh)\{e1}. 
Let mh+1 = (d + 1)mh. Re-indexing to keep things simple define, for 1 ≤ m ≤ mh and 
0 ≤ t ≤ d,
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wt
h+1,m(e) =

{
At if e = e2,
wh,m(e) otherwise

and αt
h+1,m = ptrsαh,m. Then, applying Rule c, we have the equation

Ar AsS( , ∅;wh,j) =
d∑

t=0
ptr,s S( , ∅;wt

h+1,j).
At (3.4)

Summing over 1 ≤ m ≤ mh gives us

mh∑

m=1
αh,m S(Fh, ∅;wh,m) =

mh∑

m=1

d∑

t=0
αt
h+1,m S(Fh+1, ∅;wt

h+1,m)

and similarly for edge weights in A′:

mh∑

m=1
αh,m S(Fh, ∅;κ • wh,m) =

mh∑

m=1

d∑

t=0
αt
h+1,m S(Fh+1, ∅;κ • wt

h+1,m)

using Proposition 2.8.

parallel: Fh+1 is obtained from Fh by deletion of an edge e1 which is in parallel to edge 
e2. Let mh+1 = mh and, for each 1 ≤ m ≤ mh, define wh+1,m : E(Fh+1) → A to be the 
restriction of wh,m to E(Fh)\{e1} and, assuming wh,m(e1) = Ar and wh,m(e2) = As, set 
αh+1,m = δr,sαh,m. Then we have, using Rule d,

Ar

As

S( , ∅;wh,j) = δr,s S( , ∅;wh+1,j)
As (3.5)

so that
mh∑

m=1
αh,m S(Fh, ∅;wh,m) =

mh∑

m=1
αh+1,m S(Fh+1, ∅;wh+1,m)

and the same holds with edge weights replaced by κ •wh,m and κ •wh+1,m by Proposi-
tion 2.8.

Delta: Fh+1 is obtained from Fh by replacing a Delta (the edges of a triangle) with a Wye 
(a new vertex adjacent only to the three vertices of that triangle). Let us treat E(Fh+1)
as equal to E(Fh) with the understanding that the three edges e1, e2, e3 of the triangle 
are now the three edges of the Wye, with the convention that eu in the second graph is 
incident to neither end of eu in the first.

Fix an m, 1 ≤ m ≤ mh and set Ai = wh,m(e1), Aj = wh,m(e2), and Ak = wh,m(e3). 
Equation (2.6) can be written
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∑

x,y,z∈X

(Ai)x,z(Aj)x,y(Ak)y,z x̂⊗ ŷ ⊗ ẑ

=
d∑

r,s,t=0
ρi,j,kr,s,t

∑

w,x,y,z∈X

(Ar)w,x(As)w,y(At)w,z x̂⊗ ŷ ⊗ ẑ (3.6)

where ρi,j,kr,s,t = 1
|X|3

∑

qcab>0
σi,j,k
a,b,cQraQsbQtc for all 0 ≤ i, j, k, r, s, t ≤ d. Hence, for all 

x, y, z ∈ X,

(Ai)x,z(Aj)x,y(Ak)y,z =
d∑

r,s,t=0
ρi,j,kr,s,t

∑

w∈X

(Ar)w,x(As)w,y(At)w,z. (3.7)

As above, it will be simpler to allow several indices of summation on the right hand side 
of Equations (3.1). For each 0 ≤ r, s, t ≤ d, define wr,s,t

h+1,m : E(Fh+1) → A via

wr,s,t
h+1,m(e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

As if e = e1

At if e = e2

Ar if e = e3

wh,m(e) otherwise.

It follows from (3.7) (cf. [23, Proposition 1.5]) that

S

⎛

⎜⎜⎜⎝ Ak

AiAj

, ∅ ; wh,m

⎞

⎟⎟⎟⎠
=

d∑

r,s,t=0
ρi,j,kr,s,t S

⎛

⎜⎜⎜⎝
As At

Ar

, ∅ ; wr,s,t
h+1,m

⎞

⎟⎟⎟⎠
. (3.8)

Using Proposition 2.8, we likewise obtain

S

⎛

⎜⎜⎜⎝ A′
k

A′
iA′

j

, ∅ ; κ • wh,m

⎞

⎟⎟⎟⎠
=

d∑

r,s,t=0
ρi,j,kr,s,t S

⎛

⎜⎜⎜⎝
A′

s A′
t

A′
r

, ∅ ; κ • wr,s,t
h+1,m

⎞

⎟⎟⎟⎠
. (3.9)

Summing over m with coefficients αr,s,t
h+1,m = ρi,j,kr,s,tαh,m, we obtain our induction step for 

the Delta-Wye transformation.

Wye: Fh+1 is obtained from Fh by replacing a Wye with a Delta. We employ the same 
conventions as in the previous case.

Fix m and locate those i, j, k for which Ai = wh,m(e1), Aj = wh,m(e2), and Ak =
wh,m(e3).
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With ϱi,j,kr,s,t =
∑d

a,b,c=0 PaiPbjPckτ
a,b,c
r,s,t , Equation (2.7) can be written

∑

w,x,y,z∈X

(Ai)w,x(Aj)w,y(Ak)w,z x̂⊗ ŷ ⊗ ẑ =
∑

pt
rs>0

ϱi,j,kr,s,t(Ar)x,z(As)x,y(At)y,z x̂⊗ ŷ ⊗ ẑ.

(3.10)
(In fact, ϱi,j,kr,s,t = υi,j,k

r,s,t defined in Section 2.3.) Hence, for all x, y, z ∈ X,
∑

w∈X

(Ai)w,x(Aj)w,y(Ak)w,z =
∑

pt
rs>0

ϱi,j,kr,s,t (Ar)x,z(As)x,y(At)y,z. (3.11)

For each 0 ≤ r, s, t ≤ d, define wr,s,t
h+1,m : E(Fh+1) → A via

wr,s,t
h+1,m(e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

At if e = e1

Ar if e = e2

As if e = e3

wh,m(e) otherwise

and everything goes through as in the previous case, giving

S

⎛

⎜⎜⎜⎝
Aj Ak

Ai

, ∅ ; wh,m

⎞

⎟⎟⎟⎠
=

d∑

r,s,t=0
ϱi,j,kr,s,t S

⎛

⎜⎜⎜⎝ At

ArAs

, ∅ ; wr,s,t
h+1,m

⎞

⎟⎟⎟⎠
(3.12)

and

S

⎛

⎜⎜⎜⎝
A′

j A′
k

A′
i

, ∅ ; κ • wh,m

⎞

⎟⎟⎟⎠
=

d∑

r,s,t=0
ϱi,j,kr,s,t S

⎛

⎜⎜⎜⎝ A′
t

A′
rA′

s

, ∅ ; κ • wr,s,t
h+1,m

⎞

⎟⎟⎟⎠
.

(3.13)
Summing over m and using αr,s,t

h+1,m = ϱi,j,kr,s,tαh,m, we establish our induction step. !

We are ready to present our main theorem. By “a graph in” an association scheme 
(X, R) we mean a graph with vertex set X whose adjacency relation is a union of non-
identity basis relations from R.

Theorem 3.3. Let (X, R) and (Y, S) be exactly triply regular symmetric association 
schemes that have the same Delta-Wye parameters. Let G′ be a graph in (Y, S) cor-
responding to G in (X, R). Then G and G′ are quantum isomorphic.

Proof. By Proposition 2.8, the map κ given in Definition 2.7 is a Bose-Mesner isomor-
phism from A to A′.
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Given any planar graph F , we define functions w such that w(e) = AG for all e ∈ E(F )
and κ • w(e) = AG′ for all e ∈ E(F ). By Lemma 2.1 and Theorem 3.2, we have

hom(F,G) = S(F, ∅;w) = S(F, ∅;κ • w) = hom(F,G′).

By Theorem 1.1, we conclude that G and G′ are quantum isomorphic. !

A weaker result holds for association schemes with the same parameters if we allow 
only the loop, pendent, series and parallel transformations.

Theorem 3.4. Let (X, R) and (Y, S) be symmetric d-class association schemes with the 
same parameters, say pkij = p′kij (0 ≤ i, j, k ≤ d) with respect to fixed orderings of the 
relations. Let G′ be a graph in (Y, S) corresponding to G in (X, R). For any series-parallel 
graph F , hom(F, G) = hom(F, G′). !

If one writes G " H when hom(F, G) = hom(F, H) for all series-parallel graphs F , 
it is not clear if there is an independent characterization of this equivalence relation, 
along the lines of [20, Section 1.1]. (See also [21].) From known results, we can see that 
G " H implies that G and H are fractionally isomorphic (since all trees are series-parallel 
graphs) but does not imply that G and H are quantum isomorphic (as the Shrikhande 
graph and 4 × 4 grid illustrate).

4. Hadamard graphs

Hadamard graphs are very closely related to Hadamard matrices, which have received 
much attention, and are themselves a well-studied family of distance-regular graphs, see 
[6, Section 1.8]. Our goal in this section is to show that Theorem 3.3 applies to any pair 
of Hadamard graphs of the same order. In [13], Gromada proves the same result using 
diagrammatic calculus. Please see [2,3] for quantum symmetries of complex Hadamard 
matrices.

4.1. Quantum isomorphism

A Hadamard matrix is an n × n ±1 matrix H satisfying

HH⊤ = nI.

Given an n × n Hadamard matrix, we construct a graph G on vertex set

X = {r+
1 , r

−
1 , . . . , r+

n , r
−
n , c+1 , c

−
1 , . . . , c

+
n , c

−
n },

where r+
i is adjacent to c+j and r−i is adjacent to c−j if Hij = 1, r+

i is adjacent to c−j and 
r−i is adjacent to c+j if Hij = −1. This graph, called a Hadamard graph of order 4n, is a 
distance-regular graph of diameter four with intersection array
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{n, n− 1, n2 , 1; 1, n2 , n− 1, n}.

For j = 0, . . . , 4, we use Aj to denote the jth distance matrix of G. Then A0, . . . , A4
are the adjacency matrices of a 4-class symmetric association scheme. The matrix of 
eigenvalues of this association scheme is

P =

⎡

⎢⎢⎢⎢⎢⎣

1 n 2n− 2 n 1
1 √

n 0 −
√
n −1

1 0 −2 0 1
1 −

√
n 0 √

n −1
1 −n 2n− 2 −n 1

⎤

⎥⎥⎥⎥⎥⎦
.

Since P 2 = 4nI, this association scheme is formally self-dual which means Pij = Qij

and pkij = qkij , for i, j, k = 0, . . . , 4. See [15, p138]. The intersection numbers are given in 
Li = [pkij ]k,j with L0 = I and L1, . . . , L4 listed in order as

⎡

⎢⎢⎢⎢⎢⎣

0 n 0 0 0

1 0 n−1 0 0

0 n/2 0 n/2 0

0 0 n−1 0 1

0 0 0 n 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

0 0 2n−2 0 0

0 n−1 0 n−1 0

1 0 2n−4 0 1

0 n−1 0 n−1 0

0 0 2n−2 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 n 0

0 0 n−1 0 1

0 n/2 0 n/2 0

1 0 n−1 0 0

0 n 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
.

We see that Np = Nq = 35.
In Nomura’s construction of spin models from Hadamard graphs [26], he proves that 

the association scheme of Hadamard graphs are triply regular by computing all param-
eters υi,j,k

r,s,t satisfying

Ai

Aj Ak
=

∑

r,s,t

υi,j,k
r,s,t

ArAs

At

.

Applying Lemma 2.3 gives the following result due to Jaeger [15, Section 7.3].

Lemma 4.1. The association scheme of a Hadamard graph is exactly triply regular. !

Further, all of the parameters υi,j,k
r,s,t depend only on n. For instance, when i = j =

k = 1,
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υ1,1,1
0,0,0 = n, υ1,1,1

0,2,2 = υ1,1,1
2,0,2 = υ1,1,1

2,2,0 = n

2 , υ1,1,1
2,2,2 = n

4 , (4.1)

and υ1,1,1
r,s,t = 0 for all other r, s and t.

Lemma 4.2. The association schemes of Hadamard graphs of order 4n have the same 
Delta-Wye parameters.

Proof. From [26], the coefficients on the right-hand side of

Ai

Aj Ak
=

∑

r,s,t

υi,j,k
r,s,t

∑

a,b,c

ParPbsPct

EaEb

Ec

depend only on n. Hence the association schemes of any two Hadamard graphs of order 
4n have the same Delta-Wye parameters. !

Our next result follows immediately from Theorem 3.3.

Theorem 4.3. Any two Hadamard graphs of order 4n are quantum isomorphic. !

Remark 4.4. Given a Hadamard graph of order 4n, let s, t0, t1, t2, t3, t4 be complex num-
bers satisfying

s2 + 2(2n− 1)s + 1 = 0, t20 = 2√n

(4n− 1)s + 1 , t41 = 1, t2 = st0, t3 = −t1

and t4 = t0.

Then the matrices W+ =
∑4

j=0 tjAj and W− =
∑4

j=0 t
−1
j Aj form a spin model [26]. In 

[16], Jones constructed from each link diagram a plane graph F with signed edges and 
showed that the scaffold S(F, ∅; w), where

w(e) =
{
W+ if the sign of e is +
W− if the sign of e is −

,

is a link invariant with some simple normalization.
Using Theorem 3.2, we reproduce Jaeger’s proof that the spin models from any 

Hadamard graphs of the same order give the same link invariant [15, Proposition 22].

4.2. Examples of homomorphism counts

We have seen that scaffolds of order zero include homomorphism counts and we have 
given a general recipe for reducing these scaffolds to sums of single-vertex scaffolds. 
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Here, we give two concrete examples where we compute hom(F, G) where F is a small 
planar graph and G is a Hadamard graph on 4n vertices. In the first example, F is a 
series-parallel graph and the Delta-Wye equations are not needed.

Example 4.5. The number of homomorphisms from the complete bipartite graph 
K2,3 into a Hadamard graph G on 4n vertices with adjacency matrix A = A1 is 
hom(K2,3, G) = n4(n + 3), the sum of entries of the matrix (A2

1) ◦ (A2
1) ◦ (A2

1) using 
the expansion A2

1 = nA0 + n
2A2:

A

A

A

A

A

A

=
A2

A2

A2

= (A2)◦(A2)◦(A2)

Now let’s work with a more complicated example where the extended series-parallel 
reduction rules are applied in conjunction with the scaffold expansion afforded by triple 
regularity.

Example 4.6. Consider the graph F , below, obtained by taking a 1-clique sum of a 4-cycle 
and the graph obtained by deleting one vertex of the 3-cube. Let A be the adjacency 
matrix of a Hadamard graph G on 4n vertices with Bose-Mesner algebra having basis 
of Schur idempotents {A0 = I, A1 = A, A2, A3, A4} ordered according to distance in G. 
We compute, using scaffold rules c (series reduction) and b (loop removal),

A

A

A

A

A

A

A A

A

A A

AA

=
A

A

A

A

A

A

A A

A
A4

= tr(A4)

A

A2

A2
A

A A

A

= 2n3(n+1)

A2

A2

A2
A A

A
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As a consequence of exact triple regularity, we have from (4.1)
A

A A =

n A0A0
A0

+ n

2
A0A2

A2
+ n

2
A2A0

A2
+ n

2
A2A2

A0

+ n

4
A2A2

A2
.

We make this substitution to find

hom(F,G) = 2n3(n + 1)

A2

A2

A2
A A

A
= 2n3(n + 1) ·

⎡

⎢⎢⎢⎢⎢⎢⎣
n A0

A0

A0

A2

A2

A2

+ n

2

⎛

⎜⎜⎜⎜⎜⎜⎝
A0

A2

A2

A2

A2

A2

+ A2

A0

A2

A2

A2

A2

+ A2

A2

A0

A2

A2

A2

⎞

⎟⎟⎟⎟⎟⎟⎠

+ n

4 A2

A2

A2

A2

A2

A2

⎤

⎥⎥⎥⎥⎥⎥⎦

and, with A2 ◦ A0 = nA0 and A2 ◦ A2 = n
2A2, we apply Rule d (parallel reduction) to 

arrive at

= 2n3(n + 1)

⎡

⎢⎢⎢⎢⎣
n4

A0

A0

A0

+ n4

8

⎛

⎜⎜⎜⎜⎝
A0

A2

A2

+ A2

A0

A2

+ A2

A2

A0

⎞

⎟⎟⎟⎟⎠

+ n4

32 A2

A2

A2

⎤

⎥⎥⎥⎥⎦
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= 2n3(n + 1)
[
n4tr(I) + n4

8 · 3 · tr(A2
2) + n4

32 tr(A3
2)
]

= n11 + 4n10 + 7n9 + 4n8.

5. Discussion and open problems

In this paper, we have used association schemes as a place to search for graphs where 
subconfiguration counts are somewhat under control. We have relied on a theorem of 
Mančinska and Roberson that shows it is sufficient to count homomorphisms into G
from any planar graph F and also on a theorem of Epifanov that gives a reduction 
procedure for any planar graph F involving moves on just 1, 2, or 3 edges. The algebraic 
effect of single-edge and 2-edge reductions can be computed in any association scheme, 
but the moves involving three edges — the Delta-Wye transformations — seem only 
manageable in the case of exactly triply regular association schemes. Fortunately, the 
association scheme of any Hadamard graph has this property.

In Section 4.1, we use homomorphism counting to show two Hadamard graphs of the 
same order, G and H, are quantum isomorphic. So we know that there exists a quantum 
permutation matrix U that satisfies UAG = AHU . While there is no guarantee that there 
exists such a U whose entries belong to a finite-dimensional C∗-algebra, we ask if there 
exists a quantum permutation matrix P with entries in Matd(C) for some d satisfying 
P(AG ⊗ Id) = (AH ⊗ Id)P; such a solution would give a perfect quantum strategy for 
the non-local isomorphism game in the quantum tensor framework.

The example from [1] and Hadamard graphs are graphs in association schemes. While 
the schemes arising from Hadamard graphs are exactly triply regular, the conjugacy 
class scheme of the symmetric group S4 is not: here Np = 42 while Nq = 43 so it 
cannot be triply regular. The two graphs in [1] both belong to this association scheme. 
We are interested in the common properties shared by distinct association schemes that 
contain quantum isomorphic graphs. In particular, do they have to be both exactly 
triply regular with the same Delta-Wye parameters? We ask for more pairs of exactly 
triply regular association schemes with the same Delta-Wye parameters, which will give 
more examples of quantum isomorphic graphs. A related question is whether the Delta-
Wye parameters of an exactly triply regular association scheme are determined by its 
intersection numbers.

In Section 6 of [1], the authors mention their first example of quantum isomorphic 
graphs can be constructed using both their method as well as a version of the Cai, Fürer 
and Immerman construction. The Cai, Fürer and Immerman construction is designed 
to produce non-isomorphic graphs that are indistinguishable by the Weisfeiler-Lehman 
algorithm [7]. A natural question is whether two non-isomorphic Hadamard graphs of 
the same order are distinguishable by the d-dimensional Weisfeiler-Lehman algorithm, 
for some d.

The association schemes supporting spin models that give the Kauffman polynomial 
or the Hadamard spin models are formally self-dual and exactly triply regular, [14]
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and [26]. Does the Bose-Mesner algebra of a formally self-dual exactly triply regular 
association scheme always contain a spin model? Conversely, is the Nomura algebra 
of a spin model exactly triply regular? In [15], Jaeger asked for examples of exactly 
triply regular association schemes that are not formally self-dual or a proof that such an 
association scheme cannot exist.
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No data was used for the research described in the article.
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