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We consider ideals in a polynomial ring generated by collections of power sum
polynomials, and obtain conditions under which these define complete intersec-
tion rings, normal domains, and unique factorization domains. We also settle
a key case of a conjecture of Conca, Krattenthaler, and Watanabe, and prove
other results in that direction.
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1. INTRODUCTION

Let S := K[x1, . . . , xn] be a polynomial ring over a field K. For a positive
integer a, we use pa to denote the power sum xa1+ · · ·+xan. If K has character-
istic zero and a1, a2, . . . , an are distinct positive integers, the Jacobian criterion
shows that pa1 , . . . , pan are algebraically independent polynomials over K; the
problem of determining when n+1 power sums generate the field of symmetric
rational functions in x1, . . . , xn over K is settled in [5]. In a different direction,
the following is studied in [4]:

Problem 1.1. Characterize the sets A := {a1, a2, . . . , an} of positive in-

tegers such that the corresponding power sums pa1 , . . . , pan form a regular se-

quence in the polynomial ring S.

The base field is taken to be C in [4], but the problem makes sense more
generally.
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Remark 1.2. We record some straightforward observations; some of these
are proved in [4] in the case K = C, but the proofs are readily adapted to the
more general setting.

(1) Whether pa1 , . . . , pan is a regular sequence is unaffected by enlarging K,
so one may assume that the base field K is algebraically closed.

(2) Set d := gcd(a1, a2, . . . , an). It is readily seen that pa1 , . . . , pan is a reg-
ular sequence precisely if pa1/d, . . . , pan/d is a regular sequence. Thus, in
studying Problem 1.1, one may assume that gcd(a1, a2, . . . , an) = 1.

(3) A necessary condition for pa1 , . . . , pan to be a regular sequence is that n!
divides the product a1a2 · · · an.

(4) If the characteristic of K is 0 or strictly greater than n, and a1, . . . , an
are consecutive positive integers, then pa1 , . . . , pan is a regular sequence.

(5) If pa1 , . . . , pan form a regular sequence in C[x1, . . . , xn], then they also
form a regular sequence in Fp[x1, . . . , xn] for sufficiently large prime inte-
gers p. However, finding optimal bounds for such primes appears hard;
for example, p1, p6, p100 is a regular sequence in C[x1, x2, x3], but is not
a regular sequence in Fp[x1, x2, x3] for the prime integer p = 4594399.

(6) Problem 1.1 is easily answered for n = 2: polynomials pa, pb form a
regular sequence in K[x1, x2] if and only if the characteristic of K differs
from 2, and either a/ gcd(a, b) or b/ gcd(a, b) is even.

Problem 1.1 is open for n = 3; the following is [4, Conjecture 2.10]:

Conjecture 1.3. Suppose n = 3, the characteristic of the field K is

zero, and that a, b, c are integers with 0 < a < b < c and gcd(a, b, c) = 1. Then

pa, pb, pc is a regular sequence if and only if 6 divides abc.

One direction holds more generally, as recorded in Remark 1.2. The
conjecture is proven for certain special values of a, b, c in [4]; the case a = 1
is completely settled in Section 4 of the present paper, while in Section 5, we
prove that for each fixed positive integer a, there are at most finitely many
triples (a, b, c) that possibly violate Conjecture 1.3.

In [10, Conjecture 12] the authors extend Conjecture 1.3 to a statement
about the zero loci of pa, pb, pc, under the assumption that gcd(a, b, c) = 1,
and verify their conjecture computationally for a+ b+ c ⩽ 300; we prove this
stronger conjecture in the case a = 1.

In general, for distinct integers with gcd(a1, a2, . . . , an) = 1 and n! di-
viding a1a2 · · · an, the elements pa1 , . . . , pan need not form a regular sequence.
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Consider, for example, the case where n = 4, and take pa1 , . . . , pa4 in the
polynomial ring S := C[x1, x2, x3, x4]. Let ¿2 denote the 2-adic valuation on
Z ∖ {0}. If each ¿2(ai) is either 0 or k, for k a fixed positive integer, then

(pa1 , . . . , pa4) ¦
(

x1 + x2, x3 + x4, x2
k

1 + x2
k

3

)

,

which justifies condition (2) in the conjecture below. For condition (3), note
that p5 ∈ (p1, p2)S by Remark 2.2, and consequently p5d ∈ (pd, p2d)S for each
positive integer d. A similar argument shows that p5 ∈ (p1, p3)S, so the set
A does not contain a subset of the form {d, 3d, 5d}; this condition, however,
is implied by the others. The three conditions in the conjecture below are
necessary and independent, see [4, Remark 2.16].

Conjecture 1.4 ([4, Conjecture 2.15]). Suppose that n = 4 and K has

characteristic zero. Let A := {a1, a2, a3, a4} where gcd(a1, a2, a3, a4) = 1. Then
pa1 , pa2 , pa3 , pa4 is a regular sequence if and only if A satisfies the following

conditions:

(1) The product a1a2a3a4 is a multiple of 24;

(2) the set {¿2(ai) | ai ∈ A} contains at least two distinct positive integers;

(3) the set A does not contain a subset of the form {d, 2d, 5d} for any d ∈ N.

2. PRIMALITY, NORMALITY, AND FACTORIALITY

The discussion thus far concerned when power sums pa1 , . . . , pan form a
regular sequence in K[x1, . . . , xn]. It is also natural to ask:

Question 2.1. For a set of positive integers A := {a1, . . . , ac}, let pA de-
note the sequence of power sum polynomials pa1 , . . . , pac in S := K[x1, . . . , xn],
and let IA := (pA) denote the corresponding ideal of S.

(1) When is pA a regular sequence, equivalently when is the ideal IA a com-
plete intersection of codimension c?

(2) When is S/IA a normal domain?

(3) When is S/IA a unique factorization domain?

(4) When is the ideal IA radical?

(5) When is the ideal IA prime?
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Remark 2.2. The specification “of codimension c” in (1) is relevant; in
general, the elements pa1 , . . . , pac need not be minimal generators of IA. For
example, when n ⩽ 4, the polynomials p1, p2, p3, p4 generate the ring of sym-
metric polynomials; degree considerations then imply that p5 is a K-linear
combination of p51, p

3
1p2, p

2
1p3, p1p

2
2, p1p4, and p2p3, so p5 is an element of the

ideal (p1, p2). Hence, (p1, p2, p5) = (p1, p2) is a complete intersection ideal,
though not of codimension 3. The same argument shows as well that p5 must
be an element of the ideal (p1, p3).

While we do not pursue it here, one may consider analogues of these
questions for other families of symmetric polynomials such as complete sym-
metric polynomials or elementary symmetric polynomials; see for example [4,
Conjecture 2.17].

Theorem 2.3. For distinct positive integers a1, . . . , ac consider the ideal

IA := (pa1 , . . . , pac) in the polynomial ring S := C[x1, . . . , xn].

(1) If n ⩾ 2c−1, then the ideal IA is a complete intersection of codimension c.

(2) If n ⩾ 2c+ 1, then S/IA is a normal domain.

(3) If n ⩾ 2c+ 3, then S/IA is a unique factorization domain.

(4) If n ⩾ 2c, then the ring S/IA is reduced.

Before proceeding with the proof, we note that the bounds in the theorem
are optimal:

Example 2.4. (1) Suppose n = 2c − 2, take A := {1, 3, 5, . . . , 2c − 1}.
Then |A| = c but the ideal IA has height at most c− 1 since

IA ¦ (x1 + x2, x3 + x4, . . . , x2c−3 + x2c−2).

Indeed, the height c − 1 ideal displayed on the right contains pa for each odd
integer a.

(2) We show that IA need not be prime in the case n = 2c. If c = 1, the
ideal (p2) is not prime; if c ⩾ 2, consider once again A := {1, 3, 5, . . . , 2c − 1}
with |A| = c, in which case

IA ª (x1 + x2, x3 + x4, . . . , x2c−1 + x2c).

Since height IA = c by Theorem 2.3 (1), each ideal above has height c, so IA is
not prime.

(3) Suppose n = 2c+2, take A := {2, 6, 10, . . . , 4c−2}. Then |A| = c and
S/IA is a normal domain of dimension c+2 by Theorem 2.3 (3). It is however,
not a unique factorization domain: setting i :=

√
−1 in C, the image of

(x1 − ix2, x3 − ix4, . . . , x2c+1 − ix2c+2)
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in S/IA is a height one prime ideal that is not principal.

(4) Quite generally, one has C[e1, . . . , en] = C[p1, . . . , pn] where ei is the
i-th symmetric polynomial. Taking n = 2c− 1, it follows that

p2c ∈ C[p1, . . . , p2c−1] =: R.

Degree considerations then imply that p2c = g1p1+ · · ·+gc−1pc−1+gcp
2
c , where

the gi are homogeneous elements of R. It follows that

p2c ∈ (p1, . . . , pc−1, p
2
c)S

where, recall, S = C[x1, . . . , xn]. Since p1, . . . , pc−1, p2c is a regular sequence
in the ring S by Theorem 2.3 (1), one has p2c /∈ (p1, . . . , pc−1)S. Thus gc,
the coefficient of p2c in the equation above, must be nonzero, hence a unit. It
follows that

p2c ∈ (p1, . . . , pc−1, p2c)S.

If pc ∈ (p1, . . . , pc−1, p2c)S, then degree considerations would force

pc ∈ (p1, . . . , pc−1)S,

which is not possible since p1, . . . , pc is a regular sequence in S by Theo-
rem 2.3 (1). Hence, taking A := {1, . . . , c− 1, 2c} one has p2c ∈ IA and pc /∈ IA,
so the ideal IA is not radical.

Proof. The proofs of (1) and (2) are intertwined, using induction on c.
Suppose c = 1, then (1) is immediate, while (2) follows using the Jacobian
criterion for the hypersurface S/IA, bearing in mind that n ⩾ 3.

Next, suppose that c > 1 and n ⩾ 2c − 1. By the inductive hypothesis,
S/(pa1 , . . . , pac−1

) is a normal domain using (2), so (1) follows. Let us suppose
that n ⩾ 2c + 1 and that the elements of A are ordered as a1 < · · · < ac. By
induction, we know that pA is a regular sequence; we determine the singular
locus of S/IA using the Jacobian criterion.

Up to scalar multiples of the rows, the Jacobian matrix takes the form

J :=













xa1−1
1 xa1−1

2 . . . xa1−1
n

xa2−1
1 xa2−1

2 . . . xa2−1
n

...
...

...

xac−1
1 xac−1

2 . . . xac−1
n













.

Consider the size c minors of the Jacobian matrix J with respect to the lexi-
cographic order induced by xn > xn−1 > · · · > x1, e.g., the minor determined
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by the first c columns is

det













xa1−1
1 xa1−1

2 . . . xa1−1
c

xa2−1
1 xa2−1

2 . . . xa2−1
c

...
...

...

xac−1
1 xac−1

2 . . . xac−1
c













= xa1−1
1 xa2−1

2 · · ·xac−1
c + lower order.

Let Ic(J) denote the ideal generated by the size c minors of J , and let H denote
its initial ideal. Then xa1−1

1 xa2−1
2 · · ·xac−1

c ∈ H, and similarly

xa1−1
i1

xa2−1
i2

· · ·xac−1
ic

∈ H for all 1 ⩽ i1 < i2 < · · · < ic ⩽ n.

Assume for the moment that a1 ⩾ 2, in which case each exponent ai− 1 above
is positive. Then radH contains each squarefree monomial of degree c in the
variables x1, . . . , xn, so heightH ⩾ n−c+1. On the other hand, if a1 = 1, then
radH contains each squarefree monomial of degree c− 1 in the n− 1 variables
x2, . . . , xn, so once again

heightH ⩾ (n− 1)− (c− 1) + 1 = n− c+ 1.

In either case the ideal H, and hence Ic(J), has height at least n − c + 1 in
the polynomial ring S. It follows that in the ring S/IA, the defining ideal
of the singular locus has height at least n − 2c + 1. Under our assumption
that n ⩾ 2c + 1, the ring S/IA therefore satisfies the Serre condition (Rv)
with v = n− 2c, and is hence normal, completing the proof of (2).

In (3), one has n ⩾ 2c + 3. If c = 0, there is little to be said, so assume
c ⩾ 1. Then S/IA is a complete intersection ring of dimension at least 4,
satisfying the Serre condition (R3) by the previous paragraph, and is hence, a
UFD by [8, Corollaire XI.3.14].

For (4), note that n ⩾ 2c implies that S/IA is a complete intersection,
so our computation of the singular locus still applies, and shows that S/IA
satisfies the Serre condition (R0).

Remark 2.5. Suppose n ⩾ 2c − 1, so that IA is a complete intersection
of codimension c. Then, in the proof above, we saw that the ideal Ic(J) has
height at least n− c+1. As this is the upper bound for the height of the ideal
of size c minors of a c× n matrix, it follows that height Ic(J) = n− c+ 1.

We mention that maximal minors of generalized Vandermonde matrices














xb11 xb12 . . . xb1n

xb21 xb22 . . . xb2n
...

...
...

xbc1 xbc2 . . . xbcn















,
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where c ⩾ n, are studied in [6]. Up to monomial and Vandermonde factors,
these are the Schur polynomials.

While Theorem 2.3 addresses the case of c arbitrary power sums, we next
record a result for consecutive power sums:

Theorem 2.6. Set S := C[x1, . . . , xn] be a polynomial ring, and let a
and c be positive integers. Then the ring S/(pa, pa+1, . . . , pa+c−1) has an iso-

lated singular point.

Proof. Set R := S/(pa, pa+1, . . . , pa+c−1). If c ⩾ n, then R is an artinian
local ring by [4, Proposition 2.9], so the assertion is immediate. Assume c < n,
in which case R is a complete intersection ring by the same proposition; we
examine the singular locus.

Up to scalar multiples of the rows, the Jacobian matrix takes the form

J :=













xa−1
1 xa−1

2 . . . xa−1
n

xa1 xa2 . . . xan
...

...
...

xa+c−2
1 xa+c−2

2 . . . xa+c−2
n













.

Using Ic(J) for the ideal of minors as earlier, consider the ideal

a := Ic(J) + (pa, pa+1, . . . , pa+c−1)S

of S. It suffices to verify that the algebraic set V (a) contains no nonzero point
of Cn. Suppose z := (z1, . . . , zn) ∈ V (a). If z has at least c distinct nonzero
entries, without loss of generality z1, . . . , zc, evaluating the minor determined
by the first c columns of J at z gives

det













za−1
1 za−1

2 . . . za−1
c

za1 za2 . . . zac
...

...
...

za+c−2
1 za+c−2

2 . . . za+c−2
c













= (z1 · · · zc)a−1 det













1 1 . . . 1

z1 z2 . . . zc
...

...
...

zc−1
1 zc−1

2 . . . zc−1
c













which must be nonzero, a contradiction. It follows that the number k of distinct
entries of z is at most c, allowing now for zero entries. Suppose z1, . . . , zk are
the distinct entries, and occur with multiplicity m1, . . . ,mk, respectively, in
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the n-tuple z. The fact that the power sums pa, pa+1, . . . , pa+k−1 vanish at z
gives us the matrix equation













1 1 . . . 1

z1 z2 . . . zk
...

...
...

zk−1
1 zk−1

2 . . . zk−1
k

























m1z
a
1

m2z
a
2

...

mkz
a
k













=













0

0
...

0













.

This implies that the determinant of the Vandermonde matrix to the left must
be zero, a contradiction. It follows that the only point in V (a) is (0, . . . , 0).

3. POWER SUMS IN FOUR VARIABLES

While each part of Theorem 2.3 is optimal in view of Example 2.4, the
boundary cases can be subtle and interesting; for example, when n = 4 and
A = {a, b}, the ideal IA is radical by Theorem 2.3 (4), but it appears difficult
to determine when IA is prime, see Remark 3.3. First, however, we record
precisely when the ring C[x1, x2, x3, x4]/(pa, pb) is a normal domain.

For p a prime integer, let ¿p denote the p-adic valuation on Z∖ {0}, i.e.,
¿p(n) is the largest integer e such that pe divides n.

Theorem 3.1. Let S := C[x1, . . . , x4]. For positive integers a < b, set

pa := xa1 + · · ·+ xa4 and pb := xb1 + · · ·+ xb4.

If a = 1, then S/(pa, pb) is a normal domain if and only if b is even, whereas

if 1 < a < b, then S/(pa, pb) is a normal domain if and only if

(1) ¿2(a) ̸= ¿2(b), and

(2) either ¿3(a) ̸= ¿3(b), or ¿3(a) = ¿3(b) = ¿3(a− b).

Proof. Since a and b are distinct, S/(pa, pb) is a complete intersection
ring of dimension 2, and is normal precisely if the singular locus consists of a
point. Set m to be the homogeneous maximal ideal of S.

Up to scalar multiples of the rows, the Jacobian matrix is
(

xa−1
1 xa−1

2 xa−1
3 xa−1

4

xb−1
1 xb−1

2 xb−1
3 xb−1

4

)

,

with the ideal generated by its size two minors being

a :=
(

(xixj)
a−1(xb−a

j − xb−a
i ) : 1 ⩽ i < j ⩽ 4

)

.
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Consider first the case where a = 1. Then each minimal prime of a has
the form

b := (x1 − ³x4, x2 − ´x4, x3 − µx4),

where ³, ´, µ are complex numbers with ³b−1 = ´b−1 = µb−1 = 1. Since

pa ≡ (³+ ´ + µ + 1)x4 mod b,

and

pb ≡ (³b + ´b + µb + 1)xb4 ≡ (³+ ´ + µ + 1)xb4 mod b,

it follows that m is the unique minimal prime of a+ (pa, pb) unless there exist
³, ´, µ in C with ³b−1 = ´b−1 = µb−1 = 1 and ³+ ´ + µ + 1 = 0. If b is even,
no such (³, ´, µ) exists by Lemma 3.2 (3), whereas if b is odd, one may take
(³, ´, µ) to be (−1, 1,−1).

Next, suppose a ⩾ 2. Then, up to radical, the ideal a contains

xixj
(

xb−a
j − xb−a

i

)

for each 1 ⩽ i < j ⩽ 4. It follows that, up to permuting indices, a minimal
prime of a in S has one of the following forms

(a) (x1, x2, x3),

(b) (x1, x2, x3 − ³x4),

(c) (x1, x2 − ³x4, x3 − ´x4), or

(d) (x1 − ³x4, x2 − ´x4, x3 − µx4),

where ³b−a = ´b−a = µb−a = 1. We examine these in turn:

Case (a) The only minimal prime of (x1, x2, x3) + (pa, pb) is m.

Case (b) The ideal (x1, x2, x3 − ³x4) + (pa, pb) has radical
(

x1, x2, x3 − ³x4, (³
a + 1)x4, (³

b + 1)x4
)

=
(

x1, x2, x3 − ³x4, (³
a + 1)x4

)

,

where the equality above holds since ³b−a = 1. There exists such an ideal
other than m precisely if ¿2(a) = ¿2(b), see Lemma 3.2 (1).

Case (c) The ideal (x1, x2 − ³x4, x3 − ´x4) + (pa, pb) has radical
(

x1, x2 − ³x4, x3 − ´x4, (³
a + ´a + 1)x4

)

.

Use Lemma 3.2 (2).
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Case (d) Lastly, the ideal (x1 − ³x4, x2 − ´x4, x3 − µx4) + (pa, pb) has
radical

(

x1 − ³x4, x2 − ´x4, x3 − µx4, (³
a + ´a + µa + 1)x4

)

,

in which case we use Lemma 3.2 (3).

Lemma 3.2. Let a and b be distinct positive integers.

(1) There exists ³ in C with ³b−a = 1 and with ³a + 1 = 0 if and only if

¿2(a) = ¿2(b).

(2) There exists ³ and ´ in C with ³b−a = 1 = ´b−a and ³a + ´a + 1 = 0 if

and only if ¿3(a) = ¿3(b) < ¿3(b− a).

(3) There exists ³, ´, and µ in C with ³b−a = ´b−a = µb−a = 1 and with

³a + ´a + µa + 1 = 0 if and only if ¿2(a) = ¿2(b).

Proof. The conditions are symmetric with respect to a and b, e.g., the
condition ³b−a = 1 gives ³b = ³a.

(1) If e := ¿2(a) = ¿2(b), choose ³ ∈ C with ³2e = −1, in which case
³a = −1 = ³b. For the converse, let a = 2ec and b = 2fd, where c and d are
odd. If ³a = −1 = ³b, then

(³cd)2
e

= −1 = (³cd)2
f

,

so e = f .

(2) Let É be a primitive cube root of unity. If

e := ¿3(a) = ¿3(b) < ¿3(b− a),

choose ³ with ³3e = É. Then ³3e+1

= 1, so ³b−a = 1. Setting ´ := ³2, one
has ´b−a = 1 as well. Moreover, {³a, ´a} = {É, É2}, so that

³a + ´a + 1 = 0.

For the converse, if ³a and ´a are roots of unity with ³a + ´a + 1 = 0,
then ³a and ´a must be complex conjugates with real part −1/2. It follows
that {³a, ´a} = {É, É2}. Assume, without loss of generality, that ³a = É. Let
a = 3ec and b = 3fd, where c and d are relatively prime to 3. Suppose now
that ³b−a = 1. Then

(³cd)3
e

= Éd and (³cd)3
f

= Éc

are primitive cube roots of unity, so e = f . Also, ³b−a = 1 implies that
³3e(d−c) = 1, so

Éd−c = ³a(d−c) = ³3ec(d−c) = 1,

implying that 3 divides d− c.
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(3) If e := ¿2(a) = ¿2(b), choose ³ with ³2e = −1. Then ³2e+1

= 1 so
³b−a = 1. Setting ´ := ³2 and µ := ³, one has ´b−a = µb−a = 1, and also

³a + ´a + µa + 1 = (−1) + 1 + (−1) + 1 = 0.

The converse. Suppose 4 distinct roots of unity sum to 0, then the cor-
responding vectors in the complex plane have length 1 and form a rhombus;
pairing the parallel sides, each pair has sum 0. It follows that one of ³a, ´a, or
µa equals −1. If the roots of unity are repeated, then {³a, ´a, µa, 1} = {±1}.
Assume, without loss of generality, that ³a = −1. Then, if ³b−a = 1, part (1)
of the lemma implies that ¿2(a) = ¿2(b).

Remark 3.3. Set S := C[x1, x2, x3, x4]. It does not appear easy to deter-
mine precisely when the ring S/(pa, pb) is a domain; we record some observa-
tions in this regard:

(1) If a < b are odd integers, then (pa, pb) is not prime since the ideal (pa, pb)
is strictly contained in (x1 + x2, x3 + x4).

(2) If (pa, pb) is not prime, then neither is (pak, pbk) for any positive integer k;
one has an embedding of C-algebras S/(pa, pb) ↪−→ S/(pak, pbk) induced
by xi 7−→ xki .

(3) If b = 4k + 2, then S/(p2, pb) is not normal in view of Theorem 3.1.
Moreover,

(p2, pb) ª (x1 − ix2, x3 − ix4)

shows that (p2, pb) is not prime in this case.

(4) When a = 2, we conjecture that S/(p2, pb) is a domain that is not normal
precisely when b = 6k+5 or b = 12k+8, and k is an integer with k ⩾ 1.
The case k = 0 of these appears below:

(5) The ideal (p2, p5) is not prime: one has p5 ∈ (p1, p2), see Remark 2.2,
and it follows that (p2, p5) ª (p1, p2).

(6) The ideal (p2, p8) is not prime: in the ring S/(p2, p8) one has
(

x22x
2
3 + x22x

2
4 + x23x

2
4 − x41

)2 − 2(x1x2x3x4)
2 = 0,

so the image of x22x
2
3 + x22x

2
4 + x23x

2
4 − x41 −

√
2 · x1x2x3x4 in S/(p2, p8) is

a zerodivisor; one may verify readily that this image is nonzero.

In contrast, one may verify that Q[x1, x2, x3, x4]/(p2, p8) is an integral
domain using [3] or [7].
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(7) When a = 3, we conjecture that S/(p3, pb) is a domain that is not normal
precisely when b = 18k + 12 and k ⩾ 0 is an integer.

(8) We arrived at our conjectures in the cases a = 2 and a = 3 as follows:
first, one verifies using [3] or [7] that when C is replaced by Q, the corre-
sponding ring

R := Q[x1, x2, x3, x4]/(pa, pb)
is an integral domain. Then, we use the computational algebra programs
to determine the integral closure R′ of R. Note that R′ ¹Q C is also
normal, hence a product of normal domains. If [R′]0 = Q, then R′ ¹Q C
must be a normal domain, and it follows that its subring R ¹Q C =
S/(pa, pb) is a domain.

4. POWER SUMS IN THREE VARIABLES: A SPECIAL CASE
OF THE CONJECTURE

We work over the complex numbers C throughout this section. Given
positive integers a < b < c with gcd(a, b, c) = 1, Conjecture 1.3 as generalized
in [10, Conjecture 12] may be rephrased as saying that the equations

1 + xa + ya = 1 + xb + yb = 1 + xc + yc = 0

only have trivial solutions, i.e., with either x and y being cube roots of unity,
or one of them being 0 and the other being −1. We settle the conjecture
when a = 1. In this case, y = −1− x, so we are interested in solutions to the
pair of polynomial equations

(4.0.1) 1 + xb + (−1− x)b = 0 = 1 + xc + (−1− x)c.

Indeed, we prove:

Theorem 4.1. For integers b and c with 1 < b < c, the only possible

common zeros of the polynomials 1 + xb + (−1 − x)b and 1 + xc + (−1 − x)c

are 0, −1, É, É2, where É := e2Ãi/3. The common zeros at 0, −1 occur when

2 ∤ bc, while the common zeros at É, É2 occur when 3 ∤ bc. Consequently, when

6 | bc, there are no common zeros to the two polynomials.

Closely related problems were considered previously in [1, 11]. In partic-
ular, Beukers [1, Theorem 4.1] established the following result:

Theorem 4.2. If ¹ ∈ C differs from 0, −1, É, É2, where É := e2Ãi/3,
then there is at most one integer n > 1 such that 1 + ¹n − (1 + ¹)n = 0.

If both b and c are odd, then Beukers’s result shows that there are no
solutions to (4.0.1) apart from 0, −1, É, or É2. We now treat the cases when
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at least one of b or c is even. Our proof has some points in common with
Beukers’s approach, but is also different in some details. When b ⩽ 5, there
are no roots of 1 + xb + (−1 − x)b apart from 0, −1, É, É2, and so we may
assume in what follows that b ⩾ 6.

Lemma 4.3. For integers n ⩾ 2, the polynomial Pn(z) := 1+zn+(−1−z)n

has degree n if n is even, and degree n−1 if n is odd; it factors as Cn(z)Qn(z)
where Cn(z) equals

1 for n ≡ 0 mod 6;

z(z + 1)(z2 + z + 1)2 for n ≡ 1 mod 6;

(z2 + z + 1) for n ≡ 2 mod 6;

z(z + 1) for n ≡ 3 mod 6;

(z2 + z + 1)2 for n ≡ 4 mod 6;

z(z + 1)(z2 + z + 1) for n ≡ 5 mod 6.

In particular, the degree of Qn(z) is a multiple of six; the zeros of Qn(z) differ
from 0, −1, É, É2 and occur in groups of six, with equal numbers of zeros on:

(1) the open line segments Re(z) = −1/2 going from É to −1/2 + i∞, and

its conjugate segment going from É2 to −1/2− i∞;

(2) the open arc of the unit circle going counterclockwise from É to É2;

(3) the open arc of the circle |z+1| = 1 going counterclockwise from É2 to É.

Specifically, suppose ³ := −1/2 + it is a zero with t >
√
3/2. Then:

(i) ³ and ³ = −1− ³ are zeros on the conjugate line segments as above;

(ii) ³/³ = (−1− ³)/³ and ³/³ = −³/(1 + ³) are zeros lying on the arc of

|z| = 1;

(iii) 1/³ and 1/³ are zeros lying on the arc of |z + 1| = 1.

Proof. The first assertion on identifying the possible zeros at 0, −1, É,
É2 is readily checked. We now produce the right number of zeros on the line
segment −1/2 + it with t >

√
3/2 by counting sign changes; the remaining

zeros stem from these zeros ³ by taking ³, (−1− ³)/³, −³/(1 + ³), 1/³ and
1/³.

Write z = −1/2 + it as z = −1/2(1 + i tan ¹) = −ei¹/(2 cos ¹), where ¹
decreases from 2Ã/3 (when z = −1/2+ i

√
3/2) to Ã/2 (when z = −1/2+ i∞).

Note that 2 cos ¹ goes from −1 to 0 as ¹ decreases from 2Ã/3 to Ã/2. Then

Pn(z) = 1 + 2 cos(n¹)/(−2 cos ¹)n =
2 cos(n¹) + (2| cos ¹|)n

(2| cos ¹|)n .
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Clearly, this is real valued, and has the same sign as the numerator, which
is positive for values ¹ ∈ (Ã/2, 2Ã/3) with n¹ ≡ 0 mod 2Ã, and negative for
values ¹ ∈ (Ã/2, 2Ã/3) with n¹ ≡ Ã mod 2Ã. Upon splitting n into progressions
mod 6, and counting the sign changes produced in this way, we find that all
the zeros of Pn(z) are accounted for.

Let Z(b, c) denote the set of common zeros of the polynomials in (4.0.1),
excluding possible zeros at 0, −1 or cube roots of unity. In other words, Z(b, c)
is the set of complex roots of gcd(Qb(z), Qc(z)). We wish to show that this
set is empty, and assume for the sake of contradiction that this is not the case.
Naturally, if ³ is a common zero, then so are all its Galois conjugates, as well
as 1/³ (and its Galois conjugates), and (−1 − ³)/³ together with its Galois
conjugates. Let · denote an element of Z(b, c) of largest absolute value, and
let r denote this absolute value.

Lemma 4.4. Suppose that one of b or c is even. If Z(b, c) is nonempty,

then it contains an element with absolute value r > 14/9.

Proof. Suppose to the contrary that bc is even, and that all the elements
in Z(b, c) have absolute value bounded above by 14/9. Consider the polynomial

f(x) :=
∏

³∈Z(b,c)

(x− ³).

Note that f(x) = gcd(Qb(x), Qc(x)) is a monic polynomial in Q[x], and that it
divides both 1+xb+(−1−x)b and 1+xc+(−1−x)c. Since b or c is even, at least
one of the polynomials 1+xb+(−1−x)b or 1+xc+(−1−x)c, that lie in Z[x],
has leading coefficient 2. By unique factorization in Z[x], we conclude that
2f(x) must have integer coefficients. Therefore, 2f(É) is an element of Z[É],
and by the definition of Z(b, c) we have f(É) ̸= 0. It follows that

2
∏

³∈Z(b,c)

|É − ³| = 2|f(É)| ⩾ 1.

Note that, as in Lemma 4.3, the zeros in Z(b, c) occur in groups of 6: if
³ = −1

2 + it lies in Z(b, c), where t >
√
3/2, then so do ³, 1/³, 1/³, −1− 1/³,

and −1− 1/³. The contribution of such a group of 6 to the product above is
∣

∣(³− É)(³− É)(1/³− É)(1/³− É)(É2 − 1/³)(É2 − 1/³)
∣

∣

=
|³2 + ³+ 1|3

|³|4 =
(t2 − 3/4)3

(1/4 + t2)2
.

If |³| = (1/4 + t2)
1/2

⩽ 14/9, then the above is no greater than 0.4888 < 1/2,
which gives a contradiction.



15 Ideals generated by power sums 63

Our next lemma treats the case when c is small.

Lemma 4.5. Suppose that one of b or c is even and that Z(b, c) ̸= ∅.
Let r be largest absolute value of an elements in Z(b, c). Then c must be larger

than Ãrb/2.

Proof. Let · ∈ Z(b, c) have maximal absolute value r. Since 1/· must
also be in Z(b, c), we have

(

−1− 1

·b

)c
=
[(

−1− 1

·

)b]c

=
[(

−1− 1

·

)c]b

=
(

−1− 1

·c

)b
.

Taking logarithms, we see that

(4.5.1)

∞
∑

ℓ=1

(−1)ℓ−1

ℓ

( c

·bℓ
− b

·cℓ

)

∈ ÃiZ.

However, by the triangle inequality, the quantity in (4.5.1) is bounded in ab-
solute value by

∞
∑

ℓ=1

1

ℓ

( c

rbℓ
+

b

rcℓ

)

⩽

∞
∑

ℓ=1

c+ b/r

rbℓ
⩽

c(1 + 1/r)

rb − 1
<

2c

rb
,

since r > 14/9 by Lemma 4.4. Thus, if c ⩽ Ãrb/2, then the quantity to the left
in (4.5.1) is less than Ã in absolute value, so it must be zero.

But the triangle inequality also shows that the quantity in (4.5.1) is
bounded below in absolute value by

c

rb
− b

rc
−

∞
∑

ℓ=2

1

ℓ

( c

rbℓ
+

b

rcℓ

)

>
c

rb
− c

rc
−

∞
∑

ℓ=2

c

rbℓ

=
c

rb
− c

rc
− c

rb(rb − 1)
>

c

rb

(

1− 1

r
− 1

rb − 1

)

.

Since r > 14/9 and b ⩾ 6, the quantity above is strictly positive, and we have
arrived at a contradiction. This proves the lemma.

It remains to deal with the case when c is large, specifically, c > Ãrb/2. To
handle this, we require a result on diophantine approximation due to Laurent,
Mignotte, and Nesterenko [9]; the formulation that we record below follows
from [2, Theorem 2.6] with a little cleaning up. By the primitive minimal

polynomial of an algebraic number ³, we mean the primitive polynomial a0x
d+

a1x
d−1 + · · · + ad ∈ Z[x] of least degree with ³ as a root, and a0 a positive

integer. In this case, the absolute height of ³ is

h(³) :=
1

d

(

log a0 +
∑

Ã

logmax
{

1, |Ã(³)|
}

)

,
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where the elements Ã(³) are the Galois conjugates of ³.

Lemma 4.6. Let ³ be an algebraic number of absolute value 1 that is not

a root of unity, and let d be its degree. Let h(³) denote the absolute height of

³ as above. Then, for any positive integer k, we have

|³k − 1| ⩾ exp
(

−9

8

(

22Ã + dh(³)
)(

max
{

34, d log(k/2) + 10
})2
)

.

Proof of Theorem 4.1. Let · be an element of the set Z(b, c) with maxi-
mal absolute value r := |·|, and take ³ = −1− 1/·, so that ³ is an element of
Z(b, c) with |³| = 1. Note that ³ cannot be a root of unity, else some conjugate
of ³ will not lie on the arc from É to É2. Since ³ is a root of 1+xb+(−1−x)b,
the degree d of ³ is at most b. Since one of b or c is even, ³ satisfies a polynomial
in Z[x] with leading coefficient 2, so that the primitive minimal polynomial of
³ in Z[x] has leading coefficient 1 or 2. Since only one third of the elements of
Z(b, c) have absolute value exceeding 1, and these absolute values are bounded
above by r, we conclude that

dh(³) ⩽ log 2 +
b

3
log r.

Appealing to Lemma 4.6, we conclude that for any positive integer k one has

(4.6.1) |³k − 1| ⩾ exp
(

−9

8

(

70 +
b

3
log r

)

(

max
{

34, b log(k/2) + 10
})2
)

.

Since ³ is a root of 1+xc+(−1−x)c, and |−1−³| = 1/r, we have |1+³c| ⩽ 1/rc

so

(4.6.2) |³2c − 1| ⩽ 2

rc
.

On the other hand, assuming that c ⩾ e5 and using that b ⩾ 6, we may
simplify the bound in (4.6.1) to yield

|³2c − 1| ⩾ exp
(

−9

8

(

70 +
b

3
log r

)

(b log c+ 10)2
)

⩾ exp
(

−2b2(log c)2
(

70 +
b

3
log r

))

.

Comparing this with (4.6.2), we obtain a contradiction unless

c log r ⩽ log 2 + 2b2(log c)2
(

70 +
b

3
log r

)

.

Since r > 14/9 by Lemma 4.4, the above bound, under the assumption c ⩾ e5,
implies that

(4.6.3)
c

(log c)2
⩽

log 2

log(14/9)(log c)2
+ 2b2

( 70

log(14/9)
+

b

3

)

⩽ 320b2 + 2b3/3.
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If b ⩾ 43, then by Lemmas 4.4 and 4.5, we see that Z(b, c) = ∅ unless
c ⩾ (Ã/2)(14/9)b. But a small calculation shows that this lower bound for c,
which is much bigger than e5, contradicts the upper bound imposed in (4.6.3).
Thus, we conclude that Z(b, c) = ∅ whenever c > b ⩾ 43.

For 6 ⩽ b ⩽ 42, it is easy to check that after accounting for the zeros at
0, −1, É, É2, the remaining part of the polynomial 1+xb+(−1−x)b, denoted
earlier by Qb(x), is irreducible. This allows us to obtain improved estimates
for the size of r in Lemma 4.4, thereby obtaining a larger lower bound for
c in Lemma 4.5. For all 17 ⩽ b ⩽ 42, the polynomial 1 + xb + (−1 − x)b

has a root of size at least 2.72, so that in these cases, we may use r ⩾ 2.72,
and c ⩾ (Ã/2)(2.72)b; this bound can be checked to contradict (4.6.3). Thus
Z(b, c) = ∅ for c > b ⩾ 17. When b equals 12, 14, or 16, there is a root of size
r ⩾ 3.83, and our argument applies in these cases as well.

The case b = 6 is covered by [4, Theorem 2.11], while the case b = 7
does not arise, since 1 + x7 + (−1− x)7 only has roots at 0, −1, É, É2. When
b = 9, the nontrivial factor of 1 + x9 + (−1 − x)9 is a primitive irreducible
polynomial of degree 6, with leading coefficient 3, and therefore cannot divide
1 + xc + (−1 − x)c for c even, since this polynomial has leading coefficient 2.
Similarly, when b = 15, the nontrivial factor of 1+x15+(−1−x)15 is a primitive
irreducible polynomial of degree 12, with leading coefficient 15, and once again
this cannot divide 1 + xc + (−1− x)c for c even.

We are left with four remaining cases, b = 8, 10, 11, and 13, where an
additional small computation is needed to check the theorem. We illustrate
this calculation in the case b = 8, the other cases being similar. The nontrivial
factor of 1+x8+(−1−x)8 has degree 6, with a root of largest absolute value at

· ≈ −1

2
+ 2.513228157188i.

It follows from Lemma 4.5 that Z(8, c) = ∅ for 8 < c ⩽ 2500, while from (4.6.3)
it follows that Z(8, c) = ∅ for c > 5×106. To handle the remaining range for c,
write (1+ 1/·8) as ei¹ with ¹ = −0.0005379141 . . ., so that by (4.5.1) we have,
for some integer m,

|c¹ +mÃ| ⩽ 8
∞
∑

ℓ=1

1

ℓ|·|cℓ ⩽ 9× (2.5)−c < (2.5)−2400.

Thus, mÃ/|¹| must be extremely close to the integer c. Now

Ã/|¹| = 5840.32375784959 . . . ,

and since 2500 < c ⩽ 5× 106, we may restrict attention to integers m that lie
in the range 1 ⩽ m ⩽ 1000. A rapid calculation (for instance, by examining
the continued fraction expansion of Ã/|¹|) shows that there are no m in this
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range with mÃ/|¹| being extremely close to an integer, which completes our
treatment of the case b = 8.

5. POWER SUMS IN THREE VARIABLES: THE GENERAL
CASE

Adapting the argument from the previous section, we establish the fol-
lowing more general result.

Theorem 5.1. Let 2 ⩽ a < b < c be integers such that 2 | abc, and

gcd(a, b, c) = 1. Suppose that the system of equations

1 + xa + ya = 1 + xb + yb = 1 + xc + yc = 0

has a solution where x and y are not cube roots of unity. Then:

(1) We have b < 600a22a.

(2) If exactly one of a, b, c is even, then b < 600a2.

(3) For each b in the range a < b < 600a22a, there are at most finitely many

possible choices for c.

Let Z(a, b, c) denote the set of all ³ ∈ C, excluding cube roots of unity,
for which there exists some ´ ∈ C with

1 + ³a + ´a = 1 + ³b + ´b = 1 + ³c + ´c = 0.

Lemma 5.2. Suppose that gcd(a, b, c) = 1 and that at least one of a, b, or
c is even. If ³ ∈ Z(a, b, c), then the primitive minimal polynomial of ³ in Z[x]
has degree at most ab, and leading coefficient 1 or 2. If exactly one of a, b, or
c is even, then the leading coefficient must be 1, i.e., ³ is an algebraic integer.

Proof. Note that

(1 + ³a)b = (−´a)b = (−1)b(´b)a = (−1)b+a(1 + ³b)a,

and similarly (1 + ³a)c = (−1)a+c(1 + ³c)a, and (1 + ³b)c = (−1)b+c(1 + ³c)b.
Thus, ³ is a root of the three polynomials

(5.2.1)
(1 + xa)b−(−1)a+b(1 + xb)a, (1 + xa)c − (−1)a+c(1 + xc)a,

and (1 + xb)c − (−1)b+c(1 + xc)b.

It follows that ³ is an algebraic number of degree at most ab. Furthermore,
since two of the integers a, b, c must have opposite parity, one of the displayed
polynomials must have leading coefficient 2, so the primitive minimal polyno-
mial for ³ must have leading coefficient 1 or 2. Finally, if exactly one of a,
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b, c is even, then two of the three polynomials have leading coefficient 2, and
the third has an odd leading coefficient. Therefore, in this case, the primitive
minimal polynomial of ³, which divides all three of the polynomials (5.2.1),
has leading coefficient 1.

Lemma 5.3. Suppose w is a complex number with e−¶ ⩽ |w| ⩽ e¶ and

e−¶ ⩽ |1 + w| ⩽ e¶, where 0 ⩽ ¶ ⩽ 1/10. Then

|w2 + w + 1| ⩽ 10¶.

Proof. By assumption,

|1 + w|2 = 1 + w + w + |w|2

lies in the interval [e−2¶, e2¶], so that

|1 + w + w| ⩽ max
{

e2¶ − |w|2, |w|2 − e−2¶
}

⩽ e2¶ − e−2¶.

Therefore,

|w2 + w + 1| = |w|
∣

∣

∣w +
1

w
+ 1
∣

∣

∣⩽ |w|
(

|w + w + 1|+
∣

∣

∣

1

w
− w

∣

∣

∣

)

⩽ |w|(e2¶ − e−2¶) +
∣

∣1− |w|2
∣

∣ ⩽ e¶(e2¶ − e−2¶) + (e2¶ − 1),

and the lemma follows.

Lemma 5.4. Suppose gcd(a, b, c) = 1 and 2 | abc. Suppose Z(a, b, c) ̸= ∅,
let r denote the largest absolute value of an element of Z(a, b, c). Then

r ⩾ exp
( 1

10a2a

)

.

If exactly one of a, b, c is even, then this may be improved to

r ⩾ exp
( 1

10a

)

.

Proof. Note that if ³ belongs to Z(a, b, c), then so does 1/³. Thus, all
elements of Z(a, b, c) have absolute value between 1/r and r.

For ³ ∈ Z(a, b, c), let ´ be such that 1 + ³a + ´a = 1 + ³b + ´b =
1 + ³c + ´c = 0. We know that ³a and ´a both have absolute value in the
interval [r−a, ra]. But ´a = −(1 + ³a), so by Lemma 5.3 we conclude that

(5.4.1) |³2a + ³a + 1| ⩽ 10 log(ra).

Next, we claim that ³2a + ³a + 1 cannot equal zero. If it did, then ³a

would be a primitive cube root of unity, i.e., É or É2, and therefore, so would
´a. Now, ³b and ´b = −(1 + ³b) both have absolute value 1, so that by
Lemma 5.3 ³b must be É or É2. The same conclusion holds for ³c. But since
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gcd(a, b, c) = 1, we conclude that ³ itself must be a cube root of unity, which
is not permitted given the definition of Z(a, b, c).

Summarizing the argument thus far, if ³ ∈ Z(a, b, c) then ³ and all its
Galois conjugates satisfy the bound from equation (5.4.1), and furthermore,
³2a + ³a + 1 ̸= 0. Let f(x) denote the primitive minimal polynomial for ³ in
Z[x], and set g(x) := x2a + xa + 1. By Lemma 5.2, the degree d of f(x) is at
most ab, and its leading coefficient is 1 or 2. The resultant of f(x) and g(x) is
a nonzero integer, and therefore

1 ⩽ |Res(f, g)| ⩽ 22a
∏

Ã

∣

∣Ã(³)2a + Ã(³)a + 1
∣

∣ ⩽ 22a(10a log r)d,

where Ã(³) are the Galois conjugates of ³, and we have used (5.4.1) for the
upper bound. Since d must be at least 2, the first bound of the lemma follows.
If exactly one of a, b, c is even, then f(x) is monic, and the improved bound
holds.

Lemma 5.5. Suppose gcd(a, b, c) = 1 and 2 | abc. Suppose Z(a, b, c) ̸= ∅,
let r be the largest absolute value of an element of Z(a, b, c). Then c must be

larger than Ãrb/2.

Proof. The argument is identical to the proof of Lemma 4.5.

Lemma 5.6. Suppose gcd(a, b, c) = 1 and 2 | abc. Let ³ denote an element

of Z(a, b, c) with smallest absolute value, which is 1/r. Let ´ be such that

1 + ³a + ´a = 1 + ³b + ´b = 1 + ³c + ´c = 0.

Then · := ´/´ is an algebraic number of degree at most (ab)2, with absolute

height

h(·) ⩽ 2 log(2r).

If 2b8 ⩽ rb, then · is not a root of unity. If · is a root of unity, then either

rc < 2b8, or ³c and ´c are both real numbers.

Proof. Since ´ is an algebraic number with degree at most ab (from
Lemma 5.2), it follows that · = ´/´ has degree at most (ab)2. As ´ has a
primitive minimal polynomial with leading coefficient at most 2, and since all
its Galois conjugates have absolute value at most r, we see that h(´) ⩽ log(2r).
Now

h(·) = h(´/´) ⩽ h(´) + h(´) ⩽ 2 log(2r).

It remains to justify the assertions about when · can be a root of unity.
Suppose that it is, write ´ = |´|eÃiℓ/k where ℓ/k is a reduced fraction. Then
· = e2Ãiℓ/k is a primitive k-th root of unity.
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Suppose that b is not a multiple of k. Then

r−2b = |1 + ´b|2 = 1 + |´|2b + 2|´|b cos(Ãℓb/k) ⩾
(

1 + |´|2b
)(

1− | cos(Ãℓb/k)|
)

⩾
(

1− cos(Ã/k)
)

> k−2,

so that k > rb. However, the degree of · is φ(k), which is at most (ab)2. Now
φ(k) ⩾

√

k/2 for all integers k, so

rb < k ⩽ 2φ(k)2 ⩽ 2(ab)4 < 2b8.

In other words, if rb ⩾ 2b8 then b must be a multiple of k. The same argument
shows that if rc ⩾ 2b8 then c is a multiple of k.

If b is a multiple of k, then ´b is real, which forces ³b to also be real.
Similarly, if c is a multiple of k, then ´c and ³c are once again real numbers.
The last assertion of the lemma is immediate.

Finally, if rb ⩾ 2b8, then our argument so far shows that b and c are
multiples of k. Now, we must have |´|b = 1+³b, and |´|c = 1+³c, so that ³b

and ³c must be real numbers (of absolute value r−b and r−c, respectively). If
|´| ⩾ 1, then ³b = r−b and ³c = r−c. However,

|´|c ⩾ |´|b = 1 + r−b > 1 + r−c = |´|c

yields a contradiction. Similarly, if |´| < 1, then ³b = −r−b and ³c = −r−c,
and

|´|b > |´|c = 1− r−c > 1− r−b = |´|b
gives a contradiction. Thus, in this situation · cannot be a root of unity, and
this completes the proof of the lemma.

Proof of Theorem 5.1. We begin by proving the first two parts of the
theorem. We assume that Z(a, b, c) ̸= ∅, and note that Lemma 5.4 gives a
lower bound for the largest absolute value r of an element of Z(a, b, c). We
assume that b is at least 600a22a or 600a2, depending on whether we seek to
establish (1) or (2), and work towards a contradiction. Using the lower bounds
for r from Lemma 5.4 in the respective cases, we see that rb ⩾ 2b8. Hence,
taking ³, ´, · as in Lemma 5.6, we see that · is not a root of unity. Since
´c = −(1 + ³c), we have

·c =
´c

´
c =

1 + ³c

1 + ³c ,

and so

(5.6.1) |·c − 1| ⩽ 2r−c

1− r−c
⩽ 3r−c

since rc > rb > 3. On the other hand, from Lemma 4.6 and Lemma 5.6, we
know that

|·c − 1| ⩾ exp
(

−9

8

(

70 + (ab)22 log(2r)
)

(ab)4(log c)2
)

.
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Since ab ⩾ 100, we may simplify the above to

|·c − 1| ⩾ exp
(

−(ab)6(2 + 3 log r)(log c)2
)

.

Combining this with (5.6.1), we conclude that

(5.6.2)
c

(log c)2
⩽ 3(ab)6

(

1 +
1

log r

)

.

On the other hand, c ⩾ Ãrb/2 by Lemma 5.5. Since rb ⩾ 10, we have
c/(log c)2 ⩾ rb/(b log r)2, which along with (5.6.2) gives

rb ⩽ 3a6b8 log r(1 + log r).

Since b ⩾ 600a2, we find

rb/2 ⩾
(b log r)11

211 · 11! ⩾
b8(log r)11

211 · 11! (600a2)3 > a6b8
(log r)11

380
,

and combining this with our upper bound on rb, we conclude that

rb/2 < 1140(log r)−10(1 + log r).

In other words,

b <
2

log r
log
(

1140(log r)−10(1 + log r)
)

.

Inserting here the bounds from Lemma 5.4 which give log r ⩾ (10a2a)−1 in
case (1) and log r ⩾ (10a)−1 in case (2), we obtain the desired contradiction.

It remains lastly to establish (3). Fix a and b with 2 ⩽ a < b < 600a22a.
We wish to show that if c is sufficiently large, with 2 | abc and gcd(a, b, c) = 1,
then Z(a, b, c) = ∅. First, note that any ³ ∈ Z(a, b, c) is a root of the polyno-
mial

(1 + xa)b − (−1)a+b(1 + xb)a

by (5.2.1), and thus lies in a set of size at most ab. Let ³, ´, ·, and r be
as in Lemma 5.6, and assume that c ⩾ 600a22a so that rc ⩾ 2c8 ⩾ 2b8. If ·
is not a root of unity, then our earlier argument invoking Lemma 4.6 applies,
and yields the upper bound (5.6.2), which shows that there are at most finitely
many possibilities for c. Finally, if · is a root of unity, then the last assertion
of Lemma 5.6 yields that ³c and ´c are real with 1 + ³c + ´c = 0. Since
|³| = r−1 < 1, this equation may be written as |´|c = 1+ r−c if |´| > 1, and as
|´|c = 1− r−c if |´| < 1. Given ³ and ´, there can be at most one solution c to
these equations. Finally, since ³ and ´ are elements of the finite set of roots
of the polynomial (1 + xa)b − (−1)a+b(1 + xb)a, there are only finitely many
possibilities for c.
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