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Abstract Zeckendorf proved that any positive integer has a unique decomposition
as a sum of non-consecutive Fibonacci numbers, here indexed by F; =1, F, =
2, Fy41 = F, + F,—,. Motivated by this result, Baird et al. [3] defined the two-
player Zeckendorf game, in which two players take turns acting on a multiset of
Fibonacci numbers that always sums to N. The game terminates when no possible
moves remain, which importantly always happens, and the final player to perform
a move wins. Notably, Baird et al. [3] empirically studied the setting of random
games, in the sense that the game proceeds by always choosing an available move
uniformly at random, and conjecture that as the input N — oo, the distribution
of random game lengths converges to a Gaussian. We study various combinatorial
questions concerning the Zeckendorf game. We found that the sum of the number
of times certain moves are performed is constant. We prove that the number of
shortest games on input N is at least ]_[Zj Cat(F}), where n denotes the index of
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the largest Fibonacci number in the Zeckendorf decomposition of N and Cat(Fy)
is the Fith Catalan number. The works of Baird, Epstein, Flint, and Miller [3] and
Cuzensa et al. [5] determined how to play in order to achieve the shortest and longest
possible Zeckendorf game on a given input N, respectively: we improve the current
understanding of achievable game lengths by establishing that for any input N, the
range of possible game lengths constitutes an interval of natural numbers; in other
words, for every input N, every game length between the shortest and longest game
lengths can be achieved by some Zeckendorf game. Motivated towards the resolution
of the Gaussianity conjecture, we also further the study of probabilistic aspects of
random Zeckendorf games. In particular, we study two probability measures on the
space of all Zeckendorf games on input N: the uniform measure, and the measure
induced by choosing moves uniformly at random at any given configuration. We show
under both measures that in the limit N — oo, both players win with probability 1/2
when playing under the random game setting. We also find natural partitions of the
collection of all Zeckendorf games of a fixed input N, on which we observe weak
convergence to a Gaussian in the limit N — oco. We conclude the work with many
open problems.

1 Introduction

The Fibonacci numbers are widely considered to be the most interesting and well-
known recursive sequence in mathematics. In this article, we shall index the Fibonacci
numbers by F| = 1, F, = 2, and for general n > 3, F, = F,_; + F,_,. Zeckendorf
proved the following fundamental theorem: the decomposition in the proceeding
theorem is referred to as the Zeckendorf decomposition of the positive integer N.

Theorem 1 ([9]) Every positive integer N can be decomposed uniquely into a sum
of distinct, non-consecutive Fibonacci numbers.

Inspired by this result, the authors of [3] constructed the two-player Zeckendorf
game.

Definition 1 ([3]) Given input N € N, the Zeckendorf game is played on a multiset
of Fibonacci numbers, initialized at S = {F}"}. On each turn, a player can act on the
multiset by performing one of the following moves if it is available.

1. If we have two consecutive Fibonacci numbers F;_, F; for some k > 2, then we
can replace them by Fj |, denoted Fy_; A Fy — Fyqy.
2. If we have two instances of the same Fibonacci number Fj, then

a. If k =1,wecanplay F; A F| — F>.
b. If k =2, wecanplay F; A F, - F| A Fs.
c. If k >3, wecanplay Fy A Fy = Fr_o A Fiy1-
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The two players alternate turns until no playable moves remain. The last player to
move wins the game.

Observe that the moves of the game are consistent with the Fibonacci recurrence:
we either combine two consecutive terms, or split terms with multiple instances.
Perhaps more intuitively, we can understand the game as acting on a row of bins, with
bin k corresponding to the Fibonacci number Fj and its height being the multiplicity
of F} in the multiset.

1.1 Prior Work

The article [3] introduces the two-player Zeckendorf game, determine upper and
lower bounds on the length of a game on input N (showing in particular that the
game always terminates), and shows non-constructively that Player 2 has the winning
strategy for all N > 2. In particular, they provide the following explicit formula for
the length of the shortest Zeckendorf game on input N, achieved by only playing
combine moves.

Theorem 2 ([3]) The number of combine moves in any Zeckendorf game on input
N isis N — Z(N). Furthermore, any such shortest game terminates in N — Z(N)
moves, where Z(N) is the number of terms in the Zeckendorf decomposition of N.

The works [7] and [5] successively improved the upper bound of [3] on the length
of a Zeckendorf game on fixed input N; the former article finds a deterministic
game which has longest possible length for input N, while the latter generalizes
this paradigm. We frequently make use of the following two results from [5] in our
arguments. We note that although the following result provides a strategy to achieve
a longest game, finding a convenient closed form for the length of the longest game
for non-Fibonacci input N remains open (with the case of Fibonacci input treated
by [5D.

Theorem 3 ([5]) The longest game on any N is achieved by applying split moves
or combine 1s (in any order) whenever possible, and, if there is no split or combine
1 move available, combine consecutive indices from smallest to largest.

Theorem 4 ([5]) A Zeckendorf game on input N can be played with strictly splitting
and combine 1 moves if and only if N = F;, — 1 for some k > 2.

Finally, we remark that analogous two-player games have been developed for other
recurrences: the work [2] extends [3] by defining and studying such games for recur-
sive sequences defined by linear recurrence relations of form G, = Zf: 1€Gui(c =
k — 1 =1 yielding the Fibonacci numbers), again giving lower and upper bounds
on game lengths (including showing termination) and showing non-constructively
that Player 2 has a winning strategy, while [4] similarly studies recurrences of form
ay+1 = nay +a,_.
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1.2 Notation and Conventions

We let C; denote the combine move F; A Fi — F,, and (for k > 2) let C; denote the
combine move Fy_; A Fy — Fj11.Let S, denote the splittingmove 2F, — F; A F3,
and (for k > 3) let Sy denote the splitting move 2F; — Fiy_» A Fi4+1. We prefix a
particular type of move with M to denote the number of such moves (e.g. MC)
denotes the number of C;’s in a game).

We let Z(N) denote the number of terms in the Zeckendorf decomposition of N.
We loosely refer to the number of instances of F; as the height of bin &, denoted
hy; it will usually be clear from context at which point in the game the quantity /A
refers to. When discussing the height of bin k after a specific number m of moves
in the game, we notate this by %, (m). For A € N, we shall also occasionally use the
shorthand [A] = {1, 2, ..., A}L.

In this work, we shall generally work under the assumption that F,, < N < F, 1
for some n € N (i.e., n is the index of the largest Fibonacci number that is no larger
than N).! While proving Theorem 7, we occasionally refer tomoves Cy, S, ..., S,—1
as Type A moves, and all other moves (namely, moves C; for k > 2) as Type B
moves. The work [5] also achieved an understanding of precisely when playing
strictly Type A moves throughout the whole game is possible.

Finally, the present article furthers the study of random Zeckendorf games. Here,
we let £2) denotes the (finite) collection of all Zeckendorf games on input N, with
Fn = 2 the associated o-algebra, and express a given Zeckendorf game G € 2y
as a (finite) sequence of A moves, written as G = (M1, M», ..., M)). We study two
probability measures to complete the space (£2y, Fy): the uniform measure py,
defined by

un(G) =

forall G € 2
2] N

and the probability measure Py induced by choosing, at every configuration along a
given game, uniformly at random among available moves, defined by

A 1
Py(@ =[]

j_; hum. playable moves after (M, ..., My_)

for G = (M, ..., M)) € 2. All of the results we derive in this context apply to
both probability spaces.

1 This is why we have elected to deviate from notation traditionally used in papers concerning this
game.
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1.3 Main Results

The work [5] determines an upper bound on the length of a game on input N. We
improve this upper bound using similar techniques as in the work [3].

Theorem 5 The length of a Zeckendorf game on input N is upper-bounded by
|@*N — Z;(N) —2Z(N) + (¢ — 1) |

where Z{(N) represents the index sum of the Zeckendorf decomposition of N. Fur-
thermore, the bound is sharp for infinitely many N.

Much of our work was inspired by the following conjecture (the only one still
unresolved in the paper it was introduced in), initially posed by [3], which concerns
distributional properties of the length of random Zeckendorf games on input N in
the limit N — oo.

Conjecture 1 ([3, 7]) Inthe limit N — oo, the distribution of the number of moves
in a random Zeckendorf game on input N converges to a Gaussian, with expectation
and variance approximately 0.215N .2

As such, many of our main results have largely arisen from attempting to under-
stand those aspects of Zeckendorf games which may potentially aid in resolving the
aforementioned conjecture (and in striving to determine what such aspects are). First,
we have the following lower bound on the number of shortest Zeckendorf games of
length N. Intuitively, if the distribution of random game lengths were indeed Gaus-
sian, this should be an extreme underestimate compared to the number of ways to
achieve other game lengths (shortest games involve the fewest number of decisions,
so one might naturally expect that the probability of achieving one via a random
game is larger than longer games), yet it still explodes in N.

Theorem 6 Let F,, < N < F, . Then the number of shortest Zeckendorf games
with input N is at least ]_[Z;lz Cat(Fy), where Cat(Fy) denotes the Fith Catalan
number.

The shortest game and longest game were studied in [3] and [5], respectively. It
is natural to ask whether every game length between the shortest and longest game
length is achievable: we resolve this in the affirmative.

Theorem 7 For any input N to the Zeckendorf game, let M denote the length of
the longest Zeckendorf game with input N. Then for any m satisfying N — Z(N) <
m < M, there exists a Zeckendorf game of length m on input N. In other words, the
set of achievable game lengths constitutes an interval in the natural numbers.

2 The authors of [3] posed this conjecture based on numerical data gathered from 9,999 simulations
of a random game with n = 18. The authors of [7] gathered further numerical evidence with a
sample of 1,000 games with n = 1, 000, 000. We ran a brute force enumeration over all possible
games for n < 18 and found the distribution of lengths appeared to be Gaussian. This is a slightly
different problem than the random game though is closely related.
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We also study the winning odds of players in the limit N — oo of infinite input
when studying random Zeckendorf games, for which one might expect that both
players win with probability 1/2 in the limit if if Conjecture 1 holds as the variance
of the conjectured Gaussian grows with N. We establish that this is indeed true by
proving a much more general result: we can understand Theorem 8§ as saying that in
the limit of infinite input, a Z-player random Zeckendorf game is fair, in the sense
that all Z players have the same probability of winning.

Theorem 8 For any integer Z > 1 and z € {0, 1, ..., M — 1}, we have that
. . 1
lim py(Game length = z mod Z) = lim Py(Game length = z mod Z) = —.
N—oo N—oo V4

Taking Z = 2 in Theorem 8 above yields the following result for the classical two-
player Zeckendorf game.

Theorem 9 For the two-player Zeckendorf game, in the limit N — oo under both
probability measures iy and Py, Player 1 and Player 2 are equally likely to win.
Explicitly,

3

lim py(Player I wins) = lim uy(Player 2 wins) =
N—o0 N—oo

N — N —

lim Py (Player 1 wins) = lim Py (Player 2 wins) =
N—oo N—o00

Finally, we establish that there exist natural ways to partition the collection of
Zeckendorf games £2y on input N so that the distribution of game lengths over the
corresponding classes are nearly Gaussian with high probability in the limit N — oo.
The construction of the subsets RY C 2y and RS C 2y, and the sets Ay (R), is
elaborated in Propositions 5 and 6.

Theorem 10 ForR € Rf, let F X}z (x) : R — [0, 1] denote the distribution function
corresponding to game lengths in Ay (R) over the conditional distribution induced
by Py, normalized to have expectation 0 and variance 1. Let @ : R — [0, 1] denote
the distribution function of the standard normal. Then for any € > 0,

lim Py <sup |FR(x) — ()] = e> =0.
N—oo xeR

Similarly, for R € Rﬁ let Fg,a(x) : R — [0, 1] denote the distribution function cor-
responding to game lengths in Ay (R) over the conditional distribution induced by
Py, normalized to have expectation 0 and variance 1. Then for any € > 0,

lim Py (sup |FF(x) — ()] = e) =0.
N—oo xeR

The analogous results hold for the uniform measure [iy.
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2 Structural Results

In this section, we include some straightforward, but fundamental results concerning
the nature of the Zeckendorf game; some of these will be invoked in proofs of deeper
theorems.

2.1 Combinatorial Observations

We begin by exploring some basic properties of the Zeckendorf game, observable
by studying deterministic subroutines of moves. The following simple result mirrors
techniques in [3].

Proposition 1 Consider any decomposition of N into a sum of (possibly non-
distinct, non-consecutive) Fibonacci numbers: this decomposition can be achieved
via a sequence of combine moves from the starting configuration of the Zeckendorf
game.

Proof We “play the game in reverse”: consider the configuration corresponding to
this decomposition, and construct a sequence of moves by always taking the game
piece not in the first bin (i.e., F}) and farthest out, and replace it as the result of
a combine move. Specifically, if k£ > 3, then replace Fy by {Fy_», Fi—_1}; if k = 2,
replace with 2F). Then reverse all the moves to get a Zeckendorf game from the
initial state to this state.

The following is an easy consequence of Theorem 3 above, which states that
the longest game paradigm from the starting position extends to intermediate game
positions on input N which are given by converting F,, — 1 instances of F| = 1 into
the Zeckendorf decomposition of F,, — 1, where n denotes the index of the largest
Fibonacci number in the Zeckendorf decomposition of the input N.

Lemma 1 Let n denote the index of the largest Fibonacci number in the Zeckendorf
decomposition of the input N. A longest Zeckendorf game from an intermediate
configuration given by converting F,, — 1 instances of 1 into the Zeckendorf decom-
position of F, — 1 is given by greedily playing any Type A move whenever possible,
and if no such Type A move can be played, play the available Type B move with the
smallest index.

Proof 1f a game achieved by playing Type A moves whenever possible from this
configuration were not maximal (i.e., there existed a Zeckendorf game of strictly
larger length), then by initially playing the longest game on input F,, — 1 via all
Type A moves (possible by Theorem 4), we can play the game exactly according to
Theorem 3 but fail to achieve a game of maximal length, contradicting Theorem 3.

Using similar techniques as in [3], we derive the following results in order to
improve the upper bound found in [5].
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Lemma 2 Let n be the largest summand in the Zeckendorf decomposition of N, we
get that for any 2 < k < n — 1, the following sum is constant:

MSy + MCy +MCryy +---+MC,_;.

Proof Consider the following relabeling of the board:

| Fi| | FR| Fyp1—1| Fyp—-2| Fua—4| Fga-7] - |

where after the kth bin, the value of a bin is equal to one less than the sum of the
values of the two bins which precede it. We get that only the moves Sy, Cy, Cyy1, - - .
can change the weighted sum of the tokens by the relabeled values, and each of these
moves reduce the sum by 1. Since we have a fixed initial sum N and a fixed ending
sum depending on the Zeckendorf Decomposition of N, we get that the sum of those
moves must be constant regardless of how the game is played.

Lemma 3 For any Zeckendorf game starting with N tokens,
MC,—MS, =~ (2—¢)N

with approximation error < ¢ — 1.

Proof Similarly, we prove this with a relabeling of the board

L2 30 5] ] Fen | - |

and observing that the sum of token values goes from 2N to ~ ¢ N with the sum
decreasing by 1 only by performing C; and increasing by 1 only by performing ;.
Note that the final sum is equal to shifting each Zeckendorf summands of N forward
by one, which is approximated by multiplying each by . By Binet’s formula, we
have F, = WLW due to how we index the Fibonacci sequence. Thus, the
error of approximating the summand Fj; with @ F} is

V5 ok +2 V5

The largest error happens when N = F| + F3 4+ F5 + - - - with error at most

‘(w"“—(—1/@"“)@0—(90"”—(—1/@)"”) _ 1

O iy Gty | o’ +1 1
vl O Rl rraryrw iniriat et
P35\ ¥ A —1/pHV5 @

which yields the desired.

As a corollary, we prove Theorem 5
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Theorem 5 The length of a Zeckendorf game on input N is upper-bounded by
|@*N — Z;(N) —2Z(N) + (¢ — 1) |

where Z;(N) represents the index sum of the Zeckendorf decomposition of N. Fur-
thermore, the bound is sharp for infinitely many N.

Proof Using the relabeling of the board given by

R T 3
we get that
2MC, +2MCy +3MC3 +4MCy+--- =3N —2Z(N) — Z;(N)
+MS3+ MSs+---

Applying Lemma 3, we get

MC, +2MCs +3MCy + 4MCy+--- <3N —2Z(N) — Z;(N)
+Q2 =N —(p— 1)+ MSy + MSs + MSy+-- -

Thus, if we subtract the excess MCy +2MCs + 3MCy4 + - - - from the left hand
side, we get the upper bound

MCy 4+ MCy+MC3+MCy+--- < (1+@N —2Z(N) —Z;(N)+ (p—1)
+MSy + MS3 + MSy+-- -

which we round down as the number of all moves performed is an integer. Note that
if we consider N = F,, — 1 then we get that there are no C,, C3, performed within
the longest game. Furthermore, if we consider N = F5, — 1, then our approximation
error is less than 1 and thus must be sharp after rounding down.

Recall that [3] proved non-constructively that Player 2 always has a winning
strategy for any N > 3: finding such a winning strategy remains open. It is generally
believed [8] that the key to such a strategy lies in understanding “parity swaps":
distinct sequences of moves of differing length which yield the same effect on the
board. The following definition follows from the easy observation that whenever
playable, the sequences of moves

Sp—=>Sk1—> o> Skt = Che Crg = Sge1 —> - —> Sl —> Sk

both have the same effect on the board as the move Cy, for some k > 2.

Definition 2 For any ¢ > 0 and k > 2, call a sequence of moves of form S; —
Si—1 — -+ = Sk_¢r1 = Cir_¢ an (€, k)-prefix, and a sequence of moves of form
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Ci—t = Sk—t+1 = Sk—ty2 = --- — S an (£, k)-suffix. We call an (£, k)-prefix a
prefix of Cy, and an (€, k)-suffix a suffix of C.

It should be emphasized that an (¢, k)-prefix or (¢, k)-suffix corresponds to an
equivalent action as the combine move Cy, for all lengths ¢ > 0 and k > 2; the
combine move is thus “expanded" via a sequence of ¢ splitting moves with contiguous
indices. The next result captures the intuition that the variation in game lengths is
entirely due to the parity swaps described in Definition 2, namely by describing
arbitrary Zeckendorf games via permutations of suffixes.

Proposition 2 Any Zeckendorf game on input N can be achieved by taking a shortest
game, expanding combine moves via suffixes, then shifting the splitting moves.

Proof For an arbitrary Zeckendorf game, greedily take the earliest split move of a
game, move it back to be played as early as possible, and compress it into a combine
move. Proceed similarly until we only have combine moves, from which we achieve
the original game by reversing the compressions and playing split moves later.

We can interpret the statement of Proposition 2 as saying that we can greedily
embed an arbitrary Zeckendorf game on input N into a shortest game on input N in
a natural way.

2.2 Shortest Games

Proposition 2 suggests that a study of shortest Zeckendorf games might be fruitful, as
any particular Zeckendorf game can be understood as an extension and permutation
of a particular shortest game. We first observe the following.

Proposition 3 Shortest games are exactly those games which strictly use combine
moves. Furthermore, such a game exists for any input N, and the multiset of combine
moves for any such shortest game is unique.

Proof A move decreases the number of pieces by at most one, so N — Z(N) lower-
bounds the number of moves necessary, achieved exactly by those games using
strictly combine moves; such games exist by Proposition 1. To establish uniqueness
of the multiset of combine moves for any such game, say F,, < N < F,11, and study
bin k for 1 < k < n. Moves affecting h; are known precisely: letting the Zeckendorf
decomposition of N be denoted (z1, z2, - - ., 2») (Where z; € {0, 1}), this yields the
system

N —-2MC; —MC, = 74
MCy —MCy—MC3 =2,

MC11—3 - MCn—2 - MCn—l =Zn-2
MCy o —MCyy = 21
MC,_1=z,=1

from which it easily follows that this system must have a unique solution.
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Proposition 4 Forn = n(N) and any § € (0, 1),

. #{Cr € G, k > dn} . #{Cr € G,k > én}
lim max = lim max =

0.
N—oo Ge2y #{Combine moves in G} ~ N—oo Gely N —1

Proof For G € $2y, consider all combine moves Cy with k > dn; each such combine
move corresponds to a particular token “jumped,”’ for which we consider all combine
moves with index < dn that led this token to land in this position, of which there
must be at least | dn/2]. The sets of combine moves with index < dn corresponding
to distinct combine moves with index > dn are observed to be disjoint, so

#{Cr € G, k > dn} - 1
N_1 = on/2] +1

which vanishes as N — oo.

Proposition 3 yields the following interesting lower bound® on the number of
shortest Zeckendorf games with input N.

Theorem 6 Let F,, < N < F, . Then the number of shortest Zeckendorf games
with input N is at least ]_[Z;f Cat(Fy), where Cat(Fy) denotes the Fith Catalan
number.

Proof 1t suffices to study N = F,, since the number of distinct shortest Zeck-
endorf games is increasing in N: for input N # F,, one can first play a shortest
Zeckendorf game on input F,, then proceed by always playing the rightmost avail-
able combine move to achieve a shortest game on input N by Proposition 3. (See
Lemma 4, where we understand this as incrementing instances of Fis after playing
a shortest game on F),.) The Zeckendorf decomposition is (z;, 22, ..., Zn—1, Zn) =
0,0, ...,0, 1), where z; denotes the number of instances of F; in the decomposition.
By Proposition 3, there exists a unique multiset of combine moves constituting a
shortest game: by solving the system above, this multiset is defined by

MC,MCy,...,MC,_1) = (Fy—2, Fy_3, Fy_4, ..., I3, F>, F1, Fp)

where we let Fy = 1. A permutation of these moves constitutes a game if and only
if every move is valid, i.e., no move would force the height of any bin to become
negative. Specifically, at any intermediate point in the sequence, the number of C;’s
played is no less than the sum of the number of C,’s and Cj3’s played (bin 2 is
nonnegative), the number of C5’s is no less than the number of C3’s and C,’s played
(bin 3 is nonnegative), and so on, to the number or C,_,’s being no less than the
number of C,,_;’s played (bin n — 1 is nonnegative). (We need not study bin 1 or bin
n, which will necessarily always have nonnegative height.)

3 We suspect the lower bound of Theorem 6 to be somewhat loose, as much is lost when crudely
pursuing the interweaving of the Dyck paths 7, 73, ..., m,—1 (see the proof for details).
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Let us restrict our attention to the moves Cy, C,, C3 (moves affecting the height
of bin 2): the number of permutations of these moves such that the number of C;’s
played being no less than the sum of the number of C;’s and C3’s performed holds
at any point in the game is in bijective correspondence with (up-down) Dyck paths
onj=F, ,(C; < U;C,, C3 < D), the number of which is Cat(F},_;). Similarly,
by studying moves affecting bin k£ > 2, we achieve bijective correspondences with
Dyck paths on j = F),_4.

For any choice of Dyck paths m, m3,...,7—1 on j = F,_5, Fy_3,..., Fy,
respectively, there exists a shortest Zeckendorf game on input N where the ordering
of the relevant moves is consistent with the bijections described above. To construct
such a game, begin by placing 2F,_, moves along a line, labeling F,,_, of them
as C in a manner consistent with m, (C; <> U). Among the F,,_, = F,,_3 + F,_4
unlabeled moves, label F),_3 of them as C, (importantly, including the first D move)
in a manner consistent with 73 (not too many unlabeled moves between consecutive
instances of C,) and the other F,,_4 as C3. Now add F),_s instances of Cy4 along this
line to complete 73 (include all missing C4 <> D moves) while respecting 74 (not too
many unlabeled moves between consecutive instances of C3). Specifically, construct
a labeling of the F,,_3 = F,,_4 + F,,—s D moves in w3 with F,,_4 C3’s and F,,_s C4’s
such that the first D is labeled C3, and there are not too many unlabeled D moves
between consecutive instances of C3 (with respect to 74). Insert C4’s to be adjacent
to established instances of C, and Cj3 to be consistent with this labeling.

Continue by similarly adding, for k > 5, F,_;_ instances of C, completing 7 _;
while respecting 7, until we add Fy = 1 instance of C,_; such that we complete
m,—1. This results in a shortest Zeckendorf game with the ordering of the relevant
moves being consistent with 7, 73, ..., m,_.

3 The Set of Possible Game Lengths Constitute an Interval

In this section, we prove Theorem 7, which we restate below.

Theorem 7 For any input N to the Zeckendorf game, let M denote the length of
the longest Zeckendorf game with input N. Then for any m satisfying N — Z(N) <
m < M, there exists a Zeckendorf game of length m on input N. In other words, the
set of achievable game lengths constitutes an interval in the natural numbers.

We begin by establishing some intermediate results that we shall invoke in the
proof of the main theorem. In the first lemma, in discussing the position given by
the Zeckendorf decomposition of N — 1, we refer to the terminal position of the
Zeckendorf game when played on input N — 1.

Lemma 4 Consider the Zeckendorf game on input N, satisfying F, < N < F,41,
from the position given by the Zeckendorf decomposition on N — 1 (as specified
above) with an additional instance of 1. There is a unique sequence of moves from
this configuration to the Zeckendorf decomposition of N, all of which are combine
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moves. Furthermore, the number of such combine moves performed is bounded by

Ln/2).

Proof Since no moves can be played from the Zeckendorf decompositionon N — 1,
any playable move from this position (on input N) is necessarily either C; or C»,
possible if and only if F; =1 or F, =2 is in the Zeckendorf decomposition of
N — 1, respectively (such cases are disjoint, since the Zeckendorf decomposition on
N — 1 does not contain consecutive Fibonacci numbers); otherwise, no moves can
be played. We study both cases.

— If the Zeckendorf decomposition of N — 1 contains an instance of Fj, then after
playing Cy, it is easy to see that the only possible move is C3 (iff the decomposition
of N — 1 contains an F3), then Cs (iff the decomposition of N — 1 contains an
F5), and so on, until we exhaust all playable moves.

— If the Zeckendorf decomposition of N — 1 contains an instance of F5, then after
playing C,, it is easy to see that the only possible move is C4 (iff the decomposition
of N — 1 contains an Fy), then Cg (iff the decomposition of N — 1 contains an
F¢), and so on, until we exhaust all playable moves.

In both cases, it is straightforward to confirm that we cannot play strictly more than
[n/2] such combine moves, as otherwise there must be an instance of Fj for k
either n 4 1 or n + 2 after completing this sequence of moves, a contradiction on
N < Fn+1-

We shall also frequently use the following lemma. Intuitively, this states that if
we have isolated the Zeckendorf game to a suffix of bins all of height 0 or 1, and
this suffix is separated from earlier bins by a bin of height O (say bin k), then we can
ignore bins 1, ..., k for the remainder of the game.

Lemma 5 Forsomel <k <n,let(xy,x2,...,Xp, Xk+1, - - - » Xn) denote the heights
ofbins 1, ..., n at some point during a Zeckendorf game, with x; denoting the height
of bini. Assume x; € {0, 1} fork <i < n, x;x = 0, no playable moves involving bins
1, ..., k exist, and we play according to Theorem 3. Then heights x1, . . ., X; remain
fixed for the rest of the game.

Proof We prove this on k = n — j by induction on 0 < j < n — 2. The statement
trivially holds if j € {0, 1, 2}; assuming it for all values less than j > 3, if x4, =0
or x;4+2 = 0 we can apply the induction hypothesis to j — 1 or j — 2, respectively, so
assume xi1| = X;42 = 1. Take r < n to be largest possible such that x;; = --- =
x, = 1: the game proceeds by playing according to Theorem 3, i.e., by playing the
sequence of moves

(Cr1 = Sk13 = Sepa —> - > 8) = (Crg1 = Spy3 = - —> S,2) > -+

where the final subsequence of moves, either Cyy; or Cx+1 — Sk+3, depends on the
parity of r — k. It follows immediately by studying the moves involved that x, . . ., x
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remain unchanged during this sequence. Following this sequence, we have x, = 0:
invoke the induction hypothesis on k = r (i.e., n — r < j) afterwards to complete
the proof.

We now proceed with the proof of Theorem 7.

Proof (Proof of Theorem 7) We have confirmed this statementfor N < Fg — 1 = 12
via a computer check. Thus, for N > Fg = 13, assume the statement holds for all
input sizes at most N — 1: we aim to show the result holds for N. We explicitly
specify that F,, < N < F,4.

Let I] denote the interval (by induction hypothesis) of possible Zeckendorf game
lengths for input N — 1: by Lemma 4, if we include an additional instance of F)
to the Zeckendorf decomposition of N — 1, there is a sequence of combine moves
from the resulting configuration to the Zeckendorf decomposition of N. On input
N, consider initially playing the Zeckendorf game (to completion) as if the input
were N — 1, then executing this sequence of moves to terminate the game. Let
I1 =[Ly, Ri] denote the interval I{ shifted by the length of this sequence: by the
preceding description, it follows that every game length in /; is achievable for
input N. Furthermore, L; = N — Z(N), since the game length L as studied above
results from playing strictly combine moves (see Lemma 4), which necessarily
yields a shortest game by Proposition 3, and for which the length is N — Z(N)
by Theorem 2.

By Theorem 4, it is possible to play the Zeckendorf game on input F,, — 1 strictly
using Type A moves. Let I denote the interval (by induction hypothesis) of possible
Zeckendorf game lengths for input 7, — 1 < N — 1: on input N, consider initially
playing the Zeckendorf game (to completion) as if the input were F,, — 1, then exe-
cuting the longest possible sequence of moves from the resulting position to terminate
the game. Let I, = [L,, R,] denote the interval I} shifted by the number of moves
of this longest sequence. By Theorem 3, R, is necessarily the length of the longest
Zeckendorf game on input N, since the above approach is consistent with playing
Type A moves whenever possible.

Thus, it suffices to show that L, < R; to complete the induction and establish
the theorem, as this yields that I} U I, = [L;, R;] is an interval of achievable game
lengths on input N, with the endpoints being the shortest and longest possible game
lengths for input N.

The known game with length R; corresponds to playing the longest game on
input N — 1, then performing the unique sequence of combine moves to achieve
the Zeckendorf decomposition of N; by Theorems 3 and 4, we can take the first
phase of this game (longest game on input N — 1) as playing the longest game on
input F,, — 1, then playing the longest remaining game (on input N — 1). The known
game with length L, corresponds to playing the shortest game on input F,, — 1, then
playing the longest remaining game until we achieve the Zeckendorf decomposition
of N. By Lemma 1, we can take the second phase of this game (playing the longest
remaining game) as playing consistent to Theorem 3 until achieving the Zeckendorf
decomposition.
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We henceforth denote these games with length R and L, by G, and G,, respec-
tively, which we depict as follows; “longest on k indicates that during this phase,
we think of the game as being played on input k, and leaving the appropriate number
of instances of F| = 1 in the first bin fixed.

g : [(Longest on F, — 1) — (longest remaining on N — 1)] — (combine on N)

G> : (Shortest on F,, — 1) — (longest remaining on N)

Denoting the difference between the lengths of the longest and shortest games on
input F,, — 1 by £(n), game G, took exactly £(n) more moves than game G, on input
F, — 1. However, G, may take longer afterwards to finish the game on input N: we
aim to show that the discrepancy in the game lengths after initially playing on input
F, — 1 is dominated by £(n), from which we conclude that G, is no longer than
g, i.e., that L, < Ry. In particular, it certainly suffices to show that the first two
segments of G; involve at least as many moves as the first two segments of G, to
establish the result: this is how we shall proceed.

By Theorem 3 and Lemma 1, we can choose how we would like to play a longest
game after playing the game on input F,, — 1 (specifically, we can fix an ordering on
Type A moves which determines what we play when given multiple Type A moves):
until the two games diverge,* pursue a longest remaining game by always playing
the rightmost Type A move whenever a Type A move is playable. Following this
ordering on Type A moves, we study the first move on which games G; and G,
deviate. This move is necessarily either C; or C; in game G, (the move must not
have been playable in game G, and thus must involve bin 1), and by the ordering on
Type A moves established before, bins 2, 3, .. ., n are either 0 or 1 when it is played.
We perform casework on which move the two games deviate on.

Case 1: Move is C. In game G, this configuration can be represented by the
vector (1, x2, x3, ..., x,), where x; € {0, 1} for i > 2 denotes the height of the ith
bin (the first entry would be a 2 for game G,). Let us first study the setting x, = 0,
and consider what happens after game G, plays C;. If x3 = 0, then by Lemma 5
applied to k = 3, both games are consistent on bins 4, ..., n so that game G, takes
one more move than G, to finish. Otherwise (i.e., x3 = 1), Lemma 5 on k = 2 yields
that game G; works strictly over bins 3, ..., n, and Lemma 5 on k = 1 yields that
game G, works strictly over the bins 2, ..., n (i.e., bin 1 becomes irrelevant). Thus,
the resulting setting corresponds exactly to Case 2 overthe n — 1 bins 2, .. ., n; here,
we have an upper bound of n — 1 for the number of additional moves G, takes, for a
total upper bound of (n — 1) 4+ 1 = n (with the C; in G,) for the number of additional
moves G, takes.

Thus, assume x, = 1, and let position k + 1, with k > 2, denote the first index
that is 0. Study the length-k prefix (1,1, 1,..., 1) (in game G;; first entry is 2 in

4 We shall assume this does happen, as otherwise the lengths of the second segments of G| and G»
are equal, and thus the inequality L, < Rj is immediate.
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game G,) with no zero entries; we can exactly describe how the two games proceed
when playing according to the longest game paradigm of Theorem 3.

— Game G;: We play the sequence of moves
(C2—> S3—> S4—> R d Sk)—> (C2—> S3—> e —> Skfz)—>

continuing similarly until one of the first two bins is empty (so we cannot play
C»). In general, shorten the contiguous 1s down two indices and repeat until one
of the first two bins is empty (the bin which ends up empty depends on the parity
of k).

— Game G,: We play the sequence of moves

(CH)—=> () =3 —=>C) = (S4—> 8) — -

continuing similarly until we play all splitting moves S; for j < k. In general,
when first playing S;, we play the sequence S; — S§;_» — --- (final move is S,
or Cy, depending on parity of j), and this continues until position k.

After these subroutines, it is straightforward to confirm that bin & is empty, bins
k+1,...,n—1 are all 0 or 1 with heights agreeing between G; and G,, and no
playable moves involving bins 1, . . ., k exist. Thus, both games proceed strictly over
bins k 4+ 1ton — 1 by Lemma 5, and perform the same sequence of moves; we need
only compute the difference in the lengths of these two subroutines on this prefix of
length k.

— The length of the sequence of moves in the game of length L, is

Z(k 1)/Zj + ]%1 k odd,
2 Zk/z j k even.

— The length of the sequence of moves in the game of length R; is

SRk —2j+ ) =230 k odd,
SR G241 = Y Q- 1) _z(zk/2 )~k keven.

We can thus study this difference exactly: the difference is given by

2

[2Z(k b2 k+1] ZZ(k D25 — &l — 1k/2] k odd
zzﬁflj—zk”l@; D=3 even

so in general, the difference is bounded by [n/2] < n.

Case 2: Moveis C;. In game G, this configuration can be represented by the vector
0, x2, x3, ..., x,), where x; € {0, 1} fori > 2 denotes the height of the ith bin (the
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first entry would be a 1 for game G,) and x; = 1 (since otherwise C; cannot be played
in game G,). Let us first study the setting x3 = 0, and consider what happens after
game G, plays C,. Applying Lemma 5 on k = 3 for G, and k = 2 for G, yield that
both games work strictly over bins 3, ..., n, and this reduces to the same setting on
the suffix of bins 3, .. ., n. Say we reduce the problem to a suffix with length reduced
by 2 in this manner m times, so we study the case where x3 = 1 over n — 2m bins: by
extracting the bound in the following argument (i.e., the x3 = 1 case) for the number
of additional moves G, takes, this yields a bound of m + (n — 2m) < n.

Thus, assume x3 = 1, and let position k + 1, with k > 3, denote the first index
that is 0. Study the length-k prefix (0, 1,1, ..., 1) (in game G;; first entry is 1 in
game G,): we can explicitly describe how the two games necessarily proceed when
playing according to the longest game paradigm.

— Game G;: We play the sequence of moves
(C3—> S4—> S5—> R Sk)—> (C3—> S4—> e —> Sk_z)—>

continuing similarly until either bin 2 or bin 3 is empty (so we cannot play C3). In
general, shorten the contiguous 1s down two indices and repeat until either bin 2
or bin 3 is empty (the bin which ends up empty depends on the parity of k).

— Game G,: This is exactly the same as game G; in Case 1.

After these subroutines, it is straightforward to confirm that bin k is empty, bins
k+4+1,...,n—1 are all 0 or 1 with heights agreeing between G; and G,, and no
playable moves involving bins 1, . . ., k exist. Thus, both games proceed strictly over
bins k + 1 ton — 1 by Lemma 5, and perform the same sequence of moves; we need
only compute the difference in the lengths of these two subroutines on this prefix of
length k.

The length of the sequence of moves in game G, was computed in Case 1, while
the length of the sequence of moves in game G is

S U= 2 = Y@ - ) =205 ) - 55 kodd

Sk —2j) = NP - ) =2 ) — 52 keven.

so the difference is given by
zz(k b2 [2(Z(k D2 gy k_gl] =51 = [k/2] kodd
[2(Zk/2 - /%] [2(Z<k 2)/2 N %] =k—1 keven

so in general, the difference is bounded by max{|k/2|,k — 1} <n —1 <n.
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We observe that in both cases, the difference in the lengths of the second segments
of these games is bounded by n. We now show that the difference ¢(n) between
the lengths of the longest and shortest games on input F,, — 1 is at least n for all
n > 6. One can confirm, by playing a longest game according to Theorem 3 on
input N = Fg — 1 =12, that £(6) =17 — (12 — Z(12)) = 17 — 9 > 6; it is simi-
larly easy to confirm that £(4), £(5) > 1. Since we have F,.1 — 1 = (F, — 1) +
F,_1 > (F, — 1)+ (F,—; — 1), one can pursue a game on input F,;; — 1 by first
playing a game on input F,, — 1, then a game on input F,,_; — 1, and finally perform-
ing some fixed sequence of moves to completion. By combining respective short-
est games and longest games on input F,, — 1 and input F,,_; — 1, we observe that
L(n+ 1) —£(n) > 1foranyn > 6,and thus £(n) > nforalln > 6 (recall £(6) > 6).

Therefore, we have that for all N > Fg = 13,

Ry — L, >£(n) — {(len. longest remaining on N)
— (len. longest remaining on N — 1)}
>l(n) —n>Ln)—L(n)=0

from which we conclude that L, < R;.

4 Winning Odds in the Limit N — oo

We dedicate this section to establishing Theorem 9, which follows as an immediate
corollary of Theorem 8: recall that Theorem 8§ is given as follows.

Theorem 8 For any integer Z > 1 and z € {0, 1, ..., M — 1}, we have that

1
lim py(Game length = z mod Z) = lim Py (Game length = z mod Z) = —.
N—oo N—oo V4

The case Z = 2 gives Theorem 9.

Theorem 9 For the two-player Zeckendorf game, in the limit N — oo under both
probability measures jy and Py, Player 1 and Player 2 are equally likely to win.
Explicitly,

lim py(Player I wins) = lim uy(Player 2 wins) =
N—oo N—oo

bl

N = N =

A}im Py (Player 1 wins) = A}im Py (Player 2 wins) =
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4.1 Overview

We provide a brief sketch of the proof of Theorem 9. We specifically focus on the
number of (1, k)-prefixes which occur over the course of a game, recalling that
whenever applicable, the sequence of moves (Sk, Cix—1) has the same effect on the
game as C. We partition the collection of games 2 into subsets of games which
differ only via such (1, k)-prefixes, describe the conditional distribution induced by
any such subset (under both 1 and Py ), and argue that in the limit of infinite input,
the sizes of the subsets induced by this partition grow so fast that the probability of
Player 1 or Player 2 winning can be reduced to the outcome of a binomial random
variable with exploding variance.

4.2 Partitioning the Collection of Possible Games

As observed in Definition 2, for k > 2, the sequence5 (Sk, Cr—1) is a (1, k)-prefix.
We establish some notation to use later: define Ry € Fu to be the collection® of all
Zeckendorf games on input N such that (for all k¥ > 2) any instance of the sequence
(Sk, Cr—1) is immediately preceded by Si.1; in other words, R is the collection of
all Zeckendorf games on input N such that there are no (1, k)-prefixes for any k > 2.
We can express this collection as

Ry ={(My,...,M)) € 2y : (M, Miy1) = (S, Cr—1) = Mi_1 = Skq1
Vieh—1]k>2).

Foragame R = (M, M>, ..., M)) € Ry, construct the subset of indices Zy (R) to
denote all combine moves in R, not involved in a sequence (S, Cy—;) for k > 2, for
which the latter bin has height atleast 2 (i.e., combine moves Cy, for k > 2 replaceable
with a (1, k)-prefix):

INR)={i € [\]: M; = Ci, M;_1 # Sks1, hi(i) > 2 for some k > 2}.

Now, construct the formal sequence of moves M(R) = (My, Ms, ..., M)) by
replacing M; by a symbol & (the subscript being the corresponding k > 2) for all
i € Iy(R); call M(R) the base sequence of R € Ry.Let Ay(R) € Fy denote the
collection of all Zeckendorf games resulting from replacing each instance of & in M
by either Cy or the 1-prefix (S, Cr—1) (for every k > 2). We establish the following
important result, which makes it clear why we have pursued this construction in the
manner that we did.

5 We deviate from notation earlier in the paper and write move sequences as tuples.

6 We elect to use the notation Ry as we think of these games on input N as representatives of the
corresponding classes Ay (R) that we define later in this discussion.
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Lemma 6 The sets {Ay(R) : R € Ry} partition 2.

Proof We first show that the sets Ay(R) are disjoint. Take distinct R; =
M, ....,M)), Ry =(M},...,M}) € Ry with base sequences M;(R) =
(M}, M}, ..., M})and My(Ry) = (M?, M3, ..., M%), respectively. Since R #
‘R,, take smallest i for which M; | £ M; 2 = M | £ M 2 and study the construc-
tion of any two games G € AN(RI) and G, € AN(RZ) as described above. If
Gy and G, are consistent prior to M ! and M 2 (i.e., for k > 2, all & are replaced
by the same choice of C; or (S, Ck,l)) Wthh is certainly the only way the
two games remain equal up to this point of their construction, then we neces-
sarily produce a difference in the two games on M, and Ml2 1f M! = M} and
M? = M> (M} # M?)or M} # M!and M? # M?* (M} = &, M? = &,, ki # k).
IfMi1 = Mi1 and M? # M? (say M2 Ex,sonecessarily M? = Crand M? | # Si4
for some k > 2), then game G, is next filled with cither Cy # M! (M} = M? if
Cy = M ) or (S, Ck 1). In the latter case, if the two games were equal after thls
then necessarlly( M Merl) = (Sk+1, Sk, Cr—1) (by definition of Zy (R ) and
Ry, M}, and Ml.l_1 Tollow after establishing M = S), contradicting M? | # Skt
(since M}fl = Ml.{l and Ml.2 = C, Ml2 = &).

We therefore conclude that Ay (R1) N Ay (R;) = 0, 1.e., thesets Ay (R) for R €
Ry are disjoint; it remains to show that any game G € §2y is in some set Ay (R). For
G € 2y, let R be the game resulting from replacing every instance of the sequence
(M, Sk, Cxk—1), M # Sy+; in game G by the sequence (M, Cy) (for k > 2). The
resulting game R is such that (M;, M; ) = (Sk, Ck—1) = M;_; = S+ for all
i € [A]and k > 2:any sequence (M;_, M;, M;+1) = (M, Sk, Cr—1) with M # Si4g
in R necessarily results from having replaced (Si_;, Cx—») for Cr_; in game G (as
(Sk, Cr—1) would have been replaced by S;,; otherwise), but we know this does
not occur by the description above, so we indeed have R € Ry. Also, G € Ay(R):
we can reverse all the replacements (S, Cx—1) <> C; made in achieving R from G,
since the resulting C, moves correspond to & (for some k£ > 2) in the base sequence
M(R) as the preceding move is not Sgy1.

Therefore, applying Lemma 6 and the law of total probability,

puy (lengthis zmod Z) = Y puy (length is z mod Z | Ay(R)) py (An(R))
RERN

Py (length is z mod Z) = Z Py (length is z mod Z | Ax(R)) Py (Ax(R))
ReRy

(D

so we can reduce proving Theorem 8 to establishing that the conditional probabilities
for R € Ry, with respect to both measures, overwhelmingly tend to 1/2 in the limit.
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4.3 Analysis

Define the random variable my : 2y — Nfirston R € Ry by my(R) = |Zy(R)|,
denoting the number of terms & (for k > 2) in the base sequence of R, then lift
to arbitrary G € §2y by letting my (G) = my(R) for the unique R € Ry such that
G € An(R) (see Lemma 6).” Fix R € Ry, and observe that on the event Ay (R),
my(G) for G € Ay(R) is the fixed constant |Zy (R)|. Now construct corresponding
Bernoulli random variables X%, XX, ..., X@N(R)l : 2yx — {0, 1} for each of the
instances of terms of form &, (for k > 2) in the base sequence of R: here, X Z.R(g) =
1 if and only if G € Ay(R) and G is achieved by the ith instance of & in the
base sequence R being the (1, k)-prefix (Si, Cx—1). Say we replaced this & with
(Sk, Cx—1), and let n; denote the number of playable moves in the game available in
the turn immediately after playing S;. We can say more about the random variables
X lR defined here.

Lemma 7 Fix R € Ry. Define the random variables X, X;Z, e, XI7I§N(R)\ as
above. When conditioned on Ay (R), the variables X, ng, R X\%N(R)\ are inde-

pendent Bernoulli random variables with each X,R having parameter 1/2 under the

measure Ly, and parameter p; = ﬁ under the measure Py. Explicitly,

1
=3

1
Py (XF=1]Ay(R)) = ——

R _
py (X =11 Ay(R)) Trn

Proof Fix a random variable X I.R, and observe that for every particular setting of
all other & terms in R, there exist exactly two games in Ay (R) faithful to this
setting, corresponding to choosing Cy and the (1, k)-prefix (Si, Cx—1) for the ith
such &. It follows immediately that under the uniform measure py, we indeed
have py (X R=1]Ay (R)) = % since in particular there exists a bijection between
games in the subset Ay (R) with X = 0 and X~ = 1 and all games in £2)y are given
equal probability under the measure fiy .

Under the probability measure Py, it is straightforward to observe that the game
replacing the ith instance of & by the (1, k)-prefix (Sx, Cx_1) requires an additional
decision with probability % of yielding the desired Cy_1, and it thus follows that the

parameter p; of the Bernoulli random variable X IR is given by
Di 1 1

—_— = == P = .
1—1),‘ n; p 1+I’l,

To establish independence, it suffices to show that for any subset S C [my(R)], we
have the identity

7 In particular, my (R) = log, (An (R)).
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Py (X} = Liffi € S| Ay(R)) :H}P’N (XF =11 Av(R))

ieS
J1Py (XF =01 Ay(R))
Jé¢S
=[[p []a-rp
ieS j¢s

We can relate the conditional probabilities {Py (X =1iffi € S Ay(R)): S €
[my(R)]} whenever S| = S, U {j} (for j € [my(R)]): all choices for each term &
but one are consistent (namely, X ;R = 1 for the numerator in the following), and thus

Py (XF =1iffi e $i | Av(R)) 1 pj [Tics, i - Tljgs, (1 — p))

Py (XF=1iffi e K1 AvR)  nj  1=p;  Tlics, Pi - [ljgs,(1 = Pj)

Now, since we have the identity

my(R)
Y Py(XF=1iffieS|AvR) =1= [] (pi+1=p))
SC[my(R)] i=1
= Y |Ilr~-Tla-rn
SClmy(R)] \i€S jés

and quotients between summands corresponding to two sets differing by one ele-
ment are the same, the summands on both sides for any subset S C [my(R)] are
necessarily equal. More specifically, letting p; = Py (X,R =1iffi e @ | An (R))
and pr = [,y pi - 1 jep(1 — pj), by incrementally including elements to some
S C [my(R)] we can write the corresponding summands on the left and right hand
sides as the same multiple of p; and p,, respectively. This reduces to p; = p,, and
thus summands corresponding to the same S are equal. Thus, we have the desired
identity for any subset S C [my(R)].

Lemma 7 yields the following easy observation.

Corollary 1 Say F,, < N < F,y, fix some R € Ry, and define the random vari-
ables XF, X}, el XZ;N(R) as above. Under the uniform measure [y, whenever
R € Ry is such that my(R) > 0, uy (Player 1 wins | Ay(R)) = 1/2. Under the
probability measure Py, when conditioned on the event Ay (R), there are at most
2n distinct values of the parameters p; = % amongst the random variables X,-R,

+n;
) ﬁ =pi =1/2

Proof 1f my(R) > 0, then the statement py (Player 1 wins | Ay(R)) = 1/2 fol-
lows immediately by applying the law of total probability on all settings of the
Bernoulli random variables (XX, ..., XZ;N(R)) € {0, 1)) ~1 namely since this
further conditioning always yields a conditional probability of 1/2 (see the proof of

and for any such i
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Lemma 7). At any point of a game G € §2) satisfying F,, < N < F,,,, there are at
most 2n — 3 (and thus certainly at most 2n) playable moves (and thus at most 2n — 3
distinct values of ;, and thus p;): the combine moves Cy, C», ..., C,_; and the split-
ting moves S, S3, ..., Sy—1. In particular, since n; € [2n — 3] for all i € [my(R)],
it follows that (5 < Pi < 17> 1€ 305 < Pi < 3-

We will also make use of the following lemma.

Lemma8 Say F, < N < F,,1.3 For any c € (0, ) (with © denoting the golden
ratio),

Jim gy (my(@) = ¢") = 1, Jim Py (my(@) = ") = 1.

Proof Fix c € (0, ), and consider a game G € §2y: for the representative R € Ry
such that G € Ay (R), every occurrence of the sequence (Cy, Cy, C,) corresponds
to an element of Zy(R) (specifically the move C,, as it is not preceded by S3,
and the latter two moves are maintained in R; see the proof of Lemma 6), i.e.,
my(G) = |Zy(R)|is at least the number of occurrences of the sequence (Cy, Cy, C,)
in G. Letting A/ (G) denote the number of occurrences of the sequence (Cy, C1, Cy)
in the game G, it thus suffices to show that

Jimpuy WN©G =c") =1, Jlim Py (NM(©G) = ¢") = 1.

Proceed studying the probability measure P ; the analysis carries over exactly’ when

Py is replaced with p. By Corollary 1, at any move where i; > 5, the probability
of achieving the sequence (Cy, Cy, C») is at least (ﬁ)3 = 817, and any sequence of
three moves can decrease the height of bin 1 by at most 6 (via three consecutive C)
moves); observe that the occurrence of C; in a sequence (Cy, C;, C) within a game
G necessarily corresponds to an instance of the delimiter &, in the base sequence of
G (e.g. see the proof of Lemma 6). Thus, study the sequences of moves in game G

(which necessarily exist by the preceding discussion) given by the triples
(My, My, M3), (M4, Ms, M), ..., (M3 nssj—2, M3\ n6)—1, M3|nys))

each of which independently takes on the value (C;, Cy, C,) with probability at least
sbs. Thus, letting Yy < Bin (LN /6], p = gks), we have that

P(Yy = c") <Py (N(G) = ¢")

from which E[Yy] = &£ together with a Chernoff bound with § = 1 yields for N
large,

8 It is perhaps more appropriate to think of 7 as a function n(N).
9 Certainly, the analysis is much looser than necessary when Py is replaced with fy .
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IP’(YN < c") < IF’(YN < LN/6J> < exp( LN/6J) Kl WY

= = l6n3 303

LN/6]
16n3

since it is straightforward to verify that ¢ < for large N (e.g. use Binet).

Corollary 2 Lemma 8 immediately yields that for any d € N,
1\}i—r>noo ey (my(G) = nd) =1, Nh_I)IlOQ Py (my(G) = nd) =1

i.e., with probability approaching 1 as N — oo, the number of decisions made to
achieve G from the set Ay(R) containing it is superpolynomial in n. This is more
convenient for later.

The proof of Lemma 8 yields the following observations on the likeliest collection
An (R) and the number of representative games, which will be referenced again in
Sect. 5.

Corollary 3 The probability of the likeliest collection Ay (R) vanishes as N — oo,
Le.,

Jim max pn(An(G)) = Jim max Py(An(G)) =0

. . N—o0
and the number of representatives satisfies |Ry| —— o0.

Proof Again, proceed on the probability measure Py, as the analysis carries over
exactly for py. The proof of Lemma 2 (taking d = 1) determines there are at least
m > ninstances of (Cy, Cy, C3) in the first [N /6] moves of arandom game G € 2y,
with probability tending to 1 in the limit N — oo: we proceed studying such a game
G. Writing G € Ay (R), every latter instance of C in one of these m sequences is
in'” any game in Ay (R), and the move C, could have been played instead of this
instance of Cy. Fori = 1, ..., m, denote B{V (R) € £2y to be those games consistent
with a game in Ay (R) up to the ith such instance of C;, but for which the move
C, is played instead. It is immediately observed that the sets B (R) are disjoint and
that Py (Ayn(R)) < Py(BN(R)) foreachi = 1,...,m, so we have

n-Py(Ay(R) <m - Py(Ax(R)) <Y Py(BN(R) <1
i=1

1 N—o00

— Pyv(AN(R)) = P 0

10 This is in the sense that this instance of C; is not compressed in achieving R from G (see the
proof of Lemma 6), and is not replaced with a term of form & in achieving the base sequence
M(R).
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s0 we have limy_, oo maxgeg, Py (Ay(G)) = 0, and [Ry| ——3 0o follows imme-
diately.

Finally, we need the following simple result concerning the behavior of a bino-
mial random variable with sufficiently large variance. Certainly, the case Z = 2 in
Lemma 9 corresponds to studying the expressions P (B is odd) and IP (B is even).

Lemma 9 Consider a binomial random variable I3 = Bin(m, p). For any values of
€ > 0andZ € N, there exists a constant N (¢, Z) such that if var(B) = mp(1 — p) >
N (e, Z) (i.e., if the variance of B is sufficiently large), then for any z € {0, 1, . ..,
zZ—1},

1
P(BzzmodZ)—g <e.

Proof The value P(B = k) increases on k < [(m + 1)p] and decreases on k >

Lon + 1)pl, and maxo<x<m P(B=k) =P (B = |(m+ 1)p]) mezpos 0 (use

Stirling); denoting py = P(B = k), write pg < p1 < -+ < plm+1)p) a0d Pont1)p)
> Pln+Dpl+1 = -+ = pm. Fix € > 0, and choose N (¢, Z) such that mp(1 — p) >
N(e, Z) implies P (B = [(m + 1) p]) < 5. Certainly, for any distinct values z; < z»
in {0,1,..., Z — 1}, the number of terms pg, p1, ..., p|m+1)p) With indices equal
to z; modulo Z and equal to z; modulo Z is either the same or there exists one more
such term corresponding to z;: we can switch the “dominant modulus” by removing
the term of largest index equal to either z; or z; modulo Z, for which the correspond-
ing term p; < 5 by choice of the constant N (¢, Z). The analogous statement extends
tO Pl(m+1)p]s Plm+1)p)+1s - - - » Pm» 80 it follows that we can write

IP(B=zymodZ)—P(B=zmodZ)| <e
which immediately yields the desired statement.

We are now ready to proceed with the proof of Theorem 8.

Proof (Proof of Theorem 8) Fix an integer Z > 2 corresponding to the number of
players in a Z-player Zeckendorf game, and some value z € {0, 1,...,Z — 1}. As
in the proof of Lemma 8, we strictly concern ourselves with the probability measure
Py, as the analysis carries over exactly for the uniform measure 1y (again, it is much
looser than necessary for 11y ). For the probability measure Py, since my (G) is fixed
at |Zy (R)| = my(R) on any set Ay (R) for R € Ry, for N > N(e),

> Py(AN(R)) <« )

RGRN
my(R)<2n3

Consider a fixed representative R € Ry for which my(R) > 2n*: by Corollary 1,
there are at most 2n distinct values of the parameters p; = ﬁ of the corresponding

random variables X[*, X, ..., XZ}N (r)» and thus by the pigeonhole principle, the



90 J. Cheigh et al.

number of instances of the value of p; with largest multiplicity is at least % =

N . . .
n? =% o0; henceforth call this p. Let us say there are m > n? instances of this

value of p;: we can study the sum Bz = Y /-, ¥;, where the ¥; correspond to those
random variables X% with this corresponding success probability p. Furthermore,
by Lemma 7, the random variables Y; are independent when conditioned on the event

Ay (R), so Br < Bin(m, p) under this conditional distribution. From the bounds
on p from Corollary 1, it follows that the variance of this binomial random variable,
when conditioned on the event Ay (R), has the exploding lower bound

2
var(Br) = mp(1 — p) = m =% 0

i.e., the binomial random variable B has variance exploding in the limit N — oo
(for any R € Ry). By Lemma 9, the random variable Bz will take a value equal to
z modulo Z with probability approaching % as N — oo. Thus, studying the quanti-
ties given by Py (Game length equals z mod Z | Ay (R)), we can further condition
(upon the conditioning Ay (R)) on all random variables X lR not corresponding to
those Y; constituting a summand in the binomial random variable Bz and appeal to
the law of total probability:

Py (Game length is z mod Z | Ay (R))
= Z Py (Game length is z mod Z | Ay(R), A) - Py (A | Axv(R))

assignments A
to XR£Y,Vj

where each term Py (Game length equals z mod Z | Ay (R), A) is understood as the
probability that the length of the game is equal to z mod Z when replacing those
& which correspond to the random variables Y;, while leaving all other moves of
the game fixed: this is precisely given by the binomial random variable B added to
some fixed length determined by the setting of the X IR which are not of the form Y;
for some j. Letting £(A) denote this length for the assignment A, we can thus write

Py (Game length is z mod Z | Ay (R), A) = Py (Br 4+ €(A) is odd |Ax(R), A)

By Lemma 7, the random variables Y; constituting the Bernoulli trials in Bg are
independent from the random variables XZR that were fixed when conditioned on
An (R) and the assignment A, and thus we can apply Lemma 9 to deduce that these
conditional probabilities are arbitrarily close to % for N > N, (e, Z) by the preceding
discussion (for sufficiently large N, (e, Z) € N). Importantly, this is uniform over
all such terms in the sum, in the sense that we can choose N,(¢, Z) such that we
achieve the same guarantee for any such assignment A of binary values to the random
variables XIR not constituting B . Thus, for any R € Ry satisfying my (R) > 2n*
and N > N,(e, Z), we have the bound

1
Py (Game length equals z mod Z | Ay (R)) — 7 <e
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Therefore, for N > max{N;(¢), Na(e, Z)}, we can take Egs. (1) and (2) to achieve
the bound on the probability Py (Game length equals z mod Z) given by

Py (Game length is z mod Z)

= Z Py (Game length is z mod Z | Ay (R)) - Py (Ay(R))
ReRy

<e+ Z Py (Game length is z mod Z | Ay(R)) - Py (An(R))

RERN
my(R)>2n?

1 1
<e+ Z (E"FE)PN(AN(R))‘FGSE"‘FzE
my(R)>2n3

and similarly, we have

Py (Game length is z mod Z)

= Z Py (Game length is z mod Z | Ay(R)) - Py (Ax(R))
RERN

Z Py (Game length is z mod Z | Ay (R)) - Py (Ay(R))

RERN
my(R)=2n?

> (1 —e) Py (Ay(R)) = (1 —e) (1—e
ReRy Z z

my(R)>2n3

v

v

so we conclude that for N > max{N;(¢), N,(¢, Z)},

1
€ < Py (Game length equals z mod Z) — Z < 2e

which yields the desired limit by sending € |, O.

As previously mentioned, the Z =2 case of Theorem 8 immediately yields
Theorem 9.

4.4 Extending the Partition on 2y

Theorem 9 establishes that if both players advance randomly, the two-player Zeck-
endorf game is fair in the limit N — oo: akey stage of the proof involved partitioning
£2y into collections of games where the games in any given collection only differ via
certain interchanges of (1, k)-prefixes with the corresponding C. We can naturally
extend this partition of 2y (i.e., strictly larger classes in the partition) to encom-
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pass arbitrary (€, k)-prefixes or arbitrary (¢, k)-suffixes. Section 5 will establish that
for these enlarged partitions of §2, we can achieve an analogue of Conjecture 1
for the resulting sets in the partition, in the sense that with high probability in the
limit, the corresponding distribution is “nearly Gaussian,” in the sense of vanishing
Kolmogorov-Smirnov distance (when mean and variance are normalized to be 0 and
1, respectively) with the standard normal.'!

We first study the generalization for arbitrary (¢, k)-prefixes. Define R}, € Fy to
be the collection of all Zeckendorf games on input N such that any combine move
Cy, for k > 2, cannot be compressed by a (1, k)-prefix (and thus by any prefix of
Cp). Explicitly,

RY ={(M,....,M)\) € 2y : M; = Cy, => M;_y # Sgi1, Vi € [\, k >2}.

For a game R = (M, M>, ..., M)) € Rﬁ with number of moves A\, construct the
subset of indices Zy (R) to denote all combine moves in R:

INR) ={i € [\] : M; = Cy for some k > 2}.

Now, construct the formal sequence of moves M(R) = (My, Ms, ..., M)) by
replacing M; by a symbol €,f for all i € Ty (R): the subscript is the corresponding
k > 2, while £ > 0 denotes the longest (¢, k)-prefix that M; = Cy can be expanded
into; note in particular that M(R) contains no combine moves. Call M (R) the base
sequence of R € Ry, and let Ay (R) € Fy denote the collection of all Zeckendorf
games resulting from replacing each instance of E,f in M by an (I, k)-prefix for
some ! < £. We establish the following analogue of Lemma 6, which yields a strictly
broader partition of §2y (in the sense that each set in the partition given by Lemma
5 is a union of sets in the partition given by Lemma 6).

Proposition 5 The sets {Ax(R) : R € R} } partition 2y.

Proof Observe that a base sequence M(R) = (Ml, Mg, oM \) uniquely deter-
mines R € R} by its explicit split moves moves and the subscripts of each of its
symbols &F. This is true up to any initial subsequence, in the sense that there exists
at most one R € Rﬁ which agrees with the moves and symbols Ef up to subscript.

We show that the sets Ay (R) are disjoint. Take distinct R = (M], ..., M/{),
Ry = (M}, ..., M%) € RY, with base sequences M;(R) = (M}, M}, ..., M)
and M, (R,) = (M}, M3, ..., M3), respectively. Since R # R, take smallest i
for which Mi1 #= Miz, and study the construction of any two games G; € Ay (R)
and G, € Ay(R,) as described above. If G; and G, are consistent prior to 1\71i1 and
1\;112 (.e., fork > 2, all E,f are replaced by the same prefix of Cy), which is the only
way the two games remain equal up to this point, then we produce a difference in
the two games on M, and M? if M} = M} and M? = M? (M} # M?)or M} # M]

1 In this subsection and Sect. 5, we borrow much of the same notation that was used in establishing
Theorem 9. It will be clear from context exactly what objects we are referring to.
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and M2 # M? (M} = &', M} = £, k # ko). It M} = M and M? # M? (say
M? = &}, so M? = Cy), then G, is next filled with either C; # M (M = M? if
C, = Mil) or an (I, k)-prefix for some / < £. In the latter case, if the two games
were equal until move i +/ — 1, necessarily R contains a prefix of length at least
1, contradicting R| € Rﬁ

We therefore conclude that Ay (R) N Ay (R,) = @, i.e., the sets Ay(R) for
R € Ry aredisjoint; it remains to show that any game G € 2 isinsome set Ay (R).
For G € 2y, let R be the game resulting from replacing every combine move Cy
with the longest playable (¢, k)-prefix. It follows immediately from construction that
R € Rﬁ and that G € Ay(R).

Similarly, we define the generalization for arbitrary (¢, k)-suffixes. Define Rﬁ €
Fn to be the collection of all Zeckendorf games on input N such that any combine
move Cy, for k > 2, cannot be compressed by a (1, k)-suffix (and thus by any suffix
of Cy). Explicitly,

Ry ={(My,...,My) € 2y : M; =C => My # S Vi € [\, k > 2}

For a game R = (M, M>, ..., M)) € ’Rﬁ with number of moves )\, construct the
subset of indices Zy (R) to denote all combine moves in R:

INR) ={i € [A\] : M; = Cy for some k > 2}.

Now, construct the formal sequence of moves M(R) = (My, Ms, ..., M)) by
replacing M; by a symbol E,f for all i € Zy(R): the subscript is the correspond-
ing k > 2, while £ denotes the longest (¢, k)-suffix that M; = Cy can be expanded
into. Call M(R) the base sequence of R € Ry, and let Ay (R) € Fy denote the
collection of all Zeckendorf games resulting from replacing each instance of E,f
in M by an (I, k)-suffix for some / < £. We establish the following analogue of
Lemma 6.

Proposition 6 The sets {Ay(R) : R € Rﬁ} partition 2y.

We do not provide the proof of Proposition 6, as it is pursued analogously to the
proof of Proposition 5. The easy observation that each set Ay (R), for R € Rﬁ or
R e Rﬁ, is a union of equivalence classes of the corresponding sets studied in the
proof of Theorem 9, yields the following trivial extension of Lemma 2, where we
promote the notation Ay (G) = Ay (R) for the unique R satisfying G € Ay (R).

Proposition 7 Say F,, < N < F,,. For any c € (0, @) (with @ the golden ratio),
Jim juy (log, [AN(@) = ") =1, lim Py (log, | Av(@)] = ¢") =1,

which holds for either of the understandings R € Rﬁ and R € Rﬁ
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Finally, we have the following extension of Corollary 1. We also omit the proof of
this result, as it is a straightforward generalization of the proof of the aforementioned
result.

Proposition 8 Say F,, < N < F,11, fixsomeR € Rﬁ and define random variables
XF, Xf, ceey X]VQ_I corresponding to the length of the expansion corresponding
to each combine move for a game in Ay(R). Under the measures uy and Py
conditioned on Ay (R), the random variables X lR are independent.

S Weak Convergence of Random Game Lengthsas N — oo

In pursuit of the resolution of Conjecture 1, it may be productive to ask whether
there exist natural subsets of £2y on which the distribution of random game lengths
converge weakly to a Gaussian in the limit N — oo of infinite input. As discussed
in Sect. 4.4, the partitions defined in Propositions 5 and 6 enjoy this property in the
sense described in Theorem 10, restated below.

Theorem 10 ForR € Rf, let F X}z (x) : R — [0, 1] denote the distribution function
corresponding to game lengths in Ay (R) over the conditional distribution induced
by Py, normalized to have expectation 0 and variance 1. Let @ : R — [0, 1] denote
the distribution function of the standard normal. Then for any € > 0,

lim Py <sup |FR(x) — ()] = e) =0.
N—oo xeR

Similarly, for R € Rﬁ let Fx,a(x) : R — [0, 1] denote the distribution function cor-
responding to game lengths in Ay (R) over the conditional distribution induced by
Py, normalized to have expectation 0 and variance 1. Then for any € > 0,

lim Py (sup |FR(x) — ()] = e) =0.
N—oo xeR

The analogous results hold for the uniform measure [iy.

To explicitly define the distributions referenced in Theorem 10, define a proba-
bility distribution P : 24¥R) — [0, 1] via, for any S € 24»R),

Py (SN AN(R))

PR(S) =
() Py (An(R))

Define the random variable L : Ay(R) — R on the space (Ay(R), 24¥®) PR)
by

LR (M, ..., M) =\



Towards the Gaussianity of Random Zeckendorf Games 95

for any game (M,, ..., M) € Ay(R), i.e., Lﬁ studies game lengths in Ay (R).
Then
LY —E[L%
Fr(x) =P} Ly ZE[LY] <x]. 3)
var (szz)

In other words, when we restrict Py to the sets Ay (R) in the natural sense, Theorem
10 states that the distribution of random game lengths enjoys weak convergence to a
Gaussian with high probability. We write

Ly —E[LY]
var (LF)

4)

Ly =

to be the random variable L normalized to have mean 0 and variance 1. Throughout
this section, we proceed on the measure Py and the set RE but the analysis carries
over to the uniform measure vy and the suffix partition T\’,ﬁ

Proof (Proof of Theorem 10)

By Proposition 7, limy _, oo Py (log2 |Ax (G| = 1.6") = 1 so fix R € Ry such that
| Ay (R)| > 29", and consider the random variable L% : Ay(R) — R. Define ran-
dom variables'? XX, ..., XX | to correspond to each of the combine moves in R,
with X IR denoting the length of the corresponding prefix for a game in Ay (R): by
Proposition 8, the random variables X lR are independent. Expanding Eq. (4),

ar (LF) ar (LF)

where the independence (conditioned on Ay (R)) of the random variables X IR yields
that

Var LR =N2: XR ]E[XR])

and furthermore, taking the maximum over those summands X IR which are non-

constant,?

12 Define these to be strictly positive: if the ith delimiter is replaced with a combine move, say
XF=1

13 Indeed, we understand Lﬁ as the sum over the nonconstant random variables amongst those
included by the sum in Eq. (5).
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E[|XF —E[XF][] o
max 5 < max = = — (0
1<i<D \ & [(XZR -k [XIR]) ] . var (Lﬁ) 1<i<D var (LN) var (2 : )

and the final expression in Eq. (6) certainly vanishes as N — oo. Thus, the desired
result follows immediately from the case of the Berry-Esseen theorem for indepen-
dent non-identically distributed summands, which namely yields

3
sup |Fr(x) — ®(x)| < C - ”_ Nox g
xeR var (21.6)

for some universal constant C > 0.

Theorem 10 yields that, when restricted to particular natural subsets of games, we
have Gaussianity. The scope of this result is admittedly restricted, especially given
the result of Corollary 3.

6 Open Problems

We conclude the work with several potential directions for further inquiry.

6.1 Other Two-Player Games Based on Recurrences

Theorem 9 can be interpreted as saying that if two players proceed mindlessly, the
Zeckendorf game is fair in the limit of infinite input; Theorem 8 gives that the
analogous statement would be true if we were to extend to a Z-player Zeckendorf
game. Many papers (such as [1, 2, 4]) have extended the paradigm of the two-player
Zeckendorf game to other recurrences: we might ask which of these also enjoy this
property. In particular, we pose the following conjecture, concerning the two-player
Bergman game [1].

Conjecture 2 In the limit N — oo of infinite input, the probabilities of Player 1
and Player 2 winning, under both analogous definitions of random Bergman games,
is 1/2.

The core challenges of proving Conjecture 2 are as follows. The principal differ-
ence between the two-player Bergman game and the two-player Zeckendorf game
is that the move C| is now a split move which consumes no tokens. Thus, there are
structural differences between the two games which affects the range of achievable
game lengths. Lemma 2 also depends on the number of a specific move sequence
which may not have an analogue in the Bergman game.
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6.2 Towards Gaussianity: Other Approaches

Theorem 10 establishes that certain natural partitions of 2y are such that the
components become arbitrarily close to being Gaussian (in the sense of vanishing
Kolmogorov-Smirnov distance) with arbitrarily high probability: it is unclear how
to extend this to the entirety of §2. Proposition 2 remarks that all games in £2y can
be achieved by permutations of suffixes from a shortest game, which suggests the
following question.

Question I Can we extend the techniques in Sect. 5 to a partition founded on the
greedy embedding of Proposition 27 In particular, could studying the moments of
the corresponding components lead to a proof of Conjecture 1?

Another possible direction is to restrict our attention to certain subsets of moves
across all of £2, rather than certain subsets of 2. In particular, a sufficiently strong
affirmative answer to Question 2 would resolve Conjecture 1.

Question 2 Ts the distribution of the number of occurrences of a particular combine
or split move asymptotically Gaussian, under either the measure py or Py ?

6.3 Towards Gaussianity: Mixing

We outline one more possible approach towards proving Conjecture 1, which relies
on the literature surrounding mixing central limit theorems: these are analogues of the
central limit theorem concerning sums of dependent random variables, applicable if
the dependencies amongst the summands are sufficiently well-behaved. In particular,
the main result of [6] states the following.

Theorem 11 ([6]) Let {Xy; : 1 <i < dn} be a triangular array of random vari-
ables defined on the probability space (2, F,P), Xy.a, = # Zfﬁl Xy, and
ay :N— Rby

an (k) = sup sup IB(AN B) — P(A)P(B)] (7)

m AeFy(N),BEFE,, (N)
where .7-'"’:’1’ (N)=o0 (XN,m], XNomy+1s -+ » XN,,,,Z) denotes the o-algebra generated
by random variables Xy ., XN.m,+1, - - - » Xn.m,. If there exists constants Cy, C, >

0, 6 > 0 such that
B[ Xy - Exv "] < € ®)

and
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> s
D k+ 1Dy (k) < G, ©)
k=0
then
— — D —
vV dN (XN,dN — ]EXN,dN) m) N (0, var (\/dNXN,dN)> . (10)
We can define a triangular array of Bernoulli random variables by letting Xy ; = 1

if and only if the ith move of a Zeckendorf game with input N is a splitting move
(in particular, X ; maps to O on the event that the Zeckendorf game on input N
terminates prior to move i), with dy (the number of random variables in the Nth
row) the length of the longest game on input N; Conjecture 1 is thus equivalent
to establishing that the row sums Zldi | Xn,i weakly converge to a Gaussian, since
the number of combine moves for a given input N is constant. This is precisely
the statement of Eq. 10. Also, the events A and B in Eq. 7 can be understood as
fixed {0, 1}-realizations of subsets of random variables in {Xy i, ..., Xy} and
{XN.m+k> - - -» Xn.dy )} réspectively.

Since Eq. 8 certainly holds under this setup (the constituent random variables are
Bernoulli), resolving Conjecture 1 can be reduced to the following statement.

Question 3 For the triangular array {Xy; : | <i < dy} defined above, does there
exist a constant § > 0 and a constant C > 0 such that

Z(k + 1)2%% k) <C (1)
k=0

for all natural numbers N € N?

By the preceding discussion, answering Question 3 in the affirmative by establishing
11 immediately yields Conjecture 1. In particular, it would suffice to establish the
statement of Question 4 in the affirmative, although it is not immediately clear if this
should be true.

Question 4 Does there exist a constant € > 0 and a constant C > 0 such that

IPn(ANB) —Py(APN(B)| <

= (12)
whenever events A and B correspond to fixed {0, 1}-realizations of subsets of the
Bernoulli random variables in {Xy 1, ..., Xy} and {Xy ik, - - -, Xn.ay ), ESPEC-
tively?

Of course, the techniques introduced in the main body of this paper are quite
elementary, and there may be other promising approaches not included in this section
that would contribute towards resolving Conjecture 1.
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