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Abstract Zeckendorf proved that any positive integer has a unique decomposition 
as a sum of non-consecutive Fibonacci numbers, here indexed by . F1 = 1, F2 =
2, Fn+1 = Fn + Fn−1. Motivated by this result, Baird et al. [ 3] defined the two-
player Zeckendorf game, in which two players take turns acting on a multiset of 
Fibonacci numbers that always sums to . N . The game terminates when no possible 
moves remain, which importantly always happens, and the final player to perform 
a move wins. Notably, Baird et al. [ 3] empirically studied the setting of random 
games, in the sense that the game proceeds by always choosing an available move 
uniformly at random, and conjecture that as the input .N → ∞, the distribution 
of random game lengths converges to a Gaussian. We study various combinatorial 
questions concerning the Zeckendorf game. We found that the sum of the number 
of times certain moves are performed is constant. We prove that the number of 
shortest games on input .N is at least .

∏n−2
k=1 Cat(Fk), where . n denotes the index of 
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the largest Fibonacci number in the Zeckendorf decomposition of .N and . Cat(Fk)

is the ..Fk th Catalan number. The works of Baird, Epstein, Flint, and Miller [ 3] and 
Cuzensa et al. [ 5] determined how to play in order to achieve the shortest and longest 
possible Zeckendorf game on a given input . N , respectively: we improve the current 
understanding of achievable game lengths by establishing that for any input . N , the  
range of possible game lengths constitutes an interval of natural numbers; in other 
words, for every input . N , every game length between the shortest and longest game 
lengths can be achieved by some Zeckendorf game. Motivated towards the resolution 
of the Gaussianity conjecture, we also further the study of probabilistic aspects of 
random Zeckendorf games. In particular, we study two probability measures on the 
space of all Zeckendorf games on input . N : the uniform measure, and the measure 
induced by choosing moves uniformly at random at any given configuration. We show 
under both measures that in the limit.N → ∞, both players win with probability. 1/2
when playing under the random game setting. We also find natural partitions of the 
collection of all Zeckendorf games of a fixed input . N , on which we observe weak 
convergence to a Gaussian in the limit .N → ∞. We conclude the work with many 
open problems. 

1 Introduction 

The Fibonacci numbers are widely considered to be the most interesting and well-
known recursive sequence in mathematics. In this article, we shall index the Fibonacci 
numbers by.F1 = 1,.F2 = 2, and for general .n ≥ 3,.Fn = Fn−1 + Fn−2. Zeckendorf 
proved the following fundamental theorem: the decomposition in the proceeding 
theorem is referred to as the Zeckendorf decomposition of the positive integer . N . 

Theorem 1 ([ 9]) Every positive integer .N can be decomposed uniquely into a sum 
of distinct, non-consecutive Fibonacci numbers. 

Inspired by this result, the authors of [ 3] constructed the two-player Zeckendorf 
game. 

Definition 1 ([ 3]) Given input.N ∈ N, the Zeckendorf game is played on a multiset 
of Fibonacci numbers, initialized at.S = {FN

1 }. On each turn, a player can act on the 
multiset by performing one of the following moves if it is available. 

1. If we have two consecutive Fibonacci numbers.Fk−1, Fk for some.k ≥ 2, then we 
can replace them by .Fk+1, denoted .Fk−1 ∧ Fk → Fk+1. 

2. If we have two instances of the same Fibonacci number .Fk , then 

a. If .k = 1, we can play .F1 ∧ F1 → F2. 
b. If .k = 2, we can play .F2 ∧ F2 → F1 ∧ F3. 
c. If .k ≥ 3, we can play .Fk ∧ Fk → Fk−2 ∧ Fk+1.
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The two players alternate turns until no playable moves remain. The last player to 
move wins the game. 

Observe that the moves of the game are consistent with the Fibonacci recurrence: 
we either combine two consecutive terms, or split terms with multiple instances. 
Perhaps more intuitively, we can understand the game as acting on a row of bins, with 
bin. k corresponding to the Fibonacci number.Fk and its height being the multiplicity 
of .Fk in the multiset. 

1.1 Prior Work 

The article [ 3] introduces the two-player Zeckendorf game, determine upper and 
lower bounds on the length of a game on input .N (showing in particular that the 
game always terminates), and shows non-constructively that Player 2 has the winning 
strategy for all .N ≥ 2. In particular, they provide the following explicit formula for 
the length of the shortest Zeckendorf game on input . N , achieved by only playing 
combine moves. 

Theorem 2 ([ 3]) The number of combine moves in any Zeckendorf game on input 
.N is is .N − Z(N ). Furthermore, any such shortest game terminates in . N − Z(N )

moves, where .Z(N ) is the number of terms in the Zeckendorf decomposition of . N. 

The works [ 7] and [ 5] successively improved the upper bound of [ 3] on the length 
of a Zeckendorf game on fixed input . N ; the former article finds a deterministic 
game which has longest possible length for input . N , while the latter generalizes 
this paradigm. We frequently make use of the following two results from [ 5] in our 
arguments. We note that although the following result provides a strategy to achieve 
a longest game, finding a convenient closed form for the length of the longest game 
for non-Fibonacci input .N remains open (with the case of Fibonacci input treated 
by [ 5]). 

Theorem 3 ([ 5]) The longest game on any .N is achieved by applying split moves 
or combine . 1s (in any order) whenever possible, and, if there is no split or combine 
. 1 move available, combine consecutive indices from smallest to largest. 

Theorem 4 ([ 5]) A Zeckendorf game on input.N can be played with strictly splitting 
and combine . 1 moves if and only if .N = Fk − 1 for some .k ≥ 2. 

Finally, we remark that analogous two-player games have been developed for other 
recurrences: the work [ 2] extends [ 3] by defining and studying such games for recur-
sive sequences defined by linear recurrence relations of form.Gn = ∑k

i=1 cGn−i (. c =
k − 1 = 1 yielding the Fibonacci numbers), again giving lower and upper bounds 
on game lengths (including showing termination) and showing non-constructively 
that Player 2 has a winning strategy, while [ 4] similarly studies recurrences of form 
.an+1 = nan + an−1.
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1.2 Notation and Conventions 

We let.C1 denote the combine move.F1 ∧ F1 → F2, and (for.k ≥ 2) let.Ck denote the 
combine move.Fk−1 ∧ Fk → Fk+1. Let.S2 denote the splitting move.2F2 → F1 ∧ F3, 
and (for .k ≥ 3) let  .Sk denote the splitting move .2Fk → Fk−2 ∧ Fk+1. We prefix a 
particular type of move with .M to denote the number of such moves (e.g. . MC1

denotes the number of .C1’s in a game). 
We let .Z(N ) denote the number of terms in the Zeckendorf decomposition of . N . 

We loosely refer to the number of instances of .Fk as the height of bin . k, denoted 
. hk ; it will usually be clear from context at which point in the game the quantity . hk
refers to. When discussing the height of bin . k after a specific number .m of moves 
in the game, we notate this by .hk(m). For .λ ∈ N, we shall also occasionally use the 
shorthand .[λ] = {1, 2, . . . ,λ}. 

In this work, we shall generally work under the assumption that . Fn ≤ N < Fn+1

for some.n ∈ N (i.e., . n is the index of the largest Fibonacci number that is no larger 
than. N ). 1 While proving Theorem 7, we occasionally refer to moves. C1, S2, . . . , Sn−1

as Type A moves, and all other moves (namely, moves .Ck for .k ≥ 2) as  Type B 
moves. The  work  [  5] also achieved an understanding of precisely when playing 
strictly Type A moves throughout the whole game is possible. 

Finally, the present article furthers the study of random Zeckendorf games. Here, 
we let .ΩN denotes the (finite) collection of all Zeckendorf games on input . N , with 
.FN = 2ΩN the associated .σ-algebra, and express a given Zeckendorf game. G ∈ ΩN

as a (finite) sequence of . λ moves, written as .G = (M1, M2, . . . , Mλ). We study two 
probability measures to complete the space .(ΩN ,FN ): the uniform measure .μN , 
defined by 

. μN (G) = 1

|ΩN | for all G ∈ ΩN

and the probability measure.PN induced by choosing, at every configuration along a 
given game, uniformly at random among available moves, defined by 

. PN (G) =
λ∏

k=1

1

num. playable moves after (M1, . . . , Mk−1)

for .G = (M1, . . . , Mλ) ∈ ΩN . All of the results we derive in this context apply to 
both probability spaces.

1 This is why we have elected to deviate from notation traditionally used in papers concerning this 
game. 
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1.3 Main Results 

The work [ 5] determines an upper bound on the length of a game on input . N . We  
improve this upper bound using similar techniques as in the work [ 3]. 

Theorem 5 The length of a Zeckendorf game on input .N is upper-bounded by 

. 
⌊
ϕ2N − ZI (N ) − 2Z(N ) + (ϕ − 1)

⌋

where .Z1(N ) represents the index sum of the Zeckendorf decomposition of . N. Fur-
thermore, the bound is sharp for infinitely many . N. 

Much of our work was inspired by the following conjecture (the only one still 
unresolved in the paper it was introduced in), initially posed by [ 3], which concerns 
distributional properties of the length of random Zeckendorf games on input .N in 
the limit .N → ∞. 

Conjecture 1 ([ 3, 7]) In the limit.N → ∞, the distribution of the number of moves 
in a random Zeckendorf game on input.N converges to a Gaussian, with expectation 
and variance approximately .0.215N . 2

As such, many of our main results have largely arisen from attempting to under-
stand those aspects of Zeckendorf games which may potentially aid in resolving the 
aforementioned conjecture (and in striving to determine what such aspects are). First, 
we have the following lower bound on the number of shortest Zeckendorf games of 
length . N . Intuitively, if the distribution of random game lengths were indeed Gaus-
sian, this should be an extreme underestimate compared to the number of ways to 
achieve other game lengths (shortest games involve the fewest number of decisions, 
so one might naturally expect that the probability of achieving one via a random 
game is larger than longer games), yet it still explodes in . N . 

Theorem 6 Let .Fn ≤ N < Fn+1. Then the number of shortest Zeckendorf games 
with input .N is at least .

∏n−2
k=1 Cat(Fk), where .Cat(Fk) denotes the ..Fkth Catalan 

number. 

The shortest game and longest game were studied in [ 3] and [ 5], respectively. It 
is natural to ask whether every game length between the shortest and longest game 
length is achievable: we resolve this in the affirmative. 

Theorem 7 For any input .N to the Zeckendorf game, let .M denote the length of 
the longest Zeckendorf game with input . N. Then for any .m satisfying . N − Z(N ) ≤
m ≤ M, there exists a Zeckendorf game of length .m on input . N. In other words, the 
set of achievable game lengths constitutes an interval in the natural numbers.

2 The authors of [ 3] posed this conjecture based on numerical data gathered from 9,999 simulations 
of a random game with .n = 18. The authors of [ 7] gathered further numerical evidence with a 
sample of 1,000 games with .n = 1, 000, 000. We ran a brute force enumeration over all possible 
games for .n ≤ 18 and found the distribution of lengths appeared to be Gaussian. This is a slightly 
different problem than the random game though is closely related. 
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We also study the winning odds of players in the limit .N → ∞ of infinite input 
when studying random Zeckendorf games, for which one might expect that both 
players win with probability .1/2 in the limit if if Conjecture 1 holds as the variance 
of the conjectured Gaussian grows with . N . We establish that this is indeed true by 
proving a much more general result: we can understand Theorem 8 as saying that in 
the limit of infinite input, a .Z -player random Zeckendorf game is fair, in the sense 
that all . Z players have the same probability of winning. 

Theorem 8 For any integer .Z ≥ 1 and .z ∈ {0, 1, . . . , M − 1}, we have that 

. lim
N→∞ μN (Game length ≡ z mod Z) = lim

N→∞PN (Game length ≡ z mod Z) = 1

Z
.

Taking .Z = 2 in Theorem 8 above yields the following result for the classical two-
player Zeckendorf game. 

Theorem 9 For the two-player Zeckendorf game, in the limit .N → ∞ under both 
probability measures .μN and .PN , Player 1 and Player 2 are equally likely to win. 
Explicitly, 

. lim
N→∞ μN (Player 1 wins) = lim

N→∞ μN (Player 2 wins) = 1

2
,

lim
N→∞PN (Player 1 wins) = lim

N→∞PN (Player 2 wins) = 1

2
.

Finally, we establish that there exist natural ways to partition the collection of 
Zeckendorf games .ΩN on input .N so that the distribution of game lengths over the 
corresponding classes are nearly Gaussian with high probability in the limit.N → ∞. 
The construction of the subsets .RP

N ⊂ ΩN and .RS
N ⊂ ΩN , and the sets .AN (R), is  

elaborated in Propositions 5 and 6. 

Theorem 10 For .R ∈ RP
N , let .F

R
N (x) : R → [0, 1] denote the distribution function 

corresponding to game lengths in .AN (R) over the conditional distribution induced 
by .PN , normalized to have expectation . 0 and variance . 1. Let .Φ : R → [0, 1] denote 
the distribution function of the standard normal. Then for any .ε > 0, 

. lim
N→∞PN

(

sup
x∈R

∣
∣FR

N (x) − Φ(x)
∣
∣ ≥ ε

)

= 0.

Similarly, for .R ∈ RS
N , let .F

R
N (x) : R → [0, 1] denote the distribution function cor-

responding to game lengths in .AN (R) over the conditional distribution induced by 
.PN , normalized to have expectation . 0 and variance . 1. Then for any .ε > 0, 

. lim
N→∞PN

(

sup
x∈R

∣
∣FR

N (x) − Φ(x)
∣
∣ ≥ ε

)

= 0.

The analogous results hold for the uniform measure .μN .
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2 Structural Results 

In this section, we include some straightforward, but fundamental results concerning 
the nature of the Zeckendorf game; some of these will be invoked in proofs of deeper 
theorems. 

2.1 Combinatorial Observations 

We begin by exploring some basic properties of the Zeckendorf game, observable 
by studying deterministic subroutines of moves. The following simple result mirrors 
techniques in [ 3]. 

Proposition 1 Consider any decomposition of .N into a sum of (possibly non-
distinct, non-consecutive) Fibonacci numbers: this decomposition can be achieved 
via a sequence of combine moves from the starting configuration of the Zeckendorf 
game. 

Proof We “play the game in reverse”: consider the configuration corresponding to 
this decomposition, and construct a sequence of moves by always taking the game 
piece not in the first bin (i.e., .F1) and farthest out, and replace it as the result of 
a combine move. Specifically, if .k ≥ 3, then replace .Fk by .{Fk−2, Fk−1}; if  .k = 2, 
replace with .2F1. Then reverse all the moves to get a Zeckendorf game from the 
initial state to this state. 

The following is an easy consequence of Theorem 3 above, which states that 
the longest game paradigm from the starting position extends to intermediate game 
positions on input .N which are given by converting.Fn − 1 instances of .F1 = 1 into 
the Zeckendorf decomposition of .Fn − 1, where . n denotes the index of the largest 
Fibonacci number in the Zeckendorf decomposition of the input . N . 

Lemma 1 Let . n denote the index of the largest Fibonacci number in the Zeckendorf 
decomposition of the input . N. A longest Zeckendorf game from an intermediate 
configuration given by converting .Fn − 1 instances of . 1 into the Zeckendorf decom-
position of .Fn − 1 is given by greedily playing any Type A move whenever possible, 
and if no such Type A move can be played, play the available Type B move with the 
smallest index. 

Proof If a game achieved by playing Type A moves whenever possible from this 
configuration were not maximal (i.e., there existed a Zeckendorf game of strictly 
larger length), then by initially playing the longest game on input .Fn − 1 via all 
Type A moves (possible by Theorem 4), we can play the game exactly according to 
Theorem 3 but fail to achieve a game of maximal length, contradicting Theorem 3. 

Using similar techniques as in [ 3], we derive the following results in order to 
improve the upper bound found in [ 5].
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Lemma 2 Let . n be the largest summand in the Zeckendorf decomposition of . N, we  
get that for any .2 ≤ k ≤ n − 1, the following sum is constant: 

. MSk + MCk + MCk+1 + · · · + MCn−1.

Proof Consider the following relabeling of the board: 

.F1 .· · · .Fk .Fk+1 − 1 .Fk+2 − 2 .Fk+3 − 4 .Fk+4 − 7 . · · ·

where after the .. kth bin, the value of a bin is equal to one less than the sum of the 
values of the two bins which precede it. We get that only the moves. Sk,Ck,Ck+1, . . .

can change the weighted sum of the tokens by the relabeled values, and each of these 
moves reduce the sum by 1. Since we have a fixed initial sum.N and a fixed ending 
sum depending on the Zeckendorf Decomposition of. N , we get that the sum of those 
moves must be constant regardless of how the game is played. 

Lemma 3 For any Zeckendorf game starting with .N tokens, 

. MC1 − MS2 ≈ (2 − ϕ)N

with approximation error .≤ ϕ − 1. 

Proof Similarly, we prove this with a relabeling of the board 

.2 .3 .5 .· · · .Fk+1 . · · ·

and observing that the sum of token values goes from .2N to .∼ ϕN with the sum 
decreasing by 1 only by performing .C1 and increasing by 1 only by performing . S2. 
Note that the final sum is equal to shifting each Zeckendorf summands of.N forward 
by one, which is approximated by multiplying each by . ϕ. By Binet’s formula, we 
have .Fk = ϕk+1−(−1/ϕ)k+1√

5
due to how we index the Fibonacci sequence. Thus, the 

error of approximating the summand .Fk+1 with .ϕFk is 

. 

∣
∣
∣
∣
(ϕk+1 − (−1/ϕ)k+1)ϕ − (ϕk+2 − (−1/ϕ)k+2)√

5

∣
∣
∣
∣ = ϕ2 + 1

ϕk+2
√
5

The largest error happens when .N = F1 + F3 + F5 + · · · with error at most 

. 
ϕ2 + 1

ϕ3
√
5

( ∞∑

i=0

1

ϕ2i

)

= ϕ2 + 1

ϕ3(1 − 1/ϕ2)
√
5

= 1

ϕ
= ϕ − 1

which yields the desired. 

As a corollary, we prove Theorem 5
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Theorem 5 The length of a Zeckendorf game on input .N is upper-bounded by 

. 
⌊
ϕ2N − ZI (N ) − 2Z(N ) + (ϕ − 1)

⌋

where .ZI (N ) represents the index sum of the Zeckendorf decomposition of . N. Fur-
thermore, the bound is sharp for infinitely many . N. 

Proof Using the relabeling of the board given by 

.3 .4 .5 .· · · .k + 2 . · · ·

we get that 

. 2MC1 + 2MC2 + 3MC3 + 4MC4+ · · · = 3N − 2Z(N ) − ZI (N )

+MS3 + MS4+ · · ·

Applying Lemma 3, we get 

. MC1 + 2MC2 + 3MC3 + 4MC4+ · · · ≤ 3N − 2Z(N ) − ZI (N )

+(2 − ϕ)N − (ϕ − 1) + MS2 + MS3 + MS4+ · · ·

Thus, if we subtract the excess .MC2 + 2MC3 + 3MC4 + · · · from the left hand 
side, we get the upper bound 

. MC1 + MC2 + MC3 + MC4+ · · · ≤ (1 + ϕ)N − 2Z(N ) − ZI (N ) + (ϕ − 1)

+MS2 + MS3 + MS4+ · · ·

which we round down as the number of all moves performed is an integer. Note that 
if we consider .N = Fn − 1 then we get that there are no .C2,C3, performed within 
the longest game. Furthermore, if we consider.N = F2n − 1, then our approximation 
error is less than . 1 and thus must be sharp after rounding down. 

Recall that [ 3] proved non-constructively that Player . 2 always has a winning 
strategy for any.N ≥ 3: finding such a winning strategy remains open. It is generally 
believed [ 8] that the key to such a strategy lies in understanding “parity swaps": 
distinct sequences of moves of differing length which yield the same effect on the 
board. The following definition follows from the easy observation that whenever 
playable, the sequences of moves 

. Sk → Sk−1 → · · · → Sk−�+1 → Ck−� Ck−� → Sk−�+1 → · · · → Sk−1 → Sk

both have the same effect on the board as the move .Ck , for  some.k ≥ 2. 

Definition 2 For any .� ≥ 0 and .k ≥ 2, call a sequence of moves of form . Sk →
Sk−1 → · · · → Sk−�+1 → Ck−� an .(�, k)-prefix, and a sequence of moves of form
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.Ck−� → Sk−�+1 → Sk−�+2 → · · · → Sk an .(�, k)-suffix. We call an  .(�, k)-prefix a 
prefix of .Ck , and an .(�, k)-suffix a suffix of . Ck .

It should be emphasized that an .(�, k)-prefix or .(�, k)-suffix corresponds to an 
equivalent action as the combine move .Ck , for all lengths .� ≥ 0 and .k ≥ 2; the  
combine move is thus “expanded" via a sequence of. � splitting moves with contiguous 
indices. The next result captures the intuition that the variation in game lengths is 
entirely due to the parity swaps described in Definition 2, namely by describing 
arbitrary Zeckendorf games via permutations of suffixes. 

Proposition 2 Any Zeckendorf game on input.N can be achieved by taking a shortest 
game, expanding combine moves via suffixes, then shifting the splitting moves. 

Proof For an arbitrary Zeckendorf game, greedily take the earliest split move of a 
game, move it back to be played as early as possible, and compress it into a combine 
move. Proceed similarly until we only have combine moves, from which we achieve 
the original game by reversing the compressions and playing split moves later. 

We can interpret the statement of Proposition 2 as saying that we can greedily 
embed an arbitrary Zeckendorf game on input .N into a shortest game on input .N in 
a natural way. 

2.2 Shortest Games 

Proposition 2 suggests that a study of shortest Zeckendorf games might be fruitful, as 
any particular Zeckendorf game can be understood as an extension and permutation 
of a particular shortest game. We first observe the following. 

Proposition 3 Shortest games are exactly those games which strictly use combine 
moves. Furthermore, such a game exists for any input. N, and the multiset of combine 
moves for any such shortest game is unique. 

Proof A move decreases the number of pieces by at most one, so.N − Z(N ) lower-
bounds the number of moves necessary, achieved exactly by those games using 
strictly combine moves; such games exist by Proposition 1. To establish uniqueness 
of the multiset of combine moves for any such game, say.Fn ≤ N < Fn+1, and study 
bin. k for.1 ≤ k ≤ n. Moves affecting.hk are known precisely: letting the Zeckendorf 
decomposition of .N be denoted .(z1, z2, . . . , zn) (where .zi ∈ {0, 1}), this yields the 
system 

. N − 2MC1 − MC2 = z1
MC1 − MC2 − MC3 = z2

· · ·
MCn−3 − MCn−2 − MCn−1 = zn−2

MCn−2 − MCn−1 = zn−1

MCn−1 = zn = 1

from which it easily follows that this system must have a unique solution.
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Proposition 4 For .n = n(N ) and any .δ ∈ (0, 1), 

. lim
N→∞ max

G∈ΩN

#{Ck ∈ G, k > δn}
#{Combine moves in G} = lim

N→∞ max
G∈ΩN

#{Ck ∈ G, k > δn}
N − 1

= 0.

Proof For.G ∈ ΩN , consider all combine moves.Ck with.k > δn; each such combine 
move corresponds to a particular token “jumped,” for which we consider all combine 
moves with index .≤ δn that led this token to land in this position, of which there 
must be at least .
δn/2�. The sets of combine moves with index.≤ δn corresponding 
to distinct combine moves with index .> δn are observed to be disjoint, so 

. 
#{Ck ∈ G, k > δn}

N − 1
≤ 1


δn/2� + 1

which vanishes as .N → ∞. 

Proposition 3 yields the following interesting lower bound 3 on the number of 
shortest Zeckendorf games with input . N . 

Theorem 6 Let .Fn ≤ N < Fn+1. Then the number of shortest Zeckendorf games 
with input .N is at least .

∏n−2
k=1 Cat(Fk), where .Cat(Fk) denotes the ..Fkth Catalan 

number. 

Proof It suffices to study .N = Fn , since the number of distinct shortest Zeck-
endorf games is increasing in . N : for input .N �= Fn , one can first play a shortest 
Zeckendorf game on input .Fn , then proceed by always playing the rightmost avail-
able combine move to achieve a shortest game on input .N by Proposition 3. (See 
Lemma 4, where we understand this as incrementing instances of .F1s after playing 
a shortest game on .Fn .) The Zeckendorf decomposition is . (z1, z2, . . . , zn−1, zn) =
(0, 0, . . . , 0, 1), where. zi denotes the number of instances of.Fi in the decomposition. 
By Proposition 3, there exists a unique multiset of combine moves constituting a 
shortest game: by solving the system above, this multiset is defined by 

. (MC1, MC2, . . . , MCn−1) = (Fn−2, Fn−3, Fn−4, . . . , F3, F2, F1, F0)

where we let .F0 = 1. A permutation of these moves constitutes a game if and only 
if every move is valid, i.e., no move would force the height of any bin to become 
negative. Specifically, at any intermediate point in the sequence, the number of .C1’s 
played is no less than the sum of the number of .C2’s and .C3’s played (bin . 2 is 
nonnegative), the number of .C2’s is no less than the number of .C3’s and.C4’s played 
(bin . 3 is nonnegative), and so on, to the number or .Cn−2’s being no less than the 
number of.Cn−1’s played (bin.n − 1 is nonnegative). (We need not study bin. 1 or bin 
. n, which will necessarily always have nonnegative height.)

3 We suspect the lower bound of Theorem 6 to be somewhat loose, as much is lost when crudely 
pursuing the interweaving of the Dyck paths.π2,π3, . . . ,πn−1 (see the proof for details). 
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Let us restrict our attention to the moves .C1,C2,C3 (moves affecting the height 
of bin . 2): the number of permutations of these moves such that the number of .C1’s 
played being no less than the sum of the number of .C2’s and .C3’s performed holds 
at any point in the game is in bijective correspondence with (up-down) Dyck paths 
on. j = Fn−2 (.C1 ↔ U ; .C2,C3 ↔ D), the number of which is.Cat(Fn−2). Similarly, 
by studying moves affecting bin .k ≥ 2, we achieve bijective correspondences with 
Dyck paths on . j = Fn−k . 

For any choice of Dyck paths .π2,π3, . . . ,πn−1 on . j = Fn−2, Fn−3, . . . , F1, 
respectively, there exists a shortest Zeckendorf game on input .N where the ordering 
of the relevant moves is consistent with the bijections described above. To construct 
such a game, begin by placing .2Fn−2 moves along a line, labeling .Fn−2 of them 
as .C1 in a manner consistent with .π2 (.C1 ↔ U ). Among the . Fn−2 = Fn−3 + Fn−4

unlabeled moves, label.Fn−3 of them as.C2 (importantly, including the first.D move) 
in a manner consistent with.π3 (not too many unlabeled moves between consecutive 
instances of .C2) and the other .Fn−4 as .C3. Now add .Fn−5 instances of .C4 along this 
line to complete.π3 (include all missing.C4 ↔ Dmoves) while respecting.π4 (not too 
many unlabeled moves between consecutive instances of.C3). Specifically, construct 
a labeling of the .Fn−3 = Fn−4 + Fn−5 .D moves in .π3 with.Fn−4 .C3’s and.Fn−5 .C4’s 
such that the first .D is labeled .C3, and there are not too many unlabeled .D moves 
between consecutive instances of .C3 (with respect to . π4). Insert .C4’s to be adjacent 
to established instances of .C2 and .C3 to be consistent with this labeling. 

Continue by similarly adding, for.k ≥ 5,.Fn−k−1 instances of.Ck , completing. πk−1

while respecting . πk , until we add .F0 = 1 instance of .Cn−1 such that we complete 
.πn−1. This results in a shortest Zeckendorf game with the ordering of the relevant 
moves being consistent with .π2,π3, . . . ,πn−1. 

3 The Set of Possible Game Lengths Constitute an Interval 

In this section, we prove Theorem 7, which we restate below. 

Theorem 7 For any input .N to the Zeckendorf game, let .M denote the length of 
the longest Zeckendorf game with input . N. Then for any .m satisfying . N − Z(N ) ≤
m ≤ M, there exists a Zeckendorf game of length .m on input . N. In other words, the 
set of achievable game lengths constitutes an interval in the natural numbers. 

We begin by establishing some intermediate results that we shall invoke in the 
proof of the main theorem. In the first lemma, in discussing the position given by 
the Zeckendorf decomposition of .N − 1, we refer to the terminal position of the 
Zeckendorf game when played on input .N − 1. 

Lemma 4 Consider the Zeckendorf game on input . N, satisfying .Fn ≤ N < Fn+1, 
from the position given by the Zeckendorf decomposition on .N − 1 (as specified 
above) with an additional instance of . 1. There is a unique sequence of moves from 
this configuration to the Zeckendorf decomposition of . N, all of which are combine
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moves. Furthermore, the number of such combine moves performed is bounded by 
.
n/2�. 

Proof Since no moves can be played from the Zeckendorf decomposition on.N − 1, 
any playable move from this position (on input . N ) is necessarily either .C1 or .C2, 
possible if and only if .F1 = 1 or .F2 = 2 is in the Zeckendorf decomposition of 
.N − 1, respectively (such cases are disjoint, since the Zeckendorf decomposition on 
.N − 1 does not contain consecutive Fibonacci numbers); otherwise, no moves can 
be played. We study both cases. 

– If the Zeckendorf decomposition of .N − 1 contains an instance of .F1, then after 
playing.C1, it is easy to see that the only possible move is.C3 (iff the decomposition 
of .N − 1 contains an .F3), then .C5 (iff the decomposition of .N − 1 contains an 
.F5), and so on, until we exhaust all playable moves. 

– If the Zeckendorf decomposition of .N − 1 contains an instance of .F2, then after 
playing.C2, it is easy to see that the only possible move is.C4 (iff the decomposition 
of .N − 1 contains an .F4), then .C6 (iff the decomposition of .N − 1 contains an 
.F6), and so on, until we exhaust all playable moves. 

In both cases, it is straightforward to confirm that we cannot play strictly more than 
.
n/2� such combine moves, as otherwise there must be an instance of .Fk for . k
either .n + 1 or .n + 2 after completing this sequence of moves, a contradiction on 
.N < Fn+1. 

We shall also frequently use the following lemma. Intuitively, this states that if 
we have isolated the Zeckendorf game to a suffix of bins all of height . 0 or . 1, and 
this suffix is separated from earlier bins by a bin of height . 0 (say bin. k), then we can 
ignore bins .1, . . . , k for the remainder of the game. 

Lemma 5 For some.1 ≤ k ≤ n, let.(x1, x2, . . . , xk, xk+1, . . . , xn) denote the heights 
of bins .1, . . . , n at some point during a Zeckendorf game, with .xi denoting the height 
of bin . i . Assume .xi ∈ {0, 1} for .k ≤ i ≤ n, .xk = 0, no playable moves involving bins 
.1, . . . , k exist, and we play according to Theorem 3. Then heights .x1, . . . , xk remain 
fixed for the rest of the game. 

Proof We prove this on .k = n − j by induction on .0 ≤ j ≤ n − 2. The statement 
trivially holds if . j ∈ {0, 1, 2}; assuming it for all values less than. j ≥ 3, if . xk+1 = 0
or.xk+2 = 0 we can apply the induction hypothesis to. j − 1 or. j − 2, respectively, so 
assume .xk+1 = xk+2 = 1. Take  .r ≤ n to be largest possible such that . xk+1 = · · · =
xr = 1: the game proceeds by playing according to Theorem 3, i.e., by playing the 
sequence of moves 

. (Ck+1 → Sk+3 → Sk+4 → · · · → Sr ) → (Ck+1 → Sk+3 → · · · → Sr−2) → · · ·

where the final subsequence of moves, either .Ck+1 or .Ck+1 → Sk+3, depends on the 
parity of.r − k. It follows immediately by studying the moves involved that.x1, . . . , xk
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remain unchanged during this sequence. Following this sequence, we have .xr = 0: 
invoke the induction hypothesis on .k = r (i.e., .n − r < j) afterwards to complete 
the proof. 

We now proceed with the proof of Theorem 7. 

Proof (Proof of Theorem 7) We have confirmed this statement for. N ≤ F6 − 1 = 12
via a computer check. Thus, for .N ≥ F6 = 13, assume the statement holds for all 
input sizes at most .N − 1: we aim to show the result holds for . N . We explicitly 
specify that .Fn ≤ N < Fn+1. 

Let.I ′
1 denote the interval (by induction hypothesis) of possible Zeckendorf game 

lengths for input .N − 1: by Lemma 4, if we include an additional instance of . F1

to the Zeckendorf decomposition of .N − 1, there is a sequence of combine moves 
from the resulting configuration to the Zeckendorf decomposition of . N . On input 
. N , consider initially playing the Zeckendorf game (to completion) as if the input 
were .N − 1, then executing this sequence of moves to terminate the game. Let 
.I1 = [L1, R1] denote the interval .I ′

1 shifted by the length of this sequence: by the 
preceding description, it follows that every game length in .I1 is achievable for 
input . N . Furthermore, .L1 = N − Z(N ), since the game length .L1 as studied above 
results from playing strictly combine moves (see Lemma 4), which necessarily 
yields a shortest game by Proposition 3, and for which the length is . N − Z(N )

by Theorem 2. 
By Theorem 4, it is possible to play the Zeckendorf game on input.Fn − 1 strictly 

using Type A moves. Let.I ′
2 denote the interval (by induction hypothesis) of possible 

Zeckendorf game lengths for input .Fn − 1 ≤ N − 1: on input . N , consider initially 
playing the Zeckendorf game (to completion) as if the input were .Fn − 1, then exe-
cuting the longest possible sequence of moves from the resulting position to terminate 
the game. Let .I2 = [L2, R2] denote the interval .I ′

2 shifted by the number of moves 
of this longest sequence. By Theorem 3, .R2 is necessarily the length of the longest 
Zeckendorf game on input . N , since the above approach is consistent with playing 
Type A moves whenever possible. 

Thus, it suffices to show that .L2 ≤ R1 to complete the induction and establish 
the theorem, as this yields that .I1 ∪ I2 = [L1, R2] is an interval of achievable game 
lengths on input . N , with the endpoints being the shortest and longest possible game 
lengths for input . N . 

The known game with length .R1 corresponds to playing the longest game on 
input .N − 1, then performing the unique sequence of combine moves to achieve 
the Zeckendorf decomposition of . N ; by Theorems 3 and 4, we can take the first 
phase of this game (longest game on input .N − 1) as playing the longest game on 
input.Fn − 1, then playing the longest remaining game (on input.N − 1). The known 
game with length.L2 corresponds to playing the shortest game on input.Fn − 1, then 
playing the longest remaining game until we achieve the Zeckendorf decomposition 
of . N . By Lemma 1, we can take the second phase of this game (playing the longest 
remaining game) as playing consistent to Theorem 3 until achieving the Zeckendorf 
decomposition.



Towards the Gaussianity of Random Zeckendorf Games 79

We henceforth denote these games with length .R1 and .L2 by .G1 and . G2, respec-
tively, which we depict as follows; “longest on . k” indicates that during this phase, 
we think of the game as being played on input. k, and leaving the appropriate number 
of instances of .F1 = 1 in the first bin fixed. 

. G1 : [
(Longest on Fn − 1) → (longest remaining on N − 1)

] → (combine on N )

G2 : (Shortest on Fn − 1) → (longest remaining on N )

Denoting the difference between the lengths of the longest and shortest games on 
input.Fn − 1 by.�(n), game.G1 took exactly.�(n) more moves than game.G2 on input 
.Fn − 1. However, .G2 may take longer afterwards to finish the game on input . N : we  
aim to show that the discrepancy in the game lengths after initially playing on input 
.Fn − 1 is dominated by .�(n), from which we conclude that .G2 is no longer than 
. G1, i.e., that .L2 ≤ R1. In particular, it certainly suffices to show that the first two 
segments of .G1 involve at least as many moves as the first two segments of .G2 to 
establish the result: this is how we shall proceed. 

By Theorem 3 and Lemma 1, we can choose how we would like to play a longest 
game after playing the game on input.Fn − 1 (specifically, we can fix an ordering on 
Type A moves which determines what we play when given multiple Type A moves): 
until the two games diverge, 4 pursue a longest remaining game by always playing 
the rightmost Type A move whenever a Type A move is playable. Following this 
ordering on Type A moves, we study the first move on which games .G1 and . G2

deviate. This move is necessarily either .C1 or .C2 in game .G2 (the move must not 
have been playable in game. G1, and thus must involve bin. 1), and by the ordering on 
Type A moves established before, bins.2, 3, . . . , n are either. 0 or. 1 when it is played. 
We perform casework on which move the two games deviate on. 

Case 1: Move is .C1. In game  . G1, this configuration can be represented by the 
vector .(1, x2, x3, . . . , xn), where .xi ∈ {0, 1} for .i ≥ 2 denotes the height of the . i th 
bin (the first entry would be a . 2 for game . G2). Let us first study the setting .x2 = 0, 
and consider what happens after game .G2 plays .C1. If  .x3 = 0, then by Lemma 5 
applied to .k = 3, both games are consistent on bins .4, . . . , n so that game .G2 takes 
one more move than.G1 to finish. Otherwise (i.e., .x3 = 1), Lemma 5 on.k = 2 yields 
that game .G1 works strictly over bins .3, . . . , n, and Lemma 5 on .k = 1 yields that 
game.G2 works strictly over the bins .2, . . . , n (i.e., bin . 1 becomes irrelevant). Thus, 
the resulting setting corresponds exactly to Case 2 over the.n − 1 bins.2, . . . , n; here, 
we have an upper bound of .n − 1 for the number of additional moves.G2 takes, for a 
total upper bound of.(n − 1) + 1 = n (with the.C1 in. G2) for the number of additional 
moves .G2 takes. 

Thus, assume .x2 = 1, and let position .k + 1, with .k ≥ 2, denote the first index 
that is . 0. Study the length-. k prefix .(1, 1, 1, . . . , 1) (in game . G1; first entry is . 2 in

4 We shall assume this does happen, as otherwise the lengths of the second segments of.G1 and. G2
are equal, and thus the inequality.L2 ≤ R1 is immediate. 
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game. G2) with no zero entries; we can exactly describe how the two games proceed 
when playing according to the longest game paradigm of Theorem 3. 

– Game . G1: We play the sequence of moves 

. (C2 → S3 → S4 → · · · → Sk) → (C2 → S3 → · · · → Sk−2) → · · ·

continuing similarly until one of the first two bins is empty (so we cannot play 
.C2). In general, shorten the contiguous . 1s down two indices and repeat until one 
of the first two bins is empty (the bin which ends up empty depends on the parity 
of . k). 

– Game . G2: We play the sequence of moves 

. (C1) → (S2) → (S3 → C1) → (S4 → S2) → · · ·

continuing similarly until we play all splitting moves .Sj for . j ≤ k. In general, 
when first playing . Sj , we play the sequence .Sj → Sj−2 → · · · (final move is . S2
or .C1, depending on parity of . j), and this continues until position . k. 

After these subroutines, it is straightforward to confirm that bin . k is empty, bins 
.k + 1, . . . , n − 1 are all . 0 or . 1 with heights agreeing between .G1 and . G2, and no 
playable moves involving bins.1, . . . , k exist. Thus, both games proceed strictly over 
bins.k + 1 to.n − 1 by Lemma 5, and perform the same sequence of moves; we need 
only compute the difference in the lengths of these two subroutines on this prefix of 
length . k. 

– The length of the sequence of moves in the game of length .L2 is 

. 

{
2

∑(k−1)/2
j=1 j + k+1

2 k odd,

2
∑k/2

j=1 j k even.

– The length of the sequence of moves in the game of length .R1 is 

. 

{∑(k−1)/2
j=1 (k − 2 j + 1) = 2

∑(k−1)/2
j=1 j k odd,

∑k/2
j=1(k − 2 j + 1) = ∑k/2

j=1(2 j − 1) = 2(
∑k/2

j=1 j) − k
2 k even.

We can thus study this difference exactly: the difference is given by 

. 

{[
2

∑(k−1)/2
j=1 j + k+1

2

]
− 2

∑(k−1)/2
j=1 j = k+1

2 = �k/2� k odd

2
∑k/2

j=1 j − ∑k/2
j=1(2 j − 1) = k

2 k even

so in general, the difference is bounded by .�n/2� ≤ n. 

Case 2: Move is.C2. In game. G1, this configuration can be represented by the vector 
.(0, x2, x3, . . . , xn), where .xi ∈ {0, 1} for .i ≥ 2 denotes the height of the . i th bin (the
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first entry would be a. 1 for game. G2) and.x2 = 1 (since otherwise.C2 cannot be played 
in game . G2). Let us first study the setting .x3 = 0, and consider what happens after 
game .G2 plays .C2. Applying Lemma 5 on .k = 3 for .G1 and .k = 2 for .G2 yield that 
both games work strictly over bins .3, . . . , n, and this reduces to the same setting on 
the suffix of bins.3, . . . , n. Say we reduce the problem to a suffix with length reduced 
by. 2 in this manner. m times, so we study the case where.x3 = 1 over.n − 2m bins: by 
extracting the bound in the following argument (i.e., the.x3 = 1 case) for the number 
of additional moves .G2 takes, this yields a bound of .m + (n − 2m) ≤ n. 

Thus, assume .x3 = 1, and let position .k + 1, with .k ≥ 3, denote the first index 
that is . 0. Study the length-. k prefix .(0, 1, 1, . . . , 1) (in game . G1; first entry is . 1 in 
game . G2): we can explicitly describe how the two games necessarily proceed when 
playing according to the longest game paradigm. 

– Game. G1: We play the sequence of moves 

. (C3 → S4 → S5 → · · · → Sk) → (C3 → S4 → · · · → Sk−2) → · · ·

continuing similarly until either bin. 2 or bin. 3 is empty (so we cannot play.C3). In 
general, shorten the contiguous . 1s down two indices and repeat until either bin . 2
or bin . 3 is empty (the bin which ends up empty depends on the parity of . k). 

– Game . G2: This is exactly the same as game .G1 in Case 1. 

After these subroutines, it is straightforward to confirm that bin . k is empty, bins 
.k + 1, . . . , n − 1 are all . 0 or . 1 with heights agreeing between .G1 and . G2, and no 
playable moves involving bins.1, . . . , k exist. Thus, both games proceed strictly over 
bins.k + 1 to.n − 1 by Lemma 5, and perform the same sequence of moves; we need 
only compute the difference in the lengths of these two subroutines on this prefix of 
length . k. 

The length of the sequence of moves in game .G2 was computed in Case 1, while 
the length of the sequence of moves in game .G1 is 

. 

⎧
⎨

⎩

∑(k−1)/2
j=1 (k − 2 j) = ∑(k−1)/2

j=1 (2 j − 1) = 2(
∑(k−1)/2

j=1 j) − k−1
2 k odd

∑(k−2)/2
j=1 (k − 2 j) = ∑(k−2)/2

j=1 (2 j − 1) = 2(
∑(k−2)/2

j=1 j) − k−2
2 k even.

so the difference is given by 

. 

⎧
⎪⎨

⎪⎩

2
∑(k−1)/2

j=1 j −
[
2(

∑(k−1)/2
j=1 j) − k−1

2

]
= k−1

2 = 
k/2� k odd
[
2(

∑k/2
j=1 j) − k

2

]
−

[
2(

∑(k−2)/2
j=1 j) − k−2

2

]
= k − 1 k even

so in general, the difference is bounded by .max{
k/2�, k − 1} ≤ n − 1 ≤ n.
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We observe that in both cases, the difference in the lengths of the second segments 
of these games is bounded by . n. We now show that the difference .�(n) between 
the lengths of the longest and shortest games on input .Fn − 1 is at least . n for all 
.n ≥ 6. One can confirm, by playing a longest game according to Theorem 3 on 
input .N = F6 − 1 = 12, that .�(6) = 17 − (12 − Z(12)) = 17 − 9 ≥ 6; it is simi-
larly easy to confirm that .�(4), �(5) ≥ 1. Since we have . Fn+1 − 1 = (Fn − 1) +
Fn−1 ≥ (Fn − 1) + (Fn−1 − 1), one can pursue a game on input .Fn+1 − 1 by first 
playing a game on input.Fn − 1, then a game on input.Fn−1 − 1, and finally perform-
ing some fixed sequence of moves to completion. By combining respective short-
est games and longest games on input .Fn − 1 and input .Fn−1 − 1, we observe that 
.�(n + 1) − �(n) ≥ 1 for any.n ≥ 6, and thus.�(n) ≥ n for all.n ≥ 6 (recall.�(6) ≥ 6). 

Therefore, we have that for all .N ≥ F6 = 13, 

. R1 − L2 ≥�(n) − {(len. longest remaining on N )

− (len. longest remaining on N − 1)}
≥�(n) − n ≥ �(n) − �(n) = 0

from which we conclude that .L2 ≤ R1. 

4 Winning Odds in the Limit . N → ∞

We dedicate this section to establishing Theorem 9, which follows as an immediate 
corollary of Theorem 8: recall that Theorem 8 is given as follows. 

Theorem 8 For any integer .Z ≥ 1 and .z ∈ {0, 1, . . . , M − 1}, we have that 

. lim
N→∞ μN (Game length ≡ z mod Z) = lim

N→∞PN (Game length ≡ z mod Z) = 1

Z
.

The case .Z = 2 gives Theorem 9. 

Theorem 9 For the two-player Zeckendorf game, in the limit .N → ∞ under both 
probability measures .μN and .PN , Player 1 and Player 2 are equally likely to win. 
Explicitly, 

. lim
N→∞ μN (Player 1 wins) = lim

N→∞ μN (Player 2 wins) = 1

2
,

lim
N→∞PN (Player 1 wins) = lim

N→∞PN (Player 2 wins) = 1

2
.
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4.1 Overview 

We provide a brief sketch of the proof of Theorem 9. We specifically focus on the 
number of .(1, k)-prefixes which occur over the course of a game, recalling that 
whenever applicable, the sequence of moves .(Sk,Ck−1) has the same effect on the 
game as .Ck . We partition the collection of games .ΩN into subsets of games which 
differ only via such .(1, k)-prefixes, describe the conditional distribution induced by 
any such subset (under both.μN and.PN ), and argue that in the limit of infinite input, 
the sizes of the subsets induced by this partition grow so fast that the probability of 
Player 1 or Player 2 winning can be reduced to the outcome of a binomial random 
variable with exploding variance. 

4.2 Partitioning the Collection of Possible Games 

As observed in Definition 2, for  .k ≥ 2, the sequence 5 .(Sk,Ck−1) is a .(1, k)-prefix. 
We establish some notation to use later: define.RN ∈ FN to be the collection 6 of all 
Zeckendorf games on input .N such that (for all .k ≥ 2) any instance of the sequence 
.(Sk,Ck−1) is immediately preceded by.Sk+1; in other words, .RN is the collection of 
all Zeckendorf games on input.N such that there are no.(1, k)-prefixes for any.k ≥ 2. 
We can express this collection as 

. RN ={(M1, . . . , Mλ) ∈ ΩN : (Mi , Mi+1) = (Sk,Ck−1) =⇒ Mi−1 = Sk+1

∀ i ∈ [λ − 1], k ≥ 2}.

For a game.R = (M1, M2, . . . , Mλ) ∈ RN , construct the subset of indices.IN (R) to 
denote all combine moves in. R, not involved in a sequence.(Sk,Ck−1) for.k ≥ 2, for  
which the latter bin has height at least. 2 (i.e., combine moves.Ck for.k ≥ 2 replaceable 
with a .(1, k)-prefix): 

. IN (R) = {i ∈ [λ] : Mi = Ck, Mi−1 �= Sk+1, hk(i) ≥ 2 for some k ≥ 2} .

Now, construct the formal sequence of moves .M(R) = (M̃1, M̃2, . . . , M̃λ) by 
replacing .Mi by a symbol .Ek (the subscript being the corresponding .k ≥ 2) for all 
.i ∈ IN (R); call.M(R) the base sequence of.R ∈ RN . Let.AN (R) ∈ FN denote the 
collection of all Zeckendorf games resulting from replacing each instance of.Ek in. M
by either .Ck or the .1-prefix.(Sk,Ck−1) (for every.k ≥ 2). We establish the following 
important result, which makes it clear why we have pursued this construction in the 
manner that we did.

5 We deviate from notation earlier in the paper and write move sequences as tuples. 
6 We elect to use the notation.RN as we think of these games on input.N as representatives of the 
corresponding classes.AN (R) that we define later in this discussion. 
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Lemma 6 The sets .{AN (R) : R ∈ RN } partition .ΩN . 

Proof We first show that the sets .AN (R) are disjoint. Take distinct . R1 =
(M1

1 , . . . , M
1
λ),R2 = (M2

1 , . . . , M
2
λ′) ∈ RN with base sequences . M1(R1) =

(M̃1
1 , M̃

1
2 , . . . , M̃

1
λ) and .M2(R2) = (M̃2

1 , M̃
2
2 , . . . , M̃

2
λ′), respectively. Since . R1 �=

R2, take smallest . i for which .M1
i �= M2

i =⇒ M̃1
i �= M̃2

i , and study the construc-
tion of any two games .G1 ∈ AN (R1) and .G2 ∈ AN (R2) as described above. If 
.G1 and .G2 are consistent prior to .M̃1

i and .M̃2
i (i.e., for .k ≥ 2, all  .Ek are replaced 

by the same choice of .Ck or .(Sk,Ck−1)), which is certainly the only way the 
two games remain equal up to this point of their construction, then we neces-
sarily produce a difference in the two games on .M̃1

i and .M̃2
i if .M1

i = M̃1
i and 

.M2
i = M̃2

i (.M
1
i �= M2

i ) or.M
1
i �= M̃1

i and.M2
i �= M̃2

i (.M̃
1
i = Ek1 ,.M̃2

i = Ek2 ,.k1 �= k2). 
If.M1

i = M̃1
i and.M

2
i �= M̃2

i (say.M̃
2
i = Ek , so necessarily.M2

i = Ck and. M2
i−1 �= Sk+1

for some .k ≥ 2), then game .G2 is next filled with either .Ck �= M1
i (.M1

i = M2
i if 

.Ck = M1
i ) or  .(Sk,Ck−1). In the latter case, if the two games were equal after this, 

then necessarily.(M1
i−1, M

1
i , M

1
i+1) = (Sk+1, Sk,Ck−1) (by definition of.IN (R1) and 

.RN ,.M1
i+1 and.M1

i−1 follow after establishing.M1
i = Sk), contradicting. M2

i−1 �= Sk+1

(since .M1
i−1 = M2

i−1 and .M2
i = Ck , .M̃2

i = Ek). 
We therefore conclude that.AN (R1) ∩ AN (R2) = ∅, i.e., the sets.AN (R) for. R ∈

RN are disjoint; it remains to show that any game.G ∈ ΩN is in some set.AN (R). For  
.G ∈ ΩN , let .R be the game resulting from replacing every instance of the sequence 
.(M, Sk,Ck−1), .M �= Sk+1 in game .G by the sequence .(M,Ck) (for .k ≥ 2). The 
resulting game .R is such that .(Mi , Mi+1) = (Sk,Ck−1) =⇒ Mi−1 = Sk+1 for all 
.i ∈ [λ] and.k ≥ 2: any sequence.(Mi−1, Mi , Mi+1) = (M, Sk,Ck−1)with. M �= Sk+1

in .R necessarily results from having replaced .(Sk−1,Ck−2) for .Ck−1 in game . G (as 
.(Sk,Ck−1) would have been replaced by .Sk+1 otherwise), but we know this does 
not occur by the description above, so we indeed have .R ∈ RN . Also, .G ∈ AN (R): 
we can reverse all the replacements .(Sk,Ck−1) ↔ Ck made in achieving .R from. G, 
since the resulting.Ck moves correspond to.Ek (for some.k ≥ 2) in the base sequence 
.M(R) as the preceding move is not .Sk+1. 

Therefore, applying Lemma 6 and the law of total probability, 

. μN (length is z mod Z) =
∑

R∈RN

μN (length is z mod Z | AN (R))μN (AN (R))

PN (length is z mod Z) =
∑

R∈RN

PN (length is z mod Z | AN (R))PN (AN (R))

(1) 

so we can reduce proving Theorem 8 to establishing that the conditional probabilities 
for.R ∈ RN , with respect to both measures, overwhelmingly tend to.1/2 in the limit.
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4.3 Analysis 

Define the random variable.mN : ΩN → N first on.R ∈ RN by.mN (R) = |IN (R)|, 
denoting the number of terms .Ek (for .k ≥ 2) in the base sequence of . R, then lift 
to arbitrary .G ∈ ΩN by letting .mN (G) = mN (R) for the unique .R ∈ RN such that 
.G ∈ AN (R) (see Lemma 6). 7 Fix .R ∈ RN , and observe that on the event .AN (R), 
.mN (G) for .G ∈ AN (R) is the fixed constant .|IN (R)|. Now construct corresponding 
Bernoulli random variables .XR

1 , XR
2 , . . . , XR

|mN (R)| : ΩN → {0, 1} for each of the 
instances of terms of form.Ek (for.k ≥ 2) in the base sequence of. R: here, . XR

i (G) =
1 if and only if .G ∈ AN (R) and .G is achieved by the . i th instance of .Ek in the 
base sequence .R being the .(1, k)-prefix .(Sk,Ck−1). Say we replaced this .Ek with 
.(Sk,Ck−1), and let .ni denote the number of playable moves in the game available in 
the turn immediately after playing . Sk . We can say more about the random variables 
.XR

i defined here. 

Lemma 7 Fix .R ∈ RN . Define the random variables .XR
1 , XR

2 , . . . , XR
|mN (R)| as 

above. When conditioned on .AN (R), the variables .XR
1 , XR

2 , . . . , XR
|mN (R)| are inde-

pendent Bernoulli random variables with each .XR
i having parameter .1/2 under the 

measure .μN , and parameter .pi = 1
1+ni

under the measure .PN . Explicitly, 

. μN
(
XR
i = 1 | AN (R)

) = 1

2
, PN

(
XR
i = 1 | AN (R)

) = 1

1 + ni
.

Proof Fix a random variable .XR
i , and observe that for every particular setting of 

all other .Ek terms in . R, there exist exactly two games in .AN (R) faithful to this 
setting, corresponding to choosing .Ck and the .(1, k)-prefix .(Sk,Ck−1) for the . i th 
such . Ek . It follows immediately that under the uniform measure .μN , we indeed 
have.μN

(
XR
i = 1 | AN (R)

) = 1
2 , since in particular there exists a bijection between 

games in the subset.AN (R)with.XR
i = 0 and.XR

i = 1 and all games in.ΩN are given 
equal probability under the measure .μN . 

Under the probability measure .PN , it is straightforward to observe that the game 
replacing the. i th instance of .Ek by the.(1, k)-prefix.(Sk,Ck−1) requires an additional 
decision with probability.

1
ni
of yielding the desired.Ck−1, and it thus follows that the 

parameter .pi of the Bernoulli random variable .XR
i is given by 

. 
pi

1 − pi
= 1

ni
=⇒ pi = 1

1 + ni
.

To establish independence, it suffices to show that for any subset .S ⊆ [mN (R)], we  
have the identity

7 In particular, .mN (R) = log2(AN (R)). 
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. PN
(
XR
i = 1 iff i ∈ S | AN (R)

) =
∏

i∈S
PN

(
XR
i = 1 | AN (R)

)

·
∏

j /∈S
PN

(
XR

j = 0 | AN (R)
)

=
∏

i∈S
pi ·

∏

j /∈S
(1 − p j ).

We can relate the conditional probabilities . {PN
(
XR
i = 1 iff i ∈ S AN (R)

) : S ∈
[mN (R)]} whenever .S1 = S2 ∪ { j} (for . j ∈ [mN (R)]): all choices for each term. Ek
but one are consistent (namely,.XR

j = 1 for the numerator in the following), and thus 

. 
PN

(
XR
i = 1 iff i ∈ S1 | AN (R)

)

PN
(
XR
i = 1 iff i ∈ S2 | AN (R)

) = 1

n j
= p j

1 − p j
=

∏
i∈S1 pi · ∏

j /∈S1(1 − p j )
∏

i∈S2 pi · ∏
j /∈S2(1 − p j )

.

Now, since we have the identity 

. 

∑

S⊆[mN (R)]

PN
(
XR
i = 1 iff i ∈ S | AN (R)

) = 1 =
mN (R)∏

i=1

(pi + (1 − pi ))

=
∑

S⊆[mN (R)]

⎛

⎝
∏

i∈S
pi ·

∏

j /∈S
(1 − p j )

⎞

⎠

and quotients between summands corresponding to two sets differing by one ele-
ment are the same, the summands on both sides for any subset .S ⊆ [mN (R)] are 
necessarily equal. More specifically, letting . p1 = PN

(
XR
i = 1 iff i ∈ ∅ | AN (R)

)

and .p2 = ∏
i∈∅ pi · ∏

j /∈∅(1 − p j ), by incrementally including elements to some 
.S ⊆ [mN (R)] we can write the corresponding summands on the left and right hand 
sides as the same multiple of .p1 and .p2, respectively. This reduces to .p1 = p2, and 
thus summands corresponding to the same . S are equal. Thus, we have the desired 
identity for any subset .S ⊆ [mN (R)]. 

Lemma 7 yields the following easy observation. 

Corollary 1 Say .Fn ≤ N < Fn+1, fix some  .R ∈ RN , and define the random vari-
ables .XR

1 , XR
2 , . . . , XR

mN (R) as above. Under the uniform measure .μN , whenever 
.R ∈ RN is such that .mN (R) > 0, .μN (Player 1 wins | AN (R)) = 1/2. Under the 
probability measure .PN , when conditioned on the event .AN (R), there are at most 
.2n distinct values of the parameters .pi = 1

1+ni
amongst the random variables .XR

i , 

and for any such . i , . 1
2n−2 ≤ pi ≤ 1/2. 

Proof If .mN (R) > 0, then the statement .μN (Player 1 wins | AN (R)) = 1/2 fol-
lows immediately by applying the law of total probability on all settings of the 
Bernoulli random variables .(XR

2 , . . . , XR
mN (R)) ∈ {0, 1}mN (R)−1, namely since this 

further conditioning always yields a conditional probability of .1/2 (see the proof of
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Lemma 7). At any point of a game .G ∈ ΩN satisfying .Fn ≤ N < Fn+1, there are at 
most.2n − 3 (and thus certainly at most.2n) playable moves (and thus at most. 2n − 3
distinct values of. ni , and thus. pi ): the combine moves.C1,C2, . . . ,Cn−1 and the split-
ting moves .S2, S3, . . . , Sn−1. In particular, since .ni ∈ [2n − 3] for all .i ∈ [mN (R)], 
it follows that . 1

1+(2n−3) ≤ pi ≤ 1
1+1 , i.e., .

1
2n−2 ≤ pi ≤ 1

2 . 

We will also make use of the following lemma. 

Lemma 8 Say .Fn ≤ N < Fn+1. 8 For any .c ∈ (0,ϕ) (with . ϕ denoting the golden 
ratio), 

. lim
N→∞ μN

(
mN (G) ≥ cn

) = 1, lim
N→∞PN

(
mN (G) ≥ cn

) = 1.

Proof Fix.c ∈ (0,ϕ), and consider a game.G ∈ ΩN : for the representative. R ∈ RN

such that .G ∈ AN (R), every occurrence of the sequence .(C1,C1,C2) corresponds 
to an element of .IN (R) (specifically the move .C2, as it is not preceded by . S3, 
and the latter two moves are maintained in . R; see the proof of Lemma 6), i.e., 
.mN (G) = |IN (R)| is at least the number of occurrences of the sequence. (C1,C1,C2)

in . G. Letting .N (G) denote the number of occurrences of the sequence . (C1,C1,C2)

in the game . G, it thus suffices to show that 

. lim
N→∞ μN

(N (G) ≥ cn
) = 1, lim

N→∞PN
(N (G) ≥ cn

) = 1.

Proceed studying the probability measure.PN ; the analysis carries over exactly 9 when 
.PN is replaced with .μN . By Corollary 1, at any move where .h1 ≥ 5, the probability 
of achieving the sequence .(C1,C1,C2) is at least .

(
1
2n

)3 = 1
8n3 , and any sequence of 

three moves can decrease the height of bin . 1 by at most . 6 (via three consecutive . C1

moves); observe that the occurrence of.C2 in a sequence.(C1,C1,C2) within a game 
. G necessarily corresponds to an instance of the delimiter .E2 in the base sequence of 
. G (e.g. see the proof of Lemma 6). Thus, study the sequences of moves in game . G
(which necessarily exist by the preceding discussion) given by the triples 

. (M1, M2, M3), (M4, M5, M6), . . . , (M3
N/6�−2, M3
N/6�−1, M3
N/6�)

each of which independently takes on the value.(C1,C1,C2)with probability at least 

.
1
8n3 . Thus, letting .YN

d= Bin
(
N/6�, p = 1

8n3
)
, we have that 

. P
(
YN ≥ cn

) ≤ PN
(N (G) ≥ cn

)

from which.E[YN ] = 
N/6�
8n3 together with a Chernoff bound with.δ = 1

2 yields for . N
large,

8 It is perhaps more appropriate to think of. n as a function.n(N ). 
9 Certainly, the analysis is much looser than necessary when.PN is replaced with.μN . 
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. P
(
YN ≤ cn

) ≤ P

(

YN ≤ 
N/6�
16n3

)

≤ exp

(

−
N/6�
32n3

)
N→∞−−−→ 0

since it is straightforward to verify that .cn ≤ 
N/6�
16n3 for large .N (e.g. use Binet). 

Corollary 2 Lemma 8 immediately yields that for any .d ∈ N, 

. lim
N→∞ μN

(
mN (G) ≥ nd

) = 1, lim
N→∞PN

(
mN (G) ≥ nd

) = 1

i.e., with probability approaching . 1 as .N → ∞, the number of decisions made to 
achieve . G from the set .AN (R) containing it is superpolynomial in . n. This is more 
convenient for later. 

The proof of Lemma 8 yields the following observations on the likeliest collection 
.AN (R) and the number of representative games, which will be referenced again in 
Sect. 5. 

Corollary 3 The probability of the likeliest collection.AN (R) vanishes as.N → ∞, 
i.e., 

. lim
N→∞ max

G∈ΩN

μN (AN (G)) = lim
N→∞ max

G∈ΩN

PN (AN (G)) = 0

and the number of representatives satisfies .|RN | N→∞−−−→ ∞. 

Proof Again, proceed on the probability measure .PN , as the analysis carries over 
exactly for .μN . The proof of Lemma 2 (taking .d = 1) determines there are at least 
.m ≥ n instances of.(C1,C1,C2) in the first.
N/6�moves of a random game.G ∈ ΩN , 
with probability tending to. 1 in the limit.N → ∞: we proceed studying such a game 
. G. Writing .G ∈ AN (R), every latter instance of .C1 in one of these .m sequences is 
in 10 any game in .AN (R), and the move .C2 could have been played instead of this 
instance of.C1. For.i = 1, . . . ,m, denote.BN

i (R) ⊆ ΩN to be those games consistent 
with a game in .AN (R) up to the . i th such instance of .C1, but for which the move 
.C2 is played instead. It is immediately observed that the sets.BN

i (R) are disjoint and 
that .PN (AN (R)) ≤ PN (BN

i (R)) for each .i = 1, . . . ,m, so we have  

.n · PN (AN (R)) ≤ m · PN (AN (R)) ≤
m∑

i=1

PN (BN
i (R)) ≤ 1

=⇒ PN (AN (R)) ≤ 1

n
N→∞−−−→ 0

10 This is in the sense that this instance of .C1 is not compressed in achieving .R from . G (see the 
proof of Lemma 6), and is not replaced with a term of form .Ek in achieving the base sequence 
.M(R). 
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so we have.limN→∞ maxG∈ΩN PN (AN (G)) = 0, and.|RN | N→∞−−−→ ∞ follows imme-
diately. 

Finally, we need the following simple result concerning the behavior of a bino-
mial random variable with sufficiently large variance. Certainly, the case .Z = 2 in 
Lemma 9 corresponds to studying the expressions .P (B is odd) and .P (B is even). 

Lemma 9 Consider a binomial random variable .B = Bin(m, p). For any values of 
.ε > 0 and.Z ∈ N, there exists a constant.N (ε, Z) such that if. var(B) = mp(1 − p) ≥
N (ε, Z) (i.e., if the variance of . B is sufficiently large), then for any . z ∈ {0, 1, . . . ,
Z − 1}, 

. 

∣
∣
∣
∣P (B ≡ z mod Z) − 1

Z

∣
∣
∣
∣ ≤ ε.

Proof The value .P(B = k) increases on .k ≤ 
(m + 1)p� and decreases on . k ≥

(m + 1)p�, and .max0≤k≤m P(B = k) = P (B = 
(m + 1)p�) mp(1−p)→∞−−−−−−−→ 0 (use 
Stirling); denoting .pk = P(B = k), write .p0 ≤ p1 ≤ · · · ≤ p
(m+1)p� and . p
(m+1)p�
≥ p
(m+1)p�+1 ≥ · · · ≥ pm . Fix  .ε > 0, and choose .N (ε, Z) such that . mp(1 − p) ≥
N (ε, Z) implies.P (B = 
(m + 1)p�) < ε

2 . Certainly, for any distinct values. z1 < z2
in .{0, 1, . . . , Z − 1}, the number of terms .p0, p1, . . . , p
(m+1)p� with indices equal 
to.z1 modulo. Z and equal to.z2 modulo. Z is either the same or there exists one more 
such term corresponding to. z1: we can switch the “dominant modulus” by removing 
the term of largest index equal to either.z1 or.z2 modulo. Z , for which the correspond-
ing term.pk ≤ ε

2 by choice of the constant.N (ε, Z). The analogous statement extends 
to .p
(m+1)p�, p
(m+1)p�+1, . . . , pm , so it follows that we can write 

. |P (B ≡ z1 mod Z) − P (B ≡ z2 mod Z)| ≤ ε

which immediately yields the desired statement. 

We are now ready to proceed with the proof of Theorem 8. 

Proof (Proof of Theorem 8) Fix an integer .Z ≥ 2 corresponding to the number of 
players in a .Z -player Zeckendorf game, and some value .z ∈ {0, 1, . . . , Z − 1}. As  
in the proof of Lemma 8, we strictly concern ourselves with the probability measure 
.PN , as the analysis carries over exactly for the uniform measure.μN (again, it is much 
looser than necessary for.μN ). For the probability measure.PN , since.mN (G) is fixed 
at .|IN (R)| = mN (R) on any set .AN (R) for .R ∈ RN , for .N ≥ N1(ε), 

.

∑

R∈RN

mN (R)<2n3

PN (AN (R)) ≤ ε. (2) 

Consider a fixed representative .R ∈ RN for which .mN (R) ≥ 2n3: by Corollary 1, 
there are at most.2n distinct values of the parameters.pi = 1

1+ni
of the corresponding 

random variables .XR
1 , XR

2 , . . . , XR
mN (R), and thus by the pigeonhole principle, the
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number of instances of the value of .pi with largest multiplicity is at least . 2n
3

2n =
n2

N→∞−−−→ ∞; henceforth call this . p. Let us say there are .m ≥ n2 instances of this 
value of . pi : we can study the sum.BR = ∑m

i=1 Yi , where the .Yi correspond to those 
random variables .XR

i with this corresponding success probability . p. Furthermore, 
by Lemma 7, the random variables.Yi are independent when conditioned on the event 

.AN (R), so  .BR
d= Bin(m, p) under this conditional distribution. From the bounds 

on. p from Corollary 1, it follows that the variance of this binomial random variable, 
when conditioned on the event .AN (R), has the exploding lower bound 

. var(BR) = mp(1 − p) ≥ n2

2(2n − 2)
N→∞−−−→ ∞

i.e., the binomial random variable .BR has variance exploding in the limit . N → ∞
(for any .R ∈ RN ). By Lemma 9, the random variable .BR will take a value equal to 
. z modulo. Z with probability approaching. 

1
Z as .N → ∞. Thus, studying the quanti-

ties given by .PN (Game length equals z mod Z | AN (R)), we can further condition 
(upon the conditioning .AN (R)) on all random variables .XR

i not corresponding to 
those .Yi constituting a summand in the binomial random variable .BR and appeal to 
the law of total probability: 

. PN (Game length is z mod Z | AN (R))

=
∑

assignments A

to XR
i �=Y j∀ j

PN (Game length is z mod Z | AN (R), A) · PN (A | AN (R))

where each term.PN (Game length equals z mod Z | AN (R), A) is understood as the 
probability that the length of the game is equal to . z mod .Z when replacing those 
.Ek which correspond to the random variables . Yi , while leaving all other moves of 
the game fixed: this is precisely given by the binomial random variable.BR added to 
some fixed length determined by the setting of the .XR

i which are not of the form. Y j

for some. j . Letting .�(A) denote this length for the assignment . A, we can thus write 

. PN (Game length is z mod Z |AN (R), A) = PN (BR + �(A) is odd |AN (R), A)

By Lemma 7, the random variables .Yi constituting the Bernoulli trials in .BR are 
independent from the random variables .XR

i that were fixed when conditioned on 
.AN (R) and the assignment . A, and thus we can apply Lemma 9 to deduce that these 
conditional probabilities are arbitrarily close to. 

1
Z for.N ≥ N2(ε, Z) by the preceding 

discussion (for sufficiently large .N2(ε, Z) ∈ N). Importantly, this is uniform over 
all such terms in the sum, in the sense that we can choose .N2(ε, Z) such that we 
achieve the same guarantee for any such assignment. A of binary values to the random 
variables .XR

i not constituting .BR. Thus, for any .R ∈ RN satisfying . mN (R) ≥ 2n3

and .N ≥ N2(ε, Z), we have the bound 

.

∣
∣
∣
∣PN (Game length equals z mod Z | AN (R)) − 1

Z

∣
∣
∣
∣ ≤ ε.
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Therefore, for .N ≥ max{N1(ε), N2(ε, Z)}, we can take Eqs. (1) and (2) to achieve 
the bound on the probability .PN (Game length equals z mod Z) given by 

. PN (Game length is z mod Z)

=
∑

R∈RN

PN (Game length is z mod Z | AN (R)) · PN (AN (R))

≤ ε +
∑

R∈RN

mN (R)≥2n3

PN (Game length is z mod Z | AN (R)) · PN (AN (R))

≤ ε +
∑

R∈RN

mN (R)≥2n3

(
1

Z
+ ε

)

· PN (AN (R)) + ε ≤ 1

Z
+ 2ε

and similarly, we have 

. PN (Game length is z mod Z)

=
∑

R∈RN

PN (Game length is z mod Z | AN (R)) · PN (AN (R))

≥
∑

R∈RN

mN (R)≥2n3

PN (Game length is z mod Z | AN (R)) · PN (AN (R))

≥
∑

R∈RN

mN (R)≥2n3

(
1

Z
− ε

)

· PN (AN (R)) ≥
(
1

Z
− ε

)

(1 − ε)

so we conclude that for .N ≥ max{N1(ε), N2(ε, Z)}, 

. ε2 − Z + 1

Z
ε ≤ PN (Game length equals z mod Z) − 1

Z
≤ 2ε

which yields the desired limit by sending .ε ↓ 0. 

As previously mentioned, the .Z = 2 case of Theorem 8 immediately yields 
Theorem 9. 

4.4 Extending the Partition on . ΩN

Theorem 9 establishes that if both players advance randomly, the two-player Zeck-
endorf game is fair in the limit.N → ∞: a key stage of the proof involved partitioning 
.ΩN into collections of games where the games in any given collection only differ via 
certain interchanges of .(1, k)-prefixes with the corresponding .Ck . We can naturally 
extend this partition of .ΩN (i.e., strictly larger classes in the partition) to encom-
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pass arbitrary.(�, k)-prefixes or arbitrary.(�, k)-suffixes. Section 5 will establish that 
for these enlarged partitions of .ΩN , we can achieve an analogue of Conjecture 1 
for the resulting sets in the partition, in the sense that with high probability in the 
limit, the corresponding distribution is “nearly Gaussian,” in the sense of vanishing 
Kolmogorov-Smirnov distance (when mean and variance are normalized to be. 0 and 
. 1, respectively) with the standard normal. 11

We first study the generalization for arbitrary.(�, k)-prefixes. Define.RP
N ∈ FN to 

be the collection of all Zeckendorf games on input .N such that any combine move 
.Ck , for  .k ≥ 2, cannot be compressed by a .(1, k)-prefix (and thus by any prefix of 
.Ck). Explicitly, 

. RP
N = {(M1, . . . , Mλ) ∈ ΩN : Mi = Ck =⇒ Mi−1 �= Sk+1, ∀i ∈ [λ], k ≥ 2} .

For a game .R = (M1, M2, . . . , Mλ) ∈ RP
N with number of moves . λ, construct the 

subset of indices .IN (R) to denote all combine moves in . R: 

. IN (R) = {i ∈ [λ] : Mi = Ck for some k ≥ 2} .

Now, construct the formal sequence of moves .M(R) = (M̃1, M̃2, . . . , M̃λ) by 
replacing .Mi by a symbol .E�

k for all .i ∈ IN (R): the subscript is the corresponding 
.k ≥ 2, while .� ≥ 0 denotes the longest .(�, k)-prefix that .Mi = Ck can be expanded 
into; note in particular that.M(R) contains no combine moves. Call.M(R) the base 
sequence of.R ∈ RN , and let .AN (R) ∈ FN denote the collection of all Zeckendorf 
games resulting from replacing each instance of .E�

k in .M by an .(l, k)-prefix for 
some.l ≤ �. We establish the following analogue of Lemma 6, which yields a strictly 
broader partition of .ΩN (in the sense that each set in the partition given by Lemma 
5 is a union of sets in the partition given by Lemma 6). 

Proposition 5 The sets .{AN (R) : R ∈ RP
N } partition .ΩN . 

Proof Observe that a base sequence .M(R) = (M̃1, M̃2, . . . , M̃λ) uniquely deter-
mines .R ∈ RP

N by its explicit split moves moves and the subscripts of each of its 
symbols . E�

k . This is true up to any initial subsequence, in the sense that there exists 
at most one .R ∈ RP

N which agrees with the moves and symbols .E�
k up to subscript. 

We show that the sets .AN (R) are disjoint. Take distinct . R1 = (M1
1 , . . . , M

1
λ),

.R2 = (M2
1 , . . . , M

2
λ′) ∈ RP

N with base sequences . M1(R1) = (M̃1
1 , M̃

1
2 , . . . , M̃

1
λ)

and .M2(R2) = (M̃2
1 , M̃

2
2 , . . . , M̃

2
λ′), respectively. Since .R1 �= R2, take smallest . i

for which .M1
i �= M2

i , and study the construction of any two games . G1 ∈ AN (R1)

and .G2 ∈ AN (R2) as described above. If .G1 and .G2 are consistent prior to .M̃1
i and 

.M̃2
i (i.e., for .k ≥ 2, all .E�

k are replaced by the same prefix of .Ck), which is the only 
way the two games remain equal up to this point, then we produce a difference in 
the two games on.M̃1

i and.M̃2
i if.M

1
i = M̃1

i and.M2
i = M̃2

i (.M
1
i �= M2

i ) or.M
1
i �= M̃1

i

11 In this subsection and Sect. 5, we borrow much of the same notation that was used in establishing 
Theorem 9. It will be clear from context exactly what objects we are referring to. 
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and .M2
i �= M̃2

i (.M̃1
i = E�1

k1
, .M̃2

i = E�2
k2
, .k1 �= k2). If .M1

i = M̃1
i and .M2

i �= M̃2
i (say 

.M̃2
i = E�

k , so  .M2
i = Ck), then .G2 is next filled with either .Ck �= M1

i (.M1
i = M2

i if 
.Ck = M1

i ) or an  .(l, k)-prefix for some .l ≤ �. In the latter case, if the two games 
were equal until move .i + l − 1, necessarily .R1 contains a prefix of length at least 
. 1, contradicting .R1 ∈ RP

N . 
We therefore conclude that .AN (R1) ∩ AN (R2) = ∅, i.e., the sets .AN (R) for 

.R ∈ RN are disjoint; it remains to show that any game.G ∈ ΩN is in some set.AN (R). 
For .G ∈ ΩN , let  .R be the game resulting from replacing every combine move . Ck

with the longest playable.(�, k)-prefix. It follows immediately from construction that 
.R ∈ RP

N , and that .G ∈ AN (R). 

Similarly, we define the generalization for arbitrary.(�, k)-suffixes. Define. RS
N ∈

FN to be the collection of all Zeckendorf games on input .N such that any combine 
move.Ck , for .k ≥ 2, cannot be compressed by a .(1, k)-suffix (and thus by any suffix 
of .Ck). Explicitly, 

. RS
N = {(M1, . . . , Mλ) ∈ ΩN : Mi = Ck =⇒ Mi+1 �= Sk+1 ∀i ∈ [λ], k ≥ 2}

For a game .R = (M1, M2, . . . , Mλ) ∈ RS
N with number of moves . λ, construct the 

subset of indices .IN (R) to denote all combine moves in . R: 

. IN (R) = {i ∈ [λ] : Mi = Ck for some k ≥ 2} .

Now, construct the formal sequence of moves .M(R) = (M̃1, M̃2, . . . , M̃λ) by 
replacing .Mi by a symbol .E�

k for all .i ∈ IN (R): the subscript is the correspond-
ing .k ≥ 2, while . � denotes the longest .(�, k)-suffix that .Mi = Ck can be expanded 
into. Call .M(R) the base sequence of .R ∈ RN , and let .AN (R) ∈ FN denote the 
collection of all Zeckendorf games resulting from replacing each instance of . E�

k
in .M by an .(l, k)-suffix for some .l ≤ �. We establish the following analogue of 
Lemma 6. 

Proposition 6 The sets .{AN (R) : R ∈ RS
N } partition .ΩN . 

We do not provide the proof of Proposition 6, as it is pursued analogously to the 
proof of Proposition 5. The easy observation that each set .AN (R), for  .R ∈ RP

N or 
.R ∈ RS

N , is a union of equivalence classes of the corresponding sets studied in the 
proof of Theorem 9, yields the following trivial extension of Lemma 2, where we 
promote the notation .AN (G) = AN (R) for the unique .R satisfying .G ∈ AN (R). 

Proposition 7 Say .Fn ≤ N < Fn+1. For any .c ∈ (0,ϕ) (with . ϕ the golden ratio), 

. lim
N→∞ μN

(
log2 |AN (G)| ≥ cn

) = 1, lim
N→∞PN

(
log2 |AN (G)| ≥ cn

) = 1,

which holds for either of the understandings .R ∈ RP
N and .R ∈ RS

N .
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Finally, we have the following extension of Corollary 1. We also omit the proof of 
this result, as it is a straightforward generalization of the proof of the aforementioned 
result. 

Proposition 8 Say.Fn ≤ N < Fn+1, fix some.R ∈ RP
N , and define random variables 

.XR
1 , XR

2 , . . . , XR
N−1 corresponding to the length of the expansion corresponding 

to each combine move for a game in .AN (R). Under the measures .μN and . PN

conditioned on .AN (R), the random variables .XR
i are independent. 

5 Weak Convergence of Random Game Lengths as . N → ∞

In pursuit of the resolution of Conjecture 1, it may be productive to ask whether 
there exist natural subsets of .ΩN on which the distribution of random game lengths 
converge weakly to a Gaussian in the limit .N → ∞ of infinite input. As discussed 
in Sect. 4.4, the partitions defined in Propositions 5 and 6 enjoy this property in the 
sense described in Theorem 10, restated below. 

Theorem 10 For .R ∈ RP
N , let .F

R
N (x) : R → [0, 1] denote the distribution function 

corresponding to game lengths in .AN (R) over the conditional distribution induced 
by .PN , normalized to have expectation . 0 and variance . 1. Let .Φ : R → [0, 1] denote 
the distribution function of the standard normal. Then for any .ε > 0, 

. lim
N→∞PN

(

sup
x∈R

∣
∣FR

N (x) − Φ(x)
∣
∣ ≥ ε

)

= 0.

Similarly, for .R ∈ RS
N , let .F

R
N (x) : R → [0, 1] denote the distribution function cor-

responding to game lengths in .AN (R) over the conditional distribution induced by 
.PN , normalized to have expectation . 0 and variance . 1. Then for any .ε > 0, 

. lim
N→∞PN

(

sup
x∈R

∣
∣FR

N (x) − Φ(x)
∣
∣ ≥ ε

)

= 0.

The analogous results hold for the uniform measure .μN . 

To explicitly define the distributions referenced in Theorem 10, define a proba-
bility distribution .P

R
N : 2AN (R) → [0, 1] via, for any .S ∈ 2AN (R), 

. P
R
N (S) = PN (S ∩ AN (R))

PN (AN (R))

Define the random variable .LR
N : AN (R) → R on the space . (AN (R), 2AN (R),PR

N )

by 

.LR
N ((M1, . . . , Mλ)) = λ
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for any game .(M1, . . . , Mλ) ∈ AN (R), i.e., .LR
N studies game lengths in .AN (R). 

Then 

.FR(x) = P
R
N

⎛

⎝
LR
N − E

[
LR
N

]

√
var

(
LR
N

) ≤ x

⎞

⎠ . (3) 

In other words, when we restrict.PN to the sets.AN (R) in the natural sense, Theorem 
10 states that the distribution of random game lengths enjoys weak convergence to a 
Gaussian with high probability. We write 

.LR
N = LR

N − E
[
LR
N

]

√
var

(
LR
N

) (4) 

to be the random variable.LR
N normalized to have mean. 0 and variance. 1. Throughout 

this section, we proceed on the measure .PN and the set .RP
N , but the analysis carries 

over to the uniform measure .μN and the suffix partition .RS
N . 

Proof (Proof of Theorem 10) 
By Proposition 7, .limN→∞ PN

(
log2 |AN (G)| ≥ 1.6n

) = 1 so fix .R ∈ RN such that 
.|AN (R)| > 21.6

n
, and consider the random variable.LR

N : AN (R) → R. Define ran-
dom variables 12 .XR

1 , . . . , XR
N−1 to correspond to each of the combine moves in . R, 

with .XR
i denoting the length of the corresponding prefix for a game in .AN (R): by  

Proposition 8, the random variables .XR
i are independent. Expanding Eq. (4), 

.LR
N = LR

N − E
[
LR
N

]

√
var

(
LR
N

) =
∑N−1

i=1

(
XR
i − E

[
XR
i

])

√
var

(
LR
N

) (5) 

where the independence (conditioned on.AN (R)) of the random variables.XR
i yields 

that 

. var
(
LR
N

) =
N−1∑

i=1

var
(
XR
i − E

[
XR
i

])

and furthermore, taking the maximum over those summands .XR
i which are non-

constant, 13

12 Define these to be strictly positive: if the .. i th delimiter is replaced with a combine move, say 
.XR

i = 1. 
13 Indeed, we understand .LR

N as the sum over the nonconstant random variables amongst those 
included by the sum in Eq. (5).
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. max
1≤i≤D

⎛

⎝
E

[∣
∣XR

i − E
[
XR
i

]∣
∣3

]

E

[(
XR
i − E

[
XR
i

])2
]

· var (LR
N

)

⎞

⎠ ≤ max
1≤i≤D

2n3

var
(
LR
N

) ≤ n3

var
(
21.6n

) (6) 

and the final expression in Eq. (6) certainly vanishes as .N → ∞. Thus, the desired 
result follows immediately from the case of the Berry-Esseen theorem for indepen-
dent non-identically distributed summands, which namely yields 

. sup
x∈R

|FR(x) − Φ(x)| ≤ C · n3

var
(
21.6n

)
N→∞−−−→ 0

for some universal constant .C > 0. 

Theorem 10 yields that, when restricted to particular natural subsets of games, we 
have Gaussianity. The scope of this result is admittedly restricted, especially given 
the result of Corollary 3. 

6 Open Problems 

We conclude the work with several potential directions for further inquiry. 

6.1 Other Two-Player Games Based on Recurrences 

Theorem 9 can be interpreted as saying that if two players proceed mindlessly, the 
Zeckendorf game is fair in the limit of infinite input; Theorem 8 gives that the 
analogous statement would be true if we were to extend to a .Z -player Zeckendorf 
game. Many papers (such as [ 1, 2, 4]) have extended the paradigm of the two-player 
Zeckendorf game to other recurrences: we might ask which of these also enjoy this 
property. In particular, we pose the following conjecture, concerning the two-player 
Bergman game [  1]. 

Conjecture 2 In the limit .N → ∞ of infinite input, the probabilities of Player 1 
and Player 2 winning, under both analogous definitions of random Bergman games, 
is .1/2. 

The core challenges of proving Conjecture 2 are as follows. The principal differ-
ence between the two-player Bergman game and the two-player Zeckendorf game 
is that the move .C1 is now a split move which consumes no tokens. Thus, there are 
structural differences between the two games which affects the range of achievable 
game lengths. Lemma 2 also depends on the number of a specific move sequence 
which may not have an analogue in the Bergman game.
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6.2 Towards Gaussianity: Other Approaches 

Theorem 10 establishes that certain natural partitions of .ΩN are such that the 
components become arbitrarily close to being Gaussian (in the sense of vanishing 
Kolmogorov-Smirnov distance) with arbitrarily high probability: it is unclear how 
to extend this to the entirety of .ΩN . Proposition 2 remarks that all games in .ΩN can 
be achieved by permutations of suffixes from a shortest game, which suggests the 
following question. 

Question 1 Can we extend the techniques in Sect. 5 to a partition founded on the 
greedy embedding of Proposition 2? In particular, could studying the moments of 
the corresponding components lead to a proof of Conjecture 1? 

Another possible direction is to restrict our attention to certain subsets of moves 
across all of.ΩN , rather than certain subsets of.ΩN . In particular, a sufficiently strong 
affirmative answer to Question 2 would resolve Conjecture 1. 

Question 2 Is the distribution of the number of occurrences of a particular combine 
or split move asymptotically Gaussian, under either the measure .μN or .PN? 

6.3 Towards Gaussianity: Mixing 

We outline one more possible approach towards proving Conjecture 1, which relies 
on the literature surrounding mixing central limit theorems: these are analogues of the 
central limit theorem concerning sums of dependent random variables, applicable if 
the dependencies amongst the summands are sufficiently well-behaved. In particular, 
the main result of [ 6] states the following. 

Theorem 11 ([ 6]) Let .{XN ,i : 1 ≤ i ≤ dN } be a triangular array of random vari-
ables defined on the probability space .(Ω,F ,P), .X̄ N ,dN = 1

dN

∑dN
i=1 XN ,i , and 

.αN : N → R by 

.αN (k) = sup
m

sup
A∈Fm

0 (N ),B∈F∞
m+k (N )

|P(A ∩ B) − P(A)P(B)| (7) 

where .Fm2
m1

(N ) = σ
(
XN ,m1 , XN ,m1+1, . . . , XN ,m2

)
denotes the .σ-algebra generated 

by random variables .XN ,m1 , XN ,m1+1, . . . , XN ,m2 . If there exists constants . C1,C2 >

0, .δ > 0 such that 

.E

[∣
∣XN ,i − E[XN ,i ]

∣
∣2+δ

]
< C1 (8) 

and
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.

∞∑

k=0

(k + 1)2α
δ

4+δ

N (k) < C2, (9) 

then 

.

√
dN

(
X̄ N ,dN − EX̄ N ,dN

) D−−−→
N→∞ N

(
0, var

(√
dN X̄N ,dN

))
. (10) 

We can define a triangular array of Bernoulli random variables by letting . XN ,i = 1
if and only if the . i th move of a Zeckendorf game with input .N is a splitting move 
(in particular, .XN ,i maps to . 0 on the event that the Zeckendorf game on input . N
terminates prior to move . i), with .dN (the number of random variables in the . N th 
row) the length of the longest game on input . N ; Conjecture 1 is thus equivalent 
to establishing that the row sums .

∑dN
i=1 XN ,i weakly converge to a Gaussian, since 

the number of combine moves for a given input .N is constant. This is precisely 
the statement of Eq. 10. Also, the events .A and .B in Eq. 7 can be understood as 
fixed .{0, 1}-realizations of subsets of random variables in .{XN ,1, . . . , XN ,m} and 
.{XN ,m+k, . . . , XN ,dN }, respectively. 

Since Eq. 8 certainly holds under this setup (the constituent random variables are 
Bernoulli), resolving Conjecture 1 can be reduced to the following statement. 

Question 3 For the triangular array .{XN ,i : 1 ≤ i ≤ dN } defined above, does there 
exist a constant .δ > 0 and a constant .C > 0 such that 

.

∞∑

k=0

(k + 1)2α
δ

4+δ

N (k) < C (11) 

for all natural numbers .N ∈ N? 

By the preceding discussion, answering Question 3 in the affirmative by establishing 
11 immediately yields Conjecture 1. In particular, it would suffice to establish the 
statement of Question 4 in the affirmative, although it is not immediately clear if this 
should be true. 

Question 4 Does there exist a constant .ε > 0 and a constant .C > 0 such that 

. |PN (A ∩ B) − PN (A)PN (B)| ≤ C

k2+ε
(12) 

whenever events .A and .B correspond to fixed .{0, 1}-realizations of subsets of the 
Bernoulli random variables in .{XN ,1, . . . , XN ,m} and .{XN ,m+k, . . . , XN ,dN }, respec-
tively? 

Of course, the techniques introduced in the main body of this paper are quite 
elementary, and there may be other promising approaches not included in this section 
that would contribute towards resolving Conjecture 1.
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