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Abstract

Let F
d
q be the d-dimensional vector space over the finite field with q elements. For

a subset E ⊆ F
d
q and a fixed nonzero t ∈ Fq , let Ht (E) = {hy : y ∈ E}, where

hy : E → {0, 1} is the indicator function of the set {x ∈ E : x · y = t}. Two of the

authors, with Maxwell Sun, showed in the case d = 3 that if |E | ≥ Cq
11
4 and q is

sufficiently large, then the VC-dimension of Ht (E) is 3. In this paper, we generalize

the result to arbitrary dimension by showing that the VC-dimension of Ht (E) is d

whenever E ⊆ F
d
q with |E | ≥ Cdqd− 1

d−1 .
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1 Introduction

Vapnik and Chervonenkis [23] introduced the VC-dimension in 1971 in the context

of learning theory. For an introduction to the subject, see for example [2]. Given a

domain X and a collection H of functions h : X → {0, 1}, consider the learning task

of trying to identify an unknown element f ∈ H by sampling finitely many points

x1, ..., xm ∈ X from an unknown probability distribution D, and recording the values

f (x1), ..., f (xm). One desires an algorithm which takes this input and produces a

hypothesis h ∈ H which with high probability has small error with respect to f . To

make this precise, we introduce some definitions.

Definition 1.1 Given a set X , a probability distribution D, and a labeling function

f : X → {0, 1}, let h be a hypothesis; that is, h : X → {0, 1}. Define

L D, f (h) = Px∼D[h(x) �= f (x)],

where Px∼D means that x is being sampled according to the probability distribution

D.

Definition 1.2 A hypothesis class H is PAC (probably approximately correct) learn-

able if there exists a function

mH : (0, 1)2 → N

and a learning algorithm with the following property: For every ε, δ ∈ (0, 1), for every

distribution D over X , and for every labeling function f : X → {0, 1}, if there is some

hypothesis h ∈ H such that L D, f (h) = 0, then when running the learning algorithm

on m ≥ mH(ε, δ) i.i.d. examples generated by D, and labeled by f , the algorithm

returns a hypothesis h such that, with probability at least 1 − δ (over the choice of

(x1, ..., xm) ∼ Dm),

L D, f (h) ≤ ε.

The VC-dimension characterizes PAC learnability, in light of the fundamental the-

orem of statistical learning; H is PAC learnable if and only if the VC-dimension is

finite. Moreover, there are quantitative bounds for mH(ε, δ) based on VCdim(H), with

smaller VC-dimension allowing smaller effective sample sizes. In order to define the

VC-dimension, we must first define shattering.

Definition 1.3 Let X be a set and H a collection of functions from X to {0, 1}. We say

that H shatters a finite set C ⊂ X if the restriction of H to C yields every possible

function from C to {0, 1}.

Definition 1.4 Let X and H be as above. We say that a non-negative integer d is the

VC-dimension of H if there exists a set C ⊂ X of size n that is shattered by H, and

no subset of X of size n + 1 is shattered by H.

For a subset E ⊆ F
d
q , and a fixed nonzero t ∈ F

d
q , consider the hypothesis class

Ht (E) := {hy : y ∈ E},
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where hy : E → {0, 1} is defined by hy(x) = 1 if and only if x · y = t . Our main

theorem establishes the VC-dimension of this hypothesis class in arbitrary dimension

d ≥ 3, for sufficiently large sets E ⊆ F
d
q .

Theorem 1.5 For d ≥ 3, if |E | ≥ Cdqd− 1
d−1 for an appropriate constant Cd depending

only on d, and q is sufficiently large, then the VC-dimension of Ht (E) is equal to d.

Remark 1.6 Theorem 1.5 holds if we replace the dot product with any non-degenerate

bilinear form. To check this, note that Theorem 2.1 holds for any non-degenerate

bilinear form (as observed in [6]). Moreover, our counting argument based on incidence

geometry of hyperplanes will go through in the exact same way.

Iosevich, McDonald, and Sun [15] studied this hypothesis class in the case d = 3,

and showed that when |E | ≥ Cq
11
4 , the VC-dimension of Ht (E) is 3. Still in the

case d = 3, the exponent was improved from 11/4 to 5/2 by Pham, Senger, Tait,

and Thu-Huyen [21]. Both of these results employed a similar unfolding technique

via Cauchy–Schwarz, thereby reducing the argument to the construction of a much

simpler graph.

Theorem 1.5, on the other hand, relies on a modified unfolding technique using

Hölder’s inequality, folding the graph in a different way which is more readily gen-

eralized to higher dimensions. In the case d = 3, our theorem recovers the exponent

5/2 of [21].

We sketch an outline of the proof of Theorem 1.5 and how it is different from

previous papers’ techniques, illustrating what we mean by unfolding. The authors of

[15] and [21] used the symmetry shown in Fig. 1 to demonstrate the shattering of three

points. In particular, the graph on the right side, after adding three leaves, represents

the shattering of three points. For v, z, y ∈ E , let f (v, z, y) count the number of

choices for u, x ∈ E so that each edge in the graph on the left hand side represents

a pair of points whose dot product is equal to t . Then f (v, z, y)2 counts choices for

u, u′, x, x ′ ∈ E so that each edge in the graph on the right hand side represents a

pair of points whose dot product is equal to t . This observation helps to study the VC-

dimension by showing the abundance of the graph on the left, which then demonstrates

the abundance of the graph on the right via Cauchy–Schwarz applied to f .

In those results, much of the construction is done before the Cauchy–Schwarz

unfolding, so that the only other consideration afterward is the addition of leaves,

which is achieved by a straightforward pigeonhole argument. In our proof of Theorem

1.5, instead we apply Hölder’s inequality at the very beginning, unfolding a single

edge into a star as in Fig. 2. The difficulty is that after showing the abundance of such

d-stars, it is not immediately clear whether any of them actually corresponds to a

shattering of d points. This motivates our definition of so-called “bad" sets in Sect. 2,

which help us enumerate stars which fail to represent a shattering of d points in this

sense. With this idea, Theorem 1.5 is reduced to showing that most d-stars in F
d
q do

not have any bad subsets of their vertex set.
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Fig. 1 Cauchy–Schwarz unfolding technique used in [15] and [21]

1.1 RelatedWork

Similar results have also been obtained in the context of distance problems over finite

fields. In this setting, the relevant hypothesis class is Hdist
t , defined as follows. For

x ∈ F
d
q , let

||x || = x2
1 + · · · + x2

d .

For a subset E ⊆ F
d
q , and a fixed nonzero t ∈ Fq , let

Hdist
t (E) := { fy : y ∈ E},

where fy : E → {0, 1} is defined by fy(x) = 1 if and only if ||x − y|| = t .

Fitzpatrick, Iosevich, McDonald, and Wyman [10] showed in the case d = 2 that if

|E | ≥ Cq
15
8 , q sufficiently large, then VCdim(Hdist

t (E)) = 3. The exponent 15
8

was

recently improved to 13
7

by Thang Pham [20], refining the method of [10]. In the case

when E = F
2
q this is trivial, and one may see by induction that in general

VCdim(Hdist
t (Fd

q)) = d + 1.

In the dot product setting, on the other hand, we have

VCdim(Ht (F
d
q)) = d.

This disparity comes from the fact that a sphere in F
d
q is determined by d + 1 points

in general position, whereas a hyperplane in F
d
q is determined by d points in general

position.

In dimensions d ≥ 3, it is still an open problem whether one can find a threshold

α ∈ (0, d) so that whenever E ≥ Cdqα for some constant Cd independent of q,

VCdim(Hdist
t (E)) = d + 1.
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The strongest partial result in arbitrary dimension is a corollary of the main theorem

from a previous result by the authors of this paper [1]. In that paper, we considered a

related hypothesis class with two parameters. Let

H∗
t (E) := {hu,v : u, v ∈ E},

where hu,v(x) = 1 if and only if ||x − u|| = ||x − v|| = t . In [1], the authors showed

that whenever

|E | ≥

⎧

⎪

«

⎪

¬

Cq
7
4 d = 2

Cq
7
3 d = 3

Cqd− 1
d−1 d ≥ 4

and q is sufficiently large, the VC-dimension of H∗
t (E) is equal to d. It follows that

with the same restriction on the size of E ⊆ F
d
q , the VC-dimension of Hdist

t (E) is

either d or d + 1 [1, Section 5].

In contrast to the situation for distances, in this paper we are able to find the VC-

dimension exactly, for sufficiently large sets E ⊆ F
d
q . The techniques used are related

to those from [1], but new ideas were needed to overcome the difficulty that the property

||x − y|| = t is translation invariant, whereas the property x · y = t is not.

The results discussed above can be expressed in terms of graph embeddings φ :

G ↪→ Gt (E) for appropriate graphs G, where Gt (E) is the distance (resp. dot product)

graph, i.e., the vertices are points in E , with an edge x ∼ y whenever ||x − y|| = t

(resp. x · y = t). For relevant results on graph embeddings in the distance and dot

product graphs, see for example [3, 6, 10, 12–15, 21].

The difficulty in extending the techniques of this paper to the distance setting is that

we would need to solve the same graph embedding problem in a lower dimensional

space, and generally these problems are easier in higher dimensions. In particular, the

analog of our methods would again only show that VCdim(Hdist
t (E)) ≥ d when E is

large enough, leaving open whether VCdim(Hdist
t (E)) = d + 1.

2 Proof of Main Theorem

Consider a large subset E ⊆ F
d
q , and a fixed nonzero t ∈ Fq . We will use Theorem

2.1 from [6], which counts pairs (x, y) ∈ E2 with x · y = t .

Theorem 2.1 ([6]) For non-negative functions f , g : F
d
q → R,

∑

x ·y=t

f (x)g(y) = q−1|| f ||L1 ||g||L1 + R(t),

where

|R(t)| ≤ || f ||L2 ||g||L2q
d−1

2 .
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Fig. 2 A 6-star realized as a subgraph of the dot product graph Gt (E)

In particular, when f , g are both chosen to be the indicator function of E , we see that

|{(x, y) ∈ E2 : x · y = t}| =
|E |2

q
+ O

(

q
d−1

2 |E |
)

,

and the error term is much smaller than the main term when |E | = ω

(

q
d+1

2

)

. We

use this fact, along with Hölder’s inequality, to count the number of k-stars in the

dot-product graph on E .

Definition 2.2 A (k+1)-tuple (y, x1, ..., xk) of points in F
d
q is a k-star if y · xi = t for

each i = 1, ..., k. If all the xi are distinct, we say (y, x1, ..., xk) is a non-degenerate

k-star.

Definition 2.3 Let Gt (E) be the dot product t graph on E , i.e., the graph with vertex

set E and an edge x ∼ y whenever x · y = t .

Lemma 2.4 Let

Nk(E) :=

∣

∣

∣

{

(y, x1, ..., xk) ∈ Ek+1 : xi distinct, y · xi = t ∀i
}
∣

∣

∣
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be the number of non-degenerate k-stars in Gt (E). If |E | ≥ Ckq
d+1

2 for an appropriate

constant Ck depending only on k, then

Nk(E) ≥
|E |k+1

2qk
.

Proof For x ∈ E , let

ψ(x) =
∑

y∈E
x ·y=t

1

be the number of neighbors of x in Gt (E). Then

Nk(E) :=
∑

x∈E

ψ(x)(ψ(x) − 1) · · · (ψ(x) − k + 1)

≥
∑

x∈E

φ(x)k,

where φ(x) = max(ψ(x) − k + 1, 0). By Hölder’s inequality,

(

∑

x∈E

φ(x)

)k

≤

(

∑

x∈E

φ(x)k

) (

∑

x∈E

1

)k−1

≤ |E |k−1 Nk(E).

To get the desired lower bound for Nk(E), it suffices to bound
∑

x∈E φ(x) from below.

We obtain such a lower bound as a result of Theorem 2.1:

∑

x∈E

φ(x) ≥
∑

x∈E

(ψ(x) − k + 1) =
∑

x∈E

∑

y∈E
x ·y=t

1 − (k − 1)|E |

=
|E |2

q
+ O

(

q
d−1

2 |E |
)

− (k − 1)|E | ≥ 2− 1
k
|E |2

q
,

assuming |E | ≥ Ckq
d+1

2 for an appropriate constant Ck depending only on k. This

yields

Nk(E) ≥
|E |k+1

2qk
.


�

Having obtained a lower bound for the number of k-stars in Gt (E), we are partic-

ularly interested in the case k = d, and particularly those stars (y, x1, ..., xd) with

the property that {x1, ..., xd} ⊆ F
d
q is a linearly independent set of vectors. Therefore,

we would like to find an upper bound for the number of d-stars (y, x1, ..., xd) formed

from linearly dependent sets {x1, ..., xd}.
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Lemma 2.5 Let Nd(E) be the number of d-stars (y, x1, ..., xd) in Gt (E) such that

{x1, ..., xd} is a linearly independent set. If

|E | ≥ Cdqd− 1
d−1 ,

for q sufficiently large, then

Nd(E) ≥
|E |d+1

3qd
.

Proof In a star (y, x1, ..., xd), if {x1, ..., xd} is linearly dependent, we may assume

without loss of generality that

xd ∈ Span(x1, ..., xd−1).

For a given y ∈ E , there are ψ(y) points x ∈ E such that x · y = t . Therefore, there are

at most ψ(y)d−1 choices for the first d − 1 points x1, ..., xd−1. Once y, x1, ..., xd−1

are fixed, we see that the point xd lies on the hyperplane {x ∈ E : x · y = t} as well as

the hyperplane Span(x1, ..., xd−1). These are not the same hyperplane, as only one of

them contains the origin since t �= 0. Moreover, their intersection is nonempty since

it contains xd , and so we conclude that xd must be chosen from a (d −2)-dimensional

subspace, which must have qd−2 points. Putting this together, we find that the number

of stars (y, x1, ..., xd) in Gt (E) with the set {x1, ..., xd} being linearly dependent is

bounded by

dqd−2
∑

y∈E

ψ(y)d−1 ≤ dqd−2q(d−1)(d−2)
∑

y∈E

ψ(y)

� dqd(d−2) |E |2

q
,

since φ(y) ≤ qd−1 for any y. The factor of d comes from the fact that we chose

xd ∈ Span(x1, ..., xd−1). The last line follows from Theorem 2.1. We find that

dqd(d−2) |E |2

q
<

|E |d+1

6qd

as long as |E | ≥ Cdqd− 1
d−1 for an appropriate constant Cd . Finally, Lemma 2.4

finishes the proof of the statement. 
�

Definition 2.6 For a d-star S = (y, x1, ..., xd), we call L = {x1, ..., xd} the leaf set.

We say a subset A = {xn1 , ..., xnk
} of the leaf set is bad with respect to S if for every

z ∈ E satisfying z · xni
= t for all i = 1, ..., k, there is some x ∈ L \ A with z · x = t

as well.

Remark 2.7 Our definition of a bad set is designed for testing whether the set

{x1, ..., xd} is shattered by Ht (E). In particular, it follows immediately from defi-

nitions that {x1, ..., xd} ⊆ E is shattered if and only if there is some y ∈ E so that
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S = (y, x1, ..., xd) is a d-star in Gt (E), and {x1, ..., xd} admits no bad subset of size

k = 1, ..., d − 1.

With this in mind, our strategy is to show that a generic d-star in Gt (E) with a

linearly independent leaf set admits no bad sets. To see this, we bound the number of

d-stars corresponding to a given bad set.

Definition 2.8 Given a set B = {b1, ..., bk} which is bad in some d-star S =

(y, x1, ..., xd) with linearly independent leaf set L = {x1, ..., xd}, let

Q(B) := {x ∈ E : x · bi = t ∀i = 1, ..., k}.

If Q(B) is small, this restricts the number of choices for the point y in a star

S = (y, x1, ..., xd) containing B. If Q(B) is large, on the other hand, we will see that

this restricts the number of choices for the leaf set. The following lemma will allow

us to separate into cases based on the size of Q(B).

Lemma 2.9 Suppose that B = {b1, ..., bk} is bad in some star S = (y, x1, ..., xd),

and that

|Q(B)| > qr−1.

Then for any y ∈ Q(B), there is a subset J ⊆ Q(B) of size r , not containing y, so

that {y} ∪ J is linearly independent.

Proof Fix b ∈ B, so that every point x ∈ Q(B) lies on the hyperplane Hb defined by

x · b = t . Suppose that J is the largest subset of Q(B), with the desired property that

{y} ∪ J is linearly independent and J does not contain y. For any

z ∈ Q(B)\Span({y} ∪ J ),

we see that {y, z} ∪ J is linearly independent. Since we assumed that J is maximal,

this means that

Q(B)\Span({y} ∪ J ) = ∅.

Therefore,

Q(B) = Q(B) ∩ Span({y} ∪ J ) ⊆ Hb ∩ Span({y} ∪ J ).

Also note that Hb does not contain Span({y} ∪ J ) since the former does not contain

0, while the latter does. Thus, their intersection is an affine subspace of dimension at

most |J |, having at most q |J | points. Therefore,

qr−1 < |Q(B)| ≤ |Hb ∩ Span({y} ∪ J )| ≤ q |J |,

so |J | ≥ r . 
�
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Lemma 2.10 For E ⊆ F
d
q , the number of d-stars in E with linearly independent leaf

set containing a bad set of size k is at most

C ′
d |E |kqd2−kd−d+k,

for an appropriate constant C ′
d .

Proof We fix a linearly independent set B = {x1, ..., xk} ⊆ E , 1 ≤ k ≤ d − 1,

and count the ways to extend this to a d-star (y, x1, ..., xd) for which B is a bad

set and {x1, ..., xd} is linearly independent. Note that permuting the elements of

{x1, ..., xd} does not change any of this data, so up to a constant depending only

on d, this is the only case we need to consider. We assume B is bad in at least

one d-star, S0 = (y0, x1, ..., xk, x0
k+1, ..., x0

d ), with {x1, ..., xk, x0
k+1, ..., x0

d } lin-

early independent, since otherwise the count is zero. To extend to a different d-star

S = (y, x1, ..., xk, xk+1, ..., xd), y must be chosen from the set Q(B). Let 	 be the

smallest positive integer satisfying

|Q(B)| ≤ q	,

so that there are at most q	 choices for y ∈ Q(B). Given such a choice, we count the

number of ways to extend the leaf set to obtain a valid star S. Since

|Q(B)| > q	−1,

Lemma 2.9 tells us that there exists a subset J ⊆ Q(B) with 	 points, not containing

y, such that {y} ∪ J is linearly independent. For x ∈ E \ B, let


x = J ∩ {z ∈ E : x · z = t}.

Suppose that the leaf set of S is L = A ∪ B, so that

A = {xk+1, ..., xd}.

If B is bad in S, then
d

⋃

i=k+1


xi
= J .

Given some set Z ⊆ J , for any x ∈ E satisfying 
x = Z , we see that x lies on the

hyperplane Hz := {x : x · z = t} for each z ∈ Z . Since we already fixed the point y in

the star S = (y, x1, ..., xd), x also lies on Hy . Since {y} ∪ Z is linearly independent,

this means there are at most qd−1−|Z | choices for x ∈ E satisfying 
x = Z . Therefore,

summing over all possible collections of d − k subsets of J whose union is J , we find

that the number of stars S containing B in the leaf set is at most

q	
∑

(Z1,...,Zd−k )
⋃

Zi =J

d−k
∏

i=1

qd−1−|Zi | = q(d−1)(d−k)+	
∑

(Z1,...,Zd−k )
⋃

Zi =J

d−k
∏

i=1

q−|Zi |

123



Graphs and Combinatorics            (2025) 41:47 Page 11 of 13    47 

= qd2−kd−d+k+	
∑

(Z1,...,Zd−k )
⋃

Zi =J

q−
∑d−k

i=1 |Zi |

≤ qd2−kd−d+k+	
∑

(Z1,...,Zd−k )
⋃

Zi =J

q−	

≤ C ′
dqd2−kd−d+k .

Here in the third line we used that
∑d−k

i=1 |Zi | ≥ |J | = 	. In the fourth line, C ′
d is

the number of ways to write J =
⋃d−k

i=1 Zi ; note that C ′
d depends only on d, since

|J | = 	 < d. 
�

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 For each k = 1, ..., d − 1, let Mk(E) denote the number of d-

stars in Gt (E) admitting a bad set of size k, and let M(E) denote the total number of

d-stars admitting a bad set of any size. If we can show that M(E) <
|E |d+1

3qd , then it

follows from Lemma 2.5 that there exists some d-star in Gt (E) which admits no bad

set, and hence the VC-dimension of Ht (E) is equal to d. Using Lemma 2.10, we see

that

M(E) ≤

d−1
∑

k=1

Mk(E) ≤ C ′
d

d−1
∑

k=1

|E |kqd2−kd−d+k ≤ (d − 1)C ′
d |E |d−1qd−1.

The last step follows from the assumption that |E | ≥ qd−1, meaning that the summand

is largest when k is largest.

Therefore, M(E) <
|E |d+1

3qd whenever

|E | ≥ Cdqd− 1
2 .

We already needed the stronger restriction |E | ≥ qd− 1
d−1 to apply Lemma 2.5, and

this completes the proof. 
�
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