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Abstract

Let IP’Z be the d-dimensional vector space over the finite field with g elements. For
a subset E C IFZ and a fixed nonzero ¢ € F,, let H,(E) = {hy : y € E}, where
hy : E — {0, 1} is the indicator function of the set {x € E : x - y = t}. Two of the

authors, with Maxwell Sun, showed in the case d = 3 thatif |E| > C q% and g is
sufficiently large, then the VC-dimension of H,(E) is 3. In this paper, we generalize
the result to arbitrary dimension by showing that the VC-dimension of H;(E) is d

whenever E C ]Fg with |E| > qud—ﬁ_
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1 Introduction

Vapnik and Chervonenkis [23] introduced the VC-dimension in 1971 in the context
of learning theory. For an introduction to the subject, see for example [2]. Given a
domain X and a collection H of functions /# : X — {0, 1}, consider the learning task
of trying to identify an unknown element f € H by sampling finitely many points
X1, ...y, Xy € X from an unknown probability distribution D, and recording the values
f(x1), ..., f(x;m). One desires an algorithm which takes this input and produces a
hypothesis 7 € H which with high probability has small error with respect to f. To
make this precise, we introduce some definitions.

Definition 1.1 Given a set X, a probability distribution D, and a labeling function
f X — {0, 1}, let & be a hypothesis; that is, & : X — {0, 1}. Define

Lp,r(h) = Prwplh(x) # f(x)],

where P~ p means that x is being sampled according to the probability distribution
D.

Definition 1.2 A hypothesis class H is PAC (probably approximately correct) learn-
able if there exists a function
my:(0,1)2 > N

and a learning algorithm with the following property: For every €, 6 € (0, 1), for every
distribution D over X, and for every labeling function f : X — {0, 1}, if there is some
hypothesis & € H such that Lp_y(h) = 0, then when running the learning algorithm
on m > my(€, ) i.i.d. examples generated by D, and labeled by f, the algorithm
returns a hypothesis / such that, with probability at least 1 — § (over the choice of
(X1, oy Xm) ~ D™),

Lp.s(h) <e.

The VC-dimension characterizes PAC learnability, in light of the fundamental the-
orem of statistical learning; H is PAC learnable if and only if the VC-dimension is
finite. Moreover, there are quantitative bounds for m (e, §) based on VCdim(H), with
smaller VC-dimension allowing smaller effective sample sizes. In order to define the
VC-dimension, we must first define shattering.

Definition 1.3 Let X be a set and H a collection of functions from X to {0, 1}. We say
that H shatters a finite set C C X if the restriction of H to C yields every possible
function from C to {0, 1}.

Definition 1.4 Let X and H be as above. We say that a non-negative integer d is the
VC-dimension of H if there exists a set C C X of size n that is shattered by H, and
no subset of X of size n + 1 is shattered by H.

For a subset E C IE‘g , and a fixed nonzero t € IF‘ql, consider the hypothesis class
H:(E) :=1{hy:y € E},
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where hy : E — {0, 1} is defined by &y (x) = 1if and only if x - y = ¢. Our main
theorem establishes the VC-dimension of this hypothesis class in arbitrary dimension
d > 3, for sufficiently large sets E C Fg.

Theorem 1.5 Ford > 3,if|E| > qudfﬁforan appropriate constant C 4 depending
only on d, and q is sufficiently large, then the VC-dimension of H;(E) is equal to d.

Remark 1.6 Theorem 1.5 holds if we replace the dot product with any non-degenerate
bilinear form. To check this, note that Theorem 2.1 holds for any non-degenerate
bilinear form (as observed in [6]). Moreover, our counting argument based on incidence
geometry of hyperplanes will go through in the exact same way.

Tosevich, McDonald, and Sun [15] studied this hypothesis class in the case d = 3,

and showed that when |E| > Cq%, the VC-dimension of H;(FE) is 3. Still in the
case d = 3, the exponent was improved from 11/4 to 5/2 by Pham, Senger, Tait,
and Thu-Huyen [21]. Both of these results employed a similar unfolding technique
via Cauchy—Schwarz, thereby reducing the argument to the construction of a much
simpler graph.

Theorem 1.5, on the other hand, relies on a modified unfolding technique using
Holder’s inequality, folding the graph in a different way which is more readily gen-
eralized to higher dimensions. In the case d = 3, our theorem recovers the exponent
5/2 of [21].

We sketch an outline of the proof of Theorem 1.5 and how it is different from
previous papers’ techniques, illustrating what we mean by unfolding. The authors of
[15] and [21] used the symmetry shown in Fig. 1 to demonstrate the shattering of three
points. In particular, the graph on the right side, after adding three leaves, represents
the shattering of three points. For v, z,y € E, let f(v, z, y) count the number of
choices for u, x € E so that each edge in the graph on the left hand side represents
a pair of points whose dot product is equal to . Then f (v, z, y)* counts choices for
u,u’,x,x’ € E so that each edge in the graph on the right hand side represents a
pair of points whose dot product is equal to 7. This observation helps to study the VC-
dimension by showing the abundance of the graph on the left, which then demonstrates
the abundance of the graph on the right via Cauchy—Schwarz applied to f.

In those results, much of the construction is done before the Cauchy—Schwarz
unfolding, so that the only other consideration afterward is the addition of leaves,
which is achieved by a straightforward pigeonhole argument. In our proof of Theorem
1.5, instead we apply Holder’s inequality at the very beginning, unfolding a single
edge into a star as in Fig. 2. The difficulty is that after showing the abundance of such
d-stars, it is not immediately clear whether any of them actually corresponds to a
shattering of d points. This motivates our definition of so-called “bad" sets in Sect. 2,
which help us enumerate stars which fail to represent a shattering of d points in this
sense. With this idea, Theorem 1.5 is reduced to showing that most d-stars in ]FZ do
not have any bad subsets of their vertex set.
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Fig. 1 Cauchy—Schwarz unfolding technique used in [15] and [21]

1.1 Related Work

Similar results have also been obtained in the context of distance problems over finite
fields. In this setting, the relevant hypothesis class is H¢%’, defined as follows. For

xe]Ff]’,let
2 2
[lx|| =x7 + -+ x5.

For a subset £ C IFZ, and a fixed nonzero € [Fg, let

HISE) = {fy:y € E},

where f, : E — ({0, 1} is defined by fy(x) = 1 if and only if |[x — y|| = 1.
Fitzpatrick, losevich, McDonald, and Wyman [10] showed in the case d = 2 that if
|[E| > C q%, q sufficiently large, then VCdim(Hf”‘” (E)) = 3. The exponent % was
recently improved to % by Thang Pham [20], refining the method of [10]. In the case
when E = ]FS this is trivial, and one may see by induction that in general

VCdim(H{"™ (Fd)) = d + 1.
In the dot product setting, on the other hand, we have
VCdim(H; (F))) = d.

This disparity comes from the fact that a sphere in ]F‘q’ is determined by d + 1 points

in general position, whereas a hyperplane in Iﬁ‘g is determined by d points in general
position.

In dimensions d > 3, it is still an open problem whether one can find a threshold
a € (0, d) so that whenever E > Cyg* for some constant Cy independent of ¢,

VCdim(HI (E)) = d + 1.
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The strongest partial result in arbitrary dimension is a corollary of the main theorem
from a previous result by the authors of this paper [1]. In that paper, we considered a
related hypothesis class with two parameters. Let

H;(E) :={hyy :u,v € E},

where h, ,(x) = 1if and only if ||x — u|| = ||x — v|| = ¢. In [1], the authors showed
that whenever .
Cq+ d=2
|E| > { Cq7 d=3
Cq~TT d>

and ¢ is sufficiently large, the VC-dimension of H} (E) is equal to d. It follows that
with the same restriction on the size of E C Fg , the VC-dimension of ’Hf“’ (E) is
eitherd ord + 1 [1, Section 5].

In contrast to the situation for distances, in this paper we are able to find the VC-
dimension exactly, for sufficiently large sets E C ]Fg. The techniques used are related
to those from [1], but new ideas were needed to overcome the difficulty that the property
|]x — y|| = t is translation invariant, whereas the property x - y = ¢ is not.

The results discussed above can be expressed in terms of graph embeddings ¢ :
G — G,;(F) for appropriate graphs G, where G; (E) is the distance (resp. dot product)
graph, i.e., the vertices are points in £, with an edge x ~ y whenever ||x — y|| = ¢
(resp. x - y = t). For relevant results on graph embeddings in the distance and dot
product graphs, see for example [3, 6, 10, 12—15, 21].

The difficulty in extending the techniques of this paper to the distance setting is that
we would need to solve the same graph embedding problem in a lower dimensional
space, and generally these problems are easier in higher dimensions. In particular, the
analog of our methods would again only show that VCdim(Hﬁ” St(E)) > d when E is
large enough, leaving open whether VCdim(H;”” (E)=d+1.

2 Proof of Main Theorem

Consider a large subset E C Fg , and a fixed nonzero t € F,. We will use Theorem
2.1 from [6], which counts pairs (x, y) € E? with x - y =t.

Theorem 2.1 ([6]) For non-negative functions f, g : Fg — R,

> Fg =q M Ifllligll + R@).

x-y=t

where a
RO < I1f1l211gll2g 7 -
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X4

4

Fig.2 A 6-star realized as a subgraph of the dot product graph G; (E)

In particular, when f, g are both chosen to be the indicator function of E, we see that

EP i
(e B ixy=nl=="+0(¢T|E]).

. . d+1
and the error term is much smaller than the main term when |E| = o q% . We

use this fact, along with Holder’s inequality, to count the number of k-stars in the
dot-product graph on E.

Definition 2.2 A (k+1)-tuple (y, x1, ..., x¢) of points in ]FZ isak-starif y - x; =t for
eachi = 1, ..., k. If all the x; are distinct, we say (y, x1, ..., Xx) is a non-degenerate
k-star.

Definition 2.3 Let G;(E) be the dot product 7 graph on E, i.e., the graph with vertex
set E and an edge x ~ y whenever x - y =t.

Lemma 2.4 Let

Ni(E) = H(y,xl, oxp) € EFFL Ly distinet, y - x; :tVi}

@ Springer



Graphs and Combinatorics (2025) 41:47 Page70f13 47

be the number of non-degenerate k-stars in G, (E). If |[E| > Ciq Gt for an appropriate
constant Cy depending only on k, then

|E|k+1

Ni(E) >
K(E) = 2

Proof For x € E, let

Yo =) 1

yeE
x-y=t

be the number of neighbors of x in G, (E). Then

Ni(E) := ) Y@ @) = 1) () —k+1)

xeE

>y ),

xeE

where ¢ (x) = max(y¥ (x) — k + 1, 0). By Holder’s inequality,

<Z¢(x))k < (Z ¢<x>k> (Z 1>k1 < |[EFINW(E).

xeE xekE xekE

To get the desired lower bound for Ny (E), it suffices tobound )" ¢ (x) from below.
We obtain such a lower bound as a result of Theorem 2.1:

Do) =Y W@ —k+DH=> Y 1—(-DIE|

xekE xekE xeE yeE
x-y=t

E|? a1 _LIEP

=== +0(¢"7 IEl) — (k= DIE| = 27F =,

q q

+

assuming |E| > qudzl for an appropriate constant Cy depending only on k. This
yields
|E|k+l

Ni(E) >
K(E) = 2

O

Having obtained a lower bound for the number of k-stars in G, (E), we are partic-
ularly interested in the case k = d, and particularly those stars (y, x1, ..., xg) with
the property that {xi, ..., x4} C ]FZ is a linearly independent set of vectors. Therefore,
we would like to find an upper bound for the number of d-stars (y, x1, ..., x4) formed
from linearly dependent sets {xi, ..., x4}.

@ Springer



47  Page8of13 Graphs and Combinatorics (2025) 41:47

Lemma 2.5 Let Ny(E) be the number of d-stars (v, x1, ..., Xq) in G;(E) such that
{x1, ..., xq} is a linearly independent set. If

1
|E| = Caq?" 7T,
for q sufficiently large, then
|E|d+1
Ni(E) >
a(E) = 34
Proof In a star (y, x1, ..., X4), if {x1, ..., x4} is linearly dependent, we may assume

without loss of generality that
Xg € Span(xy, ..., Xg—1).

Foragiven y € E, there are ¢/ (y) points x € E suchthatx-y = ¢. Therefore, there are
at most 1p(y)d_1 choices for the first d — 1 points x1, ..., x4—1. Once y, x1, ..., Xg—1
are fixed, we see that the point x, lies on the hyperplane {x € E : x -y =t} as well as
the hyperplane Span(xy, ..., x;—1). These are not the same hyperplane, as only one of
them contains the origin since ¢ # 0. Moreover, their intersection is nonempty since
it contains x4, and so we conclude that x; must be chosen from a (d — 2)-dimensional
subspace, which must have ¢~ points. Putting this together, we find that the number
of stars (y, x1, ..., xg) in G;(E) with the set {x1, ..., xz} being linearly dependent is
bounded by

dg" 2 Yy < dg72g @V Ny ()

yeE yeE
|E|?
_7

q

5 dqd(d72)

since ¢(y) < ¢¢~! for any y. The factor of d comes from the fact that we chose
x4 € Span(xy, ..., x4—1). The last line follows from Theorem 2.1. We find that
2 d
ggia-» P _ 1B
q 6q4

as long as |E| > qud_dill for an appropriate constant Cy. Finally, Lemma 2.4
finishes the proof of the statement. O

Definition 2.6 For a d-star S = (y, x1, ..., x4), we call L = {x1, ..., x4} the leaf set.
We say a subset A = {x,, ..., x,, } of the leaf set is bad with respect to S if for every
z € E satisfying z - x,, =t foralli =1, ..., k, thereissome x € L\ Awithz-x =1t
as well.

Remark 2.7 Our definition of a bad set is designed for testing whether the set
{x1, ..., xq} is shattered by H;(E). In particular, it follows immediately from defi-
nitions that {x1, ..., x4} € E is shattered if and only if there is some y € E so that
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S = (y, x1, ..., xq) is ad-star in G, (E), and {x1, ..., x4} admits no bad subset of size
k=1,...d—1.

With this in mind, our strategy is to show that a generic d-star in G,;(E) with a
linearly independent leaf set admits no bad sets. To see this, we bound the number of
d-stars corresponding to a given bad set.

Definition 2.8 Given a set B = {by, ..., bt} which is bad in some d-star S =
(v, x1, ..., Xxqg) with linearly independent leaf set L = {x1, ..., x4}, let

OB)={xeE:x-bj=tVi=1,..k}.

If Q(B) is small, this restricts the number of choices for the point y in a star
S = (y, x1, ..., xq) containing B. If Q(B) is large, on the other hand, we will see that
this restricts the number of choices for the leaf set. The following lemma will allow
us to separate into cases based on the size of Q(B).

Lemma 2.9 Suppose that B = {by, ..., bt} is bad in some star S = (y, X1, ..., Xq),
and that
1QB)| > ¢" .

Then for any y € Q(B), there is a subset J C Q(B) of size r, not containing y, so
that {y} U J is linearly independent.

Proof Fix b € B, so that every point x € Q(B) lies on the hyperplane Hj, defined by

x - b = t. Suppose that J is the largest subset of Q(B), with the desired property that
{y} U J is linearly independent and J does not contain y. For any

z € Q(B)\Span({y} U J),

we see that {y, z} U J is linearly independent. Since we assumed that J is maximal,
this means that

Q(B)\Span({y} U J) = ¥.

Therefore,
Q(B) = Q(B) N Span({y} U J) € Hp N Span({y} U J).

Also note that Hp, does not contain Span({y} U J) since the former does not contain
0, while the latter does. Thus, their intersection is an affine subspace of dimension at
most |J|, having at most ¢!”/! points. Therefore,

¢! <1Q(B)| < |H, N Span({y} U J)| < g1,
so|J|>r. O
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Lemma 2.10 For E C ]Fg, the number of d-stars in E with linearly independent leaf
set containing a bad set of size k is at most

1k d?—kd—d+k
CylE"q + s

for an appropriate constant C.

Proof We fix a linearly independent set B = {x,...,xt} € E, 1 <k <d —1,
and count the ways to extend this to a d-star (y, x1, ..., x4) for which B is a bad
set and {xi, ..., x4} is linearly independent. Note that permuting the elements of
{x1, ..., x4} does not change any of this data, so up to a constant depending only
on d, this is the only case we need to consider. We assume B is bad in at least
one d-star, Sy = (yo,xl, ...,xk,x,(c)ﬂ, ...,xg), with {xp, ...,xk,x,?H, ...,xg} lin-
early independent, since otherwise the count is zero. To extend to a different d-star
S = (¥, X1, e Xk» Xkt1, .-, Xg), ¥y must be chosen from the set Q(B). Let £ be the
smallest positive integer satisfying

10(B)| < ¢,

so that there are at most ql choices for y € Q(B). Given such a choice, we count the
number of ways to extend the leaf set to obtain a valid star S. Since

10(B)| > ¢" 1,

Lemma 2.9 tells us that there exists a subset / € Q(B) with £ points, not containing
v, such that {y} U J is linearly independent. For x € E \ B, let

O, =JN{zeE :x-z=t}.
Suppose that the leaf set of S is L = A U B, so that

A = {Xkq1, ey Xa}-

If B is bad in S, then

d
U @, =J.
i=k+1

Given some set Z C J, for any x € E satisfying &, = Z, we see that x lies on the
hyperplane H, := {x : x - z =t} for each z € Z. Since we already fixed the point y in
the star S = (y, x1, ..., X4), x also lies on H,. Since {y} U Z is linearly independent,
this means there are at most g ~'~14! choices for x € E satisfying ®, = Z. Therefore,
summing over all possible collections of d — k subsets of J whose union is J, we find
that the number of stars S containing B in the leaf set is at most

ql Z ﬁqd—1—|2;| — q(d—l)(d—k)—M Z ﬁq—|zi|

(Z1sesZa—p) i=1 (Z1,esZa—p) i=1

Jzi=J Uzi=J
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_ qdz—kd—d+k+£ Z q raa VAl

qdz—kd—d+k+€ Z —

2 _kd—
< Ct/iqd kd d+k'

Here in the third line we used that Zl_] |Z;| = |J| = £. In the fourth line, C’, FRE

the number of ways to write J = Ul_l Z;; note that C); depends only on d, since
|J|=¢<d. O

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 For each k = 1, ...,d — 1, let M} (E) denote the number of d-
stars in G, (E) admitting a bad set of size k, and let M (E) denote the total number of
IE \

, then it

follows from Lemma 2.5 that there exists some d-star in G, (E) which adm1ts no bad
set, and hence the VC-dimension of H; (E) is equal to d. Using Lemma 2.10, we see
that

d-stars admitting a bad set of any size. If we can show that M(E) <

d—1 d—1
M(E) <) Mi(E) < ch|E|" dokd=dik < (g — 1)) E[ g0
k=1 k=

The last step follows from the assumption that | E| > ¢¢~!

is largest when k is largest
Therefore, M(E) < 'E | whenever

, meaning that the summand

1
|E| > Cqq® 2.

1
We already needed the stronger restriction |E| > qd_ﬂ to apply Lemma 2.5, and
this completes the proof. O
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